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Abstract. Apache Spark is a popular framework for large-scale data an-
alytics. Unfortunately, Spark’s performance can be difficult to optimise,
since queries freely expressed in source code are not amenable to tradi-
tional optimisation techniques. This article describes Hylas, a tool for
automatically optimising Spark queries embedded in source code via the
application of semantics-preserving transformations. The transformation
method is inspired by functional programming techniques of “deforesta-
tion’, which eliminate intermediate data structures from a computation.
This contrasts with approaches defined entirely within structured query
formats such as Spark SQL. Hylas can identify certain computationally
expensive operations and ensure that performing them creates no super-
fluous data structures. This optimisation leads to significant improve-
ments in execution time, with over 10,000 times improvement observed
in some cases.
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1 Introduction

There is a burgeoning trend for large scale data analysis, driven in part by the
rise in the use of social media and the Internet of Things [1]. Deciding how
best to exploit such voluminous data is driving widespread activity in Big Data
analytics. From the practitioner’s perspective, the process of Big Data analytics
is still a costly endeavour in terms of time and effort [2]. As a result, it is crucial
that operations on large data sets are performed efficiently.
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Apache Spark1 is a popular open source cluster computing framework main-
tained by the Apache Software Foundation, and is an increasingly popular choice
for Big Data analytics. Spark is written in the Scala programming language [3]
and runs on the Java Virtual Machine [4]. The framework is organized around
special in-memory data structures, known as Resilient Distributed Datasets
(RDDs) [4]. RDDs avoid the costly read/write cycles incurred by other meth-
ods, where replication of data is required when sharing data between multiple
computations. The ability to share data between executions is desirable in many
iterative machine learning and data mining methods, where a substantial num-
ber of queries are run on the same set (or subset) of data. Despite the fact
that data kept in-memory is somewhat more volatile than that stored on disk,
RDDs have been designed with fault tolerance in mind and are recoverable in
the event of failure. The Spark interface to RDDs consists of several well-known
functional programming transformations (e.g. aggregate, filter, map and reduce)
since these are more easily parallelized than their imperative equivalents. Gener-
ally, Spark queries are sequences of such transformations (which construct new
RDDs), terminated by one or more actions (which return values).

Although much of Spark’s popularity is due to the speed benefits gained
via in-memory data processing, the Spark framework is not amenable to com-
mon query optimisation techniques such as those of relational algebra [5]. Since
Spark queries are written in a general-purpose programming language (one of
Scala, Java or Python), determining the underlying relational operations be-
comes extremely difficult [6]. To avoid this difficulty, previous work focused on
special-purpose declarative data manipulation languages like Spark SQL, which
allow for the use of these traditional techniques. Unfortunately, these optimisers
cannot be used to improve existing programs which were not written with Spark
SQL in mind [7].

Long before Spark existed, functional programmers faced a rather similar
issue: programs written in functional style, using high-level functions to encap-
sulate common patterns of data-handling, frequently resulted in a large number
of superfluous intermediate data structures [8]. Several so-called “deforestation”
rules were proposed to automatically eliminate these superfluous structures.

In this article, we apply deforestation rules to reduce Spark queries to func-
tionally equivalent forms that are more efficient, reducing the overall time taken
to execute such queries on average for the cases tested. The key insight of the
approach presented here is that RDDs are also intermediate data structures in a
functional language. This makes it possible to apply similar deforestation rules
to existing programs which manipulate RDDs in a less constrained fashion than
approaches such as Spark SQL.

2 Related work

Within the field of Search Based Software Engineering (SBSE), there is widespread
interest in the use of search techniques to improve functional and/or non-functional

1 http://spark.apache.org/
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properties of a target program. In previous work (e.g. [9]), we have used the term
‘Automatic Improvement Programming’ (AIP) to refer to methods which (at
least in part) achieve this via semantics-preserving and/or deterministic meth-
ods. The term ‘automatic’ was chosen for its historical association with different
methods of nonstochastic program transformation in the field of Automatic Pro-
gramming [10]. In contrast, previous work using the term ‘Genetic Improvement’
(GI) has been predominantly concerned with the application of stochastic (if not
necessarily genetic) search [11]. In particular, there has been historical emphasis
in GI on validation of software mutants via testing, which is clearly not required
in the case of semantics-preserving transformations. The definition of GI has
recently been amended to be ‘computational search to improve software while
retaining its partial functionality’2.

In 2011, Orlov and Sipper [12] used Genetic Programming (GP) [13] to auto-
matically improve existing Java programs for well known GP benchmarks such
as symbolic regression and the ‘artificial ant’ problem. Their approach evolved
Java bytecode rather than source code directly and used the notion of ‘compat-
ible crossover’ to ensure program correctness. More recently, Kocsis and Swan
[14] made use of the well-known Curry-Howard isomorphism to demonstrate that
it is sometimes possible to replace stochastic mutation operators with transfor-
mations obtained by deterministic proof search. Kocsis et al. [9] also describe an
AIP system for repairing and improving the implementation of hashCode meth-
ods in Hadoop, an open- Java-based framework for distributed Big Data storage
and processing. The Hadoop code base was analyzed and it was procedurally
determined that there were over 400 cases where the hashCode implementation
did not meet its contractual obligations. Semantics-preserving transformations
were then performed to ensure the required contractual consistency with the
equals method. Genetic Programming was then used to improve the distribu-
tion of the repaired hashCode method. The automatically improved hashCode
implementations were able to outperform both the original Hadoop implemen-
tations and an existing hashcode generation tool on a number of case studies. In
recent work by Burles et al. [15], the behavioral semantics of Object-Orientation
is used to constrain possible substitutions for Google Guava collection classes.
By employing these constraints within a genetic search, a 200-fold improvement
over an exact approach is achieved for the minimization of energy consumption.

2.1 Reflection in Scala

The Hylas framework described here is implemented via the reflection capabil-
ities of the Scala language, where reflection is the ability of a program to inspect
and modify it’s own behaviour. In general, reflection on abstract syntax trees
(ASTs) in Scala can either be applied at compile-time or run-time (i.e. offline or
online improvement respectively).

The historic trend in GI has been offline, but there is an increasing interest
in online improvement of software [16, 17]. Swan et al. introduced the Gen-O-

2 http://geneticimprovementofsoftware.com/
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Fix [18] framework as an embeddable framework supporting dynamic adapta-
tion. Gen-O-Fix uses runtime reflection to perform online transformations of
Scala ASTs. If a modified AST yields better performance than the original, the
mutant source and object code replaces that of the original system. This func-
tionality is of particular value to ‘always-on’ systems such as web servers and
embedded systems, where the mutants can be evaluated concurrently with the
execution of the live system.

The compile-time transformation of ASTs in Hylas is achieved via macros,
which differ from the notion of macros familiar to ‘C’ programmers in that they
can make use of all available type and scope information [19]. A macro is a Scala
function invoked by the compiler that directly transforms the AST of Scala
source code and can therefore be considered as an open-ended extension of the
compilation phase. Other work in this area that can be considered to augment
compiler capabilities includes that of White [20], who investigated the ability
of GP to provide a ‘gracefully degraded’ tradeoff between functional and non-
functional properties in low-resource systems. Work in compiler augmentation
more closely related to this article is that of Alexander and Gratton [21], who use
Grammatical Evolution to evolve Stratego [22] rewrite rules for Data Movement
Optimisation.

3 Hylas

We now describe the Hylas tool in more detail. As mentioned above, the op-
timising transformations applied by Hylas are taken from deforestation tech-
niques originated by Wadler [8]. The motivation for deforestation arises from
the prevalence of intermediate data structures in functional programming. For
example, when using the ‘pointfree’ style of programming to calculate the sum
of squares for the first n integers (1 until n).map( square ).reduce( + ) re-
quires a list to be generated at each function application. Wadler presents seven
deforestation rules for functional programming [8] which can eliminate such in-
termediate expression in a variety of cases.

Hylas is currently able to apply simple deforestation rules of the forms
given in Listing 1.1. Note that the rules map transformation-action pairs to
transformation-action pairs, and can thus be applied recursively. The rules pre-
serve query semantics. Each deforestation rule defined below eliminates inter-
mediate data structures: RDDs that are created during execution to compute a
value and are subsequently discarded.

Listing 1.1. Hylas deforestation rules

( rdd f i l t e r f ) f o r each ( x => g ( x ) )
−> rdd . f o r each ( x => i f ( f ( x ) ) g ( x ) )

( rdd map f ) f o r each ( x => g ( x ) )
−> rdd . f o r each ( x => g ( f ( x ) ) )

( rdd map f ) map g
−> rdd map ( x => g ( f ( x ) ) )
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( rdd map f ) . count
−> rdd . count

( rdd1 c a r t e s i a n rdd2 ) . count
−> rdd1 . count ∗ rdd2 . count

We now explain the operation of each rule in more detail:

1. (rdd filter f) foreach (x =>g(x))
→ rdd foreach (x =>if(f(x)) g(x)):
The original code creates an intermediate data structure, containing all the
values satisfying some given predicate f, then performs the given action g on
each value in the intermediate data structure. The transformed code walks
the RDD once, executing the action g only on the values that satisfy f.

2. (rdd map f) foreach (x =>g(x))
→ rdd.foreach(x =>g(f(x))):
The original code creates an intermediate data structure by applying the
function f to each value of the RDD, then performs the given action g on
each value in the intermediate data structure. The transformed code walks
the RDD once, executing the action g directly on the value f(x), without
creating intermediate structures.

3. (rdd map f) map g
→ rdd map (x =>g(f(x))):
The original code creates an intermediate data structure by applying the
function f to each value of the RDD, then applies the function g on each
value in the intermediate data structure. The transformed code applies the
function f ◦ g directly on the values in the RDD, without creating the inter-
mediate structure.

4. (rdd map f).count
→ rdd.count:
The original code creates an intermediate data structure by applying the
function f to each value of the RDD, then counts the number of values
in the intermediate structure. Since applying a function cannot change the
number of values in the RDD, the transformed code simply returns the
number of elements in the RDD, without applying the function to create the
intermediate structure.

5. (rdd1 cartesian rdd2).count
→ rdd1.count ∗ rdd2.count:
The original code calculates the Cartesian product of two RDDs, then counts
the elements of the product. The transformed code counts the elements in
the product directly, without constructing the intermediate data structure.

The semantics of Spark ensure that the functions that are removed by the
transformation in Rules 4 and 5 have no side effects.

3.1 Implementation

The end-user demarcates the subsystem to which Hylas is to be applied by
adding the annotation @hylas to a header (be it an object, class or method
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header) or an individual query. The Hylas tool then uses Scala’s pattern match-
ing facility to find any subtree of the AST which corresponds to the above rules
and applies the associated transformations. Specifically, Hylas executes the fol-
lowing algorithm:

1. Walk the AST of the annotated object, identifying optimisable queries using
the available type information.

2. Apply the deforestation rules one-by-one on the identified queries.
3. Return the “deforested” AST to the compiler.

Note that, apart from this single annotation, Hylas performs without further
need of human input. Here we note that as Hylas works with the Scala compiler
directly, all of the computational overhead is at compile-time. On the examples
tested, the execution of Hylas is nominal when added to the execution time
taken to run each query.

4 Performance

The application domain for Hylas was provided by Keysight Technologies, the
sponsors for development. Keysight builds electronic measurement and design
automation solutions for both frequency and time domains which produce high
speed data streams that must be processed and analysed in real-time. The instru-
mentation uses a common set of measurement algorithms that may be deployed
to handheld, benchtop, modular or cloud targets. The aspect of GI for Keysight
is the ability to adapt and deploy to multiple targets whilst maintaining integrity
of measurement. The evaluation context chosen for Hylas was the forensic anal-
ysis of network data for cybersecurity. The line rates associated with network
perimeter points are multi-gigabit so the packet traces are large and are typically
analysed in a cloud environment. The analysis process is typified by repeated
and increasingly complex queries on a large dataset, with the goal of eliminating
false positives in order to focus on the source of malicious activity.

The test data used in the performance evaluation originated from the 2013
“Infection Discovery using DNS Data” challenge of the Los Alamos National
Laboratory [23]. The data consists of several months of DNS server logs, parsed
into human-readable text using the dns parse tool

For performance evaluation purposes, 27 gigabytes of logs were uploaded
to Amazon’s S3 [24] scalable cloud storage service. Given the security-sensitive
nature of the application, genuine query data was unavailable and so testing was
performed on 100 different Spark queries generated synthetically by building a
chain of RDD transformations and actions. Hylas was executed on the resulting
queries, the measured execution times, given in seconds, can be seen in Figure 1.

It can be seen from Figure 1 that the majority of queries were not significantly
affected by Hylas, while 10 queries saw significant and highly improved execu-
tion times (significance determined via the Mann-Whitney U test with p = 0.05).
All five of the defined deforestation rules applied at least once in a query that
was statistically significantly improved. Of the 10 queries where a significant
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Fig. 1. Spark vs Hylas execution times (seconds) for all queries

improvement was made, this was often due to the application of deforestation
rules 3, 4 and 5 given in Section 3 where sequences of maps and Cartesian prod-
ucts that don’t have to be constructed are present within a query. An example
query from those tested is given below, where ’linear’ denotes a linear time string
transformation, ’quadratic’ a quadratic time string transformation, and ’intlin-
ear’ and ’intquadratic’ denote integer-to-integer functions of the corresponding
asymptotic complexity.

logData1 .map( quadrat i c ) .map( l i n e a r ) .map( x => x . length ) .
map( i n t l i n e a r ) . c a r t e s i a n ( logData2 ) . count

Transformed to:

return logData1 . count ∗ logData2 . count

For the cases where deforestation rules 1 and 2 were used, the improvements
are not as high but still significant (ranging from 14 times to 180 times relative
improvement). An example query and the transformed version using these two
rules is given below:

logData1 . c a r t e s i a n ( logData2 ) .map( x => x . t oS t r i ng ) .map(
l i n e a r ) . f i l t e r ( x => x . length > 80) . count

Transformed to:

va l acc = accumulator (0 , ” counter ” ) logData1 . c a r t e s i a n (
logData2 ) . f o r each ( x => i f ( l i n e a r ( x . t oS t r i ng ) . length >

80) acc += 1) return acc . va lue
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Table 1 provides descriptive statistics of the run times of the original Spark
and the Hylas optimised variants, with the corresponding boxplots shown in
Figure. 2. The average improvement was around 993 times, and in 7 of the 10
cases of significant improvement, the improvement was over 10, 000-fold. The
average execution time over the 100 examples tested is also much improved
when using Hylas, taking 4,632.75 seconds compared to 7,572.06 seconds for
the original Spark queries. There is little difference between the best and worst
case queries in terms of execution time, in these cases it is likely that there is no
difference between the original queries before and after attempting to apply the
deforestation rules.

Table 1. Descriptive statistics for execution time (seconds)

Spark Hylas

min 74.00 68.00
25%tile 118.75 112.00
median 143.50 128.50
75%ile 16,800.00 673.75

max 42,900.00 42,500.00
average 7,572.06 4,632.75
st. dev. 12,500.00 10,400.00

Fig. 2. Boxplot for Spark vs Hylas execution times given in seconds

5 Conclusion and Future Work

In this paper we have described Hylas, a tool for optimising Apache Spark
queries through reflection in Scala. Using a set of rules for deforestation taken
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from the functional programming literature, a set of semantics-preserving trans-
formations are applied to each query to eliminate redundant data structures
and improve efficiency. The performance evaluation shows that this approach
can significantly improve execution times of some queries without adding sig-
nificant compile-time overhead. Unlike many existing approaches to program
improvement, Hylas works automatically, requiring only that the end-user de-
marcates the subsystem to be improved by adding a single annotation to the
source code. A possible limitation of this approach is that although the rules
are deterministic, there may be some bias introduced by the order in which the
rules are applied.

Future work will focus on extending the set of available deforestation rules.
One possible approach is that of ‘HFusion’ [25], which uses the category-theoretic
machinery of hylomorphisms to automatically deforest Haskell programs. If the
increased set of deforestation rules included program transformations which con-
flict with one another, it would become difficult to exhaustively search all com-
binations of program transformations, resulting in a more traditional search
problem as tackled by many existing Genetic Improvement techniques.
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