
Fault Tolerance in the Parareal Method

[Regular Paper]

Allan S. Nielsen, Jan S. Hesthaven
École Polytechnique Fédérale de Lausanne (EPFL)

Chair of Computational Mathematics and Simulation Science
Bâtiment MA, CH-1015 Lausanne

allan.nielsen@epfl.ch, jan.hesthaven@epfl.ch

ABSTRACT
Parallel-in-time integration is an often advocated approach
for extracting parallelism in the solution of PDEs beyond
what is possible using spacial domain decomposition tech-
niques. Due to the comparatively low parallel efficiency
of parallel-in-time integration techniques, they are primar-
ily of interest as an extension for classical approaches at
parallelism. As such, potential applications are expected
to scale across several hundreds, or possibly thousands of
nodes, making algorithmic resilience towards hardware in-
duced errors highly relevant. In this work we develop a
scheduling scheme for the parareal algorithm that is resilient
to node-loss. The fault-tolerant scheme is based on a popu-
lar approach introduced by E. Aubanel in [1], modified with
a set of MPI interface extensions for implementing recov-
ery strategies available in the ULFM framework. In ad-
dition, we demonstrate how the parareal algorithm may be
made resilient towards Silent-Data-Corruption (SDC) errors
by viewing it as a point-iterative method, locally monitor-
ing the residual between consecutive iterations so to discard
potentially corrupt iterations.

CCS Concepts
•Computing methodologies → Parallel algorithms;
•Applied computing → Physical sciences and engi-
neering; •Computer systems organization→Depend-
able and fault-tolerant systems and networks;

Keywords
Resilience; Parallel-in-time; Parareal; Exascale; HPC; Fault-
tolerance; Silent-Data-Corruption; Parallel Computing

1. INTRODUCTION
Parallel-in-time integration is a promising technique for

extracting additional parallelism in the solution of evolution
problems beyond what is possible using standard spacial do-
main decomposition methods. By introducing a decompo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FTXS ’16 May 31 – June 4, 2016, Kyoto, Japan
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

sition of the time domain it is possible, for certain classes
of problems, to greatly increase the number of nodes that
may be used to accelerate the solution of a problem of fixed
size. A space-time parallel algorithm presented in [14] is able
to scale to 458,752 cores on a benchmark problem, the full
size of the 5 Petaflop/s JUQUEEN cluster. This more than
3 times the number of nodes the parallel multi-grid solver
alone could scale. In a recent report released by the Exascale
Mathematics Working Group at Lawrence Livermore Na-
tional Laboratory, time-parallel integration techniques are
highlighted as a potential path in overcoming the limita-
tions of strong scaling in evolution problems and calls for
more research in this direction [5]. In this paper we demon-
strate how a popular method for time-parallel integration,
Parareal, with slight modifications, may be made resilient
towards hardware faults. We begin this section with a short
introduction to the Parareal method, and to algorithmic re-
silience. In the two sections that follow, a fault-tolerant
Parareal algorithm is developed and tested, while the final
section contains a short summary of our findings.

1.1 Time-domain parallelism
Solving time dependent PDEs is often done in a methods-

of-line approach where the spatial components are discretized
in some appropriate manner and a numerical integration
technique is applied to advance in time. The approach ex-
tends trivially to distributed memory machines by applying
domain decomposition, letting independent nodes communi-
cate boundary information of their local sub-domains. The
limitation to the approach lies in the strong scaling limit, i.e.
increasing the number of nodes for a fixed problem size. As
spacial sub-domains decrease in size, nodes will increasingly
spend time on communicating boundary information rather
than computing derivatives. With the large machines com-
prising thousands of nodes available to research today, this
is a substantial bottleneck in scaling application efficiently,
clearly new algorithmic developments are required.

A potential path to increased parallelism in the solution
procedure is to attempt parallel time-integration. Once the
methods-of-lines approach have reduced the partial differen-
tial equation to a large system of ordinary differential equa-
tions that needs to be integrated over time, the problem is
traditionally viewed as a sequential process. However, vari-
ous attempts to extract parallelism do exists. The Parareal
method, first proposed in [9], is one such method. The al-
gorithm borrows idea from spatial domain decomposition
to construct an iterative approach for solving the temporal
problem in a parallel global-in-time approach. It has been

applied with success in a range of different applications from
plasma physics to many-body problems[17, 15]. To present
the method, consider the problem

{
∂u
∂t

+A (t,u) = 0

u (T0) = u0 t ∈ [T0, T]
(1)

where A : R × V → V ′ is a general operator depending
on u : Ω × R+ → V with V being a Hilbert space and V ′

its dual. Now, assume there exists a unique solution u (t)
to (1) and decompose the time domain of interest into N
individual time slices

T0 < T1 < · · · < TN−1 < TN = T. (2)

Let Tn = ∆Tn with n ∈ N. We now define a numerically ac-
curate solution operator F∆T which for any t > T0 advances
the solution as

F∆T (Tn,u (Tn)) = UTn+∆T ≈ u (Tn + ∆T) (3)

To solve (1) on [T0, T0 +N ·∆T] we define MF , Ū and Ū0

as operators on the form

MF =


1

−FT0
∆T

. . .

. . .
. . .

−FTN−1

∆T 1

 (4)

with Ū = [U0, . . . ,UN] and Ū0 = [u (T0) , 0, . . . , 0]. The
sequential solution procedure is then equivalent to solving
MFŪ = Ū0 for Ū to recover U0 · · ·UN as approximations
to u(T0) · · ·u(TN) by forward substitution. The lower bi-
diagonal nature of (4) express the explicit and local nature
of the approach. If we instead seek to solve the system using
a point-iterative approach i.e., we seek the solution on form
Ūk+1 = Ūk +

(
Ū0 −MFŪk

)
, we observe that at the begin-

ning of each iteration Ūk is known, allowing that in each
iteration we may compute FT1

∆T · · · F
TN
∆T on all intervals in

parallel. Note that the computational complexity of every
iteration is strictly larger than that of the sequential solution
procedure, so reduced time to solution is possible only if the
number of iterations kconv needed for convergence is much
smaller than the number of time sub-domains N . A question
that remains open is what would be an appropriate precon-
ditioner to accelerate the iteration. A typical approach is to
create an approximation MG ≈ MF , where MG is cheap to
apply, hence allowing us to solve the preconditioned system
(MG)−1 MFŪ = (MG)−1 Ū0. In the case considered here,
we can readily create such an MG by defining a new operator
G∆T as

G∆T (Tn,u (Tn)) = UTn+∆T ≈ u (Tn + ∆T) (5)

and relax the requirements on the accuracy of G∆T , by us-
ing a coarser grid or a different numerical model. Solving
the system using a standard preconditioned Richardson it-
erations, one recovers

Ūk+1 = Ūk + (MG)−1
(
Ū0 −MFŪk

)
(6)

We can write this as
1

−GT0
∆T

. . .

. . .
. . .

−GTN−1

∆T 1




Uk+1
0

Uk+1
1

...

Uk+1
N

 =


1

FT0
∆T − G

T0
∆T

. . .

. . .
. . .

FTN−1

∆T − GTN−1

∆T 1



(7)

to recover the Parareal algorithm in the form that it is typ-
ically presented

Uk+1
n+1 = GTn

∆TUk+1
n + FTn

∆TUk
n − GTn

∆TUk
n (8)

with U0
n+1 = GTn

∆TU0
n and Uk

0 = u(T0). Other parallel-in-
time methods may be derived by simply constructing a new
preconditioner for the system (4). In this paper, we focus
the analysis and implementation on the Parareal algorithm
where the preconditioner have the same lower bi-diagonal
structure as the matrix MF . However, similar fault-tolerant
implementations may be constructed for other fixed-point
iteration type time-parallel domain-decomposition methods.
A comprehensive introduction to parareal can be found in
[13] and important contributions to the analysis of the method
can be found in [2, 6]. A recent example of how time-parallel
methods may be made resilient to silent data corruption
can be found in [8] where it is demonstrated how the Spec-
tral Deferred Correction based Parareal algorithm may be
made resilient by introducing a special strategy for monitor-
ing the residual inside the SDC iterations. The SDC time-
parallel algorithm introduced in [11] is a special case of the
Parareal method that uses Spectral Deferred Correction for
constructing the integration operators Fn4T and Gn4T , while
interleaving the iterations within the SDC integrator with
Parareal corrections to obtain a higher parallel efficiency

1.2 Resilience
In [5], resilience to faults is identified as being critical for

future exascale HPC systems. The techniques needed to
achieve a thousand fold increase in computational capacity
expected over the next decade, are predicted to also increase
the rate of faults on large systems. This posing substantial
new challenges in terms of how to effectively use the ma-
chines, and on how to assess and assure the correctness of
numerical simulation results. In the context of parallel in-
tegration techniques, the issue of algorithmic resilience is
of particular relevance since methods of parallel integration
are developed primarily with the focus of extracting paral-
lelism in the solution of PDE’s beyond what is possible using
standard domain decomposition techniques, i.e., simulations
involving a very large number of compute nodes. An exten-
sive overview of challenges in addressing faults at exascale
computing is given in [16]. In the white paper, faults caused
by malfunctioning hardware are placed into two overall cat-
egories, soft and hard node errors. The most significant
source of soft errors are from energetic particles interact-
ing with the silicon subtract that either flip the state of a
storage element or disrupt the operation of a combinational
logic circuit. Such events typically leads to a silent data cor-
ruption (SDC), i.e., no warning or exception is raised when

such an event happens. Depending on the location of the
SDC, it may lead to an event that over the course of many
compute cycles turns into a hard error. Hard errors being
faults that lead to the complete failure of a node. For current
parallel applications based on MPI, the approach for dealing
with the loss of a process is to kill all remaining processes
and restart the application at nearest check-point. However,
this approach is costly as many modern clusters now scale
to thousands of nodes, the I/O cost of a check-point/restart
procedure may be prohibitively costly alone. Ideally, a local
failure should permit local recovery.

Unlike hard errors, soft errors have the potential to cor-
rupt the simulation result in ways that are not immediately
obvious to the application scientist. Despite this, the cur-
rently most common approach to SDC resilience is to as-
sume that errors are so rare that they are better ignored,
favoring the simple solution of doing a re-run in the odd
case of a corrupted solution. This approach raises questions
of the trustworthiness of numerical simulations performed,
as an SDC type error may not necessarily lead to a result
that is obviously wrong in the eyes of the application sci-
entist. Also, it is worth noting that both the cost of an
SDC induced re-run and the probability of needing such a
re-run scales linearly with the size of the machine, therefore,
this simple approach may not be acceptable on future ex-
ascale systems. In this paper we seek to develop a variant
of the Parareal algorithm for time parallel integration that
is resilient to both soft and hard errors. As presented in
[7] some parallel integration methods are intimately related,
and we therefore conjecture that our ideas may extend to
other techniques of time-parallel integration.

2. RECOVERING FROM NODE-LOSS
The Parareal correction (8) may be implemented in dif-

ferent ways. The simplest approach is to divide work into
two phases; a purely sequential phase, computing Uk+1

n+1 from

GTn
∆TUk+1

n with the correction (8), and a parallel phase where

FTn
∆TUk

n is computed in parallel on n ∈ N nodes. Ideally,

the wall-time TG for a node group to compute GTn
∆TUk+1

n is

much smaller than the wall-time TF to compute FTn
∆TUk

n,
and the limiting factor in obtainable speed-up will be the
number of iterations kconv < N needed for convergence. In
practice however, it is seldom possible to construct a coarse
operator GTn

∆T so computationally cheap that its cost may
be ignored. Fortunately, there exists many other ways for
scheduling the computational work than having two strictly
separated phases, switching between computing GTn

∆TU se-

quentially and FTn
∆TU in parallel. For example, GT0

∆TU0
0

and FT0
∆TU0

0 may be computed concurrently. By exploit-
ing such independencies, it is possible, to some extend, to
mitigate the effects of a relatively expensive coarse operator
GTn

∆T . The most widely cited scheduler for the Parareal algo-
rithm was proposed by Aubanel [1]. The“Fully-Distributed”
scheduler is near optimal in exploiting independencies, while
at the same time being fairly simple to implement. In Figure
1, the scheduler is schematically visualized for a small prob-
lem, N = 6 time sub-domains, and convergence in kconv = 3
corrections. We note how, as the first time-subdomains con-
verge, the node-groups remain idle while waiting for the ap-
plication to finish. In this section we will introduce a new
variant of the scheduler proposed by Aubanel, that uses

Algorithm 1 Pseudocode for a Fault Tolerant Version of
a ”fully-distributed” parareal implementation.

1: convergeNext← FALSE
2: id∆T ← idNG
3: recv intercomm ← intercomm idNG − 1
4: send intercomm ← intercomm idNG + 1
5: if id∆T = 0 then
6: Ũ0

0 ← y0

7: Ũ0
1 ← G∆T Ũ

0
0

8: RC ← send Ũ0
1 on send intercomm

9: check send(RC,converge)

10: Û0
1 ← F∆T Ũ

0
0

11: U1
1 ← Û0

1

12: converge← TRUE
13: RC ← send converge and U1

1 on send intercomm
14: check send(RC,converge)
15: spare \\ idNG = 0 completed id∆T = 0, now spare
16: exit \\ node-group idNG = 0 completed execution
17: else
18: RC ←receive Ũ0

id∆T
on recv intercomm

19: check recv(RC,converge)

20: Ũ0
id∆T +1 ← G∆T Ũ

0
id∆T

21: if id∆T ! = N − 1 then
22: RC ←send Ũ0

id∆T +1 on send intercomm
23: check send(RC,converge)
24: end if
25: end if
26: U0

id∆T
← Ũ0

id∆T

27: for k = 1 to Kmax do
28: Ûk−1

id∆T +1 ← F∆TU
k−1
id∆T

29: if convergeNext then
30: converge← TRUE
31: Ukid∆T +1 ← Ûk−1

id∆T +1

32: if id∆T ! = N − 1 then
33: RC← send converge, Ukid∆T +1 on send intercomm

34: check send(RC,converge)
35: end if
36: spare \\ enter spare mode
37: exit \\ completed succesfully
38: end if
39: RC←receive converge and Ukid∆T

on recv intercomm
40: check recv(RC,converge)

41: Ũkid∆T +1 ← G∆TU
k
id∆T

42: Ukid∆T +1 ← Ũkid∆T +1 + Ûk−1
id∆T +1 + Ũk−1

id∆T +1

43: if converge & |Ukid∆T +1 − Uk−1
id∆T +1| > ε then

44: converge← FALSE
45: convergeNext← TRUE \\ converges in k = k + 1
46: end if
47: if id∆T ! = N − 1 then
48: RC ←send converge, Ukid∆T +1 on send intercomm
49: check send(RC,converge)
50: end if
51: if converge then
52: spare \\ enter spare mode
53: exit \\ completed succesfully
54: end if
55: end for

features of the UFLM MPI framework [4] to build a fault
tolerant algorithm. Here idle node-groups may be used as
spares for the event that an active node-group fails.

Algorithm 2 Pseudo-Code for spare() function

1: if id∆T = N − 1 then
2: work ← FALSE
3: procedure: Send exit to all node-groups.
4: else
5: procedure: Wait for exit or work signal from any

node-group n.
6: end if
7: if work then
8: recv intercomm ← intercomm n
9: RC ← receive k and id∆T on recv intercomm

10: id∆T ← id∆T + 1
11: RC← receive converge and Ukid∆T

on recv intercomm
12: check recv(RC,converge)

13: Ũkid∆T +1 ← G∆TU
k
id∆T

14: Ukid∆T +1 ← Ũkid∆T +1

15: Revoke and free send intercomm
16: if Is id∆T + 1 being processed on any n.-g.? then
17: procedure: Find the node-group n processing

time-subdomain id∆T + 1.
18: send intercomm ← intercomm n
19: else
20: check send(1,converge)
21: end if
22: K ← k + 1
23: for k = K to Kmax do
24: procedure: Execute pseudocode Algorithm 1, line

28 to 54.
25: end for
26: end if

2.1 A Fault-Tolerant Scheduler
In Algorithm 1, pseudo code of our proposed Fault-Tolerant

Parareal algorithm is presented. The only difference be-
tween it and the original “Fully-Distributed” scheme intro-
duced by Aubanal in [1] is the introduction of the func-
tion calls check send, check recv, and spare. The guideline
for our recovery strategy for the fault-tolerant implementa-
tion is summarized. In figure 2 the recovery procedure is
schematically visualized for a small problem, N = 6 time
sub-domains, and convergence in kconv = 3 corrections with
node-groups lost at {id∆T , kerr} = {3, 2} , {4, 2}.

• Spare Mode. When Uk+1
n on a time sub-domain

handled by a node-group converges, the node-group
will become a spare node-group, ready to receive new
instructions.

• Push Strategy. Recovery upon failure is initiated
by check send() . It searches for available spares to
continue the work on the time sub-domain that was
handled by the node-group that failed. If no spares are
available, the application fails globally. If check send()
on id∆T successfully connects to a spare node-group,
it returns a new inter-communicator for sending to the
node-group working on id∆T + 1.

• Receiving. A failed check recv() will wait cTG , c > 1,
for a signal to connect. If no signal appears it initiates
global failure. Thus, the loss of a node-group is only
recoverable if the loss happens during the computation
of FTn

∆TU. If a node-group is in the process of doing
the correction (8) when the group fails, the local loss of

a node-group will lead to global failure. If check recv()
on id∆T successfully connects to a spare node-group,
it returns a new inter-communicator for receiving from
the node-group working on id∆T − 1 and the converge
flag is set zero so that no intervals following a node-
group failure converges in the current iteration.

• Convergence In the unprotected algorithm, Uk+1
n

on the node-group working on the lowest time sub-
domain id∆T will converge, i.e, during each iteration
at least one time sub-domain converges. In the Fault-
Tolerant implementation, we require this to be the
case as well, and FTn

∆TU must complete on the node-
group with the lowest id∆T among active node-groups.
This condition is naturally enforced by the wait condi-
tion on check recv() and thus simplifies the algorithm
while also ensuring that it converges in a maximum of
kconv = N iterations as in the unprotected algorithm.

Pseudo code for check send, check recv and spare node is
given in Algorithm 2, 3 and 4 respectively. In each algo-
rithm, a number of procedures are outlined. The procedures
involve querying node-groups that are actively computing
FTn

∆TU or GTn
∆TU for information on their current status.

That is, retrieving the local values of k and id∆T on node-
groups without explicit synchronization. The ideal way of
doing so is to use RMA features introduced in the MPI 3.0
standard. However, for our test implementation, this was
not possible since ULFM-1.1 in its current implementation
is based on OpenMPI 1.7. Instead, we chose a solution where
all node-groups spawn two Pthreads in the beginning of the
application. One for doing the work as outlined in Algo-
rithm 1, another solely for handling signals and returning

Wall time

k = 0 k = 1 k = 2 k = 3

N.G.

0

1

2

3

4

5

{0, 1}

{1, 1}

{2, 1}

{3, 1}

{4, 1}

{5, 1}

{1, 2}

{2, 2}

{3, 2}

{4, 2}

{5, 2}

{2, 3}

{3, 3}

{4, 3}

{5, 3}

Figure 1: The “Fully-Distributed” work scheduling of the
parareal algorithm as proposed in [1], light grey indicate a
node-group computing FTn

∆TU, dark gray GTn
∆TU.

Wall time

k = 0 k = 1 k = 2 k = 3

N.G.

0

1

2

3

4

5

{0, 1}

{1, 1}

{2, 1}

{3, 1}

{4, 1}

{5, 1}

{1, 2}

{2, 2}

{5, 2}

{2, 3}

{3, 3}

{4, 3}

{5, 3}

Figure 2: Schematic visualization of the recovery procedure
of the Fault-Tolerant algorithm with N = 6, kconv = 3 and
failed node-groups at {id∆T , kerr} = {3, 2} , {4, 2}.

Algorithm 3 Pseudocode for check send(RC,converge)

1: if RC ! = 0 then
2: Revoke and free send intercomm
3: if converge then
4: converge← FALSE
5: id∆T ← id∆T + 1
6: Ũkid∆T +1 ← G∆TU

k
id∆T

7: Ukid∆T +1 ← Ũkid∆T +1

8: if Is id∆T + 1 being processed on any n.-g.? then
9: procedure: Find the node-hroup n processing

time-subdomain id∆T + 1.
10: send intercomm ← intercomm n
11: else
12: check send(1,converge)
13: end if
14: RC ←send converge, Ukid∆T +1 on send intercomm
15: check send(RC,converge)
16: k ← k + 1
17: Ûk−1

id∆T +1 ← F∆TU
k−1
id∆T

18: Ukid∆T +1 ← Ûk−1
id∆T +1

19: converge← TRUE
20: RC ← send converge, Ukid∆T +1 on send intercomm
21: check send(RC,converge)
22: else
23: if Any node-group in spare-mode? then
24: procedure: Find node-group n in spare-mode

and send work signal.
25: send intercomm ← intercomm n
26: RC ← send k, id∆T on send intercomm

27: RC← send converge, Ukid∆T +1 on send intercomm

28: check send(RC,converge)
29: else
30: procedure: Send exit to all node-groups.
31: exit \\ application failure
32: end if
33: end if
34: end if

Algorithm 4 Pseudocode for check recv() function

1: if RC ! = 0 then
2: procedure: Wait for exit or work signal from any

node-group n. If wait-time exceeds ∆TG , assume fail-
ure and abort program.

3: if work then
4: recv intercomm ← intercomm n
5: RC ←receive converge and Ukid∆T

on
recv intercomm

6: check recv(RC,converge)
7: end if
8: end if

information on the local node-group’s current k and id∆T

that may be requested by other node-groups. The Fault-
Tolerant version must create N

2
(N − 1) inter-communicators

between N intra-communicators at the onset of the algo-
rithm. For the unprotected algorithm even the loss of a
single node within a node-group will lead to global failure.
No rearranging will ever be needed, and creating N−1 inter-
communicators between the intra-communicators of N ad-
jacent node-groups is thus sufficient. It is not an option to
simply create the new inter-communicator during the recov-
ery process since this would require a global synchronization

to shrink the global communicator so to create a new inter-
communicator. In addition to the cost associated with cre-
ating the

(
N
2
− 1
)

(N − 1) extra inter-communicators, the
Fault-Tolerant algorithm performs a check after each re-
ceive and send operation on the intercommunicators. A
check must involve an agreement operation across the lo-
cal intra-communicator so to ensure that all send/recv com-
pleted successfully. In the section that follow, we present a
small numerical experiment to examine the cost associated
with the added operations.

2.2 Numerical Experiments
For testing purposes, the proposed Fault-Tolerant vari-

ant and the unprotected algorithm are wrapped around the
parallel-in-time integration of a simple wave-problem ODE
system, d

dt
u = Λu using an implicit Euler integration scheme

on the interval T = [0, 10] with u0 = [1, . . . , 1], Λ being a
complex valued diagonal matrix, the dimension of which is
given by the number of ranks in space. The computational
complexity of this type of problem is very light, so the ac-
tual ratio TF

TG
is controlled by a sleep function rather than

the compute capacity of the node. This approach allows for
kconv, r = TF

TG
and the number of time sub-domains N to be

controlled independently of each other. This mimicking any
possible problem, while at the same time accurately measur-
ing the associated costs of creating a large number of inter-
communicators and performing agreement operations on the
send/recv operations on inter-communicators between time
sub-domains. In Figure 3, measurements for a problem with
N = 16 time sub-domains and a ratio r = 16 with TG = 2s
and GTn

∆T fine enough that
∣∣Uk+1

n −Uk
n

∣∣ < ε after kconv = 3
corrections is presented for multiple different error scenarios.
Comparing case (b) and (c), we note that the cost associated
with a recovery operation is fairly small, and that the cost
due to loss of information, possibly forcing the algorithm to
make another iteration or two before converging, is an order
or two higher. Likewise, the initial added cost of setting up
the inter-communicators and threads for handling signaling
is comparatively small.

Unpro
te

ct
ed

FT-P
A

(a
)

FT-P
A

(b
)

FT-P
A

(c
)

FT-P
A

(d
)

FT-P
A

(e
)

100

200

(3) (3) (3) (4) (4) (5)

135 136.2 136.5

172.4 172.9

203.7

W
a
ll
ti

m
e

T

Figure 3: Execution time in seconds for the unprotected al-
gorithm, and for the proposed fault-tolerant algorithm with
one or multiple node-group losses located at {id∆T , kerr}.
(a) No errors (b) {15, 1} (c) {15, 3} (d) {4, 1} , {5, 2} (e)
{11, 2} , {12, 2} , {15, 3}. ; The number in parenthesis indi-
cate iterations to convergence.

2.3 Failure Analysis
The proposed Fault-Tolerant variant of the Fully- Dis-

tributed Parareal work scheduling algorithm may fail to re-
cover when subjected to node-group losses under certain cir-
cumstances. As outlined in Section 2.1, there is a limit on
how many node-groups that may be lost at a given itera-
tion, as well as the limitation that all correction operations
(8), and computation of GTn

∆TU must not fail. In this sec-
tion we derive a lower bound on the probability that the
Fault-Tolerant algorithm will execute successfully. A key
assumption in our derivation is that the occurrence of node-
losses may be assumed to be a Poisson point process, and
that on the cluster running the algorithm, statistics on the
average time between node failure is available. Let µG∆T
be the average number of times on a time interval TG that
any node within a node-group will fail, and assume that
µG∆T � 1. Since the zeroth iteration consists solely of the

computation of N , GTn
∆TU, that all must survive, the proba-

bility of successfully executing the zeroth iteration is equal
the probability of zero node-losses occurring

PN,00 = e−N·µ
G
∆T (9)

For the iterations to follow, the derivation is less trivial. Due
to our “push-strategy” for recovery, all subsequent iterations
k must have zero node-losses during the correction phase,
the probability of which is given by exp

(
(k −N) · µG∆T

)
.

During the computation of FTn
∆TU, several node-groups may

be lost whilst still being recoverable. The probability that
n node-groups are lost at iteration k may be expressed as
(r·(N−k)·µG

∆T)n

n!
exp

(
r · (k −N) · µG∆T

)
where r = TF

TG
. Fi-

nally, due to our requirement that the algorithm must con-
verge in a maximum of k = N iterations, FTn

∆TU on the
first active time sub-domain in any iteration k must execute
successfully, the probability of which is exp

(
−r · µG∆T

)
, in-

dependent of k. The probability that the algorithm for N
time sub-domains successfully completes iteration k with n
node-group loses is then given by

PN,kn =

(
r (N − k)µG∆T

)n
n!

e(1+r)(k−N)µG
∆T
−rµG

∆T (10)

Using the above expression, we may write the probability
that the unprotected algorithm executes successfully as

PN,kcPA =

kc∏
i=0

PN,i0 (11)

For the unprotected algorithm, each iteration must be com-
pleted with n = 0 node-group losses. In the case of the Fault-
Tolerant algorithm, at any iteration k, the fault-tolerant al-
gorithm may recover from up to l1 (N, k, np) = min[k − np,
N − k] node-group failures, np being the sum of node-group
failures in previous iterations 1 . . . k − 1. The limitation is
due to the need for a spare node-group to be available at
node-loss. When a node-group is lost, depending on the lo-
cation and iteration, it may or may not lead to the need
for an added iteration before convergence. For the purpose
of deriving a bound on the probability of the fault toler-
ant algorithm executing successfully, we assume worst case
scenario, that the loss of a node-group will always lead to
an added iteration, up until the limit that convergence will
happen in no less than N iterations. Hence, we define yet
another limiter l2 (N, kc, np) = min (kc + np, N), this on the
number of iterations needed for convergence.

22 23 24 25 26
60%

70%

80%

90%

100%

N

Unprotected

FT-PA

Ratio Eq. 14

Figure 4: Probability of successful execution for the un-
protected and the Fault-Tolerant algorithm. N = 16, r = 32,

kconv = 2 and failure rate µG∆T = 0.0001. The dashed line
indicate proportion of failures of the unprotected algorithm
that the Fault-Tolerant version may recover from.

For any given problem, a lower bound on the probability
of successful execution may be computed as the sum of the
products of each possible path to success. To compute the
possible paths for problems with a large number of time
sub-domains, we define a recursive choice function as

ΦN,knp
=

{∑l1(N,k,np)
i=0 PN,ki ΦN,k+1

np+i if k ≤ l2 (N, kc, np)

1 otherwise
(12)

The lower bound on the probability that the fault tolerant
algorithm will execute successfully may then be written as

PN,kcFT-PA ≥ P
N,0
0 ΦN,10 (13)

In Figure 4, the probability of successful execution for the
unprotected and for the Fault-Tolerant, Algorithm 1, is pre-
sented for a problem N = 16, r = 32 and kconv = 3, with on
average one node-loss within a node-group per 10000 time-
intervals TG , i.e., µG∆T = 0.0001. In addition, the figure con-
tains a plot of the percentage of failures of the unprotected
algorithm that is successfully executed by the Fault-Tolerant
algorithm. We denote this ratio R

R =
PN,kcFT-PA − P

N,kc
PA

1− PN,kcPA

(14)

3. GUARDING AGAINST SDC ERRORS
In the previous section we approached the issue of node

failures. We now consider the other major source of faults
in HPC applications, silent errors in the form of silent data
corruption. When subjected to this type of error, an appli-
cation may provide an incorrect output without any indi-
cation that the application has malfunctioned. Algorithmic
resilience towards SDC type errors is an active area of re-
search, and [8] provides a recent example in the context of
time integration. In their paper the authors demonstrate
how spectral deferred correction for solving ODE’s may be
made resilient to SDC type errors and in [3], an auxiliary
checking scheme is introduced to form a fairly generic ap-
proach to silent error detection in numerical time-stepping
schemes. In this work we extend the Parareal algorithm to
make SDC resilience an integral part of the algorithm, re-
gardless of the SDC resilience properties of the underlying
operators F4T and G4T .

Numerical algorithms have traditionally been developed
under the assumption that all underlying algebraic opera-
tions are carried out accurately, subject only to the limita-
tion of machine accuracy. In the following work we stray
away from this assumption, i.e., if a matrix vector product
results in x, then there is a non-zero probability of comput-
ing x + x̃, with x̃ being a random variable. In the field of
numerical analysis, a main focus is on the analysis of error
and convergence, but since our error is now a random vari-
able, how should we approach the analysis? A natural idea
is to define convergence in terms of the statistical moments
of the error, indeed this is the idea being presented in [19],
where they consider a method to be convergent with respect
to hardware error, if for every ε > 0, a finite amount of work
will make E

[
eh
]
< ε and V ar

[
eh
]
< ε2.

3.1 SDC resilient Parareal
In building an SDC resilient algorithm for iterative meth-

ods, it is natural to look at the difference between consec-
utive iterations to detect whether or not an SDC-type er-
ror occurred. This is the approach taken by Stoyanov and
Webster in [19], where a generic approach for making fixed-
point iterative methods resilient towards SDC-type errors
is proposed. In their approach, they argue that if the it-
eration matrix is a contraction, the norm of the difference
between successive iterates should reduce at the same rate
as the rate of convergence of the algorithm, thus rejecting
iterates if they fail to do so. As presented in the introduc-
tion, Parareal is in essence also a fixed point iteration, but
with a non-normal iteration matrix, the elements of which
are potentially non-linear operators. Due to the non-normal
structure of the iteration matrix, it is not possible to pro-
vide a general guarantee that the iteration matrix will be
a contraction. However, since the upper bound on parallel
efficiency of the algorithm scales as 1/kconv, we find it rea-
sonable to assume that for any practical application, GTn

∆T

is constructed sufficiently close to FTn
∆T so that the iteration

matrix will remain a contraction on Uk
n from k = 0 and on-

wards. Hence, the approach of [19] is directly applicable for
making the Parareal method SDC resilient. However, this
approach is limited by the fact that Ūk is needed, impos-
ing the need for a synchronization stage between consecu-
tive iterations. This limits the possible scheduling of work
to a slow manager-worker type model. As previously dis-
cussed in Section 2.1, such a model is not used in practice
as the limitations it imposes on obtainable speed-up are too
severe. Fortunately, due to the special structure of the itera-
tion matrix (6), we may construct a local approach without
the need for a synchronization between iterations. First, de-
fine the residual between two consecutive iterations on the
node-group local time sub-domain n as

ek+1
n =

∥∥∥Uk+1
n −Uk

n

∥∥∥
∞

(15)

For an SDC resilient model, the above ek+1
n must be com-

puted at iteration k + 1 on each time sub-domain n, and
communicated along with converge, see Algorithm 1, so that
the node-group responsible for the n’th time sub-domain at
the k + 1’th iteration can access ek+1

i ∀i ∈ 1 . . . n. Then, if
at any iteration for any time sub-domain

max
i=0...n

ek+1
n ≥ β max

i=0...n
ekn (16)

is true, we reject Uk+1
n and replace it with

Uk+1
n = Uk−1

n , ek+1
n = ek−1

n (17)

where β ≤ 1 is an upper bound to the contraction factor. If
no upper bound is available, using β = 1 appears to work
well. To avoid stagnation due to false rejection, we reject
the previous two local iterates. In [19] other approaches
for guarding against false rejections are discussed. These
approaches only discard a single iterate, but need tunable
parameters, or estimates on the Parareal iteration matrix
that may not be available in general. In our experience
the above approach appears to be near-optimal for avoiding
stagnation, while at the same time being parameter-free and
easy to implement.

3.2 Numerical Experiments
For the numerical experiments, a strategy to introduce

data corruption during the solution process is needed. Vari-
ous studies have attempted to quantify the rate of soft errors
leading to SDC’s on clusters. Despite a sizable amount of
research into this topic, a consensus seems yet to have been
established. A reasonable estimate appears to be that the
frequency of SDC type errors is roughly an order of mag-
nitude lower than that of errors leading to node failure [10,
18]. On modern day clusters, DRAM memory and CPU
caches are almost always protected at the architectural level
using some form of error correction. The major source of
faults leading to SDCs are therefore suspected to be caused
by radiation strikes that effect logic elements in the CPU or
GPU. It is not trivial to deduce how a fault in a logic units

0 8 16 24 32
10−15

10−10

10−5

10−0

10300

E
[U

k n
−
F
n ∆
T
u

0

]

Unprotected

Stoyanov & Webster

Node-Local Correction

(a)

0 8 16 24 32
10−15

10−10

10−5

10−0

10300

V
a
r
[U

k n
−
F
n ∆
T
u

0

] Unprotected

Stoyanov & Webster

Node-Local Correction

(b)

Figure 5: Convergence rate when solution procedure is sub-
jected to silent-data corruption. The unmarked line indicate
the convergence rate for the error-free solution procedure.

will effect the output of the operation, or the statistical na-
ture of the outputs. In [20], a quantitative comparison be-
tween the accuracy of direct fault-injection at the assembly
code level with that of fault injection in high level code is
presented. They demonstrate that faults leading to SDC
type errors are well approximated by high level injection
of single bit flips. We proceed with this error model for our
test-case. At each time-step, within both operators GTn

∆T and

FTn
∆T , every element in the state vector Uk

n will be subject
to a bit-flip with probability P at a random location in the
64bit wide double. As a test-case for SDC-type resilience, we
use the time-parallel integration over a wave-period of the
1D advection-diffusion equation with periodic boundaries
and advection-diffusion coefficients α = 1, κ = 0.01. FTn

∆T

is constructed as in [12] using a 4th order compact finite-
difference stencil for discretizing the spacial derivatives and
C1-spline collocation for solving the linear system of ODEs,
and GTn

∆T as with first order finite difference approximations
in space and time. We test the solution procedure with a
high rate of errors P = 10−6, and measure the mean and
variance as a function of iterations averaged over 1000 re-
alizations. We present the results in Figure 5. Clearly, the
proposed node-local correction strategy is not only prefer-
able in the sense that it is generally applicable regardless of
the work-distribution model used. As an added bonus, it
also converges faster than the approach proposed by Stoy-
anov and Webster, this due to the fact that less information
is discarded upon rejection.

4. SUMMARY
Time-domain parallelism is receiving increasing attention

as a viable way to extend the limits of strong scaling in solv-
ing evolution-type PDE problems, and offer a potential path
to scaling at exascale. We have demonstrated how a novel
method of time-domain parallelism, the Parareal method,
may be made resilient towards hard errors in the form of
node-losses when a fault-tolerant supporting API for dis-
tributed memory computing such as ULFM is used. In ad-
dition, we have shown that due to the special structure of
the iteration matrix, it is possible to monitor the residual be-
tween consecutive iterations locally. This leading to an SDC
resilient correction strategy that may be applied regardless
of the work distribution model used.

5. REFERENCES
[1] E. Aubanel. Scheduling of tasks in the parareal

algorithm. Parallel Computing, 37:172–182, 2011.

[2] G. Bal. On the convergence and the stability of the
parareal algorithm to solve partial differential
equations. In Domain decomposition methods in
science and engineering, pages 425–432. Springer
Berlin Heidelberg, 2005.

[3] A. R. Benson, S. Schmit, and R. Schreiber. Silent
error detection in numerical time-stepping schemes.
IJHPCA, 2014.

[4] W. Bland, A. Bouteiller, T. Herault, J. Hursey,
G. Bosilca, and J. J. Dongarra. An evaluation of
user-level failure mitigation support in mpi.
Computing, 95(12):1171–1184, 2013.

[5] J. Dongarra and et al. Applied mathematics research
for exascale computing. Technical Report No.

LLNL-TR-651000, Lawrence Livermore National
Laboratory (LLNL), Livermore, CA

”
2014.

[6] M. Gander and S. Vandewalle. Analysis of the
parareal time-parallel time-integration method. SIAM
Journal on Scientific Computing, 29(2):556–578, 2007.

[7] M. J. Gander. 50 years of time parallel time
integration. In Householder Symposium XIX June
8-13, Spa Belgium, page 81, 2015.

[8] R. Grout, H. Kolla, M. Minion, and J. Bell. Achieving
algorithmic resilience for temporal integration through
spectral deferred corrections. arXiv preprint
arXiv:1504.01329, 2015.

[9] J.-L. Lions, Y. Maday, and G. Turinici. Résolution
d’edp par un schéma en temps pararéel. Comptes
Rendus de l’Académie des Sciences-Series
I-Mathematics, 332(7):661–668, 2001.

[10] S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M.
Quinn, W. N. Rust, D. H. DuBois, D. G. Modl,
A. Manuzzato, and S. P. Blanchard. Assessment of the
impact of cosmic-ray-induced neutrons on hardware in
the roadrunner supercomputer. Device and Materials
Reliability, IEEE Trans., 12(2):445–454, 2012.

[11] M. Minion. A hybrid parareal spectral deferred
corrections method. COMCoS, 5(2):265–301, 2011.

[12] A. Mohebbi and M. Dehghan. High-order compact
solution of the one-dimensional heat and
advection–diffusion equations. Applied Mathematical
Modelling, 34(10):3071–3084, 2010.

[13] A. Nielsen. Feasibility study of the parareal algorithm.
Diss. msc thesis, Technical University of Denmark,
2012. IMM-134.

[14] D. Ruprecht, R. Speck, M. Emmett, M. Bolten, and
R. Krause. Extreme-scale space-time parallelism.

[15] D. Samaddar, D. E. Newman, and R. Sánchez.
Parallelization in time of numerical simulations of
fully-developed plasma turbulence using the parareal
algorithm. Journal of Computational Physics,
229(18):6558–6573, 2010.

[16] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V.
Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, et al. Addressing failures in
exascale computing. IJHPCA, 2014.

[17] R. Speck, D. Ruprecht, R. Krause, M. Emmett,
M. Minion, M. Winkel, and P. Gibbon. A massively
space-time parallel n-body solver. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis,
page 92. IEEE Computer Society Press, 2012.

[18] V. Sridharan, J. Stearley, N. DeBardeleben,
S. Blanchard, and S. Gurumurthi. Feng shui of
supercomputer memory positional effects in dram and
sram faults. In International Conference for HPC,
Networking, Storage and Analysis (SC). IEEE, 2013.

[19] M. Stoyanov and C. Webster. Numerical analysis of
fixed point algorithms in the presence of hardware
faults. Technical Report TM-2013/283, Oak Ridge
National Laboratory (ORNL), Oak Ridge, TN, 2013.

[20] J. Wei, A. Thomas, G. Li, and K. Pattabiraman.
Quantifying the accuracy of high-level fault injection
techniques for hardware faults. In Dependable Systems
and Networks, 44th Annual IEEE/IFIP Conference,
pages 375–382. IEEE, 2014.

