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ABSTRACT

Surrogate fitness functions are a popular technique for speed-
ing up metaheuristics, replacing calls to a costly fitness func-
tion with calls to a cheap model. However, surrogates also
represent an explicit model of the fitness function, which can
be exploited beyond approximating solution fitness. This
paper proposes that mining surrogate fitness models can
yield useful additional information on the problem to the
decision maker, adding value to the optimisation process.
An existing fitness model based on Markov networks is pre-
sented and applied to the optimisation of glazing on a build-
ing facade. Analysis of the model reveals how its parameters
point towards the global optima of the problem after only
part of the optimisation run, and reveals useful properties
like the relative sensitivities of the problem variables.
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1. INTRODUCTION

Surrogate fitness functions [8,18,19] are a useful tool for
improving the efficiency of metaheuristic search. They have
gained popularity in recent years, primarily as a means of
achieving speed up: a computationally cheap surrogate can
take the place of a costly fitness function such as a long-
running simulation or a human-in-the-loop evaluation (e.g.
[7,8,19,21,30]).

Surrogates are typically constructed by training a model
either prior to, or in parallel with, the optimization run. A
little-used additional benefit of a surrogate is that it rep-
resents an explicit model of the problem. Given that the
initial motivation for using the surrogate was to improve
the speed of the search, this model is effectively obtained
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“for free”; at least in terms of additional CPU time required.
This explicit model can subsequently be mined (similar in
principle to Regression Analysis [12]) to enrich the feedback
on the problem that is provided to the end user, and support
enhanced decision making. It can be seen as one of several
tools that enable a philosophy of value-added optimisation:
rather than simply offering an optimal solution or solutions
to the decision maker, offering deeper insights to the decision
maker. These insights can include the sensitivity of objec-
tives to the decision variables, possible interactions between
decision variables, or more qualitative feedback on the opti-
mal regions of the search space. Alternative approaches to
achieving value-added optimisation include systematic anal-
ysis of the relationships between variables and objectives [6]
and using solutions arising from the search process to seed
classic sensitivity analysis [34].

Mining of models in metaheuristics has already been demon-
strated in the context of Estimation of Distribution Algo-
rithms (EDAs) [15, 20, 23]. EDAs construct a probabilis-
tic model that reflects the distribution of highly fit solu-
tions in the population, and sample this distribution to yield
new solutions that have a high probability of having high
fitness values. Some existing work has shown how useful
information can be extracted from such probabilistic mod-
els [16,17,26,27]. It has been observed [25] that in some real-
world problems, the information extracted from the EDA
evolution could be as important as the optimisation results.

Naturally, how useful this information will be is highly
problem-dependent. It also depends on the nature of the
surrogate model: black box approaches like artificial neural
networks may prove harder to mine than transparent meth-
ods like functions evolved by genetic programming [24].

This paper revisits the Markov network Fitness Model
(MFM), a probabilistic model of fitness for bit string en-
coded problems originally developed as part of the EDA,
DEUM [28,29]. Subsequently, the MFM was demonstrated
as a more general model of fitness functions expressed in
terms of their Walsh functions [5]: this was exploited as a
surrogate fitness function [3,7]. The relationship between
the parameters of the MFM and the global optima for a
given problem can be exploited to yield useful information
about the fitness function. This can be provided alongside
the global optima found during the search, adding value to
the optimisation process for the decision maker.

We begin in Section 2 by making the necessary definitions
and by summarising the MFM. In Section 3, we note how
the model has been mined in the context of other applica-



tions. In Sections 4 and 5 we describe a civil engineering
optimisation problem and some previously published opti-
misation results. In Section 6 we then present some new
results that demonstrate the mining of the MFM for this
problem to support decision making. Finally, in Section 7
we draw some conclusions.

2. MARKOV NETWORK FITNESS MODEL

We begin with a recap of the Markov Network Fitness
Model. Let © = {0,1}" be the search space (that is, bit
string encoded solutions). f(z) = R is the fitness func-
tion and X = (Xi,...,X,) is the variable vector. X; = z;
denotes that variable X; has value z;, and x = z1...z,
denotes a joint configuration of X.

A neighbourhood structure p is a relation on the variables
{X1,...,Xn}. Foreach X;, u(X;)isasubset of {X1,..., X, },
called the neighbourhood of X;, satisfying:

(1)

X & p(Xs) Wi
X; € ,U(Xj) < X; e N(Xl) Vi, j

The neighbourhood structures model the linkage between
variables.

A joint probability distribution on X is denoted p(X).
Similarly, p(x) denotes the probability p(X = z) and p(z;)
denotes the probability p(X; = ;).

A Markov Random Field (MRF) [21] consists of a set of
random variables X, a neighbourhood structure p, and a
joint probability distribution p(X). A defining property of
an MRF is that the distribution of a particular variable de-
pends only on its neighbours.

Potential functions Vi (x) for each clique K (set of mu-
tually neighbouring variables) given a configuration x are
defined as follows:

For K = & Vo(z) =1V (2)
For K = {X;} Vi(z) = {1_11’11—:1 . (3)
For K C{X\,....X,}, [|K|>2, Vk(z)= [] Vilx)

X;€K
(4)
We define an energy function as a weighted sum of clique
potentials:

U(z) = axVi(). (5)

The Hammersley-Clifford Theorem (see [1]) states that
the probability distribution of a MRF factorises as a Gibbs
distribution:

=7z ©)

Here, T is a temperature coefficient and Z is the nor-
malising constant (never explicitly computed in practice)
7 = Zyeﬂ e~ YW/T  For this paper, 1" is constant, with a
value of 1. The probability distribution is completely de-
termined by the neighbourhood structure and its associated

clique potential parameters ax. The set of clique potential
parameters ¥ will now be referred to as the parameters of
the MRF.

Given a MRF, we can construct a graph G from the neigh-
bourhood structure. The nodes of GG correspond to the vari-
ables in the set X. We add an edge to G between two nodes if
and only if the corresponding variables are neighbours. The
neighbourhood structure can either be inferred from data or
supplied using domain-specific knowledge: in the problems
we will study it is supplied based on existing knowledge of
the problem.

We define a Markov network model of a set of solutions
to be a pair (G,¥) where G is a linkage structure and ¥
is the parameter set of the associated MRF learned from
the set of solutions. The key idea of the MFM is to identify
the Gibbs distribution of the Markov network with the mass
distribution of fitness estimated from the population as in

(7).

p(x) _ e~ U@)/T _ f(l‘) (7)
Z Eyeg f(y)

Sampling this distribution will generate high fitness indi-
viduals with high probability. This distribution can be esti-
mated by identifying corresponding terms for each solution
in the expressions forming the right-hand equality in (7).
This gives, for each solution x = x1,...,z,, the following
negative log relationship between the fitness function and
the MRF:

—Inf(z) =U(z) = ZaKVK(UC) (8)

The clique potential functions correspond to the well-known
Walsh Transform [2] which has been widely used in the anal-
ysis of fitness functions in binary spaces [2,12,13]. These are
a set of rectangular waveforms taking the values +1 and -1
which can represent and bit string encoded fitness function
(similar to the use of Fourier transforms for representing
analogue waveforms).

With a large enough population of solutions and their fit-
nesses, equation (8) yields a system of equations in the pa-
rameters. The parameters can be estimated by solving this
using a least-squares approximation.

With the parameters specified, (8) becomes a model of
the fitness function in terms of the parameters. We call this
the Markov Fitness Model (MFM) of f, and we can make
use of this model to predict the fitness f(x) for individual
solutions. Further background to the model can be found
in [5]. Several previous publications, including [27], describe
how this is used in the DEUM EDA.

3. MINING THE MFM

We now consider how the MFM may be further exploited.
[4,5] also explored in more detail how the « values of G
can be mined to yield insights into the original fitness func-
tion and, in particular, the region around the global optima.
In short, the process is as follows. Equation (8) specifies a
negative log relationship between energy and fitness in the
MFM. This means that minimising energy is equivalent to
maximising fitness. For a univariate term, V;(z) (i.e. cor-
responding to a single x;), if a; > 0, setting z; = 0 will
minimise energy and thus maximise fitness. Conversely, if
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Figure 1: Pairwise coefficients for the checkerboard
problem

a; < 0, setting z; = 1 will maximise fitness. For terms with
two variables V; ;(z), then having «; ; > 0 requires that z;
= z; to minimise energy and thus maximise fitness. Having
a;,; < 0 requires that z; == z; to maximise fitness. So, the
signs of the ax point towards the values taken by variables
in the globally optimal solutions. The magnitude indicates
the sensitivity of f(x) to the values taken by each clique.

Two examples explored in [4,5] were the toy benchmark
problem Checkerboard, and a biocontrol problem. We now
replicate part of those results for illustration. With Checker-
board, the goal is to maximise the number of cells with
oppositely-valued neighbours when the bit string is laid out
in a grid. The pairwise coefficients given from the MFM
trained on solutions for the 25-bit variant of this problem
are given in Figure 1. All the coefficients are positive, im-
plying that neighbouring cells should take opposite values.
In addition, the coefficients for several of the pairs have a
magnitude twice that of the others: subsequent analysis re-
vealed that these correspond to the pairs of cells in the centre
of the checkerboard.

The bio-control problem has the objective of minimis-
ing the growth of insect larvae on mushrooms by choosing
the optimal times to spray the mushrooms with nematode
worms. The problem is encoded as a bit string, with 50
bits representing times at which the bio-control spray is ap-
plied or not applied. The univariate coefficients (each cor-
responding to one bit) for the MFM applied to this problem
are given in Figure 2. Most are positive, indicating that no
spray should be applied at that point. However, a few are
negative indicating points at which the spray should be ap-
plied, and these coincide with growth points in the life cycle
of the pest insect larvae being targeted (represented by the
blue dotted line).

For both of these problems, the MFM coefficients have a
clear relationship with the underlying problem, giving point-
ers towards the optimal solutions. Indication is also given
of the sensitivity of the objective to particular variables or
variable interactions. Furthermore, for both problems, the
MFM was generated using only a few hundred randomly
generated solutions. Further analysis, results and explana-
tion for these problems is given in [4, 5].
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Figure 2: Univariate coefficients for the biocontrol
problem
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Figure 3: Fully glazed building facade

4. CASE STUDY: CELLULAR WINDOWS

The problem forming the focus of our case study has pre-
viously been presented in [9, 29, 30]. We seek to optimise
the size, shape and position of windows placed on a building
fagade; the goal is a design which minimises energy use and
capital construction cost.

The building in this study is based on an atrium of a
commercial building located in Chicago, USA. The atrium
is 15m wide by 15m long by 8.1m high with only the south-
ern facade being exposed to the external environment. The
other three sides of the atrium are connected to interior
spaces that are controlled to have the same thermal con-
ditions as the atrium. The roof, internal partition walls
and the external facade have a light-weight construction;
the floor is constructed from uninsulated concrete; and the



window cells have a double-glazed construction. The exter-
nal wall is divided into 120 cells which may be glazed, in
a grid 15 wide and 8 high. Figure 3 shows the fully glazed
building.

4.1 Objectives
4.1.1 Energy

The first objective is to minimise the energy use of the
building. This is the unweighted sum total of the energy
used by heating, cooling and lighting systems over a specified
period in a particular set of environmental circumstances.
This is relatively complex as the energy consumption for
the different systems varies with the glazing in different
ways [30]. Electric lighting demand is reduced by incom-
ing sunlight. In contrast, at different times of day and in
different months, solar gain can increase cooling energy de-
mand and decrease heating energy demand. Furthermore,
heat losses through the glass at night have the opposite ef-
fect.

These figures are computed by the EnergyPlus building
simulation package [10] and the process is explained in more
detail in [29]. We have chosen EnergyPlus as it is a freely
available simulation in common use among the building de-
sign community. EnergyPlus can be run to simulate the
building’s performance over an entire year, using a publicly
available weather data set for the location. For this problem,
a single run of the simulation takes around 1-2 minutes on a
a reasonably fast (Intel i7) CPU, giving the original motiva-
tion for the use of surrogates to speed up the optimisation.

4.1.2 Cost

The second objective is the minimisation of the construc-
tion cost for the building given the specified window con-
figuration. This is a straightforward linear function of the
number of windows n., and does not involve the simulation
software. The total cost ¢ is defined in equation (9).

Cw = 112(120 — 1) + 350N, 9)

4.2 Variables and Encoding

The problem naturally lends itself to using a binary repre-
sentation. The wall is divided into 120 cells in a 15 x 8 grid,
each of which may be glazed or unglazed. This translates
into a 120 variable bit string in which a bit is set to true for
a glazed cell and false for an unglazed one.

The previous works have considered a number of con-
straints and the addition of shades on the windows: for
simplicity we will omit these from the current work.

S. OPTIMISATION RESULTS

Previous publications [9,30] have presented comparisons
and analysis of results from several multi-objective evolu-
tionary algorithms applied to this problem. The focus of the
present paper is on mining a surrogate model of the problem,
rather than on the optimisation process, so for convenience
we replicate the best set of results from [30]. The attain-
ment curve in Figure 4 represents the Pareto-optimal solu-
tions from the combined final populations of 32 repeat runs
of NSGA-II [11]. The algorithm used binary tournament se-
lection; 100% crossover rate using uniform crossover; single
bit-flip mutation for each new solution; population size 30
and a stopping criterion of 5000 unique evaluations.
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Figure 4: Best attainment curve from multi-
objective optimisation run.
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Figure 5: Minimal, median and maximal cost solu-
tions from the best attainment curve. White cells
are unglazed, blue cells are glazed.

The minimal, median and maximal cost solutions in this
Pareto front are illustrated in Figure 5, minus the shading
overhangs that were present in the original paper. There
is a substantial range of capital costs in the solutions, re-
flecting the extra expense of glazing over that of unglazed
wall. The range of energy consumptions for the solutions is
more modest, but is still around 6% of the maximal energy
consumption, representing considerable savings in emissions
and energy costs over the life of the building.

The Pareto-optimal trade-off and the specific designs in
each solution are already of great value to a decision maker.
However, there are some limits to this. For example, it would
appear that as a result of the algorithm’s randomness, it has
missed the lowest cost solution (that is, zero glazing). It has
also produced slightly odd shapes of glass on the higher-cost
solutions. It would be helpful for the decision maker to know
what the impact might be of making small aesthetic changes
to the Pareto-optimal solutions. Essentially, we would like to
add value to the optimisation process, by providing further
information on the problem. In [30], two approaches were
taken to adding value.

Firstly, the analysis considered the full Pareto-optimal set,
and presented heat maps showing the frequency that each
cell was glazed within the Pareto-optimal solutions. This is
illustrated in Figure 6. This is helpful to show the glazed
cells that are common to all or most of the optimal solutions
(it is unlikely that these can be changed without impacting



Figure 6: Local sensitivities around the minimal cost
solution. Arrows indicate the direction of change in
energy consumption caused by mutating that bit in
the solution and the shading shows the magnitude
of the change.
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Figure 7: Frequency that each cell was glazed within
the Pareto optimal set

on optimality). It was also cheap to compute as it is a sim-
ple summation of values within the existing Pareto-optimal
solutions. However, it is unable to show how the individual
cells impact on the objectives separately.

Secondly, the analysis considered local sensitivity. For se-
lected solutions, each of the cells was flipped from glazed
to unglazed (or vice-versa), and the change in energy use
determined. This is illustrated in Figure 7. The local sensi-
tivities help to identify cells that were glazed or unglazed as
a result of noise coming from using a stochastic algorithm,
and those which could be changed without impacting neg-
atively on the objectives. However, the approach has the
disadvantage that it requires further runs of the building
performance simulation.

Both pieces of analysis were useful in their own right, but
could be supplemented with further information.

6. MINING THE SURROGATE

We will now consider how the surrogate can be mined to
add value to the optimisation results, beyond that provided
in the analysis replicated in the previous section.

For these experiments, the surrogate model of fitness was
constructed in parallel with the optimisation run. This al-
lows for direct comparisons between the additional informa-
tion provided by the surrogate and that arising from the
original optimisation. Work to consider the speed up pro-
vided by using this surrogate in place of some building per-
formance simulations is ongoing. In the present work, so-
lutions evaluated as part of the NSGA-II run were used as
training data for the MFM.

The structure for the MFM (the neighbourhoods for each
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Figure 8: The mean coefficient (ax) values for the
energy MFMs. 1-120 are the univariate ax, and 121-
360 are the pairwise ax between neighbouring cells
on the facade. Error bars represent one standard
deviation.

x;) was fixed. Two sets of experiments were performed using
different structures for the MFM.

6.1 Lattice structure

Initially, a lattice structure was adopted for the MFM.
This was based on the intuition that applying glazing to
one cell would impact on whether glazing should be applied
to cells next to it. Included in the MFM were all 120 uni-
variate Vi (that is, one term for each of the glazed/unglazed
cells). Also included were the 240 pairwise Vi representing
neighbouring cells on the facade.

The fittest (that is, lowest energy or cost) 400 of the first
1000 solutions visited by NSGA-II in each run were used as
the training data for a least squares fit to estimate the ax
in the MFM (as per equation (8)). Two MFMs were formed
for each repeat run of NSGA-II: one for the energy objective
and one for the cost objective.

The mean and standard deviation for each coefficient ak
in the MFM was then calculated over all the energy MFMs
and over all the cost MFMs. These values are plotted in
Figures 8 and 9. The jump in the value at a number 120 co-
incides with the change from univariate axs to the pairwise
aks. It is immediately apparent that for both energy and
cost objectives, the pairwise ax values are all near zero.
This means that they have little to no influence on either
objective: it would seem that only the univariate ax have
any influence on the objectives (having non-zero values in
the MFMs for both objectives) and our intuition on the ap-
propriate structure was incorrect.

6.2 Univariate structure

A second set of experiments repeated the process in the
first, using a univariate structure for both MFMs. That is,
only the 120 aks for each of the variables were included in
the model. 400 solutions arising from the first few genera-
tions of the optimisation run were taken.

These models have a strong predictive capability: this was
demonstrated by using each model to predict the objective
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Figure 9: The mean coefficient (ax) values for the
cost MFMs. 1-120 are the univariate ax, and 121-
360 are the pairwise ax between neighbouring cells
on the fagade. Error bars represent one standard
deviation.

values for 400 randomly generated solutions. The r? val-
ues comparing the predicted objective values with the true
objective values coming from the simulation were 0.986 for
energy and 0.997 for cost.

Figures 10 and 11 give the mean agks for the energy and
cost MFMs respectively. The mean values for these coef-
ficients have also been rendered in Figures 12 and 13 as a
grid so where the coefficient’s location corresponds to the
cell that it represents on the facade. In the latter two fig-
ures, the cells have been coloured to show each coefficient’s
value relative to those of the others: high values being blue,
through white to low values being red. Recall (from the end
of Section 3) that a positive coefficient a; suggests that the
global optimum should have xz; == 0, and a negative «;
suggests that the global optimum should have z; == 1. In
this case, all the ax in the model are positive.

For the cost objective, the magnitudes of the o are highly

similar, indicating that the optimal solutions should be unglazed

and that the individual cells make an equal contribution to
the cost objective (that is, the objective is equally sensi-
tive to all cells). This matches with the problem definition,
whereby an equal cost is associated with each cell in the
fagade.

For the energy objective, there is a clear (though small)
bias towards the lower and outer edges of the fagade. This
can also be seen in the higher values to the right of Fig-
ure 12. This suggests that cells in those regions should not
be glazed, and any glazing that is present should be concen-
trated in the upper centre. This matches the patterns seen
in the analysis of the Pareto-optimal front (Figure 6 and
the local sensitivity analysis (Figure 7). However, there are
some benefits of mining this information from the surrogate
model in addition to (or in place of) the other analyses. The
bias towards the centre is identified specifically as driven by
the energy objective not the cost objective (in contrast to
simple analysis of the variables in the Pareto-optimal solu-
tions, where trends could be driven by either objective). The
analysis is not simply rooted in the final population from the
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Figure 10: The mean coefficient (ax) values for the
energy MFMs. 1-120 are the univariate ax, starting
with that corresponding to the top-left cell on the
facade, and working along each row to the bottom
right. Error bars represent one standard deviation.

simulation, but models representing solutions spanning sev-
eral generations. No additional evaluations are required as
the model was constructed from solutions already evaluated
during the optimisation (in contrast to the local sensitivity
analysis). It is also concordant with the real-world prob-
lem: in practice we would expect that any glazing should be
central and high up the fagade to allow the maximum pene-
tration of daylight into the atrium with less glazed area, bal-
ancing heat gain, heat losses, and lighting needs (although
it is less clear specifically how much glass there should be or
precisely where it should be placed, thus motivating the use
of optimisation).

It is important to note that this information in the model
has come from 400 evaluations that were performed anyway
as part of the search process. The MFM is a surrogate for
the fitness function, and can be used to reduce the further
number of simulations required. consequently the qualita-
tive information that the MFM provides about the relation-
ship between the problem variables and the objectives comes
with little to no extra cost in terms of CPU time.

7. CONCLUSION

Value-added optimisation is a philosophy of presenting a
decision maker with more than simply optimal solutions for
a given problem. This can be an indication of the optimality
of the solutions, relationships between problem variables,
sensitivity of the objectives to the variables or simply greater
insight into the underlying problem.

This paper has applied a surrogate, the Markov network
fitness model (MFM), to the problem of placing glazing on
a building fagade. We have presented some analysis of the
model coefficients for this problem, showing how mining the
MFM can be used to add value to the results of the opti-
misation run. As this model is constructed as part of the
optimisation run, the additional information that it contains
can be provided for little - if any - additional computational
cost. This mirrors earlier work showing how the MFM coef-
ficients point towards the global optima for different fitness
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Figure 12: Mean coefficient values for the energy
MFM, arranged to match the locations of cells on
the facade. Blue cells have high values, white
medium, and red have low values.
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Figure 13: Mean coefficient values for the cost
MFM.

function.

Obviously, in order for this to generalise to a much wider
range of problems, considerably more work needs to be done
to establish a framework for analysis of the coefficients in a
systematic way. It would also be interesting to consider how
the MFM, or other surrogate models, could be applied to
problems with encodings other than bit strings, and mined
in the same way. What this work has done is set out the
possibility that surrogate models can be used to supplement
the optimisation process, enriching the information available
to the decision maker.
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