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ABSTRACT
Recently there has been a growing movement of researchers
that believes innovation and novelty creation, rather than
pure optimization, are the true strengths of evolutionary al-
gorithms relative to other forms of machine learning. This
idea also provides one possible explanation for why evolu-
tionary processes may exist in nervous systems on top of
other forms of learning. One particularly exciting corollary
of this, is that evolutionary algorithms may be used to pro-
duce what Pugh et al have dubbed Quality Diversity (QD):
as many as possible different solutions (according to some
characterization), which are all as fit as possible. While the
notion of QD implies choosing the dimensions on which to
measure diversity and performance, we propose that it may
be possible (and desirable) to free the evolutionary process
from requiring defining these dimensions. Toward that aim,
we seek to understand more about QD in general by inves-
tigating how algorithms informed by different measures of
diversity (or none at all) create QD, when that QD is mea-
sured in a diversity of ways.
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1. INTRODUCTION
Traditionally, the primary focus of evolutionary compu-

tation has been on developing algorithms for black box op-
timization problems. That is, the performance of different
algorithms are compared on their relative ability to quickly
approach optimal solutions to problems where the only feed-
back is in the form of a fitness value corresponding to the
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performance of a given candidate solution. Accordingly, bet-
ter algorithms are considered to be those that can achieve
the most fit solutions in the fewest number of iterations.
While the domains to which these algorithms are applied
may be quite diverse, this notion of finding a single global
optimum1 holds sway over the vast majority of work in the
field.

However, there has recently been a growing movement
of researchers that believes innovation and novelty creation,
rather than pure optimization, are the true strengths of evo-
lutionary algorithms (EAs) relative to other forms of ma-
chine learning. In particular, a number of recent works in
the field, have chosen to reframe the question of “can we
develop an algorithm to find solutions better and/or faster
than other techniques?”, and have instead asked whether
the innovative aspects of evolution can be leveraged to pro-
duce a diverse assortment of high quality solutions. Pugh
et al [9] have dubbed this to be a quest for Quality Diver-
sity (QD), and have presented an initial comparison of the
existing algorithms created for this purpose: MAP-Elites,
Novelty Search, and variants thereof.

At the same time, there is a growing body of evidence that
evolutionary principles may be operating within the nervous
systems of humans and other animals, and may be a crucial
ingredient to insightful problem solving [5]. If this is the
case, then it seems likely that ability of evolution to produce
a diversity of solutions (e.g. self models [2], features [1, 10],
motor actions [3]) may be what justifies their existence.

While these QD algorithms have been shown to be quite
successful in several domains, they all contain one strongly
limiting constraint: the a priori definition of a behavioral
characterization (BC): a set of features that defines the di-
mensions along which diversity is sought. As Pugh et al
[9] demonstrated the choice of BC can significantly impact
the performance of various algorithms. However, while they
compare different BCs, their comparisons are all made be-
tween variants of different algorithms that are each informed
by the same BC on which QD is measured.

While computing a QD metric implies choosing the di-
mensions on which to measure diversity and performance,
we propose that it may be possible (and desirable) to free
the evolutionary process from requiring defining these di-
mensions. Ultimately, we seek to create Darwinian neu-
rodynamic methods that allow robots to invent their own
notion of what defines “useful” diversity, but here, as a first
step, we seek to understand more about QD in general by

1Or a Pareto front of global optima in the case of multi-
objective problems.

1061

http://dx.doi.org/10.1145/2908961.2931675


investigating how algorithms informed by different BCs (or
none at all) create QD when QD is measured on BCs that
may be entirely different from (and unrelated to) the ones
used to drive the evolutionary process.

2. RELATED WORK
In this section we describe some of the most relevant

work. However, due to the brevity of this contribution, this
overview is necessarily incomplete. We direct the reader to
elsewhere in the literature, especially [9], for a more thor-
ough background.

Novelty Search (NS) [6] introduced the concept of “non-
objective” search, or searching without objectives. Effec-
tively it replaces the fitness in a traditional EA with a nov-
elty score, which is computed as the mean distance of an
individual’s BC to that of its k-nearest neighbors amongst
the current population and an archive of previously eval-
uated individuals. Counter-intuitively, NS is often able to
outperform standard objective search when compared on the
fitness of evolved solutions–even though NS is not selecting
for fitness it can actually find more fit individuals than algo-
rithms that explicitly select for fitness. Furthermore, more
recent work has demonstrated that in addition to finding ul-
timately more fit solutions, selecting for novelty is useful in
itself for building up a repertoire of different behaviors [4].

It was this latter idea that inspired MAP-Elites [8], which
makes this concept more explicit by building up a map of
diverse and fit individuals: a discretization of the behav-
ioral space into bins, where each bin maintains the most fit
individual whose BC vector falls into that bin.

An alternative algorithm, which has not been previously
studied in the context of Quality Diversity is Viability Evo-
lution (ViE) [7]. ViE represents an alternative abstraction
of artificial evolution, which, similar to non-objective search,
does not require the formulation of an explicit fitness func-
tion. Taking inspiration from viability theory in dynamical
systems, natural evolution and ethology, ViE instead works
by eliminating individuals that do not meet a set of chang-
ing criteria, but shows no preference within the set of viable
individuals.

3. EXPERIMENTS
Our experimental setup is structured as follows. We con-

sider four different variants of a 2D robot maze navigation
task inspired by the task explored in [9]. These four variants
are referred to as base maze (BM), hard maze (HM), base
maze freeze on contact (BMFC), and hard maze freeze on
contact (HMFC). All tasks involve a 2D circular robot, con-
trolled by an evolved neural network attempting to reach a
goal location. The base and hard maze are shown in Fig. 1,
where the blue and yellow circles indicate the starting po-
sition and the goal, respectively. The topology of the two
mazes is loosely modeled after the “QD-Maze” used in [9],
the main difference being only the shape and position of
some of the obstacles. As their “QD-Maze”, our two mazes
contain numerous deceptive traps (to navigate to the goal
a robot must first navigate away from it, possibly multiple
times), but also allow many possible paths to the goal.

The two mazes differ in that the central cul-de-sac is closer
to the goal in the hard maze, and the hard maze additionally
contains two walls that narrow the passages towards the
goal, thus making the problem more deceptive.

Figure 1: The base maze (left) and hard maze (right)

In the “freeze on contact” variants, we use the same mazes
but we make the task even harder since we stop the robots
as soon as they touch a wall. This forces the robots to
additionally learn to avoid walls and should penalize “wall
sliding” behaviors or any other behavior that would bounce
the robots between obstacles until they reach the goal.

In the simulations2, we model the kinematics of an e-puck3

like wheeled robots, controlled by a Feed Forward Neural
Network with 9 input nodes, 5 hidden nodes, and 2 output
nodes. The first 8 inputs are binary signals coming from 8
infrared sensors evenly spaced around the robot. The last
input measures the relative bearing towards the goal. All
inputs are scaled in [−1, 1]. The two outputs are the com-
mands to the two wheels. Hidden and output layers use the
sigmoid activation function. Each network is encoded as a
set of 62 real-valued weights in the range [−3, 3].

On each maze variant, we run five search algorithms:
MAP-Elites [9], Novelty Search [6], Viability Evolution
[7], random search, and a standard fitness-based Genetic
Algorithm (GA). The latter is tested in two different
configurations of selection pressure, i.e. with a parent
population (µ) of 100 and 2000 individuals. The robot’s
fitness is measured as its Euclidean distance to the goal
at the end of the simulation. Each algorithm is repeated
30 times, each continued for 250, 000 evaluations. To
compare the algorithms, we consider the four BCs used
in [9] (EndpointBC, FullTrajectoryBC, HalfTrajectoryBC,
DirectionBC) and the QD metric proposed therein.

To assess the importance of the feature choices on quality
diversity, we run both MAP-Elites and Novelty Search on
each of the four BCs, while also collecting the information
on the three other BCs (although these are not used in the
search). This is accomplished by maintaining a “QD map”
for each run that holds, for each bin of a “MAP-Elites style”
map, defined for each BC, the best fitness seen in that bin
over the entire run. Similarly, for the other algorithms that
are not explicitly informed by one of the BCs we also record
information about all four BCs so that we can ultimately
compare each algorithm using any of the BCs, even those
different from what informed their evolution (if any). In
total, considering 30 replicates of 12 different algorithmic
variants (4 MAP-Elites, 4 Novelty, 4 other), and 4 task vari-
ants (BM, HM, BMFC, HMFC), we run 1440 experiments.

From the saved QD maps for each run we are then able
to compute QD scores based on the different BCs to score

2The source code of the simulator and algorithms is available
at https://github.com/lis-epfl/qd experiments.
3http://www.e-puck.org
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how well the different algorithms compared on producing a
diverse assortment of well-performing solutions. We do this
in two ways. The first, Fitness QD, is computed as QD is
computed in [9]: we sum up the best fitness achieved in all
bins of the relevant QD map for each run to arrive at a final
score. In this way QD is increased by filling more bins and
finding more fit solutions in each bin. However, since fitness
may be a deceptive measure, QD computed in this way may
also be deceptive (e.g. robots navigating to the bottom of
the cul-de-sac receive high fitness even though stuck in a
dead-end), so here we introduce a second QD metric, dubbed
Success QD. Success QD does not consider fitness directly,
but only considers whether a solution is successful in finding
the goal (defined in terms of reaching a distance to the goal
location under a defined threshold that excludes solutions
stuck in the cul-de-sac). Specifically, Success QD is defined
as the number of bins where a successful solution has been
found. Since this is not based on fitness, it will be free from
the the aforementioned deceptiveness.

4. RESULTS
A sampling of results from these experiments is presented

in Fig. 2, and explained in the caption. The first obser-
vation is that our experiments allow us to recover the re-
sults obtained in [9]. In particular, we observe that the
standard GA shows comparatively lower Fitness QD in all
experiments, w.r.t. the remaining algorithms. We also con-
firm that among the algorithms that make explicit use of a
behavior space during the search (MAP-Elites and Novelty
Search), Novelty Search performs best when using BCs more
“aligned” with fitness, while MAP-Elites tend to perform in-
creasingly better as the behavior features get less aligned
with the fitness (i.e., moving from the strongly-aligned End-
pointBC to the least-aligned DirectionBC).

Additionally, our extensive experimental configuration
also allow us to collect evidence for several new findings,
which can be summarized as follows: (1) The relative
performance of different algorithms varies depending on
the difficulty of the task environment. (2) The relative
performance of different algorithms on a given task also
depends on whether the comparison is based on Fitness
QD or Success QD. Fitness QD, like fitness itself, may
be deceptive and lead to the false conclusion that one
algorithm is outperforming another, when in fact it dis-
covers fewer different, successful solutions. (3) Viability
Search [7], which like the fitness and random variants is not
informed by any BC, can often achieve better performance
than other methods which are not informed by the BC
that is used to calculate QD. (4) Different BCs drive the
search in different ways, and counter-intuitively algorithms
driven by different BCs from which QD is calculated on
can outperform variants that were actually informed by the
BC used to calculate QD (compare how MAP-Elites run
with either FullTrajectoryBC or HalfTrajectoryBC rate on
Success QD in the top-right plot).

5. CONCLUSION
Here, we have presented a snapshot of ongoing work at-

tempting to understand the influence of behavioral char-
acterizations on algorithms that explicitly or implicitly at-
tempt to replicate the Quality Diversity seen in the natural
world. While this exploration is still a work in progress,

we have presented a number of interesting observations that
can be made when different characterizations of QD are con-
sidered, including those calculated on Behavior Character-
izations different from what had been used to inform the
evolutionary processes, as well as those calculated by only
considering task success rather than (a possibly deceptive)
fitness value.

The general notion of QD – using evolutionary algorithms
to find a diverse assortment of high performing solutions –
is clearly an important advance in the field of Evolutionary
Computation (and in machine learning more generally): it
has enabled impressive results, especially as a mechanism
for a robot to learn a useful behavioral repertoire (as done
in [3, 4]), which may be indicative of similar processes oc-
curring in the brains of natural organisms. Still, the true
goal is to find algorithms that do not require defining a BC
a priori, and when comparing algorithms caution is required
in terms of how QD is calculated, as different formulations
of QD may themselves be deceptive. Ongoing and future
work is examining alternative algorithms that do not rely
on an explicitly defined BC and exploring the notion of QD
in more complex task domains.
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