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ABSTRACT
In this paper1 we argue that flexible algorithm frameworks
can be useful to capture the wide variety of algorithmic com-
ponents for heuristic algorithms and serve as basic experi-
mental frameworks. One of the utilities is that they can im-
plement the wide variety of different algorithm components
and their alternative choices for single stochastic local search
methods and we are currently extending existing frameworks
in that direction. We exemplify this approach considering
the example of Simulated Annealing (SA). In fact, a wide
variety of design choices of SA algorithms has been pro-
posed in the literature and algorithm frameworks may (i)
simply collect potentially all available choices, (ii) provide a
tool for the experimental analysis of specific algorithms and
component choices, and (iii) allow the generation of new al-
gorithm variants by combining exisiting components in new
ways. We show some limited computational experiments
that show the benefit of tuning in this context and the way
conclusions on the performance of algorithms are altered in
this way.

CCS Concepts
•Mathematics of computing → Simulated annealing;
Randomized local search; Combinatorial optimization;

Keywords
Metaheuristics; Simulated Annealing; Algorithm Design; Au-
tomatic Algorithm Configuration; QAP; Algorithm Frame-
work

1The computational results differ slightly from the ones in
the workshop paper for ECADA@GECCO due to an error
we had when counting the steps in the sequential neighbor-
hood exploration. This issues affects some numerical results
and their interpretation; the main conclusions, however, are
not affected.
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1. INTRODUCTION
Automatic algorithm configuration has shown to be a use-

ful technique to relieve algorithm designers from tedious
tasks in the tuning of different classes of algorithms and,
in particular, stochastic local search (SLS) methods (also
called metaheuristics). Several software packages for config-
uring algorithms have been proposed in the literature and
among the most widely used ones we find ParamILS [10],
SMAC [9], and irace [14]. These advanced automatic algo-
rithm configuration algorithms do not only allow calibrat-
ing numerical algorithm parameters of already fully devel-
oped algorithms, but when combined with flexible algorithm
frameworks, they can also be exploited for design space ex-
ploration and the generation of algorithms that have never
been proposed previously in the literature. In fact, many
algorithm packages for integer programming can be seen as
such algorithm frameworks where by the setting of typically
categorical parameters specific routines or heuristics can be
switched on or off to obtain potentially new, previously un-
explored algorithms. Also algorithm frameworks for heuris-
tic algorithms can benefit in this way from the addition of
automatic algorithm configuration techniques. For example,
in recent research efforts configurable unified frameworks
for multi-objective ACO algorithms [15], ACO algorithms
for continuous optimization [13], satisfiability [11] or multi-
objective evolutionary algorithms have been proposed and
automatically configured algorithms were shown to be com-
petitive and often superior to the various algorithms from
which the components for these algorithm frameworks have
been taken. These approaches have been further extended to
allow the composition of completely new, hybrid algorithms,
which can be derived from a simple recursive framework [18].

In our current work, one direction taken is to extend al-
gorithm frameworks to large-scale, configurable frameworks
that encompass a much wider set of algorithm components
than currently available. A first step to do so is to gener-
ate frameworks for specific SLS methods that capture the
various algorithmic components that have been proposed in
the context of these methods. When doing so, one is able
to instantiate the specific algorithms that have been pro-
posed in the literature but also to instantiate completely
new combinations of algorithm components even for a same
SLS method. The various components implemented for a
specific SLS methods can then also form the basis for a more
complete framework from which new algorithms taking com-
ponents from various SLS methods can be composed, for ex-
ample, in a way similar to what was proposed in [18]. A side
remark here is also that we think that such a direction is also



a good alternative to generating ever more (often pseudo-
innovative) supposedly new methods from metaphors that
often have simply re-invented previously available algorithm
components, as criticised in [23].

In this work, we report on some preliminary results ob-
tained by studying one of the most commonly used SLS
methods, Simulated Annealing [12, 2], which here we de-
scribe in a component-wise fashion. We show how this rep-
resentation is useful to single out the various features that
compose SA, allowing the algorithm designer to intervene on
specific parts of the algorithm in order to obtain the desired
behaviour in an easier and more precise way and, in par-
ticular, by the usage of automatic algorithm configuration
techniques. To exemplify the type of analysis and insights
one may obtain, we consider here the analysis and tuning of
some SA algorithms for the quadratic assignment problem
(QAP) as a testbed problem for this analysis.

The remainder of the article is structured as follows. In
the next section we introduce our component-based descrip-
tion of SA. In Section 3 we describe some SA implementa-
tions for the QAP, while in Section 4 we report some results
and analysis. We conclude in Section 6 and outline some of
the possible current and future lines of work.

2. COMPONENT-WISE DESCRIPTION OF
SIMULATED ANNEALING

Simulated Annealing (SA) [12, 2] is one of the oldest SLS
methods proposed in the literature. It draws inspiration
from the annealing process in metallurgy, where an object
is first quickly heated, and then slowly cooled down until
it reaches a near perfect crystalline structure; In particu-
lar, the inspiration of the method came from a simulation
of the process that happens in the annealing [20]. The main
feature of SA is the ability of escaping locally optimal so-
lutions by accepting worsening solutions from time to time;
improving moves are usually always accepted. The amount
of worsening moves accepted, and the timing in which they
are accepted, is regulated by a parameter called temperature,
which mimicks the usage of the temperature in the physi-
cal annealing process. Higher temperatures correspond to
higher acceptance probabilities of worsening moves, yield-
ing a more explorative behaviour of the search; lower tem-
peratures correspond to tighter criteria for the acceptance
of pejorative moves, making the algorithm more likely to
remain in a smaller area of the search space and therefore
resulting in a more exploitative behaviour. Usually, the de-
sired behaviour is to allow the search to be more explorative
in the first stages of the search, becoming then increasingly
exploitative in the latter stages, once a supposedly “good”
area of the search space has been found.

SA has been widely studied from a theoretical point of
view and it has been widely used in many application. We
refer the interested reader to [21] for a recent overview. Over
the years, many implementations of SA have been proposed
for a wide range of combinatorial problems, often differing
in some parts from the original algorithm. These varia-
tions either concern numerical parameters for specific algo-
rithm components used in an SA algorithm, or to alternative
choices for specific algorithm components used in an SA al-
gorithm. We can classify these variations in nine categories,
of which two are problem-related and seven are related to
the actual SA behaviour.

The two problem-related components are

1. the generation of an initial solution;

2. the generation of solutions in the neighbourhood of the
current incumbent solution and the choice of the neigh-
borhood.

Here we discuss the seven SA-specific components identi-
fied.

1. The initial temperature, that controls the initial accep-
tance probability for worsening moves; it can be a fixed
value, dependent on some statistics (usually based on
a preliminary random walk in the search space), or set
to give a predetermined initial acceptance probability
for worsening moves. Currently we have implemented
seven different schemes.

2. The neighbourhood exploration, that determines how
the search space has to be traversed. In the literature
we have found two exploration schemes, the traditional
random one and the scan of the neighborhood in some
fixed sequential order.

3. The acceptance criterion, whose purpose is to decide
whether a worsening solution has to be accepted or not.
We have currently implemented nine possible choices.

4. The cooling scheme, a non-increasing function that
governs the update of the temperature. Currently, we
provide ten different schemes.

5. The temperature length, that defines the number of so-
lutions evaluated at a certain temperature; it can be a
fixed amount of moves, or an amount of moves that
varies according to the progress of the search (e.g.
a certain amount of accepted solutions). We imple-
mented 12 options so far.

6. The temperature restarting scheme, that resets the tem-
perature (often to its initial value) to let the algorithm
be able again to accept more worsening moves; also in
this case, a predefined condition (number of evaluated
solutions, value of temperature), or based on the ac-
tual outcome of the search (e.g. being stuck in a local
optima). Many options are possible in this case, and
we implement 21 of them.

7. The termination condition, that decides when to ter-
minate the search; usually this corresponds to a fixed
amount of time, or the maximum number of solutions
to be evaluated; Currently we have 11 different condi-
tions.

It should also be mentioned that within this framework,
we implemented also variants of SA that deviate in a larger
sense, e.g. by introducing determininistic acceptance crite-
ria, from standard SA implementations including, thus, also
methods such as threshold accepting [5].

In the remainder of this work, we will denote the temper-
ature parameter at a generic iteration i as Ti. A solution
in the same instant will be referred to as si, and its objec-
tive function value as f(si); |N(si)| will be the size of the
neighbourhood of si.



3. SIMULATED ANNEALING FOR QAP
For the purposes of this paper we consider the QAP [1] as a

testbed problem; we do not delve into discussions about the
components that depend on it, but we limit our analysis to
the other seven general components. Here, we examine the
performance of known SA schemes that have been reported
in the literature and consider their respective performance
before and after the tuning of their numerical parameters.
All the schemes can be instantiated from the SA framework
that we have developed.

Considering the QAP, over the years many SA implemen-
tations have been proposed for tackling this notoriously dif-
ficult combinatorial optimization problem. In this paper, we
consider four of the proposed SA algorithms for the QAP

• Two versions proposed by Connolly [4];

• the version of Tam [24];

• the version of Bin Hussin et al. [8].

The SA versions of Connolly have become a standard SA
implementation for the QAP as an implementation of it
(the below mentioned Q8-7 scheme) is distributed from the
QAPLIB webpage (accessible at http://anjos.mgi.polymtl.
ca/qaplib/) and it has been used in a number of algorithm
comparisons [7]. For the latter scheme, good scaling behav-
ior to large QAP instances has been reported [8].

In their original formulation, the first two schemes that
we evaluate feature initial and final temperatures T0, Tf

computed according to the formulas T0 = δmin + (δmax −
δmin)/10 and Tf = δmin, where δmin and δmax are respec-
tively the smallest and the largest gap between consecutive
solutions in a random walk across the search space. The
temperature is updated at every step and no temperature
restart is employed. The neighbourhood is explored in a
sequential order and the solutions are evaluated using the
Metropolis acceptance criterion [20]; the search terminates
after 50 × |N(s)| moves. The first scheme (CLM) updates
the temperature using the Lundy-Mees cooling scheme [17]

Ti+1 = Ti
a+b×Ti

with a = 1 and b =
Tf−T0

50×|N(s)|×T0×Tf
. The

second scheme (Q8-7) uses the Q8-7 cooling scheme, that is
similar to the Lundy-Mees scheme but when it gets stuck
in a local optimum the following move is accepted and the
temperature is set to the value at which the best solution
was found and then held constant for the remainder of the
algorithm run.

The third scheme (Tam) sets the initial temperature at
a value that gives an initial acceptance probability of 60%
(based on an initial random walk). The solutions are gen-
erated randomly in the neighbourhood and evaluated with
the Metropolis acceptance criterion. The temperature is
updated using a geometric cooling Ti+1 = 0.95 × Ti ev-
ery 2 × |N(s)| moves, and the algorithms is stopped after
50× |N(s)| moves. No temperature restart is used.

The last scheme that we consider in this analysis (Bin)
chooses an initial temperature as 0.005 × f(s0), where s0
is a randomly generated initial solution. The acceptance
criterion is the Metropolis one, and the neighbourhood ex-
ploration is the sequential exploration. The temperature is
updated with a geometric scheme Ti+1 = 0.9×T every |N(s)|
moves2, and is reset to its original value when it reaches a

2In the original formulation the authors use 100 × N , but

value of 1 (or lower). The algorithm is stopped after a pre-
determined amount of time.

4. COMPUTATIONAL RESULTS
We instantiated these four variants from a framework for

automated component-wise design of metaheuristics. The
framework is currently still under development, so we do
not describe it in detail here; at a higher level, it contains
the possible options for the various components, that get in-
stantiated according to a grammar-based representation of
the algorithm, along with their numerical values, following
the framework described in [18]. This way we can repro-
duce the behaviour of many SAs proposed in the literature.
The numerical parameters have been kept as defined by the
authors in the original works for the experiments with the
default parameter settings.

We tested these implementations on a set of 50 randomly
generated QAP instances of size 1003 equally divided in
structured instances and random instances; each algorithm
is run 30 times with different random seeds, for a maximum
of 10 seconds. Results are reported in Figure 1, separated
for the two classes of instances.

Clearly, Bin performs much better than the competing al-
gorithms, taking advantage of the temperature restart and
higher computational time, finding solutions less than 1%
worse than the best-known solutions. The two schemes pro-
vided by Connolly also perform overall well, with average
results about 2.5% worse than the optimal solution, and
little variance, while the results reported for Tam are far
worse, being on average 12% higher than the optimal so-
lution. These results would suggest that Connolly’s Q7-8
scheme is justified to have a reference position in the evalu-
ation of SA implementations for the QAP.

On random instances, the algorithms have better results,
in terms of both lower average and lower variance of the
solution quality, when compared to the structured instances,
except for Bin that obtains better results on the structured
instances.

One immediate tentative improvement is to tune the nu-
merical parameters of the four schemes and to redo the com-
parisons on a same computation time limit and tuned pa-
rameter settings, making the comparison more fair. The
parameters we consider are

• the length of the random walk used to compute the
initial temperature (from 1 to 105, for CLM, Q8-7 and
Tam);

• a weighting coefficient for the initial temperature (from
10−4 to 10, for all the algorithms);

• the desired initial acceptance probability of worsening
moves (for Tam);

• the coefficients a and b for the Lundy-Mees cooling
scheme (from 10−4 to 1, for CLM and Q8-7);

• the number of consecutive non-accepted moves for stop-
ping the temperature update in the Q8-7 cooling scheme
(from 100 to 106, for Q8-7);

for uniformity with the other solutions we can translate this
value in terms of neighbourhood size, given that in this work
we use only instances of size 100.
3taken from http://iridia.ulb.ac.be/supp/IridiaSupp2011-
026
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Figure 1: Relative Percentage Deviation from the
best-known solutions obtained by the default ver-
sions of the four SA algorithms compared. For
each algorithm there are two results reported, for
random instances (plot on the left) and structured
instances (on the right).
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Figure 2: Relative Percentage Deviation from the
best-known solutions obtained by the tuned ver-
sion for the four algorithms. For each algorithm
there are two results reported, for random in-
stances (plot on the left) and structured instances
(on the right).

• the coefficient α for the geometric cooling scheme (from
10−4 to 1, for Tam and Bin);

• the temperature length, as a coefficient of the size of
the neighbourhood (from 1 to 100, for all the algo-
rithms);

• the minimum temperature value for the temperature
restart (from 1 to 105, for Bin);

• the number of iterations of the search, as a coefficient
of the size of the neighbourhood (from 1 to 105, for
CLM, Q8-7 and Tam).

We use the irace automatic algorithm configuration tool
[14], with a budget of 2000 experiments, a set of 50 training
instances of both classes (different from the ones used for the
testing) and a maximum allowed runtime of each experiment
of 10 seconds. The results obtained with 30 different tunings
are reported in Figure 2, again separating the two instance
classes.

The results for Bin are not improving much, because the
original settings and allowed running time already suffice to
obtain very good solutions, at least on this limited set of
instances of the same size, and the power of tuning cannot
be fully exploited. All the other algorithms instead score
significantly better results. CLM and Q8-7 improve only
slightly, as they were already reaching quite good results
using their default settings; also, as expected, the variance in
the results is lowered. The biggest improvement is obtained
for Tam, for which the results of the tuned version are in
line with the results obtained by the other algorithms.

All the tuned implementations report lower averages on
the structured instances.

In Figures 3–6 we show the distributions of the parameter
values given by the 30 different tunings, and how they differ
from the default values. In many cases, the default values lie
far away from the values of the best configurations found.
In some cases the results are quite surprising: the α rate
of the geometric cooling scheme, for example, is usually set
to values close to 1, while the α chosen for Bin is in most
of the cases around 0.5. Another perhaps surprising result

is the initial acceptance probability of worsening solutions
for Tam, whose average value obtained with the tuning is
below 0.2, meaning that, with a proper choice of the other
numerical parameters, the algorithm should not exhibit a
too explorative behaviour.

5. COOLING VS. FIXED TEMPERATURE
The SA framework directly supports also component-based

analysis and here we report on a simple example of such
component-based analysis. The purpose of the Q8-7 cooling
scheme is to discover a suitable temperature for the search,
assuming that if the search is stuck in a locally optimal solu-
tion and cannot escape that neighbourhood, then the accep-
tance probability that was in place when the best solution
was found gives a suitably good value for the temperature,
and the best option is to stick to that value and not to alter
it further with a cooling process.

This raises the question whether a “right” value for the
temperature can be chosen from the beginning and kept un-
changed until the end. Some authors [3, 22, 6] have already
investigated the subject, claiming in certain cases superior
results with respect to traditional cooling schemes. In this
section, we report some experiments, meant to show how
this kind of analysis can be easily done using a suitable
framework and automatic configuration tools, rather than
as a decisive experiment to confirm or refute the claim.

In order to test in a fair manner the claim that a suitable
fixed value for the temperature is competitive or superior to
a proper cooling behaviour, we just need to ensemble a SA
selecting the following components:

• a fixed-value initial temperature scheme, to be tuned;

• no cooling, temperature length and temperature restart
scheme needed;

• same acceptance criterion, neighbourhood exploration
and termination condition components of the Q8-7 al-
gorithm.

These last common components ensure that the comparison
is done in the fairest possible way, without any intentional or
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dependant on other parameter values).
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unintentional bias that may arise due to the prior opinions
or arguments held by the algorithm designers.

The tuning and testing of this fixed-temperature SA is
performed in the same way of the previous esperiments.In
Figure 7 we compare the results of this scheme with the de-
fault and the tuned implementations of Q8-7 for the different
classes of instances. The results show that on random in-
stances the fixed temperature scheme performs better than
the tuned Q8-7, while on structured instances the results are
slightly better than the ones of the default Q8-7, but signif-
icantly worse than the results found by its tuned version.

For an interpretation of the results with the fixed tem-
perature scheme, it would be interesting to further ana-
lyze whether a good setting of the temperature depends
on the specific instance class or, even further, on specific
instances. In fact, in further experiments, which will be re-
ported in follow-up work, we have found that a good setting
of the fixed temperature depends especially on the class of
instances and that good fixed temperature settings differ
actually quite strongly between random and structured in-
stances. In a sense the fixed temperature setting when tun-
ing for the two instance classes together results in a compro-
mise value between two very good settings for each of the
classes and that further improved performance for the fixed
temperature schedules (but also for the simulated annealing
algorithms) can be obtained by tuning on each instance class
separately.

6. CONCLUSIONS
We have presented a preliminary example of how a com-

plete framework, paired with automatic algorithm configu-
ration techniques, can be used to study existing algorithms
for default and tuned parameter settings and how to provide
a component-wise analysis.

This approach is also an efficient way of automatically
composing algorithm; other approaches in the literature use
instead evolutionary searches to generate heuristics [16, 19].

The framework is still to be extended with more options
for the various components. We will further deepen the
component-wise analysis of SA, in order to discover which
components have the highest impact on the final results.
The ultimate goals are to have a better understanding of
how SA effectively works, and to be able to automatically
design efficient state-of-the-art SA implementations for sev-
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Figure 7: Comparison between non-tuned Q8-7,
tuned Q8-7, tuned fixed temperature scheme. For
each algorithm there are two results reported, for
random instances (plot on the left) and structured
instances (on the right).

eral problems. This work and goals can be extended in the
same manner to other metaheuristics and, in theory, to any
algorithm that requires its designers to make choices.
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