
TCP Goes to Hollywood

Stephen McQuistin
University of Glasgow, UK

sm@smcquistin.uk

Colin Perkins
University of Glasgow, UK
csp@csperkins.org

Marwan Fayed
University of Stirling, UK
mmf@cs.stir.ac.uk

ABSTRACT
Real-time multimedia applications use either TCP or UDP at the
transport layer, yet neither of these protocols offer all of the features
required. Deploying a new protocol that does offer these features
is made difficult by ossification: firewalls, and other middleboxes,
in the network expect TCP or UDP, and block other types of traffic.
We present TCP Hollywood, a protocol that is wire-compatible
with TCP, while offering an unordered, partially reliable message-
oriented transport service that is well suited to multimedia applic-
ations. Analytical results show that TCP Hollywood extends the
feasibility of using TCP for real-time multimedia applications, by
reducing latency and increasing utility. Preliminary evaluations also
show that TCP Hollywood is deployable on the public Internet, with
safe failure modes. Measurements across all major UK fixed-line
and cellular networks validate the possibility of deployment.

CCS Concepts
•Networks→ Network protocol design; Transport protocols;

Keywords
Transport protocols; real-time multimedia applications

1. INTRODUCTION
Real-time multimedia applications comprise a large and growing

portion of all Internet traffic [4]. The characteristics of these ap-
plications, namely their tight latency bounds and interdependencies
between messages, are unsupported at the transport layer. Con-
sequently, developers are forced to reimplement common function-
ality, applications interact poorly with each other, and the stability
of the network is compromised [15] [1].

Our goal is to develop a transport protocol that provides all of
the features required by real-time multimedia applications, without
compromising deployability. Previous efforts suggest that an en-
tirely new protocol is unlikely to see wide deployment and use [10],
as evidenced by the deployment of protocols such as SCTP [23]
and DCCP [14]. Therefore, we must build the services we require
on top of either TCP or UDP. We select TCP as the substrate for

our protocol, given the complexity of implementing TCP-friendly
congestion and flow control atop UDP, and the wider deployment of
TCP in enterprise networks.

We present TCP Hollywood: an unordered, time-lined, transport
layer protocol, that supports partial deployment. Critically, TCP
Hollywood is wire-compatible with TCP and so is feasible to deploy
on the Internet. In TCP Hollywood, TCP’s latency tax is elimin-
ated by (i) removing head-of-line blocking, and (ii) relaxing TCP
reliability guarantees to respect application latency bounds. In addi-
tion, TCP Hollywood uses a message-oriented abstraction so that
interdependencies between messages can be expressed.

Previous efforts in this space have made important contributions
toward broadening transport layer APIs and reducing latency for
real-time applications. Time-Lined TCP (TLTCP) [17], for example,
allows applications to express timelines for messages, with data
only transmitted during its timeline. In Minion [18], applications
can replace unsent messages in the sending buffer. Our work builds
on these efforts, with a focus on deployability. TCP Hollywood
eliminates deviations from TCP’s wire-visible protocol, making it
resilient to middlebox interference and modification.

This paper offers three main contributions. First, a novel and
deployable protocol with an API that better supports real-time multi-
media applications. Second, preliminary analysis that reveals when
TCP latency exceeds application bounds, and when TCP Hollywood
improves utility. Finally, we report on preliminary evaluations that
show that TCP Hollywood is deployable, with safe failure modes.

We structure the remainder of this paper as follows. Section 2 de-
scribes the requirements of a deployable transport-layer protocol for
real-time multimedia applications. Section 3 describes the design
of TCP Hollywood, and how it fulfills the requirements. Section
4 reveals the combination of network and application parameters
where our protocol will help, and Section 5 extends this analysis
to a multimedia application. Section 6 discusses deployability eval-
uations conducted using our implementation. Section 7 describes
related work, while Section 8 concludes.

2. REQUIREMENTS
We outline the requirements we address with TCP Hollywood,

using the terminology used by the Transport Services (TAPS) [7]
working group at the IETF. A transport service feature is an end-to-
end feature provided by the transport layer, such as ordered delivery.
Our requirements are shaped by two broad goals: to provide the
features that are needed by real-time multimedia applications, and
to ensure that these are deployable on the wider Internet.

Applications require a message-oriented protocol, to allow inde-
pendently decodeable application data units (ADUs) to be sent. This
abstraction also enables out-of-order delivery, removing the latency
introduced by enforcing order. Real-time multimedia ADUs have an

Hollywood socket

Socket

COBS encoding

send_message()

write()
setsockopt()

RTT
estimate

Application

Intermediary Layer

Kernel: Transport

Kernel: Network

send queue

timing data buffer

Timing info

Hollywood receive logic

read()

fragment reassembly buffer

incomplete
messages

COBS decoding

receive_message()

Sender Receiver

receive queue

metadata queue

reassembly buffer

TCP receive logic ACKs

Figure 1: TCP Hollywood architecture

associated deadline by which they must be played out, after which
their data is essentially lost. Further, messages may be dependent
on other messages that have not been received. This suggests a need
for partial reliability: messages will be (re-)transmitted when they
are estimated to be useful upon reception, and an alternative sent
otherwise. Multimedia applications also benefit from the ability
to multiplex multiple streams across a transport-layer connection,
allowing them to separate audio and video streams. This may bene-
fit applications using scalable video encoding (for example, using
the H.264/SVC codec) [19], where different layers could occupy
different sub-streams. Finally, fairness, and congestion and flow
control are necessary to protect the network and other applications.

Deployment is constrained by Internet ossification [9]. Protocols
that fail to present as TCP or UDP on the wire are unlikely to be
forwarded by middleboxes [10]. Therefore our protocol must appear
to be TCP or UDP on the wire, while modifying the end-to-end
semantics to implement the required features. We select TCP as
the substrate for two reasons. The services we describe align better
with TCP (e.g., TCP already provides congestion control), reducing
implementation complexity. Further, TCP has wider deployment
than UDP, which is sometimes blocked by enterprise firewalls.

3. DESIGN
In this section, we describe the design of TCP Hollywood, show-

ing how it fulfils the requirements discussed in Section 2. The
architecture is shown in Figure 1. Broadly, TCP Hollywood is split
across an intermediary layer in userspace (providing the API, and
messaging abstraction), and a set of kernel extensions (supporting
inconsistent retransmissions and out-of-order delivery).

Our design presentation follows messages from the sender, going
from the application layer down to the network. We then briefly
describe the wire protocol, before discussing the receiver-side as
messages are delivered to the application. A more detailed descrip-
tion of the design can be found in [16].

3.1 Sender
The sender implements two features of TCP Hollywood: (i) mes-

saging, in the intermediary layer, and (ii) partial reliability based on
timing and dependency information, in the kernel.

To provide messaging, we encode and frame data at the interme-
diary layer. Applications first pass messages, and optional metadata
such as timing and dependency information, to the intermediary
layer. The intermediary layer prepends the sub-stream identifier to
the message data, and this is then encoded and framed before being

TCP TCPTCPTCPTCP

time

message fragmentation

Figure 2: Encoding and framing with leading and trailing
markers protects against middlebox re-segmentation; received
segments can be properly decoded into messages.

passed to the transport layer. Figure 2 shows the mapping between
messages in TCP Hollywood and segments in TCP. To maximise
utility and reduce latency, TCP Hollywood sends each message in
a single segment. Segments can be re-segmented and coalesced in
the network; a message may be split across multiple segments, or
one segment may contain multiple messages. Leading and trailing
markers are used to retain the message boundaries. In our design,
consistent overhead byte stuffing (COBS) [3] escapes all zero bytes,
for use as framing markers. This process is efficient, expanding the
payload by at most 0.4%, and transparent to the application: the
content that can be sent is not affected.

In the kernel, Nagle’s algorithm is disabled (i.e., TCP_NODELAY
is set) to prevent buffering. Nagle’s algorithm buffers small applic-
ation writes, amortising the size of the TCP header across a larger
segment. The benefit of this is not significant where application
messages are large relative to TCP headers, such as in our target
applications, and is incompatible with our goal of reducing latency.

Supporting partial reliability means relaxing TCP’s existing mech-
anism. TCP ensures reliability using retransmissions, which intro-
duces both latency and late losses (i.e., segments that are effectively
lost because they are too late to be useful) – it takes time for the
sender to become aware of the loss, and for the retransmitted seg-
ment to arrive at the receiver. TCP Hollywood conforms to the
syntax of TCP’s retransmission mechanism so as to be compatible
with middleboxes and maintain deployability. However, TCP Holly-
wood may send inconsistent retransmissions, that is, the payload of
the retransmitted segment may differ from the original.

Whenever a message is retransmitted, the sender uses timing and
dependency information to estimate if the message will be useful
to the receiver. If so, the message is retransmitted. Otherwise, the
message is replaced by another from the queue that will be useful.
This replacement message is sent with the same TCP header as
the original. A middlebox on the path may observe the same TCP
sequence number relating to two or more different payloads. We
discuss the implications of this on deployability in later sections.

To maintain message integrity, only whole messages will be re-
placed in inconsistent retransmissions. Where the retransmitted TCP
segment contains only part of a message (i.e., a message fragment),
this will not be replaced. If the sender replaced fragments then the
reassembly process on the receiver (described in Section 3.3) may
deliver a message to the application that is a composite of fragments
from different messages.

If the kernel modifications are not deployed on the sender, then
inconsistent retransmissions are not possible. The implications in
terms of performance are analysed in Section 4. The messaging ab-
straction does not require any kernel modifications on either sender
or receiver, maximising deployability.

The computational overhead at the sender consists of the en-
coding process at the intermediary layer, and the maintenance of
per-message metadata in the kernel. COBS encoding is not computa-
tionally expensive [3], but is currently performed by the intermediary
layer, and so requires taking a copy of the message. Tighter integra-

tion with applications, such that the COBS encoding is performed
as part of the multimedia encoding, would remove this copy. In
the kernel, metadata (e.g., timeline and dependency data) is stored
about each message, until the message can no longer be sent.

3.2 Wireline Compatibility with TCP
Deviating too far from the wire format of TCP compromises

deployability. Middleboxes in the network perform functions that
make assumptions about the behaviour of TCP hosts, and reset
connections when unexpected behaviour is observed. As an ex-
ample, TLTCP [17] creates holes in the TCP sequence space. When
a middlebox observes an incomplete sequence space, it assumes
that the sender is misbehaving, and closes the connection. It is im-
portant to consider middlebox interaction, and to limit wire-visible
modifications, if deployability is a priority.

The only wire-visible difference between TCP and TCP Holly-
wood is the use of inconsistent retransmissions, where the payload of
a retransmitted segment differs from that of the original (the check-
sum is recalculated, and padding used to ensure that the size remains
the same). Everything else (i.e., the syntax and semantics of the
TCP header) remains unchanged. Therefore, TCP Hollywood is only
visible to middleboxes that perform payload inspection. Broadly,
there are two reasons for a middlebox to perform this inspection:
to enhance performance through caching, and to improve security
by detecting anomalies. Split-connection TCP caches are widely
deployed where round-trip times are high and non-congestive packet
loss is common; we observe that the majority of UK mobile pro-
viders cache segments in this way. These caches deliver the original
segment rather than the retransmission, removing the performance
benefit of TCP Hollywood, but without disrupting the connection.
Firewalls that perform deep packet inspection (DPI) are designed
to detect anomalies, including protocols that behave unexpectedly.
These firewalls are slow and computationally expensive at scale, and
so are generally limited to enterprise networks where the trade-off
is worthwhile; we did not observe middleboxes of this type during
our deployability evaluations. A firewall that detects inconsistent
retransmissions would likely reset the connection. Disabling incon-
sistent retransmissions upon detecting this behaviour is future work.
We consider deployability further in Section 6, with experimental
results from an initial deployment.

3.3 Receiver
The receiver implements two features of TCP Hollywood: (i)

messaging, at the intermediary layer, and (ii) out-of-order delivery,
in the kernel.

Out-of-order delivery requires modifications to the kernel. All
incoming segments generate a metadata entry, with their TCP se-
quence number and length, which is added to a queue. A copy of
the payload is stored when the segment is out-of-order, or when
there are segments in the reassembly buffer. TCP Hollywood and
TCP generate the same response to out-of-order segments. When
the intermediary layer reads from the socket, it receives the next seg-
ment in the metadata queue, tagged with its TCP sequence number
to allow for reassembly. This is a different delivery model to TCP:
segments are delivered in arrival rather than byte order.

Messaging is implemented at the intermediary layer, operating
with or without the kernel modifications. Incoming segments contain
zero or more complete messages (i.e., data between two zero bytes),
which are queued for delivery to the application. There may be a
leading and/or trailing message fragment, which are reassembled
using the segment’s TCP sequence number. Once reassembled,
messages are decoded, before being queued for delivery to the
application.

If the kernel modifications are not deployed on the receiver, the
application cannot benefit from the removal of head-of-line blocking.
The impact of this is analysed in Section 4.

The computational overhead at the receiver consists of a decoding
process, again performed at the intermediary layer, and so requiring
a copy of the data. Beyond maintaining the metadata structures
described earlier, the kernel makes an additional copy (vs. TCP) of
the payload for segments that arrive out-of-order, or while there are
segments in the reassembly queue. This additional copy could be
removed by optimising our proof-of-concept implementation.

4. ANALYSIS
A key goal of TCP Hollywood is to reduce transport layer latency.

In this section, we quantify the impact that inconsistent retrans-
missions and the removal of head-of-line blocking has on latency,
versus TCP. To do so, we introduce some notation. First, we model
the one-way transport delay, Towd, as:

Towd = Tsender +Tplayout +Trtt/2 (1)

Tsender is the latency introduced at the sender, resulting from the
capture, encoding, and transmission of a media frame. Tplayout is
the application-level receiver-side latency: the sum of the buffering
delay, and the decoding and rendering tasks. Trtt is the round-trip
time between the sender and receiver. Without loss of generality,
the analysis presented here assumes symmetric delay.

Next, we model the multimedia itself. Tframing denotes the dur-
ation of the application data within each frame (i.e., the inter-
frame interval). We can apply two constraints to this value: (i)
Tsender ≥ Tframing, since a frame must have been fully captured be-
fore being sent, and (ii) Tplayout ≥ Tframing, since we assume that
the multimedia is to be decoded (and rendered) without gaps. We
approximate that Tsender ≈ Tplayout, given that the encoding time is
negligible in comparison to the framing interval. While the decod-
ing time is similarly negligible at the receiver, the de-jitter buffer
is likely to be significant, preventing a receiver-side approximation
from being made.

For a given application, there is an acceptable delay bound, Tmax.
Intuitively, Towd ≤ Tmax, for this bound to be met. Reasonable
values for Tmax vary by application, ranging from the low hundreds
of milliseconds for VoIP, to the tens of seconds for on-demand video.

4.1 Inconsistent Retransmissions
TCP Hollywood’s inconsistent retransmission mechanism reduces

wasted bandwidth, sending a usable message where regular TCP
would retransmit data that cannot be played out. To model the
impact, we quantify the time taken for a retransmission to occur.
The receipt of a triple duplicate acknowledgement by a TCP sender
results in the retransmission of the lost data. From this, the time
taken for a sender to recognise packet loss is:

Trexmit = Trtt +3×Tframing (2)

A further Tframing is needed to account for the corresponding fram-
ing interval that is lost at the receiver. The lower bound on Tplayout
if retransmitted data is to arrive on time to be useful becomes:

Tplayout ≥ Trexmit +Tframing (3)

Intuitively, the upper bound is the application’s acceptable delay
bound, Tmax. As given above, we approximate Tsender ≈ Tframing.
Combining these upper and lower bounds, we see that TCP retrans-
missions are useful when Tplayout is bound as:

Tmax−Tframing−Trtt/2≥ Tplayout ≥ Trtt +(3+1)×Tframing (4)

Tmax - Tframing - Trtt /2

Tframing

T rtt
+ 4(

T fra
ming

)

T p
la

yo
ut

Trtt

Retransmission
Time

Application Deadline

Region of Wasted
TCP Retransmits

Figure 3: Inconsistent retransmissions operate within the red
lined region where TCP retransmissions would arrive too late

We show this graphically in Figure 3. The unshaded regions show
where the application’s delay bounds cannot be met without stalls
in play-out. The green hatched shaded region indicates where TCP
retransmissions arrive in time to be useful.

The red lined region shows where TCP retransmissions are sent,
but do not arrive in time to be useful. Inconsistent retransmissions
operate in this region: rather than resending data that won’t arrive in
time to be played out, TCP Hollywood sends the next usable mes-
sage instead. The original message is still lost, but no bandwidth is
wasted by resending it when TCP Hollywood is used. Inconsistent
retransmissions reduce latency and loss by sending queued mes-
sages ahead of the time that they would have been sent under TCP.
Both of these performance improvements are beneficial to real-time
multimedia applications.

4.2 Head-of-Line Blocking
The interaction between TCP’s in-order and reliable delivery

service features manifests itself in head-of-line blocking: segments
that arrive after a lost segment are not delivered until the lost segment
arrives. Intuitively, this can result in underflow of the playout buffer
if it is not appropriately sized, causing stalls in media playback. If
TCP retransmissions arrive in time to be useful (as determined by
the analysis presented in the Section 4.1), then head-of-line blocking
will not cause playback stalls – there is sufficient buffering to cover
the time taken to retransmit.

When the playout delay is less than the time taken to retransmit
(i.e., Tplayout < Trexmit + Tframing), the segment is effectively lost,
and a one segment gap occurs in the playback. In standard TCP,
head-of-line blocking is also invoked. If the retransmission arrives
less than one framing interval after its playout time, head-of-line
blocking has no impact on media playback, as Trexmit ≤ Tplayout <
Trexmit +Tframing.

However, say the retransmission fails to arrive at least one framing
interval before its playout time. Then at least one of the later, head-
of-line blocked, segments will be discarded by the application. The
duration of the impact (i.e., the duration of the discarded frames)
can by modelled as Thol:

Thol = Trexmit−Tplayout = Trtt +3×Tframing−Tplayout (5)

From this, the number of discarded frames can be expressed as:

Nhol = max
(⌈

Thol

Tframing

⌉
,0
)

(6)

Sender Network

kerneluser
Tframing

Receiver

userkernel

Trexmit

Thol

seq 1

seq 2

seq 3

seq 4

seq 5

seq 3

seq 6

tim
e

ack 1

ack 2

ack 2

ack 2

Tplayoutack 2

Figure 4: The relationship between Tplayout, Trexmit, and Thol in
standard TCP

A graphical representation of head-of-line blocking in standard
TCP is provided in Figure 4. In this example, segment 3 is lost,
and must be retransmitted. When this retransmission arrives, the
segment is delivered to the application, along with the blocked
segments 4, 5, and 6. As shown, Tplayout is less than Trexmit, and so
segment 3 has arrived too late to be used. Additionally, given that
Thol is greater than zero, head-of-line blocking renders segment 4
useless, despite its on-time arrival.

Using Figure 4 to summarise the overall impact of TCP Holly-
wood versus regular TCP, we see two behaviours: (i) inconsistent
retransmissions will be triggered for the retransmission of segment
3, increasing network utility, decreasing latency, and improving
goodput; and (ii) segment 4 would be played out successfully.

The impact of head-of-line blocking on the application-level loss
rate of applications is significant; it amplifies the network loss rate.
To ensure that the impact of its removal is maximised, messages
sent by applications should independently decodeable.

5. APPLICATION TO MULTIMEDIA
Section 4 described the combination of network conditions and

application parameters within which TCP Hollywood operates. In
this section, we apply this analysis to a real-time multimedia applic-
ation, to show that TCP Hollywood supports these applications, in
realistic conditions, where TCP does not.

We consider an IPTV application that uses MPEG-DASH [22] for
delivery. One of the important quality of experience factors of such
applications is zap time: the total time between a viewer selecting a
channel, and content from that channel being displayed. Figure 5
plots the region where inconsistent retransmissions are useful, for
various framing intervals, as derived from Equation 4. At 60fps,
each frame is 16.7ms. Tframing, the duration of each message, is
determined by the number of frames in the message. We set Tmax to
1 second, within the recommended zap time [12].

Sending a small number of frames per message allows TCP re-
transmissions to work, reducing both application-level loss and the
average one-way delay of each frame. However, the cost of sending
a small number of frames is an increase in overheads: each mes-
sage must be independently decodeable, reducing the compression
efficiency of the codec. In addition, the header overhead is high.

We can reduce these overheads by increasing the number of
frames in each message. This allows the multimedia codec to use
predictive frames for efficiency, and increases the ratio of payload
to headers. This cost of this is shown in Figure 5 – sending more

0
0.2
0.4
0.6
0.8

1

T p
la

yo
ut

 (s
ec

on
ds

)
Tframing = 1 frame Tframing = 2 frames Tframing = 3 frames Tframing = 4 frames

0
0.2
0.4
0.6
0.8

1

T p
la

yo
ut

 (s
ec

on
ds

)

Tframing = 5 frames Tframing = 6 frames Tframing = 7 frames Tframing = 8 frames

0
0.2
0.4
0.6
0.8

1

 0 0.5 1 1.5

T p
la

yo
ut

 (s
ec

on
ds

)

Trtt (seconds)

Tframing = 9 frames

 0 0.5 1 1.5

Trtt (seconds)

Tframing = 10 frames

 0 0.5 1 1.5

Trtt (seconds)

Tframing = 11 frames

 0 0.5 1 1.5

Trtt (seconds)

Tframing = 12 frames

Figure 5: The trade-off between Tf raming and the utility of TCP
retransmissions, which operate in the green hatched region

than 10 frames in a message renders TCP retransmissions useless:
they arrive too late to be played out. To recover this lost utility, a
protocol such as TCP Hollywood is needed.

TCP and TCP Hollywood incur different rates of application-level
loss when operating in the red lined regions of Figure 5. For TCP,
this is the number of retransmitted segments (lost because they arrive
too late), multiplied by Nhol, the number of segments lost due to
head-of-line blocking. While TCP Hollywood does not recover the
late losses of TCP, inconsistent retransmissions allow applications to
send usable data (that would be sent later) instead. Further, head-of-
line blocking is removed in TCP Hollywood, eliminating its impact
on loss, where Tplayout is less than Trexmit.

Underlying this example, and the TCP Hollywood protocol, is an
important change in the transport service provided to applications.
DASH applications are layered on top of TCP, and therefore expect
reliability. Under TCP Hollywood, the delivery model is closer to
RTP [21] applications running over UDP [5]: the latency added by
maintaining order and reliability is removed. This shift is necessary
to support low-latency applications, and the techniques proposed by
Bouzakaria et al. [2] show that DASH can be used in this way.

6. DEPLOYABILITY
To evaluate the deployability of TCP Hollywood, we conduc-

ted evaluations between hosts on residential and cellular networks
in the UK, and a server running TCP Hollywood. We implemen-
ted the protocol in the FreeBSD 10.1 kernel. The kernel modi-
fications impact around 300 lines of code, while the intermediary
layer consists of 600 lines of code. The source code is available at
http://dx.doi.org/10.5525/gla.researchdata.291.

Inconsistent retransmissions are the only wire-visible change in
TCP Hollywood; middleboxes may observe segments with the same
sequence number but different payloads. Firewalls might interpret
this as an attack (e.g., man-on-the-side) and disrupt connections.

Our preliminary evaluations are designed to determine the im-
pact that middleboxes might have on TCP Hollywood. We measure
both the scale of their deployment, and any action that they take
toward TCP Hollywood connections. A TCP Hollywood server
on the public Internet was configured to always send inconsistent
retransmissions rather than regular retransmissions; all retransmis-
sions contained new data. The server listened on three ports: 80,
4001, and 5001. Port 80 is used to determine if different behaviour

ISP Port
80 4001

Fixed-line
Andrews & Arnold I I
BT I I
Demon I I
EE I I
Eclipse I I
Sky I I
TalkTalk I I
Virgin Media I I

Cellular
EE O O
O2 O O
Three I I
Vodafone O I

Table 1: Deployability evaluation results, measuring the deliv-
ery of inconsistent retransmissions. I indicates that inconsistent
retransmissions were delivered, O indicates that the original
data was delivered, and F indicates connection failure. No con-
nection failures were observed.

is likely for well-known applications (HTTP in this case). For all
ports, all segments were logged using tcpdump.

Clients recorded all incoming segments. 5% of those received
on ports 80 and 4001 were intentionally discarded to trigger a re-
transmission, with no synthetic loss on port 5001. The payloads
of segments received were compared to those sent, allowing us to
confirm that both the original segment and the inconsistent retrans-
mission crossed the path between the client and server.

The ISPs tested, and the results, are shown in Table 1. For the
three cellular networks that did not deliver inconsistent retrans-
mission, we observed behaviour consistent with transparent split-
connection proxy caching. Our server did not see the loss, and
was not given the opportunity to retransmit. The lost segment was
instead served from the cache.

Where inconsistent retransmissions are not delivered, TCP Hol-
lywood offers no benefit, but is no worse than TCP. We did not
observe any networks where the connection was disrupted. While
our evaluations are not exhaustive, they can be taken together with
those conducted by Honda et al. [11], across 142 networks in 24
countries. They observe similar behaviour: most paths deliver in-
consistent retransmissions, with some delivering the original instead.
Connections are reset in less than 1% of the paths.

7. RELATED WORK
TCP Hollywood builds on Minion [18] and TLTCP [17]. The

Minion suite includes uTCP, a COBS-encoded unordered, datagram
abstraction built atop TCP. Its prioritisation API allows applications
to replace data in the send buffer. In contrast to TCP Hollywood, this
replacement can only occur if the data has not yet been sent. TLTCP
introduces timelines, but creates gaps in the sequence space, making
deployment unlikely – Honda et al. indicate that the sequence space
should be complete. The design and deployability of MultiPath TCP
(MPTCP) [20] highlights the need to consider middlebox interaction.

Many other transport protocols have been designed, including
SCTP [23] and DCCP [14], that offer novel delivery models, and
Partially Error Controlled Connection (PECC) [6] and PRTP-ECN
[8], that improve support for multimedia applications in particular.

The difference between TCP Hollywood and these protocols is our
focus on deployability and middlebox compatibility.

TCP Hollywood uses inconsistent retransmissions and a message-
oriented abstraction to reduce latency, and better utilise the network.
This could also be achieved by providing the same message-oriented
abstraction to applications and multiplexing messages across mul-
tiple paths using MPTCP. Adopting an MPTCP-based strategy alone
removes partial deployability, such as can be achieved by TCP Hol-
lywood. Finding ways of combining these methods to maximise
both deployability and performance is future work.

Datacenter applications (e.g., Web search) often consist of mul-
tiple flows with soft real-time constraints. Deadline-Aware Datacen-
ter TCP (D2TCP) [24] is a modified TCP that allows applications to
express deadlines for their flows, which are used to vary the window
size and congestion backoff. Flows are given larger windows as they
approach their deadlines, ensuring their timely completion. D2TCP
requires ECN in the network, and a modified sender. This enables
deployment in datacenters, but not in the public Internet.

The design of QUIC (Quick UDP Internet Connections) [13]
highlights the trade-off in selecting an appropriate transport-layer
substrate. QUIC offers a connection-oriented protocol that reduces
latency (vs. TCP). By using UDP, QUIC can be implemented en-
tirely in userspace, allowing for rapid and widespread deployment.
However, the QUIC authors show that deployability is not as wide
as if TCP had been used. Our use of TCP constrains the modi-
fications we can make, but we believe that we benefit from wider
deployability. Further measurement studies are needed to show this.

8. CONCLUSIONS
We have presented TCP Hollywood, a transport protocol designed

to support interactive multimedia applications. Our analysis shows
that the main features of TCP Hollywood – inconsistent retransmis-
sions and unordered delivery – reduce latency (vs. TCP), improving
performance. We also conducted preliminary deployability evalu-
ations, indicating that widespread deployment is feasible, given the
constrained set of modifications that our protocol makes to TCP.

In order to verify that our analysis holds, future work includes
real-world performance evaluations. These evaluations will include
measuring both the proportion of usable bytes delivered to the ap-
plication, and the average latency of messages delivered to the
application. This mirrors our analysis: we show that inconsistent
retransmissions increase utility, while the removal of head-of-line
blocking reduces latency. Other future work includes further en-
hancing the performance of the protocol. For example, dependency
metadata could be used as a reason to overrule decisions made based
on timing data. A message may be too late to be played out, but
may still be needed for its dependents.

Ossification has constrained the transport protocol design space:
protocols that do not look like TCP or UDP on the wire are not
widely deployable. Protocols such as TCP Hollywood that chal-
lenge the design assumptions of these substrates may help to reduce
ossification, if deployed at scale. For example, Google’s QUIC has
significant deployment, and so may see a reduction in the number of
firewalls blocking UDP. While UDP remains blocked at its current
levels, TCP-based protocols such as TCP Hollywood offer greater
deployability. We have shown that TCP Hollywood is deployable
on all major fixed and cellular operators in the UK, and that it offers
non-trivial latency advantages to real-time multimedia applications.

9. REFERENCES
[1] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and

C. Dovrolis. What happens when HTTP adaptive streaming

players compete for bandwidth? In Proc. NOSSDAV. ACM,
2012.

[2] N. Bouzakaria, C. Concolato, and J. L. Feuvre. Overhead and
performance of low latency live streaming using
MPEG-DASH. In Proc. IISA. IEEE, 2014.

[3] S. Cheshire and M. Baker. Consistent Overhead Byte Stuffing.
In Proc. ACM SIGCOMM, 1997.

[4] Cisco. Visual Networking Index: Forecast and Methodology,
2012-2017. White Paper, May 2013.

[5] D. D. Clark and D. L. Tennenhouse. Architectural
Considerations for a New Generation of Protocols. In Proc.
ACM SIGCOMM, 1990.

[6] B. Dempsey, T. Strayer, and A. Weaver. Adaptive Error
Control for Multimedia Data Transfer. In Proc. IWACA,
volume 92, 1992.

[7] G. Fairhurst, B. Trammell, and M. Kühlewind. Services
provided by IETF transport protocols and congestion control
mechanisms. IETF, Jan. 2016. Work in Progress.

[8] K. Grinnemo and A. Brunstrom. Evaluation of the QoS
offered by PRTP-ECN: A TCP-compliant partially reliable
transport protocol. In Proc. IWQoS, July 2001.

[9] M. Handley. Why the Internet Only Just Works. BT
Technology Journal, 24(3), July 2006.

[10] S. Hätönen et al. An Experimental Study of Home Gateway
Characteristics. In Proc. IMC. ACM, 2010.

[11] M. Honda et al. Is it still possible to extend TCP? In Proc.
ACM IMC, Nov. 2011.

[12] ITU-T FG IPTV. Consideration on Channel Zapping Time in
IPTV Performance Monitoring. Contribution 545, Apr. 2005.

[13] J. Iyengar and I. Swett. QUIC: A UDP-based secure and
reliable transport for HTTP/2. IETF, June 2015. Work in
Progress.

[14] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion
Control Protocol (DCCP). RFC 4340, Mar. 2006.

[15] A. Mansy, M. Fayed, and M. Ammar. Network-layer fairness
for adaptive video streams. In Proc. IFIP Networking. IEEE,
2015.

[16] S. McQuistin, C. Perkins, and M. Fayed. TCP Hollywood: An
Unordered, Time-Lined, TCP for Networked Multimedia
Applications. In Proc. IFIP Networking. IEEE, 2016.

[17] B. Mukherjee and T. Brecht. Time-lined TCP for the
TCP-friendly delivery of streaming media. In Proc. IEEE
ICNP, 2000.

[18] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford.
Fitting Square Pegs Through Round Pipes: Unordered
Delivery Wire-Compatible with TCP and TLS. In Proc.
USENIX NSDI, Apr. 2012.

[19] J.-R. Ohm. Advances in Scalable Video Coding. Proc. of the
IEEE, 93(1):42–56, Jan 2005.

[20] C. Raiciu et al. How Hard Can It Be? Designing and
Implementing a Deployable Multipath TCP. In Proc. USENIX
NSDI, volume 12, 2012.

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC
3550, July 2003.

[22] I. Sodagar. The MPEG-DASH Standard for Multimedia
Streaming Over the Internet. IEEE MultiMedia, 18(4), April
2011.

[23] R. Stewart. SCTP. RFC 4960, Sept. 2007.
[24] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware

Datacenter TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.

