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Mobile devices with positioning capabilities allow usessparticipate in novel and exciting location-based appbice.
For instance, users may track the whereabouts of their attgnaes in location-aware social networking applicatjcag.,
Foursquare. Furthermore, users can request informatiout #ndmarks in their proximity. Such scenarios requirersiso
report their coordinates to other parties, which may notully frusted. Reporting precise locations may result inoser
privacy violations, such as disclosure of lifestyle detaiexual orientation, etc. A typical approach to presepeation
privacy is to generate @oaking region (CR}hat encloses the user position. However, if locations angicuously reported,
an attacker can correlate CRs from multiple timestampsdarately pinpoint the user position within a CR.

In this work, we protect against a broad range of attackshitegtch location privacy using knowledge abdi)tmaximum
user velocity;(ii) external events that may occur outside the process of eygdfrting locations (e.g., social network posts
tagged by peers); ar(di) information about mutual proximity between users. Assuseru who reports two consecutive
cloaked regionsA and B. We consider two distinct protection scenarios: in the fieste, the attacker does not have infor-
mation about the sensitive locations on the map, and thetges to ensure that can reachksomepoint in B from any
point in A. In the second case, the attacker knows the placement dfigescations, and the objective is to ensure that
can reachany point in B from any point in A. We propose spatial and temporal cloaking transformationseserve user
privacy, and we show experimentally that privacy can beeaed without significant quality of service deterioration.

Categories and Subject Descriptors: H.2Z3®feral]: Security, integrity, and protection; H.2.®atabase applications]:
Spatial databases and GIS

General Terms: Design, Experimentation, Security

Additional Key Words and Phrases: Location Privacy, Lana@ware Social Networks

1. INTRODUCTION

The latest generation of social networking applicationg.(é-oursquare, Facebook Places) enable
users to share information about their geo-spatial conBatticipants connect to the network using
mobile devices with positioning capabilities, and areriested in finding friends that are currently
in their geographical proximity. For instance, Alice mag ssich a service to ask a nearby friend to
join her for dinner, or to find on-going events close to heatam. Many other similar application
scenarios exist, in which users can benefit from sharing theation data. However, serious loca-
tion privacy concerns arise, which need to be addressedifdr applications to gain wide-spread
popularity.

Consider that Alice is scheduled for a medical appointméat laospital situated in the down-
town area. Immediately after her appointment, she plane to g shopping mall nearby, and would
like to know if any of her acquaintances who are currentlyhia down-town area are interested
in joining her. Nevertheless, Alice does not want to diselbsr exact coordinates (i.e., hospital),
because other service users may learn that she suffers froedizal condition. However, she has
no objection in letting her buddies know that she is in the md@wvn area, or within the boundaries
of a region spanning several city blocks. Therefore, a @agginedloaking region (CRjnay be
safe to disclose, as long as certain user-specified privatsti@ints are satisfied. On the other hand,
CRs should not be excessively large, since this would affexhccuracyof location-dependent
services.

Location cloaking [Gruteser and Grunwald 2003; Gedik and 2005; Gruteser and Liu 2004;
Mokbel et al. 2006; Kalnis et al. 2007; Damiani et al. 201G sommonly-used approach to protect
the privacy of users that access location-based servis@st Eoordinates are replaced with a CR
which encloses the user and satisfies a privacy constraimady requirements are specified by
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Fig. 1. Location privacy is breached using maximum velocity infation

the user’s profile, and typically implement a privacy pagadj such as spatidg-anonymity (SKA)
[Kalnis et al. 2007]. SKA is the most prominent location gy paradigm proposed so far, and
aims to protect the privacy of users who ask spatial quesiesh as “find the nearest restaurant
to my location”. In such scenarios, the objective is to pebthe exactdentity of the user who is
issuing the query, and the constraint imposed is that eacln@® contain at leagt distinct users.
This way, the probability of identifying the querying usertiounded above by/k. However, in
our application context the identity of the user is knownd éme objective is to protect the exact
location of the user. Furthermore, in areas where the deafitisers is high (e.g., down-towk)
users can be found in close proximity to each other, and the&@Fhave a small extent (e.g., &ll
users could be inside the hospital). Therefore, SKA is nptiegble to the considered scenario.

A more appropriate protection model is the one from [Grutesel Liu 2004; Damiani et al.
2010], where the aim is to prevent an attacker from pinpogixact user coordinates. For instance,
in the PROBE system [Damiani et al. 2010] all locations omtiag are representedfasturesand
each feature has a type. Certain feature types are ser(gitiyehospitals, bars), whereas others are
innocuous (e.g., shopping centers, parks). Each user déifisi@er own privacy profile, which spec-
ifies sensitivity thresholds with respect to each featupe tfYROBE generates CRs that cover a mix
of sensitive and innocuous regions, such that the assoeiptbbability between the user and sen-
sitive features is bounded below the specified thresholdeter, previous work does not address
linkageattacks, which can be easily staged in practice by cornga@Rs reported at consecutive
timestamps.

Velocity-based Attacks. The first type of privacy threat we address in this paper is$ tfia
velocity-based linkage attacksat rely on knowledge about maximum velocity to pinpoirg &xact
user coordinates within a reported cloaking region. Cardide example of Figure 1, where Alice
reports her (cloaked) location as she moves. We only showctwsecutive time snapshots, with
corresponding CR4l (issued at time 4) and B (issued at time g, wheretg > t4). Assume that
Alice has set her current on-line status'ésiting shops in the down-town area’An attacker can
infer with high probability that Alice is currently walkindnence her velocity can be no higher than
5 km/h. Alternatively, if Alice’s status i8Out for a bicycle trip”, her speed can be bound to at most
20 km/h. The attacker first determines the Minkowski sum [degBR#ral. 2000] around CR with
enlargement - (tg — t4), wherew is the inferred maximum user velocity. Next, the Minkowski
enlargement is intersected with the GR and the attacker infers that Alice must be situated in the
hatched sub-region d®, since she could not have physically reached any farthétipodf a hos-
pital building is situated in the hatched region, then thackier can infer that Alice has a medical
appointment, compromising her privacy.

We consider two different protection scenarios:

(i) Preventing disclosure of exact user coordinafBsis protection scenario aims to prevent attack-
ers from using reported locations to stalk, or physicalseadt a service user.

(i) Bounding the association probability of a user with ansiive featureThe objective of this
protection scenario is to prevent attackers from learnirigate details about a user’s health
condition, religious affiliation, etc.



We formalize both attack models, and propose solutionsgaerate CRs which are not vulner-
able to linkage attacks. We also take into account the reedimitations of mobile users. Specifi-
cally, we consider solutions where CRs are generated infdimefphase, and no significant over-
head is incurred by the user to compute CRs on-line. Rempofipre-defined regions is temporally
cloaked, in order to prevent linkage attacks. We also intcedtechniques that can generate CRs
on-line, if enough resources are available to the user (sorifie trusted service is employed for
this purpose). The advantage of the latter approach is tRatale customized to the current user
location, leading to better accuracy of provided services.

External Event-based Attacks. Even if the CRs of a user are safe with respect to the self-
reported history of cloaked locations, an adversary mdiyosgach location privacy by correlating
the self-reported history with external events, such astggged social media posts. Such posts
may be created by the users themselves, or by their peergoftiag of geo-tagged objects such
as images, videos, etc., can be used in conjunction withyaniaed user whereabouts to violate
location privacy. We propose a novel algorithm that addretisis threat, and achieves an interesting
trade-off between quality of service and user satisfact@ur algorithm blocks the publication of
geo-tagged items when they pose an immediate privacy thmatain the other hand over-provisions
the amount of protection such that the total amount of bldgkeblication occurrences is minimized,
hence improving user experience.

Mutual Proximity Attacks. We also consider the case where a user wishes to keep private
her mutual proximity relationship with another user. Sfieally, pairs of users coordinate their
anonymized updates, such that an adversary is not ablesiativet the two came in close proximity
to each other (i.e., they had a secret meeting). This additlevel of protection is achieved without
the two involved users having to share any additional locatnformation to each other, except
for what they would have released in the absence of the additiproximity constraint, and the
immediate information they gain from meeting each other.

The rest of the paper is organized as follows: In Section 2imwestigate related work. We for-
malize the two alternative attack models and protectionages in Section 3, and we introduce the
system architecture in Section 4. In Section 5, we presardefense strategies consisting of spatial
and temporal transformations. In Section 6, we extendai@atd temporal transformations to with-
stand more complex attacks such as attacks based on extgemd$ (Section 6.1) and proximity-
based attacks (Section 6.2). We evaluate experimentalpithposed techniques in Section 7, and
we conclude with directions for future research in Section 8

2. RELATED WORK

This section discusses research results closely relatedrtavork. For a more general survey on
location privacy in the context of location-based servianed mobile applications we refer the reader
to [Krumm 2009; Ghinita 2013; Damiani 2014].

Location cloaking was extensively studied in the contexpu¥ate spatial queries. Typically,
users ask nearest-neighbor queries to servers that ownedaswith points of interest (e.g., restau-
rants). However, users wish to keep their exact locationsigr. In [Kido et al. 2005; Yiu et al.
2008], the querying user discloses one or more fake locatiorthe server. However, these lo-
cations could still fall within sensitive areas. Furthemmaattacks through correlation of multiple
reported locations are not addressed. A considerable mwhlmeation privacy solutions [Gruteser
and Grunwald 2003; Gedik and Liu 2005; Kalnis et al. 2007; biglet al. 2006] rely on the spatial
k-anonymity (SKA) paradigm, and generate CRs that contdeatk distinct users. However, the
focus of all these approaches is on protecting idsmtity, not location. As a result, it is still possi-
ble that the resulting cloaking regions have small extemtttfermore, the CRs may be completely
enclosed within sensitive areas on the map. The positioemagShokri et al. 2010] summarizes
SKA limitations.

More relevant to our work is the protection model in [Damianal. 2010; Damiani et al. 2011;
Yigitoglu et al. 2012], which aims to hide exact user cooad@s, and to prevent association with
sensitive locations. In the PROBE system [Damiani et al.020dsers define their own privacy



profiles, by specifying maximum thresholds of associatidth sensitive feature types. Our privacy
model for the scenario of an attacker with background kndgdéeon map locations is similar to
[Damiani et al. 2010]. An alternative model to PROBE is ininoed in [Xu and Cai 2009], where
a feeling-based measure of privacy protection is propdSpdcifically, the work in [Xu and Cai
2009] defines safety with respect to a single CR based onibkd&popularity of enclosed regions.
Intuitively, the more popular (i.e., frequently visitedjegion is, the more safe it is. A metric that is
based on entropy is used to quantify safety. The advantaéesafpproach is that it does not require
users to specify thresholds, which increases usabilityeWiphasize that, the method in [Xu and
Cai 2009] focuses on a single CR, and does not address d¢ammnedaross multiple updates. Hence,
the method is orthogonal to our velocity-based attack ptmte approach, and in fact our proposed
techniques for enforcing consecutive CR safety can be assahjunction with the single-CR safety
condition specified in [Xu and Cai 2009].

Another category of approaches addresses private loagtietes by encrypting user coordinates.
For instance, the work in [Khoshgozaran and Shahabi 200 a geometrical transformation
to map locations to the one-dimensional space, and pracegsseies in the transformed domain.
The technique in [Ghinita et al. 2008] employs cryptogragirivate information retrieval (PIR)
protocols, and provides strong privacy guarantees. In &linef phase, the database of points of
interest is organized according to the type of query supgofe.g., nearest-neighbor). At query
time, a cryptographic protocol is executed that allows theruo retrieve the requested objects.
However, this method is not suitable for the studied problgince it assumes static data, whereas
in our case the user locations (which are the objects ofdstechange frequently. Furthermore,
PIR incurs high computational and communication overhead.

The closest to our work is the method in [Cheng et al. 2006¢nela random cloaking region that
encloses the user is generated. The resulting area refgesemcertaintyregion, which prevents
the attacker from learning the exact user location. Theasthlso discuss linkage attacks based
on knowledge about maximum velocity, and they propose twotisms: patchingand delaying
Patching reports the union between the current CR and theepiogted in the previous timestamp.
However, the resulting area may not be contiguous, and can gery large. Furthermore, the
method can be easily reverse-engineered, since the atzark&now that the union was performed
due to an imminent vulnerability to linkage. Delaying magunsevere service deterioration due to
dropped service requests, as we show in our experimentalatian. In contrast to [Cheng et al.
2006], we alsqostdaterequests, which provides zero request drop ratio, and veeita account
scenarios when the attacker has prior knowledge about deemplent of sensitive regions on the
map. Another feature of our privacy mechanism is that it cambplied in different and possibly
constrained spatial contexts. For example, in [Yigitogiale 2012] the technique is deployed to
protect the privacy of users moving along a road network.ndpder approach to semantic location
cloaking over road networks is presented in [Li et al. 2016]this case, the protection goal is
to prevent exclusively the semantic homogeneity attaclks ovad networks through semantic
diversity, while velocity-dependent threats are ignored.

The line of work in [Shokri et al. 2011; Shokri et al. 2012; Daerakopoulos et al. 2014] as-
sumes a Bayesian adversary and proposes formal technmuesdtion protection. Specifically, a
probabilistic privacy metric to quantify privacy is intraded in [Shokri et al. 2011]. In [Shokri et al.
2012], protecting privacy is formulated as an optimizagiwoblem, where the goal is to maximize
the distance between the location guessed by an adverghtii@actual user location, while mini-
mizing the loss in quality of service. In [Theodorakopowdbal. 2014], the approach from [Shokri
et al. 2012] is extended to cope with correlated locatioratgsl It is assumed that the background
knowledge of the adversary can be fully captured using a Markodel, and a Stackelberg game
strategy is employed for protection. The protection aldponi constructs a state graph, and assumes
that every movement and action of the user and adversarydglenb as a transition in this graph.
The computational cost of the solution is very high, and athputations must be done offline, in
advance, for every possible trajectory and adversarymadticthe experiments in [Theodorakopou-
los et al. 2014], only a small number of locations is usedhim @arder of 200. Furthermore, the
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assumption that every single action can be fit to the grapreseptation, and most importantly,
that every action can be eventually quantified using a nurakemetric, may be difficult to meet in
practice. In contrast, our approach is computationallytlithe algorithms are executed online, and
we do not require strict conditions on the model of movemaiersary actions, etc.

Several privacy threats due to user co-location are discliss[Freni et al. 2010; Ruiz-Vicente
etal. 2011; Olteanu et al. 2014]. In particular, in [Frerale2010], the attacks take place when geo-
tagged resources and identities are explicitly shared bysusho obfuscate their location before
disclosing it to the members of the community and to the serprovider. Such attacks exploit two
kinds of information: the linkages that exist among the tmges of multiple users, and the fact that
co-located users exhibit different privacy profiles, thiositt cloaked regions are of different size,
leading to privacy breaches. The protection technique fineni et al. 2010] relies on a centralized
trusted server. Upon a concurrent service request fromaef sisers, the trusted server collects the
users’ privacy profiles and computes a cloaked region in diamge with the privacy preferences of
all users, possibly adding necessary corrections to ptéwiage attacks. The use of a centralized
trusted server has a number of shortcomings in terms of pestprmance, and security. In our
work, we present a more flexible approach that does not requiy trusted server. In addition, we
address two novel privacy threats that have not been addf@sprevious work, namely protection
in the presence of external asynchronous events, and hdirigal proximity. The latter threat in
particular is specifically challenging for geo-social netlss, as acknowledged in [Ruiz-Vicente
etal. 2011].

Finally, the recently-proposed concept of geo-indistisgability [Chatzikokolakis et al. 2013;
Andrés et al. 2013] provides a mechanism to randomly pettrations, and offers quantitative
measures for the probability of an adversary to recoverghélocation from a reported one. Geo-
indistinguishability is inspired from the powerful modéldifferential privacy (DP) [Dwork 2006],
which in recent years became the de-facto standard forqyipeeserving data publishing. How-
ever, while borrowing some of the syntactic transformatiof differential privacy, the work in
[Chatzikokolakis et al. 2013; Andrés et al. 2013] does nsb anherit the powerful protection se-
mantics of DP, which only permits access to data throughtetital query interface, and prevents
an adversary from learning whether a particular data iteimcisided in a dataset or not. In effect,
DP is not applicable to operational tasks, as our probletmgatquires. Geo-indistinguishability,
on the other hand, allows one direct access to perturbedatataloes offer some guarantees against
exact location disclosure, but does not address veloaiseth attacks in the case of repeated updates
from the same user. In addition, if the user’s location igjfrently reported, the privacy degrades
due to the correlations between locations [Chatzikokslakal. 2014].

3. PRIVACY AND THREAT MODELS
3.1. Preliminaries
Consider mobile user who follows a trajectory

T ={(p1,t1), (p2.t2),- .-, (P, tn)},

wherep; = (x;,y;) is the two-dimensional point location of userat timestamp;. A location
snapshoat a given time is defined as the tuple= (p, t). Denote byS the set of location snapshots
associated with the user trajecta$y= {s; }1<i<». These snapshots may be equidistantin time (i.e.,
[t; — tiv1] = |t; — ti—1]), for instance as a result of periodic location updates feo®PS device.
However, this is not a requirement, and we consider thaitie duration between two consecutive
snapshots is arbitrary, and is decided by the user.

Userscontinuouslyreport location information corresponding to each snapshc. For in-
stance, in a social networking application, participamtsstantly update their location so they can
be tracked by their friends. In the case of location-basestigs, users report location data to a
server to retrieve nearby points of interest. In the latéeseg each snapshot has an associated query
parameter, specifying the query type (e.g., nearest-beiglas well as the requested object type



(e.g., restaurant). To simplify the terminology, we dermteequesthe event of location reporting
in both cases.

Due to privacy considerations, snapshots are not disciogbeir original form. Instead, at each
timestampt;, the user location is protected using a cloaking redit®; that replaces exact co-
ordinates. The CR is generated according to the user priwaxile (Section 3.4 properly defines
privacy requirements). Furthermore, to prevent linkagacés, the resulting CR may be reported
at a timestamp; which is different thart; specified inS. We denote theeportedset of cloaked
location snapshots by’ = {(CR;,t}) }1<i<n-

The setS’ represents thattacker viewi.e., the attacker has access to all CRs reported by a user,
as well as their reporting timestamps. However, the attad&esnot know the setS. The attacker
also has knowledge about the maximum user velacit@ur objective is to prevent the inference
of additional location information that is not included . Privacy is protected through spatial
transformations (i.e., carefully choosing the CR exteras)well as temporal transformations (i.e.,
deciding when to report CRs).

3.2. Quality of Service

Users report location information in order to facilitate anengful interactions with their friends,
or with entities that provide services tailored to the usge®-spatial context. Therefore, privacy
protection should maintain a good quality of service preditb users. Ideally, the location reporting
should be performed in a timely manner (ije;,— t;| should be minimized), and the resulting CRs
should have small spatial extent (subject to fulfilment ofgcy constraints). Typically, the exact
user locatiorp; is enclosed byC'R;, to provide consistency with the user’s geo-spatial cantex
However, as will be discussed in Section 5.1, we allow usereport some past location if doing
so allows them to obtain good quality service without conpiging privacy.

Given the two sets of originalS) and reported§’) snapshots, we define four metrics that char-
acterize the loss in service quality due to privacy protecti

— CR size CRs with large areas may decrease the usability of the tegharformation. The CR
size metricQ ¢ r is defined as the average area of reported CRs

1 n
Qcr = o Z Area(CR;)

=1

— time error. the proposed privacy-preserving solutions may reportatlon snapshot at a differ-
ent timestamp than its original one. Specifically, snapsbah bedelayedi.e., ¢, > t;. Time
error@Qr is defined as

1 n
QT:E'ZVz‘—tH
=1

Note that, if the original requests have equi-distant tiawepst;, an attacker may attempt to use
the delay information to compromise privacy. In such a ctigepriginal request sequence can
be modified such that the distance between consecutivetimes is randomized.

— space error when users report CRs built around past locations, it maypéa that the current
user locatiorp; falls outside the reported cloaked locatioi®;. Disclosing information that is
not completely up-to-date may still be useful (e.g., a usay hearn the address of a nearby
restaurant, even if this is not the closest restaurant). \&&sore such loss of accuracy using the
space error metric, formally defined as:

1 n
Qs = — ;d(m, CR;)

whered measures the Euclidean distance betwgend its closest point i0'R;.



— failure ratio: it is possible that certain snapshots are never reportgd deie to the impossibility
of finding a CR that satisfies the privacy requirements. Faitatio is defined as

FR— Dropped Requests

Total Requests
All other metrics are computed only for reported CRs.

In addition to the performance metrics, we also considerdatitianal constraint placed by the
user on the maximum delay for location reporting. For instgiif a user asks a location query, s/he
may be willing to wait only for a relatively short time to gétet answer (e.g., a typical acceptable
response time may kisec). On the other hand, when sharing location data withdsethe users
may accept a larger delay (e.gQsec). We define thé/axDelay parameter that specifies the
maximum amount of time that a request can be delayed. Spabifit (¢, — t; > MaxDelay),
then thei’” request is considered as failed.

3.3. Distance Metrics for Cloaking Regions

The example of Figure 1 showed how certain geometrical ptiggeof consecutive CRs can be
exploited by an attacker. We introduce two distance melétween cloaking regions, titausdorff
distance and th@oint-pairwisedistance, that are fundamental to the studied attack mauohels
proposed defenses. We measure the distance between twasiimal pointg’ andp” using the
Euclidean distance, denoted &fp’, p”').

Hausdor ff Distance. Consider two cloaking regiohst and B. The Hausdorff distance [Atallah
1998] between CR4 andB is formally defined as:

dhaus (A, B) = max{h(A, B),h(B, A)},
where

3 / /1
h(4, B) = maxmin d(p’,p")
h(A, B) represents thdirect Hausdorff distance, which measures the maximum distanveckea
anypointin A to somepointin B. h(B, A) is symmetrically defined. Figure 2 shows an example of
distance calculation. The largest distance between amyj jpoil and some point i3 is equal to the
distance from the left side of to the left side ofB, henceh(A, B) = 9. Similarly, h(B, A) = 12,
henced), s (4, B) = max(9,12) = 12.

h(B,A)=12

Ahaus(A,B)=
max(9,12)=12

-« - >
0 h(A,B)=9

1 } - X

|
1
1 8 10 20

Fig. 2. Example of Hausdorff distance computation

Since rectangles are convex shapes, the Hausdorff disketaeen two rectangles can be effi-
ciently evaluated, by computing the Euclidean distancésdsn the rectangles’ corners and sides.

Lwe consider rectangular CRs only. However, Hausdorff distaapplies to other polygonal shapes as well.



Point-Pairwise Distance. Point-pairwise distance between CR&ndB measures the maximum
distance betweeanypoint in A to anypoint in B. Formally,

d,,(A, B) = ma: ax d(p'.p"
wo(A, B) max. max (', p")

Figure 3 gives the pseudocode to compljg,s anddp,,.

Hausdor ffDistance(A,B)
Input: CRsA and B with cornersa; 4, b1..4 and sideds® ,, 1 ,
Output: Hausdorff distance value
1. distap = distpa =0
2. fori:=1to4
3 d' = min d(a;,b;),d” = min d(b;,a;)
j=1..4 j=1..4
4, for k:=1to4
5 letq be the projection ofi; onlZ, ¢’ the projection ob; on i
[*projection is considered with respect to a line, not a sexgti
6 if (¢ € 12) then d’ = min {d’, d(a:,q)}
7 if (¢ € 1) thend” = min {d”, d(bi,¢')}
8. distap = max{distap,d'}, distpa = max{distpa,d"}
9. return max{distap,distpa}

Point-PairwiseDistance(A,B)

Input: CRsA and B identified by corners..4, b1..4
Output: Point-pairwise distance value

1. return ;ax, d(as, bj)

Fig. 3. Computing distances between cloaking regions

3.4. Attack Models and Privacy Requirements

We consider two distinct application settings, dependinguhether or not the attacker has back-
ground knowledge about the sensitive locations on the magt,Me define the attack models for
both of these settings, and we formalize the privacy requérgs. We also give sufficiesafety
conditions that must be met in order to ensure that reporsid® not compromise privacy.

Fig. 4. Attack model without background knowledge

3.4.1. Attacker without Knowledge of Sensitive Locations. In this setting, the privacy objective is
to prevent the disclosure of precise locations, which maultén physical threats to the user, e.g.,
stalking or assault [Fox News ]. Consider, for instancewhi-established division of U.S. territory
into zip-code areas. The map is partitioned into disjoigtols, each of them covering an area of a
few square miles. Or, at a finer granularity level, a city casbb-divided into block regions. As the
user moves, his/her location can be mapped to a city bloakifie, and only the block identifier



is disclosed. Therivacy requiremenin this case is not to allow an attacker to pinpoint the user
location within a sub-region of a reported CR.

Figure 4 shows an example of two CRsand B which are reported by user at timestamps
t4 andtp, respectively. Without loss of generality, et < ¢5. Denote byv the maximum user
velocity, and lett = |t — t 4.

The attacker may try to prune parts.fand B to pinpointu in two ways:

(i) determine if there is any locatiane A from which the user cannot reach some locajon B,
even by traveling at maximum speedFormally, an attack is successful iff.

Jx € As.t.Vy € B, d(x,y) > vit (1)

In Figure 4, a user traveling from point is able to reach a point in the hatched regionBof
within time §¢. However, if the initial location of. werez”, reachingB would not have been
possible. Therefore, an attacker can rule out a subset @ possible positions far, hence
privacy is breached

(i) determine if there is any locatiane B which the user cannot reach from some initial location
x € A, even by traveling at maximum speedFormally,

Jy € Bs.t.Vo € A, d(x,y) > vit (2)

To prevent privacy breaches, we need to ensure that none. ¢1Jzor (2) ever holds. Note that,
according to the definition of Section 3.3, this is equivakenstating that the Hausdorff distance
d}mus(A, B) S vot.

Nightclub
Hospital pon— T

Fig. 5. Attack model with background knowledge

3.4.2. Attacker with Knowledge of Sensitive Locations. In practice, the attacker may have access
to a map containing the placement of sensitive locationsatdpt the privacy profile proposed in
[Damiani et al. 2010], where each object on the map is alistlaas deature Each feature has a
type, (e.g., restaurant, park, etc). Some types are innusc{gog., shopping malls), whereas others
are sensitive in nature (e.g., hospitals).

Denote byFT = {fti,..., ft.,} the set of feature types. Users specify their profiles asrary ar
P = {thri,...,thry,} of thresholds, wherehr; represents the maximum allowed probability of
association between a user and a sensitive feature offtyp&heprivacy requiremenin this case
dictates that the association probability between a ustaaensitive feature type must not exceed
the user-specified threshold. Given CRthe probability of association is equal to the area of the
sub-region inA covered by sensitive features of typg divided by the entire area of. Formally,

a CR satisfies privacy if

Z Area(f NCR)
VfESt:
Area(CR)
Consider the example in Figure 5. There are two feature t{gleswvn shaded) ospital and

Nightclub, and the user has specified a thresholf.6ffor both types. Each of the two CRs taken
individually does satisfy the privacy requirement. HowgVethe attacker uses information about

Vi=1.m, < thr;




maximum user velocity, the disclosure of bethand B violates privacy. For instance, the presence
of userw in an innocuous locatiom € A precludesu from being located at innocuous location
y' € B.Insteadu must be inside some sensitive area witBiife.g., at poing). The privacy breach
can be formalized as

dx € A|(z is non — sensitive) s.t.

By € B|(y is non — sensitive A d(z,y) < vit)

Symmetrically, a breach occurs if

Jy € B|(y is non — sensitive) s.t.
B € A|(z is non — sensitive A d(x,y) < vét)

To prevent privacy breaches, we must ensure that the usdreckrtated outside sensitive areas
at both timestamps. Since in the worst case the safe regiammidistinct CRs can be situated in
their two opposite corners, a sufficient condition to ensliselosure safety ig,, (4, B) < vdt.

3.4.3. Location Disclosure Safety Condition

Definition 3.1 Two cloaked regionst and B separated by time intervat aresafe to disclose
in the attack model without background knowledgéyif,..s (A, B) < vdt. Similarly, in the attack
model with background knowledge the two regionssate to disclosé d,,(A, B) < vdt.

3.4.4. Transitivity of the Safety Property. So far, we considered the safety property with respect
to a pair of CRs. However, in our attack models, the entireofe¢ported CRs is available to an
attacker. We show that the location disclosure safety ptgjgtransitive for both attack scenarios.
This is an important result, since it means that at any tinig #ufficient to check whether con-
secutive CRs are safe to disclose. Then, by induction, aimyppeeported CRs are safe. However,
in the CR generation algorithms, we only need to considentbst recent CR, which decreases
considerably the computational overhead of the proposketicas.

LEMMA 3.2. Let A, B andC be three CRs disclosed at timestampst g, tc, such that 4 <
tp < tc. Then, if the pairs of CRsA(B) and (B,C) are safe to disclose, so is the pait,().

Proof: We prove the transitivity property for both CR distance nostr

Case Adpqus):

The proof is by contradiction. Assume that the p@af; C') is not safe to disclose. Therefore,
dhaus (A, C) > v(tc —ta). On the other hand, by hypothesis, the paitsB) and(B, C) are safe
to disclose, therefore

dhaus (A, B) < v(tg —ta)
and
dhaus (B, C) <v(tc —tg)
Adding the two inequalities term by term, we obtain that
dhaus(A, B) + dhaus(B,C) < v(tc —ta)
However, the Hausdorff distance satisfies the triangleua#ty [Henrikson 1999]
dhaus (A, B) + dnaus(B, C) > dpaus (4, C)
therefore
Ahaus (4, C) <v(tc —ta)

We obtain a contradiction, therefore the p@al, C') must be safe to disclose.

Case Ad,p):

Letx € A, y € B be two point locations s.tl,, (A4, B) = d(z,y). It is guaranteed that such two
points exist from the definition af,,. Similarly, lety’ € B, z € C s.t.dy,(B,C) = d(y’, z) and
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letz’ € A, 2/ € Cs.t.dy,(A,C) = d(a,2"). Take any random point € B. From the triangle
inequality, we have that

d(2',2') <d(2',p) +d(p, 2)

On the other hand,

d(a’,p) < d(z,y) Ad(p,z") < d(y', 2)
It follows immediately that

dPP(A7 C) S dpp (A7 B) + dpp (B’ C)
and since, by hypothesis,

dpp(A,B) <v(tp —ta) Ndpp(B,C) <wv(tc —tp)
it results that
dpp(A, C) < v(tc —ta)

Therefore, disclosure safety is transitive with respedt,tpas well. O

3.5. Privacy Discussion

Our work focuses on attacks that an adversary may stage inéongnation on mobile user velocity.
In our view, such attacks are a very real threat in practind,itiis important to have protection
techniques that can mitigate such threats. There are, fyaher types of attacks which, although
important, are outside the focus of our work. Solutions tchsattacks are often orthogonal to our
proposed techniques, and can be integrated with our agpragttout major modifications.

In our approach, we consider that the feature types are stati they do not evolve over time. In
some practical scenarios, the characteristics of a cdgatare type can change with time, possibly
on a cyclical basis. Forinstance, a store that would have &&fe to include in a CR at 3pm becomes
unsafe at 9pm, as the adversary may know that the store isd;laad will be able to infer that the
user must actually be elsewhere within the CR. Our method$eaasily extended to address this
case, by dynamically updating the feature map. For instama@ystem component orthogonal to
our techniques may take as input opening times for each naprée and mark stores as a non-
accessible zone outside opening hours. As a result, whepwtimy CR safety, such zones will not
count, and a larger CR will be constructed that will includéfisient non-sensitive zones that are
also accessible. The feature map is an input to our appreaahg changes to our techniques are
necessary.

Another scenario of practical importance is the case whevement is restricted to a road net-
work, as opposed to the free-space movement case whichrentlyrthe focus of our work. Note
that, the principles of construction for our protection mmagisms remain valid for restricted move-
ment, with the difference that rectangular CRs will becomenected sets of graph vertices. The
current solution for free space movement remains appkcebimany scenarios, especially to city
areas, where the road network is dense, and activities sughlking and cycling can be reasonably
approximated as free space movement.

4. SYSTEM ARCHITECTURE

Figure 6 shows the proposed system architecture. UserdHeadexact location information and
privacy profile (Section 3.4) to a cloaking engine, whichpetrack of previously-reported CRs and
ensures that the disclosure safety condition is met (witpeet to the attack scenario considered,
i.e., with vs without background knowledge). The proposethigecture is flexible with respect to
the deployment of the cloaking engine. Our privacy-presgriransformations are suitable both
for a two-tier model, where the user’s mobile device perfothe cloaking, or a three-tier model,
where the cloaking is delegated to a trusted third-partyiser Note that, as opposed to spatial
k-anonymity techniques [Kalnis et al. 2007] tmatuirea trusted anonymizer service to pool large
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Fig. 6. System Architecture

number of users, our system architecture does not have saohaeptual constraint. However,
we consider employing such a service as an alternative iyatoives performance, if the mobile
device does not possess sufficient computational resolfaghermore, in the case of attacks with
background knowledge, the feature maps required to claailins may be too large to be stored
(and updated) on a mobile device.

5. PRIVACY-PRESERVING ALGORITHMS

In this section, we present the proposed techniques to eetiee privacy of user requests. We
consider two transformatiofs

(1) Temporal Cloakingln some applications, the dataspace (e.g., a city map) tgipaed into a
fixed set of regions. We assume that all regions have reclarghape, i.e., the map is partitioned
into a set of tiles. This case fits scenarios where it is experise compute CRs on-line, or
when the splitting is pre-defined (e.g., CRs represent age@reas). Consider the example in
Figure 7(a), where the tiling is shown with dotted lines. Therenttime ig;, and the user lies in
CR B. Previously, at timé;, CR A was disclosed. Assuming that the adversary has background
knowledge about the map, CR can only be disclosed if the distandg, (4, B) < vdt, where
ot = t; — tg. In the example, the condition does not hold, heBceannot be issued at tinte.
Instead, the request is delayed. Temporal cloaking is ptedén detail in Section 5.1.

(2) Spatial Cloakingln situations where enough resources exist to compute tlseoGHine, and no
requirements for a fixed partitioning exist, the CRs can bestracted in such a manner that the
safety property is met. Figure 7(b) shows a potential zonerasthe CR can be situated, within
the vét boundary. A CR construction algorithm can take into consitien the boundary, and
find a CR that is safe to disclose. We introduce spatial toansdtions in Section 5.2.

5.1. Temporal Cloaking

Temporal cloaking is suitable when the partition of the nyap ICRs is fixed in advance. Note
that, since no CR computation is performed on-line, tempdoeaking is particularly suitable to
be performed directly on the mobile device. As an additidrealefit, performing cloaking on the
device itself can make use of supplementary informatioruatite user’s trajectory. For instance,
if a user is following the instructions of an in-car GPS natign system, the future trajectory is
already known to a considerable extent.

We identify two alternatives for achieving temporal claaki requestieferral and postdating
We illustrate these two concepts in Figure 8. Consider useno wants to issue a request at current
timet,. The location ofu is enclosed by CRC. Previously at time 4, v issued a request with CR

2We use the termgemporaland spatial cloaking to distinguish between the transformations thainiy target the time,
respectively the space dimension. We emphasize that eveerfiporal transformations, the user location is still kkgh
with the help of CRs.
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A. Prior to entering”, u was situated inside regioB, but no request with associated GRwas
issued. At current time,, C'is not safe to discloseas it is too far away from.
The first option is taleferthe request unti’ becomes safe to disclose, i.e., uatls.t.

d(A,C) <v(tc —ta), tc > ta+d(A,C) /v,

whered can signify either thé)},.... or d,, distance. In this case, the request is delayed for a period
of time equal totc — ¢,. Note that, by that time it is possible thatwill no longer be situated
inside C, therefore a space error may be incurred. The second daiterns to issue the request
immediately at,, but using CRB. Note that, since is already outsidé3, the request will certainly
incur some amount of space error. However, if the currenitiposof « is not far away fromB
(e.g.,u has only recently exited®), the error is likely to be low. We refer to this method as resfu
postdating Note that, it is not always the case that the tile/regioitedsbyw just before its current
tile is safe to disclose. Nevertheless, the same idea capdiea with respect to the last safe-to-
disclose visited region. Keeping track of such a region isaoonputationally expensive, and can
be done upon the receival of a GPS location update. Furthrerrite storage requirementGy1),
since only one such region is maintained.

With the deferral and postdating primitives defined, we miextise a strategy that combines the
two methods in order to maintain good Qo0S. We propose an steutiiat chooses the best of the
two based on benefit estimation. Using the same conventieardisr, letA be the CR of the last
issued request (which occurred at timg, let C be the CR currently enclosing the user, and let
B be the last safe region visited befare Note that, the existence @ is always guaranteed, as
in the worst case we havé = B. We also assume that the user has the ability to predict (with

3In this example, we consider an attacker with backgrounavietdye, and we measure safety with respea,ip However,
this scenario applies iy, ., s as well.
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reasonable accuracy) its position at a future time. Thidiptien will be used in evaluating whether
deferral or postdating is more beneficial. Since the propasdution is an heuristic in the first
place, predicting future locations with high accuracy i$ amecessity. A low prediction accuracy
will, however, affect the obtained QoS.

Lettc be the time whei’ becomes safe to disclose, and denoté(by ) the estimated position
of u attimetc. If the request is deferred, two distinct situations aréseshown in Figure 9:

(1) L(te) ¢ C. In this case, by the tim€ becomes safe, the user would have already exited
Denote byds the minimum distance frori(t¢) to any point inC, and letp be the point that
minimizes that distance. Thedg represents an upper bound on the inaccuracy of the location
reporting. For instance, if the request represents a neag@ghbor query, and the NN ofis
situated at distance from p, then according to the triangle inequality, the NNgoWill be at
distance at most+ d from ¢(t¢). Therefore, the space erré¢ is a good measure of the QoS
deterioration due to privacy enforcement.

(2) L(tc) € C. In this case, the user is still insidéat timet, therefore no space error is incurred.

The time error ig¢ — ¢4 in both cases mentioned above. If the request is postdaeedq(R B is
issued at time,), the time error if), and the space error i&s.

Figure 10 details the proposed heuristic. TlenmporalCloakingoutine gets invoked at every
timestampt, when a request is scheduled. The heuristic will determine @) whether deferring
the request exceeds the user-specified delay thregialdDelay (defined in Section 3.2). If the
threshold is exceeded, then the request is postdated jli@derwise, the distancés andd are
compared (line 8), to determine whether it is more beneficigdrms of space error to issuigor C.

The closest of the two CRs to the locatiomois selected, and the request is postdated or deferred
depending on the comparison outcome.

5.2. Spatial Cloaking

When the user’s mobile device has sufficient resources, enwloaking is performed by a trusted
service, CRs can be dynamically computed at the time of theest. The advantage of such an
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TemporalCloaking

Input: request timestamy, location of requestex

Output: (R, tr) whereR is the request CR ank is the issuance time
A = lastissued CR at timey

B = last visited CR safe to disclose

C = CR enclosing: att,

to =ta+ LA prgist is eitherdpays OF dpp */

v

3
4.
5. dp = min. distance fromu to B, dc = min. distance fronf(¢¢) to C
6
7
8

N

if(tc —tq > MaxDelay)
return (B, t4) /* postdateB */
. dseif(dp < dc)
9. return (B, t4) /* postdateB */
10. ese
11. return(C, tc) I* deferC */

Fig. 10. Heuristic for Temporal Cloaking

Fig. 11. Reverse-engineering attack when CR construction takeseasthe user location

on-line approach is that the CR can be tailored for the uggiscy profile, and consequently
the QoS can be improved. In this section, we focus on the miffieudt setting of an attacker
with background knowledge, i.e., the CRs must be constiitetdng into consideration the sets of
sensitive features and associated sensitivity threshiotdsduced in Section 3.4. Attacks without
background knowledge can be addressed as a special cagealltsansitivity thresholds are set to
Q0.
Assume that at some point along its trajectory, usés situated inside a hospital. Denote by
thrg = 0.5 the sensitivity threshold of for feature typehospital In this case, it is necessary to
reduce the probability of association @fwith H by creating a CR at least twice as large as the
area ofH. On the other hand, if the user is in a non-sensitive area, tte exact location could
potentially be disclosed, since this is not a privacy violatt.

Note that, computing and reporting a CR only when the usesiglé the hospital is not an accept-
able solution, since an adversary that has knowledge aheulgorithm used for cloaking could
immediately infer from the fact that a CR is generated thatust be inside the hospital. Therefore,
the cloaking algorithm must take into account the sensféagures in the user’s proximity even if
the user is not currently situated within the perimeter ofsgi#ve locations.

One naive solution could work as follows: given a distandehosen as a system parameter),
initiate the CR construction whenever some sensitive feafusituated at distance less thafiom
u. This requirement is equivalent to an inclusion conditimtiag that every sensitive feature within
distancer from u must be enclosed in the CR. This way, the fact that a CR inctudihospital is
generated does not imply that the user is necessarily iadidspital. However, such an approach is
vulnerable to reverse-engineering by an adversary, asrshext: Consider the example in Figure 11
with two sensitive feature#/; and Hs. An attacker that learns the disclosed CR including both

4Alternatively, if users do not wish to disclose exact looasi, a random region with size above some minimum threshold
can be trivially generated.
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Fig. 12. Spatial Cloaking

features may infer that the user is at distance at mdésim both H; and H». By intersecting the
Minkowski sum enlargements of the two features by raditise adversary can narrow down the
dataspace region wheteis situated. In general, any CR construction algorithm thkeés as seed
the current user location may be susceptible to reversaeeang attacks.

Spatial Cloaking
Input: request timestamp, last disclosed CRL
Output: next CRB, issuance timeg
MS(A) = MinkowskiSum ofA with enlargement(tq — ta)
SF ={f e F|fnMS(A) # 0}
while mempty(SF') do
f =random element i F, SF = SF\{f}
if (u € f) then Sensitive=True
R = Enlarge(f) llrepeatedly considers all four directions
if R #nulland v € R then
tp = max{tq,ta + M}
. return (R, tg)
10. if Sensitive=Truehen Drop Request
11. elsereturn (u,tq)

©® Nogk,rwhrE

Fig. 13. Spatial Cloaking Pseudocode

To prevent reverse-engineering attacks, we propose a ohéthbconstructs CRs which are not
directly dependent on the user location, but instead an &tairting from the last reported CR,
which is already known to the adversary (i.e., the adverdags not learn additional information
even if s/he is capable of recovering the input used for apeltbaking). This strategy is illustrated
in Figure 12, which shows the user location and the lastalésti CRA. The numbered rectangles
represent sensitive features. Denotelys(A) the Minkowski sum of4 enlarged byv(t, — t4):

M S(A) encloses all locations where userould be situated at request time The CR construction
consist of three steps:

Stepl.Filtering of features. All sensitive features that intersedf S(A) represent the se&fF' of
candidates for inclusion in the CR. For instance, in Figit@}, the set of selected features is
SF = {f1, f2, f3}. Note that, if the sef F’ is empty, then no privacy threat exists with respect
to the current location af, and therefore the location afcan be directly disclosed.

Step 2.Cloaking. The cloaking step chooses a sensitive feattire SF and progressively en-
larges it to find a CR (denoted YR ) that satisfies the privacy requirement (i.e., the sermsitiv
area within the CR represents a fraction of the total CR acekmer than the user-specified
threshold). Initially, CR; is set to be equal tg. As long asC' Ry does not satisfy the privacy
constraint, it is enlarged by a fixed amounfFigure 12(b)) along one of its sides (in the order
{top, right, bottom,left}). The process stops @ R satisfies the privacy constraint. If the re-
sulting region encloses the locatiomngfStep 3 is executed for the obtained CR. Alternatively, if
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all features inS F" are considered but no CR that satisfies both properties isifdbere are two
cases: (1) if the location af is not enclosed by a sensitive feature, then the exact pmatibn
of u can be disclosed. Otherwise, (2) the user is inside a sen&#ature, and in this case, since
no CR can be found, the request is dropped. The latter caseccay, for instance, in a scenario
where the sum of areas of all sensitive features may repradarger fraction of the dataspace
than specified by the privacy threshold. However, as we shdte experimental evaluation, the
request drop rate is low in practice, even for demandingaggivequirements.
Note that, if the order in which the sensitive features acegssed is known, the attacker may
be able to pinpoint the user location. Consider featyfesnd f» in Figure 12(c), with resulting
cloaked region€' R, and C R, respectively. Assume thgt is processed beforé,. If CR,
is issued, the attacker can infer that the user is not lodatéde C' R, (otherwiseC' R; would
have been issued), and can therefore learn that the usestdamsituated in the hatched region,
possibly leading to a violation of the privacy thresholdhiitC' R.. To prevent such inference,
the features ir6 F' are processed in random order.

Step 3. Safety enforcement.
In Figure 12(c), the obtained R, is enclosed byl .S(A). However, this does not guarantee that
dpp(A,CRy) < w(t, —ta), therefore an additional delay may be necessary, simit@mporal
cloaking. This situation is even more clearly illustratedrigure 12(d), where the obtainéti),
extends beyond the boundaries\dfS(A). Given that the attacker already knowsC R} is not
safe to disclose. To ensure safety, similar to the case qfaemhcloaking, the CR is deferred for
a time equal tal,, (A4, CR))/v — (t4 — ta). Note that, since no intermediate CR is computed
betweend andC R}, post-dating is not possible in this case.

Figure 13 summarizes the spatial cloaking process. Himstalgorithm determines the st of
sensitive features enclosed ByS(A) (line 1). Next, the features ifF’ are considered in random
order, and enlarged until a CR is obtained such that it sagigffie privacy constraints and it encloses
the user (line 7). If the obtained CR is not safe, it is defénetil ¢ 5, computed in line 8. If no valid
CRis found and: is inside a sensitive feature (line 10), the request is dedpp

6. PROTECTION MODELS AND ALGORITHMS FOR MOBILE INTERACTING USERS

So far, we focused on the case of protecting the location ofdinidual mobile user across multiple
snapshots of position reporting. However, in today’s cotimgiandscape, mobile users constantly
interact with each other through social media applicatiansl often in ways that directly involve
geospatial information. For instance, location-basedsoetworks (LBSNs) allow users to post
geo-tagged content related to an event (e.g., photos, shideowhich multiple users are present.
Tagging of users and their locations represents a poteniialcy threat. In some cases, one can
immediately detect and protect against direct breachesiwdqy, e.g., when a photo is taken in
a hospital, night club, etc., by simply blocking the taggprgcess. Most LBSNs require explicit
permission from all entities that are geo-tagged befomnafig the event to be posted. However, in
practice, there are many cases where the privacy breachsaoca more subtle fashion, for which
requesting for direct user consent is not sufficient, dueetmspatial inferences that an adversary
may perform. Specifically, even though a particular geaaigpost does not in itself pose a privacy
threat (e.g., a group photo taken in a public park at noonaduersary may use that information
in conjunction with past and future location snapshot ugslditom users to infer private details
regarding a user's whereabouts in the hours before andtafigphoto was taken. We provide a
detailed description of this threat model and solutionsréwent it in Section 6.1.

In addition, there are other scenarios of interest out$ide¢alm of location-based social media
that require location protection with respect to the trimjges of multiple users. For instance, certain
users may wish to keep secret the fact that they came in ghadiakproximity to other individuals.
As a motivating example, consider two business executivasihave a secret meeting to plan a
possible merger of their companies. Should an adversarytheitdsuch a meeting took place, this
could have a negative impact on the outcome of the mergercanldl cause the stocks of the
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Fig. 14. Privacy Breach in the Presence of External Events

two companies to plummet. In another scenario, a journagst wish to have a secret encounter
with one of her sources to collect information about a sesmsijtolitical issue that may endanger
the reputation, or even the life of the source, should an@dwg learn about their encounter. We
address this case in Section 6.2.

6.1. Protection in the Presence of External Disclosure Events

In this section, we investigate the privacy threat thategriwhen an external location disclosure
event occurs outside the process of trajectory anonymizakecuted by each mobile user. Such
situations often arise in practice, for instance in a sow@alvork application when a user is presentin
a photo with geospatial tags. We first overview the attackiarism, and then propose a solution to
protect against this threat. Also, we investigate the tafflthat occurs between protection strength
and user satisfaction.

Consider the example in Figure 14 where usempdates her location with her service provider
(e.g., LBSN) as she moves. To protect her location, the siseobile device employs one of the
mechanisms presented in Section 5. In the diagréan® andC (shown as rectangles with contin-
uous lines) represent the reported CRs at timestdamjpis; andto, respectively. CRsl, B andC
are safe with respect to maximum velocity

Later on, after the user has released all CRs, and hencetcaaijost them further without re-
vealing more details about her location, one of her socibdok friends wishes to post a photo
that usen: and her friends took inside restaurdi{shown with dotted line) at tim&; < ¢5. Note
that, there is nothing sensitive about the fact thafas insideR, but due to velocity constraints, and
having access to already released CRand B, an adversary can infer thatmust have been in a
smaller area than the reported GRat timet 4. That smaller area may be associated with a hospital
H, and hence the privacy af is breached. A similar disclosure can occur for CRas the new
maximum travel distance x (tc — tz) may pinpoint.’s location inside another sensitive hospital
area.

To address this privacy threat, one straightforward sotutvould be for user to reject being
tagged in the LBSN event, and thus disallow her identity tanméuded in the photo. However,
this decreases user satisfactionyanay want to be present as part of the event description of the
encounter with her friends. Rejecting too many geo-taggethtes may determine her friends to
removeu from their friend lists. Furthermore, evenuifrejects the tag, her friends may still go
ahead and post the photo withauis name tag. Doing so may still allow an adversary to either
visually identify her from the photo, or run some automatszkfrecognition program to assert that
u is actually in the photo (even though she is not present iretlesit metadata). Hence, location
disclosure may occur evenifblocks the update.

We propose an approach whereby users take into accountdhéhéd future external events
may create privacy breaches, and execute a modified verbibie aloaking algorithms, in which
each published CR is overprovisioned to protect againdiplesfuture additional disclosure. This
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way, even if a future geo-tagged event occurs, it is possitalethe additional disclosure does not
constitute a privacy breach. Of course, overprovisionifiaause the quality of service received
by the user to decrease, by incurring higher space erroraanest failure ratios. Hence, a trade-off
emerges between the benefit of overprovisioning in allovimtegration of future external updates
on the one hand, and its negative impact on quality of sexmicihe other hand.

One effective approach to control the amount of overprowisig is by adjusting the maximum
velocity parameter used when checking for CR safety. Decreasing the valud@& smaller value
vo = ¢ (denoting velocity with overprovisioning) has the effeétbuilding more conservative
CRs, which are closer to the previously published CRs thancdse when a higher maximum
velocity is used. Note that, the user velocity itself is notibded. Users are still free to move with
the speed that they would otherwise, it is just the speed déambuilding CRs that changes. As
an effect, the chances of a future external event discldseireg within the bounds of a safe CR
with respect to the lower increase. Another advantage is that decreasing the welomitnd has an
isomorphic effect on CR placementin all directions, andtimngreases the probability of allowing a
future geo-tagged update for which the actual position i&nown in advance. Finally, the amount
of overprovisioning can be captured with a single parametemely«, which facilitates system
tuning.

Each mobile user will choose CRs following an overprovigignstrategy with parameter,
wherec« is dynamically tuned to achieve a favorable trade-off betw#he percentage of blocked
geo-tag events (which should be as low as possible) and #we grror and request failure ratio,
which should be minimized to preserve quality of servicecdses where no privacy breach results
due to external events, the parameteshould decrease towardgits minimum value), leading to
the case where no overprovisioning is performed. Conwerged high rate of blocked events is
recorded¢ should be rapidly increased.

To obtain a good trade-off between blocking rate on the omelhand space error and request
failure ratio on the other, we employliaear decrease - exponential increaagproach to dynami-
cally tune the value of parameter Specifically, each user starts its anonymization algorigtith
an initial o setting, which is a system-wide parameter. If there are aokgld events, then the value
of « decreases linearly with time as

a=max{ayg —a x t,1}

On the other hand, if the rate of blocked updates reacheeshbids, then the algorithm doubles
the value ofo at each time granule as long as the blocked rate in that timedpexceeds. This
way, the system adjusts quickly to counter high event-blagkates. The pseudocode in Figure 15
summarizes the proposed approach.

Overprovisioned Cloaking (executed at each time granule 6t)

Input: initial overprovisioning parameter, minimum thresholdy,.,;., maximum blocking rate&
Output: next cloaking regio&'R, updated

1. vo = i

2. while(true)do

3. blocking rater = ELzeerEAarEnets
4 if (br < ) then

5. a=max{a—a x dt, 1}

6. else
7

8

9

1

a=2Xa«
vo = =
compute new CR with respectdoand previous CR

0. t=t+6t

Fig. 15. Pseudocode for Adaptive External Event-Aware Locatiova&ing
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If an event is blocked, no further action is necessary. Hendf’an event is accepted, then it
becomes yet another update in the movement history of thearse it needs to be treated accord-
ingly. The pseudocode in Figure 16 describes the algorittmnerting an external event update
in the user’s past position history. As each event is bdgieabeo-tagged object, we refer to an
event as a social tag. The algorithm takes as input a sequentdimestamped CRs that have
already been disclosed for a user, and an incoming sociahtagng timestamp,,, and spatial
extentR,,,. Since the tag will be part of the history of the user aftereptance, we have to check
if any past position became unsafe due to tag acceptancimels 1-2 the candidate position for
insertion is found. In the case whep, is equal to some past CR timestamp, it is excluded by input
pre-conditions, since in that case it is accepted only & & iduplicate of a previously known CR
(same timestamp and same region). Once the candidategmositiound, the tag is inserted in
sequenceeq (line 7) only if it is safe with respect to both previous (liBgand following (line 5)
disclosed positions.

Insert a social geo-tag

Input:  sequence of disclosed CRsyg = {(t1,CR1),..., (tn, CRu)} i < j=t; <t;
social geo-tag?’ = (ttag, CRtag), Vi ttag <> t;

Output: original sequence (tag rejected)
extended sequence (tag accepted)

// find the candidate position for T iseq

1.prev = last(t;, CR;) such thatiqg > t;

2.next = first (¢;, CR;) such thatiagy < t;

3.if prev <> L and not isSafe(prev, (tiag, CRiag)) then

4. return seq I/l reject: T it unsafe w.r.t. previous position
5.if next <> L and not isSafe((tiag, CRiag), next) then

6. return seq /I reject: T it unsafe w.r.t. following position
7. insert(ttag, C Riag) In seq beforenext

8.return seq /[ accept: T it safe

Fig. 16. Insert Tag Pseudocode

6.2. Protection of Relative User Proximity

In this section, we focus on scenarios where it is importaprotect against inferring that two (or
more) mobile users were co-located at a certain moment ie. tive restrict our discussion at the
two users case, as the general case with more than two usebe easily generalized.

The two users wish to provide to their service providers gntred trajectories that hide their
mutual proximity relationship. In addition to the methodsgosed in Section 5, where each user
generates CRs in such a way that association with any senaitas due to velocity bounds is pre-
vented, Alice and Bob also need to ensure that there is alwagstain threshold distance between
their possible location. We called this threshséparation distancand we denote it bys.

Figure 17 illustrates an example of this scenario, and amvaaxe of the process of enforcing
separation. Users Alicd/y) and Bob (/2) move towards each other. At timg, both posted their
location updates, namely; and A, respectively. The two CRs were further apart from eachrothe
than separation distanée At the next time stampg, according to the independent anonymization
algorithm executed by the users, their tentative CRs woal@&pand B5, shown with dotted line.
While these two CRs abide the safety requirements stemmamg the velocity constraint, they do
not satisfy the separation threshold. In fact, they ovesdpch may lead an adversary to infer with
high probability that Alice and Bob might have met.

The objective of the relative user proximity protectionaithm is to generate individual CRs
that are both within the safety bounds dictated by maximulacity, but at the same time they
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Fig. 17. Overview of Enforcing Threshold Distance Separation

are further apart from each other than separation threstiold the example of Figure 17, CRs
B; and B, are suppressed, and instead the @Rsand B}, are released. Note that, it is possible
(and in fact likely) that the two users are no longer enclosildin their reported CRs. As in the
case of the techniques presented in Section 5, this situetéates a decrease in quality of service,
as any location-based query asked with respe@;tor B/ will return sub-optimal results for the
respective users.

The objective of the protection mechanism is to enforce #pamation threshold while at the
same time minimizing the decrease in quality of service. Adymeasure of the latter is the distance
between the actual user location and the closest pointiapisrted CR. If the CR encloses the user,
then there is no penalty. As there are two users, the metnigriomize is the sum of the distances.

In addition, it may be important to maintain more informatia the direction of movement of
the users. In other words, users are less likely to be irtext@n locations that are behind them,
than forward ones. Following that intuition, we construet perpendicular bisector of the segment
connecting the two users, and symmetrically place the twe &Rqual distance from the bisector.
However, none of the users wishes to disclose his or her éoeation, so only safe information
should be used in the process.

Figure 18 illustrates the proposed solution, and the pssadioin Figure 19 details the algorithm
steps. The algorithm receives as input a separation thiceshand a pair of CRsB; and B,
corresponding to the tentative CRs of user@ndus, respectively. In case the minimal distance of
B, and Bs, satisfies threshold, there is no need to change them (line 3). Otherwise we determ
the direction of displacement along the line passing through the center of mass of the tw® CR
for the initial user coordinates (line 5), or orthogonalie bisector of the direction of movement of
the two users for subsequent timestamps (line 10). In oalsatisfy the separation constraint we
translate the two CRs by a total Sfplus the maximum diameter of the two CRs (line 12). Since
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the two users cooperate, each CR is translated accordimetbalf of the displacement vector in
the two opposite directions (lines 13-14).

We assume that the users who want to hide their proximity ble ta communicate directly,
and that position reporting is synchronous for all usergsehrestrictions are used to simplify the
presentation, but can be removed in practice with minimahges, thus not hindering the generality
of the approach. Specifically, if updates are not synchexhimne simple solution is for the system
to apply the deferral technique presented in Section 5.1thfouser with the earlier update. Then,
when the update from the other user is received, the algofithsynchronous updates is performed.
The tradeoff of this method is accuracy, as the first userexjlerience a slightly higher space error.

7. EXPERIMENTS

We implemented a Java prototype of the proposed temporai@atihl transformation methods. The
experimental testbed consists of a P4 2.0GHz machine wiB\df®AM running Linux OS 2.6. We
ran tests both on synthetic and on real datasets. The sindla¢disets allow us to vary continuously
parameters such as maximum velocity, thus providing a dleatration of the behavior trends of
the proposed solutions for a broad range of parameters. ©otlier hand, evaluation on real data
proves the practical applicability of our approach.

In the case of synthetic data, we consider a dataspal® 660 x 10, 000 meters, corresponding
to a medium-size city. In each experimental run, we randamelyerate 00 trajectories consisting
of 30 distinct timestamps each with an average delag(siec between consecutive requests. We
consider maximum user velocitidd ax Speed betweenlm/s (walking speed) and0m/s (high-
way driving speed). The actual user velocity is uniformlgtdbuted in the rang@&/axzSpeed/2 to
MaxSpeed. All results are averaged over ten random seeds.
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Proximity Protection
Input: CRsB; and B of position reports from usens; andus, separation thresholS.
Output: B and B such thatlist(B1, By) > S

1. d =dist(B1, B2)
2. if(d>Y9)
3. return B; and Bz
4, A;, A2 = most recently disclosed positions for andus
5. if (41, As are first disclosed positions)
6. = unitary vector from the center d@$; toward the center aB»
7. dse
8. vi = unitary vector from the center of; toward the center aB;
9. v_g = unitary vector from the center of, toward the center oB;
10. L = unitar % angle bisector vector @f andvs
11. = rotate 90° toward the center oB.
—>
12. displacement = U (S + max(diam(B), diam(Bz)))
13. Bj = translateB; according to—% displacement
14. B; = translateB, according to} displacement
15. return B} and B}

Fig. 19. CR displacement for proximity protection

The real workload considered consists of the Rome taxi dafasm the CRAWDAD repos-
itory®. The data were collected from real GPS traces of Rome taxedriduring the month of
February 2014. Within the dataset, we group trajectoriesrating to maximum recorded speed, so
that we can obtain two different maximum speed settings ghafiow with speeds ranging within
[0,5] m/s, andFast with speeds in the interval 0, 18] m/s.

We present the results for temporal and spatial cloakingetti®ns 7.1 and Section 7.2, respec-
tively. Section 7.3 shows the results for protection in thgscof external events, whereas Section 7.4
illustrates the case of hiding mutual proximity.

7.1. Temporal Cloaking

For the temporal cloaking experiments, we consider a fixetitipaing of the dataspace into rect-
angular regions (or tiles) of variable size. Tiles are rantjggenerated, and tile granularity is varied
betweenl00m and500m side length. The form factor (or skewness) of aTilemeasured as

max(height(T), width(T))
min(height(T), width(T))’

is varied randomly betweelnand2. Since the CRs are pre-determined by the space partitipwing
do not consider CR size for temporal cloaking: instead, vee$mn space and time error.

First, we measure the fraction of dropped requests in theramiesof postdating. Thisleferral-
only” method is similar to the solution proposed in [Cheng et @06820We consider two maximum
delay settingsMaxDelay = 5sec, corresponding to an acceptable response time wheamgaski
queries, and0sec, reasonable for location updates in a social networkpmdication. Figure 20
shows that, if postdating is not allowed, the failure ratrovgs as high a$0% of requests. The
failure ratio is the highest in the scenario of locationdshgueries (i.e., lowM axDelay) and
an adversary with background knowledge (i&,, distance). The high failure ratio motivates our
choice for request postdating. In the rest of this sectianewaluate the proposed temporal cloak-
ing method, including both request deferral and postdatifig emphasize that in all considered
temporal cloaking scenarios, no request was dropped.

5 Available online at http://crawdad.org/roma/taxi/2074/
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Fig. 21. Variable velocity, Hausdorff distance

. [] MaxDelay=5sec . O MaxDelay=60sec
£ g 60
% 200 2
§ g 50
5 3 40
& 150 <3
g 100 % %
S 2 20
= S
2 50 o 10
()
(% 0 Il Il Il Il Il Il E O
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Max Speed (m/s) Max Speed (m/s)
@ (b)

Fig. 22. Variable velocity, point-pairwise distance

Next, we measure the space and time error incurred by teringoeking when the maximum
user velocity is varied, for a fixed partitioning granulantith average tile sid800m. Figure 21
shows the results for the Hausdorff distance, whereas &RRiconsiders point-pairwise distance. In
both cases, the time and space errors exhibit a bell-shapsthdence, as a result of the relationship
between velocity and tile side length. At low velocity, itliisely that several consecutive requests
will fall within the same tile, hence the requests are satesttssued. As velocity increases initially,
consecutive requests fall within neighboring cells, arel daeries need to be deferred/postdated.
However, as velocity continues to increase, the distarmelied by the user between two consec-
utive requestsl and B may span several adjacent tiles, but the difference betweénB) (either
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Hausdorff or point-pairwise) and(tg — t4) is small compared to the user velocity (i.e., at most
the diameter of one tile). Therefore, the CR safety conalitian be satisfied with only a short delay.
As expected, the more demanding restrictions of pointwis& distance determine larger absolute
values of space and time error compared to Hausdorff distanc
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Fig. 23. Variable tile size, Hausdorff distance

In Figure 23, we measure the effect of varying the partitigrgranularity for two distinct choices
of MaxzSpeed and MaxDelay. For brevity, we only show the results for the Hausdorff ainste.
The diameter (i.e., diagonal) of the average tile grows wiéhside, and consequently, the space
and time errors also increase. This experiment also iitestrthe clear trade-off between space and
time error: for low acceptable delays (e azDelay = 5sec, suitable for location-based queries)
the space error grows larger (although, in absolute vatugs\iier exceeds.5% of the dataspace
side). On the other hand, if longer delays are acceptatdesghce error is reduced bel@am.

Figure 24 illustrates the same measurement on the realeffatdée consider bottslow and
Fast speed settings. Similar trends are observed as in the cdbe sfnthetic data, except that
there is more variability in the results, due to the coarsanglarity in varying velocity values.
We emphasize that, in absolute value, the results are mutdr bigan in the synthetic data case:
specifically, space error was at ma&tmeters, and the request delay at nibseconds.

7.2. Spatial Cloaking

For the spatial cloaking case, no pre-defined space paititiois enforced, and users have the
ability to construct CRs according to their privacy reqmiants. The construction of CRs when the
attacker has no background knowledge is trivial (e.g., ggreandom CRs with a certain constraint
on minimum size), so we only consider the case of an advevgénpbackground knowledge, hence
the point-pairwise distance is employed. Since spatialdlay is not restricted to fixed CRs, we
focus our evaluation on CR size, time error and failure ratitd we omit space error, which only
represents a significant factor for temporal cloakingz Delay is set tolOsec. In all spatial cloak-
ing tests, we observed that the time required to construictghesCR is belowlsec. We also take
into account the sensitive featureveragedefined as the percentage of the dataspace area covered
by sensitive features. Intuitively, the larger the sewmsittoverage, the more difficult it is to find
low-extent CRs that satisfy the privacy requirement.

Figure 25 shows the resulting CR area (expressed as a pagearitthe dataspace area) and the
time error when the user’s sensitivity threshold is varfeda fixed coverage di%. The CR area is
always belowl % of the dataspace area, and it decreases as the sensitiesithd increases (recall
that, a higher sensitivity threshold corresponds to a lessathding privacy requirement). The time

6Since all experiments prior to this one make use of a granntaease in maximum velocity, which cannot be obtained
using real traces, we restrict the evaluation on the real athe variable tile size experiment.
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Fig. 25. Variable Sensitivity

error required by spatial cloaking exhibits a similar treAdarger velocity results in an increase
of CR size and time error because more sensitive featuressarlarger area are considered in the
cloaking procedure (i.e., the s&f’ enclosed by the Minkowski sum ¢f, according to the notation
in Section 5.2).

In Figure 26 we investigate the effect of sensitive featuneecage for a sensitivity threshold of
0.1. The CR area grows with coverage, since a larger fractiohefiataspace is sensitive, hence
the CR must grow larger in order to include large enough remsitive areas. Note that, even for
the most demanding privacy requirements considered {08, coverage and.1 sensitivity) the
CR area does not exce@tl of the dataspace. The time error trend also shows an increittse
coverage.

Finally, Table 27 shows that, in most cases, all requestsuaceessfully cloaked. For thel
sensitivity threshold, there are some requests that faiéver, the ratio of such requests is low,
(5% in the worst case).
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Fig. 27. Failure Ratio

7.3. Protection in the Presence of External Events

In this section, we evaluate the performance of the proptsgthique for location protection in
the presence of external events. In absence of such evantsuser trajectory is represented by an
ordered set of timestamped CRs. To model external evertis,asisocial media posts, we consider
that an additional tagged object with its own timestamp a@dggaphical coordinates is inserted
into the sequence of user updates. We refer to these addigatries in a user’s trajectory s

For each trajectory, we insert a number of additional tatected uniformly at random between
1 and the number of snapshots in the user’s trajectory. Fdr sach tag, we randomly select the
time within the user trajectory bounds, and determine thstijpm by using linear interpolation
between two consecutive user-reported positions. Thigéslistic model, since the posts about a
user will actually be situated along the user’s trajectdfy.average our results over000 randomly
generated user trajectories.

Recall from Section 6.1 that the amount of overprovisiortimgt a user performs in order to
increase the likelihood that a future event is approved fdslipation is modeled by parameter
«, which measures the factor by which the maximum velocityeduced when computing CRs.
We vary« in the intervall to 5, and we determine the impact ogjection rateof tag insertions.
Rejection rate represents the number of tagged eventhithaser blocks, and has ideal valuand
maximum valuel. We also vary the actual maximum velocity of movemenf\ész Speed, as it
also influences the rejection rate.

Figures 28 and 29 present the results for two distinct vadfiesverage] % and10%, and several
settings of actual maximum speédlax Speed. We observe that in the absence of overprovisioning,
a relatively high proportion of tags are rejected, which reageedl 0% for low movement speed
(e.g., walking users). In Figures 28(a) and 29(a), we caemishat asy increases, the rejection
rate drops sharply, proving the effectiveness of the pregoschnique. Furthermore, one does not
need to increase considerably the value.ods a value of or 3 suffices to obtain low rejection rate.
For further increases af, the additional gain is not significant. In fact, in some casiee rejection
rate increases slightly, mostly due to random factors ofenment and tag generation.

Figures 28(b) and 29(b) illustrate the behavior of the peggpitechnique when varying the max-
imum user velocityM axSpeed. We consider a broad interval of velocities, ranging from/s
(walking speed), td0m/s (cycling speed) and0m /s (driving speed). Recall from Section 6.1
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that, for a givern value, the absolute reduction in velocity when computings @Rproportional
to MaxzSpeed, hence we expect an increase in velocity to yield lower t&aaate. In addition, a
higher M axSpeed also has a benefic effect on rejection rate as the actual userment speed is
fast, and therefore the user is able to travel relativelgkjyibetween consecutive location updates.
We observe that the walking speed range is most prone taedjéags, whereas the rejection rate
becomes negligible at higher speeds.

We also observe that an increase in coverage rate doesrfgatively the rejection rate, but not
significantly (to observe this increase, one can comparedhesponding graphs from Figures 28
and 29). This can be explained by the fact that, once the URefa@: selected according to the more
strict coverage requirements, they are already large,eseffact of additional tags may not be that
difficult to overcome. In other words, due to the alreadyngfeint requirements imposed by the user
movement, the additional requirement imposed by overgioring for tag events is not significant.

Finally, we evaluate the performance of the protectiontiym in the presence of external events
on a real dataset. Figures 30 shows the results. Due to thditypao control in a fine-grained
manner the maximum velocity for real data, we show resullg fam variable«, and two different
speed thresholdsiiow and Fast. The results are very encouraging, as the rejection raticels
below the one recorded for synthetic data. In the worst @def the update requests get rejected.
The time error is also low, with0 seconds as maximum value. As expected, the space error grows
with «, and for larger values it may become significant, upd6 meters. Nevertheless, the results
show that, given the low rejection error and time error vaJume can safely set thevalue to be
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small (e.g.,l or 2), and as a result the space error at this setting is also desdltharl 00 meters.
The results on real data confirm the practical applicahilftthe proposed technique.

7.4. Protecting User Proximity Relationship

We evaluate next the performance of the proposed technigpeotect the mutual proximity dis-
tance relationship between a pair of users. We consideratemathreshold values in the range
betweer250 meters and, 000 meters, which is a relatively broad range of requirementa fotal
considered movement space26fx 20 kilometers. We generate pairs of trajectories moving tolwar
each other, and which intersect after an average number tifin28tamps. To hide user proximity,
the proposed technigue will move CRs in opposite direciiogdch other, and as a result each user
will experience delays in their reported locations, andsegjuently, in received service. We measure
the amount of delay as a measure of loss in quality of service.

Figure 31(a) illustrates the effect of maximum velocity be user-experienced delays, denoted
asAvgTimeFError. For very low-speed movement, the need to hide mutual pribxitomes at a
high cost, as it takes users a long time to arrive within thie-sa&disclose CRs (recall from Section
6.2 that in order to protect against mutual proximity detectit may be necessary to report CRs
that do not actually enclose the user). In some cases, tretegpohay need to be delayed for over
60 seconds. However, as the maximum velocity increases, dpoped technique is able to achieve
protection at a much lower penalty in terms of quality of $es\decreases. For moderate movement
speeds, and separation threshold values that to not excee@imeters, the experienced delays are
lower thanl0 seconds.
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Figure 31(b) presents the evolution of the time error as #paation threshold increases. As
expected, a higher value of the separation threshold sisultigher delays, as the CRs have to be
moved further apart from each other. Nevertheless, for matderalues of maximum velocity, the
obtained delays are always bel8seconds. For high speeds, the delays are negligible forafiost
the range of separation threshold values. In practice, WeMeehat a separation thresholdigf00
is likely to be sufficient, and one can observe that for thisreg the delays are not significant.
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Fig. 31. Effect of Mutual Proximity Protection on Service Delays

In our final experiment, we evaluate the effectiveness ofntlagual proximity protection tech-
nigue on real data. Figure 32 shows the space and time ebtaimed for two speed settingSiow
andFast, and several different proximity threshold settings. Apepted, the space and time errors
increase with the threshold. However, the actual time eratwes are smaller than in the case of
synthetic data, with a worst-case delay of approximatélgeconds. The space error is arodnd
meters in the worst case, which is less thaft of the proximity threshold setting. These results
confirm the good performance of the proposed technique &data.
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8. USABILITY AND INTEGRATION WITH EXISTING LOCATION-BASED SERVICES

The objective of our work is to provide a balanced locatioat@ction approach which achieves
good privacy and does not incur significant performancelmad. \We have evaluated the above two
objectives experimentally in Section 7. In addition, for approach to gain widespread adoption, it
is necessary to consider two additional fact@susability aspects, an(d) integration with existing
location-based services (LBS). While a comprehensiveystndthese topics is outside the scope of
this article, we provide in this section an informal diséassand outline future work directions
towards achieving widespread adoption of the proposeahigahbs in real-life systems.

8.1. Usability

Making end-users aware of security and privacy threats,davising controls that do not signifi-
cantly affect usability are serious and ongoing concertisérbroader security and privacy research,
not only in the location privacy area. In order to help wides adoption of privacy-preserving
services, it is important to reduce the burden on end usdtsr@spect to privacy-related system
settings and parameters. Furthermore, users should béedhfeom low-level technical details, and
the privacy settings and parameter choices provided mustiiéve.

In the case of our proposed approach, the protection modékstly related to the ability of an
adversary to locate the user within a certain geographicbsure, e.g., a building, a neighborhood,
or the location of an event. We believe that this approacdiistémbe more intuitive than other models
which rely on more complex, statistical models of privacgttare difficult to understand by the end
users. For instance, other approaches use protectiontefinbased on entropy, or probability
of existence of a user within a dataset, which rely on undadihg of advanced mathematical
concepts. In contrast, our solution defines privacy witpeesto the percentage of the reported area
that lies within a certain sensitive region. In our view, ais more likely to relate to a statement
such asthis privacy setting ensures that sensitive areas repmésaly 10% of the reported region”

The issue of setting system parameters is also an impontentfousable solution should have
few parameters that need to be provided as input, and theehof parameters should be simple
and intuitive. Specifically, in our caséfax Delay is the maximum amount of time that the user is
willing to wait for a query answer or service update. Respdiree is a parameter that a user can
easily relate to. A simple graphical user interface (GU8laljue can be shown to the user the first
time the system is set up, and prompt for a value for this patem

Furthermore, the sensitive threshold value is a direcesgtation of the association probability
with sensitive features, which is the maximum percentaga @R that can be covered by that
sensitive feature type (e.g., 10% or 25%). In addition, &&rs who do not wish to provide numerical
thresholds, one can design a Likert-scale GUI with sevesadls: e.g.Jow sensitivity(70-80%),
moderate(20-50%), orhigh (below 20%). Similarly, for the maximum delay parametere @an
choose from several discrete options, labeled for instasdew delay(below 5 sec)moderate
delay(5-30 sec)|ong delay(30-60 sec).

8.2. Integration with Existing LBS

Existing systems that process location updates are typidasigned to accept as input individual
locations, or groups of individual locations. However, lire ttcase of our approach, the LBS must
process updates that are submitted in the form of rectangagans (CRs). This feature may require
changes on behalf of the service providers to support psogsf regions.

Our work assumes that a processing engine for regions exigis LBS. In the spatial databases
literature [de Berg et al. 2000] several approaches exigtrimcessing regions. We emphasize that
the adoption by the service providers of such techniquestismequirement of location privacy
solutions alone. Instead, many novel types of queries ssctearest-neighbor of groups of users
or skylines require such operations. Hence, we believetitese will be strong incentive for LBS
providers to adopt such processing techniques.
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Another related concern is that of processing cost. In tke o&processing regions, the computa-
tional overhead is typically higher than for points. Howewas shown in previous work on location
privacy with CRs [Kalnis et al. 2007], the performance o is quite good. To account for the
additional overhead, the providers may impose an additgmnall processing fee, either in the form
of a subscription, or indirectly through more advertisetagar requiring the users to complete a
survey, etc. In addition, we expect that policy makers, wigobeecoming increasingly aware of the
risks that privacy breaches pose to society, may mandateshef such techniques, in a similar
manner in which healthcare providers must implement ctsxtogprotect medical records.

9. CONCLUSIONS

In this work, we identified attacks on location privacy thator when an adversary is able to use
information such as maximum user velocity, geo-taggedasoetwork posts, or mutual proximity
between users. The proposed spatial and temporal traresiorma enforce privacy without signif-
icant deterioration of QoS. The techniques for overprovisig to reduce the amount of blocked
posts and for hiding mutual proximity are also effective @higving protection without significant
QoS deterioration.

In future work, we plan to investigate protection technigjagainst proximity-based and exter-
nal event attacks when user movement is restricted to roaebnies. In this setting, the distance
computation between consecutive user positions is morglexnin addition, the adversary has
increased capabilities to prune “empty spaces” that do eloiny to roads.
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