
Capturing Dynamic Memory Reference Behavior
with Adaptive Cache Topology

Jih-Kwon Peir, Yongjoon Lee* Windsor W. Hsut
Computer & Information Science & Engineering Department Computer Science Division

University of Florida University of California
Gainesville, FL 32611 Berkeley, CA 94720

{peir,yongjoon} @cise.ufl.edu windsorh@cs.berkeley.edu

Abstract

Memory references exhibit locality and are therefore not uni-
formly distributed across the sets of a cache. This skew re-
duces the effectiveness of a cache because it results in the
caching of a considerable number of less-recently-used lines
which are less likely to be re-referenced before they are re-
placed. In this paper, we describe a technique that dynami-
cally identifies these less-recently-used lines and effectively
utilizes the cache frames they occupy to more accurately ap-
proximate the global least-recently-used replacement policy
while maintaining the fast access time of a direct-mapped
cache. We also explore the idea of using these underutilized
cache frames to reduce cache misses through data prefetch-
ing. In the proposed design, the possible locations that a
line can reside in is not predetermined. Instead, the cache
is dynamically partitioned into groups of cache lines. Be-
cause both the total number of groups and the individual
group associativity adapt to the dynamic reference pattern,
we call this design the adaptive group-associative cache.
Performance evaluation using trace-driven simulations of the
TPC-C benchmark and selected programs from the SPEC95
benchmark suite shows that the group-associative cache is
able to achieve a hit ratio that is consistently better than that
of a 4-way set-associative cache. For some of the workloads,
the hit ratio approaches that of a fully-associative cache.

1 Introduction

The least-recently-used (LRU) replacement policy works ex-
tremely well for memory hierarchy caching schemes be-
cause of the locality of reference. However, for processor

* Peir and Lee are supported in part by an NSF CAREER Award (MIP-9624498). il
US Army Grant (DACA39-97-K-0037) and a donation from Intel Corporation.

’ Hsu is also with the IBM Almeden Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use IS granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page
To copy otherwise, to republish, to post on servers or to
redistnbute to lists, requires prior specific permission and/or a fee.
ASPLOS VIII lo/98 CA, USA
Q 1998 ACM l-58113-107.0/98/0010...$5.00

caches where access time and hardware complexity are ma-
jor design issues, a global LRU replacement policy across
the entire cache is impractical. Instead, the cache is typ-
ically organized into sets of cache lines within which the
LRU replacement policy is used. In this study, we observe
that such an organization is a poor approximation to the
global LRU replacement policy because the more-recently-
referenced cache lines are not evenly distributed across all
the cache sets. This non-uniform distribution results in the
caching of a significant number of less-recently-used lines
which are less likely to be re-referenced before replace-
ment. Such an effect is especially pronounced for the direct-
mapped cache which, because of its fast access time, is often
the cache topology of choice for first level caches [7]. For
instance, results from trace-driven simulations show that on
average, 40% of the cache frames in a direct-mapped data
cache contain less-recently-used lines during the execution
of the Transaction Processing Performance Council Bench-
mark C (TPC-C) [27], and that such lines have only about
1% chance of being reused before they are replaced.

In this paper, we describe a technique that dynamically
identifies the underutilized cache frames in a direct-mapped
cache and effectively uses them to store the data that are
more likely to be re-referenced. In this technique, a history
table is used to track the cache lines that have been refer-
enced recently. When a cache miss occurs and the line being
replaced has been referenced recently, it is moved into an al-
ternate location within the cache. The alternate location is
selected from among those that have not been accessed in
the recent past. A small directory is used to keep track of
the more-recently used lines that have been so displaced. In
this design, the possible locations that a line can reside in is
not predetermined as is the case in a set-associative cache.
Instead, the cache is dynamically partitioned into groups of
cache lines with the same index bits. Because the total num-
ber of groups and the individual group associativity adapt to
the reference pattern, we call this design the adaptive group-
associative cache.

To further improve cache performance, the underutilized
cache frames may also be used to accommodate prefetched
data. One of the major issues in data prefetching is that the

240

http://crossmark.crossref.org/dialog/?doi=10.1145%2F291069.291053&domain=pdf&date_stamp=1998-10-01

prefetched data may not actually be used and will pollute
the cache if they are brought in. With the proposed adaptive
group-associative cache, the prefetched data can be confined
to the underutilized cache frames, thereby reducing cache
pollution without the need for a separate prefetch buffer.

Performance evaluation using trace-driven simulations
of the TPC-C benchmark and selected programs from the
SPEC95 benchmark suite shows that the group-associative
cache is able to achieve a hit ratio that is consistently su-
perior to that of a 4-way set-associative cache. For some
of the workloads, the hit ratio approaches that of a fully-
associative cache. The results also show that for most of the
workloads, the miss ratio of the adaptive group-associative
cache is more than 25% lower than those of two recently
proposed enhanced cache organizations, namely the column-
associative cache [2] and the victim cache [lo]. Further-
more, by applying some simple data prefetching techniques
to the group-associative cache, the miss ratio of TPC-C can
be further reduced by about 20%.

The remainder of this paper is organized as follows. In
the next section, we demonstrate that the direct-mapped, 2-
way set associative, and even 4-way set associative caches
do a poor job of tracking the global LRU replacement pol-
icy. In Section 3, we describe the proposed adaptive group-
associative cache, present an example design, and discuss its
performance advantages. In Section 4, we discuss simple
data prefetching techniques for the group-associative cache.
Section 5 contains the results of the performance evaluation
as well as the comparison with the conventional, column-
associative, and victim caches. A brief survey of related
work is in Section 6. Section 7 concludes the paper.

2 Underutilized Cache Frames

The performance of a cache is determined both by the frac-
tion of memory requests it can satisfy and the speed at which
it can satisfy them. The simple direct-mapped cache pro-
vides a fast access time but tends to have a low hit ratio
due to conflict misses [7]. In a direct-mapped cache, a line
can only be located at a fixed position. This restrictive line
placement means that lines that have been assigned the same
cache frame have to replace one another, even when they
have been referenced very recently. In other words, the
direct-mapped cache is unable to always retain the set of
more-recently-used lines, lines that, because of the locality
of reference, are the most likely to be referenced again.

This inability to retain all the more-recently-used lines
can be quantified by mapping the contents of a fully-
associative, LRU-replacement cache to a direct-mapped
cache. In this mapping, the proper index bits of each line
in the fully-associative cache determines its location in the
direct-mapped cache. A snapshot of such a mapping is
shown in Figure 1. In a typical case, the more-recently-
used lines are not evenly distributed across all the sets in
the direct-mapped cache. For instance, several lines (a, b, c,

Fully-Associative Cache

Figure 1: Mapping a Fully-Associative Cache to a Direct-
Mapped Cache.

50

40

f

8 30
ii
z
Q
P 20
%
P

10

0

--^.---.“--...--~..“” ~ -.-.-.--III .--. l___l.

41.7

6 16 32 64
Cache Size (KS)

Figure 2: Average Percentage of Holes (TPC-C).

and d) cannot fit into the direct-mapped cache. As a result,
the direct-mapped cache contains a number of empty frames
or holes.

Figure 2 plots the average percentage of holes that ex-
ist in various cache configurations after each memory refer-
ence during the execution of TPC-C. The results show that
a very significant number of holes exist in both the instruc-
tion and data caches. For the direct-mapped data caches,
between 37.5% and 42.6% of the cache are holes. The cor-
responding ranges for the 2-way and 4-way set associative
caches are about 21-33% and 20-24% respectively. Com-
pared with the data caches, the instruction caches have some-
what fewer holes. About 34-37% of the direct-mapped in-
struction caches are holes. The corresponding numbers for
the 2-way and 4-way set associative caches are about 24-
27% and 17-18% respectively.

In real operation, these holes will be filled with less-
recently-used lines which have a smaller chance of being
reused before they are replaced. Simulations show that for
TPC-C, the respective hit ratio to these less-recently-used
lines is only 1.13%, 0.92%, 0.59%, and 0.30% for the 8KB,
16KB, 32KB, and 64KB direct-mapped data cache.

241

The existence of such holes also limits the perfor-
mance impact of hit-ratio improvement techniques such as
the column-associative cache and the victim cache. The
column-associative cache is a direct-mapped cache in which
each set has an alternate backup set that is accessed through
a secondary hash function [2]. The secondary hash func-
tion is based on flipping the highest-order index bit used in
the primary hash function. When a memory request misses
in the primary set, the cache is accessed again with the
secondary hash function. For maintaining the correct pri-
mary/secondary sequence, a rehash bit is included with each
tag entry to indicate whether the line is accessed through the
secondary hash function. In essence, the column-associative
cache is effectively a 2-way set associative cache which still
contains a significant number of holes. The victim cache is
a separate fully-associative buffer that holds the recent vic-
tims of replacement, i.e. the lines that have been recently
evicted from the direct-mapped cache [lo]. In this approach,
the less-recently-used lines that are evicted from the direct-
mapped cache will filter through the victim cache, thereby
polluting it and reducing its effectiveness. Moreover, a large
number of holes remain in the direct-mapped cache.

3 Adaptive Group-Associative Caches

The basic idea behind the adaptive group-associative cache
is to approach the fast access time of the direct-mapped
cache while improving its hit ratio by identifying and using
the existing holes to store the lines that have been recently
replaced. There are thus three parts to this scheme. The first
is to dynamically identify the holes. The second is to deter-
mine whether a line should be evicted or placed into a hole
upon replacement. The third is to locate the out-of-position
lines, i.e. the lines that have been displaced from their direct-
mapped locations into holes. If the majority of holes are cor-
rectly identified and filled with more-recently-used lines, the
group-associative cache can achieve a hit ratio approaching
that of a fully-associative cache.

A straightforward approach to implementing the group-
associative cache is to maintain two small directories. One
directory, the Set-reference History Table (SHT), tracks the
sets that have been referenced recently. The other directory,
the Out-of-position Directory or OUT directory for short,
records the tags and locations of the lines that have been re-
cently displaced from their direct-mapped positions. When a
miss occurs in a set that is tracked by the SHT, the line to be
replaced is not evicted from the cache but is instead moved
to another location within the cache. The rationale for this is
that the replaced line must have been referenced recently for
its set to be recorded in the SHT. In order for this displaced
line to be located, its address tag and new location or set-ID
is entered into the OUT directory. When a line is neither
recorded in the SHT nor the OUT directory, it is said to be
disposable. Disposable lines are the candidates for eviction
when a miss occurs.

In a group-associative cache, the lines with identical
direct-mapped index bits belong to a congruence group. The
total number of groups and the number of lines within each
group adapt dynamically to the reference pattern. This is
in contrast to conventional caches where the number of sets
and the set-associativity are fixed. For instance, if the refer-
ence pattern is such that different lines with the same direct-
mapped index bits are continually accessed, all the out-of-
position lines may belong to the same congruence group.
When there is more than one line in a congruence group, all
but one must be located out of the direct-mapped location.
The line in the direct-mapped position is located through
the regular cache tag array. As is the case in the column-
associative cache, a fast access time can be achieved in this
case. The out-of-position lines are located through the OUT
directory which is searched in parallel with the cache tag ar-
ray. Besides determining hit or miss, the OUT directory also
provides the location of the out-of-position lines. On a hit to
an out-of-position line, the data array is accessed again with
the correct set-ID obtained from the OUT directory.

3.1 An Example Design

Figure 3 shows the block diagram of a straightforward im-
plementation of the adaptive group-associative cache. The
SHT contains the set-ID (SID) of the sets that have been ref-
erenced recently. Since each set contains a single line in a
direct-mapped cache, the SHT tracks the more-recently-used
lines that are located in their direct-mapped positions. The
OUT directory contains the address tag and the set-ID of
the lines that have been recently displaced from their direct-
mapped locations. In other words, the SHT and the OUT
directory together define the set of lines that are not dispos-
able, i.e. the set of lines that have been referenced recently
and therefore should not be evicted. By design, a line can-
not be recorded in both the SHT and the OUT directory at the
same time. The performance of various SHT and OUT direc-
tory topologies and replacement policies will be investigated
in Section 5. To simplify cache management, a disposable
or d bit is maintained for each line to indicate whether the
line should be evicted when it is replaced. As is the case for
the valid bits, the d bits can be kept in a separate physical
array.

Hit in Direct-Mapped Location. When a memory request
occurs, the tag array, the data array, and the OUT directory
are accessed in parallel. If there is a match in the tag array,
the requested data is accessed as in a regular direct-mapped
cache. The SHT is updated after a reference to reflect the
most-recently-used line.

Hit in Out-Of-Position Lines. If the line is found through
the OUT directory, the data is accessed in the next cycle us-
ing the set-ID fetched from the OUT directory. Afterwards,
the requested line is swapped with the line located in the
direct-mapped location so as to increase the hits to the direct-
mapped position. A multiple-bank data array provides the
needed bandwidth. Meanwhile, the tag corresponding to the

242

SHT

Memory Mdrelh

I

Muluple-Bank (n)

t 1 .
Out-poshon Hit Direct-mapped Hit

Figure 3: Block Diagram of a Group-Associative Cache.

requested line is dropped from the OUT directory and placed
in the tag array at the direct-mapped position. The OUT di-
rectory is updated to record the new out-of-position line if
it is not already there. Note that the cache tag array is used
only to identify hits to the direct-mapped location. Out-of-
position lines are located via the OUT directory. Therefore,
there is no need to maintain the tags of the out-of-position
lines in the tag array. Such entries are simply marked as
invalid. This greatly simplifies the update of the tag array.
In addition, unlike the fully-associative cache in which all
the index bits are part of the address tag, none of the index
bits is included in the direct-mapped tag array in the group-
associative cache.

Cache Miss. There are two cases to consider when the
requested line is not located anywhere in the cache. The
first case happens when the line to be replaced in the direct-
mapped location is disposable as indicated by the d bit. In
this case, the line is simply evicted from the cache. The sec-
ond case occurs when the line in the direct-mapped location
is not disposable. In this case, a hole has to be identified to
hold this line. The primary candidate is the LRU line in the
OUT directory because the newly displaced line has to be en-
tered into the OUT directory if it is not already there. When
the OUT directory has empty slots, a nearby disposable line
is selected for eviction. Such a selection can be implemented
by searching a word of nearby d bits with a leading- 1 detec-
tor. When this fails to find a disposable line, the LRU line in
the OUT directory can be used as the backup candidate. The
non-disposable line is then moved to the evicted line location
in the data array to make room for the requested line. The tag
of the requested line is placed at the direct-mapped location
of the tag array and the tag corresponding to the evicted line
is simply invalidated. In order to avoid extraneous searching

of the SHT and the OUT directory when a cache miss oc-
curs, the cd bits should be accurately maintained. The d bit
corresponding to a line is set when the line is dropped from
the SHT or the OUT directory. It is reset when the line enters
either directory.

Notice that in accessing the data array, an additional mul-
tiplexor is needed to select between the direct-mapped set
and the set-ID retrieved from the OUT directory. However,
this should have minimal impact on the direct-mapped hit
time since the critical path is likely to be in the tag array ac-
cess and the tag comparison logic [171, both of which remain
unchanged from a direct-mapped design.

3.2 Performance Impact

The group-associative cache has a unique combination of
features that enables it to more effectively utilize the avail-
able cache frames so as to reduce miss ratio. First of all, the
lines recorded in both the SHT and the OUT directory have
been referenced recently and therefore should not be evicted
when a cache miss occurs. In other words, the SHT and the
OUT directory help to more accurately maintain the global
LRU information, thus improving the overall hit ratio.

Secondly, when a miss occurs, the line to be replaced in
the direct-mapped location may be moved to another loca-
tion in the cache instead of being evicted. This is similar
to the victim cache approach where the replaced line or vic-
tim is always moved to the victim cache. However, unlike
the victim cache which requires a separate physical cache to
hold the victims, the group-associative cache is able to ef-
fectively use the large number of holes present in the direct-
mapped cache to hold the victims. In a group-associative
cache, only a separate directory is needed to record the tags
and the locations of the out-of-position lines. Therefore, a
much bigger “embedded victim cache” can be built at the
same cost as the original victim cache. Moreover, the SHT
and the OUT directory have a filtering effect, allowing only
the more-recently-used lines to enter the embedded victim
cache. This selective bypassing technique helps to reduce
pollution in the embedded victim cache. In fact, compared
to the fully-associative cache, the group-associative cache is
less affected by cache pollution in that a line with poor lo-
cality can affect only a subset of the cache lines.

Thirdly, by recording the tag and location of the out-of-
position lines in the OUT directory, the group-associative
cache allows these lines to be placed anywhere in the cache,
and not just in a fixed alternate location as is the case in the
column-associative cache. This allows the out-of-position
lines to share a common pool of potential holes, thus en-
abling a more efficient utilization of the cache then would
occur under a static partitioning scheme. In addition, by dy-
namically allocating the holes in response to the reference
pattern, the group-associative cache is able to minimize ad-
verse impact on the hit ratio of the direct-mapped locations.

Finally, the ability to dynamically adjust the number
of groups and the group associativity enables the group-

243

Memory Reference: Ai. Bi, Ci

Cache Tag & Data

SHIT

I
. .

Setj Al

Set I

B

Ci

OUT Dimcwry

Bi ’ ,k AI,J
I . .

Set k

Figure 4: Accessing a Group-Associative Cache.

associative cache to approach a fully-associative cache in
terms of miss ratio. For instance, in contrast to the column-
associative cache which limits each set to only two lines,
the group-associative cache can have groups containing any-
where from 0 to s+l lines, where s is the size of the
OUT directory. This adaptive group size enables the group-
associative cache to better capture program locality. For in-
stance, suppose that three consecutive memory references
Ai, Bi, Ci are mapped to the same cache set i. After the
three references, only Ci will remain in a direct-mapped
cache. In a column-associative cache, Ci will be kept in the
primary location and Bi, in the alternate location. In com-
parison, all three most-recently-used lines will remain in the
group-associative cache, as illustrated in Figure 4. In the fig-
ure, sets j and k- have been identified as potential holes and
are used to hold Ai and Ui respectively.

4 Extension to Handle Data Prefetch

The cache miss ratio can be further reduced by attempting
to fetch data before they are actually needed. The major
issue in such prefetching of data is that it may result in ex-
traneous fetches and memory/bus traffic. Furthermore, if the
prefetched data are entered into the cache, they may replace
useful lines, thereby polluting the cache and generating more
miss traffic. In order to prevent cache pollution, a separate
stream or prefetch buffer [10, 93 has been used to hold the
prefetch data. Since the group-associative cache can dy-
namically identify the cache frames that are not being effec-
tively utilized, it may be worthwhile to explore the idea of
prefetching data into these underutilized cache frames. This
eliminates the need for a separate physical buffer and enables
a bigger “embedded” prefetch buffer.

Several issues are involved in evaluating the cost and ef-
fectiveness of a prefetch scheme. In this paper, we present
some preliminary results. We consider two simple prefetch
methods. Whenever a miss occurs, the sequential prefetch
method prefetches the next sequential line if it is not already
in the cache. Upon the first access to a prefetched line, it
triggers the prefetch of the following sequential line [22].
Thejfiltered sequential prefetch method starts prefetching the

next sequential line on a miss only when a previous sequen-
tial access pattern has been identified [18, 161. In general,
the filtered sequential scheme has a higher prefetch accuracy
but results in a smaller cache hit ratio improvement.

Extending the group-associative cache to handle data
prefetch is straightforward. When the direct-mapped loca-
tion for a prefetched line consists of a disposable line, the
disposable line is simply replaced and the d bit remains
set. When the direct-mapped location is occupied by a
non-disposable line, a hole must be identified to hold the
prefetched line. This goes through the same mechanism that
is used to identify a hole when a regular cache miss occurs
and the direct-mapped location has a non-disposable line.
To reduce any pollution of the OUT directory, the tag corre-
sponding to the prefetched line can be inserted into the OUT
directory in the middle of the LRU sequence.

To some extent, both the victim and column-associative
caches also have the nice property of being able to accom-
modate prefetched data with limited adverse impact to the
existing cache contents. For the victim cache, instead of
placing the prefetched data directly in the direct-mapped
cache, the prefetched lines can be entered into the fully-
associative victim cache. For the column-associative cache,
the prefetched data can be placed at the primary or secondary
location that has the rehash bit set.

5 Performance Evaluation

In this section, we evaluate the performance impact of the
group-associative cache using trace-driven simulations of
workloads from both the commercial and engineering envi-
ronments. Two basic metrics, miss ratio and average mem-
ory access time, are considered. Conventional and other
recently proposed cache organizations, namely the victim
cache and the column-associative cache, are evaluated and
compared against the group-associative cache. In addition,
the effectiveness of data prefetching on the selected cache
organizations are also investigated.

5.1 Simulation Model

We simulate separate and identical instruction and data Lr
caches. The size of the Lr cache ranges from 8 to 64KB with
set-associativities of 1,2, and 4. Fully-associative caches are
also considered. These Lr caches are backed up by a 5 12KB
4-way set-associative unified level 2 (La) cache. The line
sizes of the L1 and L2 caches are 32 bytes and the LRU re-
placement policy is used in all the cases. Inclusion property
is enforced between the L1 and Lz data caches.

For the group-associative cache, we vary the number of
entries in the SHT from one-eighth to one-half the number of
L1 cache lines (i.e. 64 to 256 lines for 16KB cache), and the
number of entries in the OUT directory from one-sixteenth
to three-eighth the number of L1 cache lines (i.e. 32 to 192
lines for 16KB cache). In addition, we vary the number of
sets for both the SHT and the OUT directory from 1 to 16.

244

Within each set, we compare the true LRU replacement pol-
icy with a simpler partitioned LRU (PLRU) scheme [24].
Note that when the requested line is found in the OUT di-
rectory, it needs to be swapped with the line located in the
direct-mapped location of the data array. To simplify this
swap, the number of sets in the OUT directory must not ex-
ceed that in the SHT. In our simulations, we assume an equal
number of sets in both directories and an identical design for
both the instruction and data L1 caches so as to confine the
total design space.

In addition, we simulate fully-associative victim caches
of one-sixteenth the L1 cache size (i.e. 32 lines for 16KB
cache). For the column-associative cache, we determine the
secondary location by flipping the highest-order index bit.
As described in [2], we include a rehash bit with each entry
of the tag array to guide the search and replacement.

We consider two simple data prefetching techniques, se-
quential prefetch [22] and filtered sequential prefetch [18,
161. For the filter, we use an &entry history table to iden-
tify sequential access patterns. Based on these techniques,
we evaluate the hit ratio improvement as well as the extra
memory traffic generated by data prefetching. For the direct-
mapped cache, we assume that a separate prefetch buffer
thirty-two times smaller than the L1 cache (i.e. 16 lines
for 16KB cache) is used to hold the prefetched lines. For
the victim cache, we use the additional victim cache to hold
both the recent victim lines and the prefetched lines. As in
the group-associative cache, the prefetched line is placed in
the middle of the LRU sequence. Finally, for the column-
associative cache, we try to place the prefetched lines in the
locations that contain rehashed lines.

In order to compute the average memory access time,
the cache miss penalties at various cache levels are needed.
Without going into a detailed timing analysis, we estimate
these penalties based on a general trend of current micro-
processors. We assume that a hit in a conventional direct-
mapped L1 cache requires a single cycle. If the mem-
ory request hits in the Lz cache, it takes 8 cycles to sat-
isfy the request. When the request misses both the L1 and
Lz caches, the total access delay is 50 cycles. For set-
associative caches, we assume that the cycle time is length-
ened by up to 20% as suggested in [111, and adjust the miss
penalties accordingly.

For the victim, column-associative, and group-
associative caches, an extra delay is encountered when the
requested data is present in an alternative location. Due to
the fact that the processor pipeline is increasingly complex
and difficult to turn around, we assume that the extra delay
is 2 cycles. This is a conservative assumption since no other
request is allowed to access the cache during this three cycle
period. Note that the search of the alternative locations does
not add to the L1 cache miss penalty because the L1 cache
miss can be triggered once the requested line is not present
in the primary location. In other words, the delay of search-
ing the alternative locations can be overlapped with the L1
cache miss penalty.

5.2 Workloads and Traces

We simulate workloads from both the commercial and engi-
neering environments. For the commercial environment, we
use the Transaction Processing Performance Council Bench-
mark C (TPC-C) [27]. The TPC-C benchmark is an indus-
try standard benchmark for measuring the performance of
on-line transaction processing systems. It is modeled after
an order-entry environment and involves a mix of five dis-
tinct transaction types. Our trace captures the user, kernel
and shared library activities of the server side of the work-
load. This was collected by a software tracing tool on an
IBM RISC System/6000 system running AIX.

For the engineering environment, we use 11 applications
from the SPEC95 benchmark suite [25]. Among these 11 ap-
plications are 5 integer intensive programs (Compress, Ccc,
Go, Li, and Vortex), and 6 floating-point intensive programs
(Fpppp, Hydro2d, SuZcor; Tomcatv, Turb3d, and WaveS).
We used Sun’s Shade tool [26] in a SPARC/Solaris en-
vironment to trace these SPEC95 applications. The stan-
dard SPEC95 input files were used. In order to avoid the
initialization phase and capture the essential characteristics
of these applications, the first 2 billion instructions were
skipped. Our results are based on simulating 2 billion in-
structions after the caches are warmed-up.

5.3 Performance of Group-Associative Cache

We simulate different sizes and topologies of the SHT and
OUT directory to establish reasonable design points. We use
the notation (a,b) to denote a particular design point where
the sizes of the SHT and OUT directory with respect to the
number of L1 cache lines are a and b respectively. There are
several important results.

First, increasing the number of SHT entries beyond
three-eighth the number of cache lines hardly improves the
miss ratio. On the other hand, small SHTs with entries to
track only one-eighth the number of cache lines do not per-
form well. In this case, increasing the size of the OUT direc-
tory may even hurt the miss ratio. This is because the SHT is
responsible for identifying the more-recently-used lines that
should be moved into the OUT directory. When the SHT is
small, it is identifying too few more recently-used-lines. As
a result, some lines that have not been referenced for a while
will remain in the OUT directory. A balance between the ca-
pacity to store more-recently-used out-of-position lines and
the ability to identify them is desirable.

Second, increasing the number of entries in the OUT di-
rectory usually improves the miss ratio. However, the im-
provement starts to diminish when more than one-quarter of
the locations are allocated to the out-of-position lines. This
is due to the fact that although increasing the number of OUT
directory entries does improve the hit ratio to the out-of-
position lines, it also hurts the hit ratio to the direct-mapped
locations.

Third, increasing the number of sets in the SHT and OUT

245

Table 1: Data Cache Hit Ratio with Different SHT/OUT Di-
rectory Replacement Policies (TPC-C).

directory from 1 to 16 has limited effect on performance.
Moreover, as shown in Table 1, the difference between the
true LRU and the PLRU replacement schemes is very minor.
Intuitively, we expect a fully-associative design (i.e. set=l)
with true LRU replacement to outperform the set-associative
design with PLRU replacement. However, the difference
should be very small because the SHT and OUT directory
only help to identify the lines that should be kept in the
cache. They do not directly determine the lines that should
be evicted. Therefore, even though the SHT and OUT direc-
tory become a little less accurate when they are organized
into more sets, any adverse impact on the overall miss ra-
tio is limited. In fact, the g-set configuration shows a little
better hit ratios than the l-set configuration. A deeper anal-
ysis reveals that this unexpected behavior is a consequence
of our algorithm for filling the OUT directory. Recall that
the algorithm tries to keep the OUT directory full. In other
words, it always tries to hoard cache locations for storing the
out-of-position lines. Depending on the reference pattern,
such an aggressive policy may adversely affect the hit ratio
to the direct-mapped locations. When the number of sets is
increased, the hoarding phenomenon is effectively reduced
because the OUT directory has more sets each of which has
to be separately filled.

Based on the simulation results, we select two SHT sizes
-- i and i. When the number of entries in the SHT is two-
eighth the number of cache lines, the OUT size is either &
or &. When the SHT size is 2, the number of entries in the
OUT directory is four-sixteenth or five-sixteenth the number
of cache lines. Since the number of sets and the replace-
ment schemes have little performance impact, we show only
the results with 8 sets and true LRU replacement. While
we evaluated the group-associative cache for both the in-
struction and data streams, due to space constraints, we only
present the results for the data references.

Observe in Figure 5 that for TPC-C, the group-
associative cache is able to achieve a miss ratio that is com-
parable to or better than that of the 4-way set-associative
cache. In certain cases, the miss ratio approaches that of the
fully-associative cache. The results suggest that the group-
associative cache can indeed retain a majority of the more-
recently-used lines. Further confirming this effect, we find
that the average percentage of holes in the 8KB, 16KB,

17

16

15

14

13
T
@ 12
.I!

g p: 11

I .-
I

10

In ;;i 9
0

li 6

7

6

5

4

3

0

Am
0

“$
0

a
i.

- 1-
0 Conv-cache

1’
DM

0

16

Cache Size (KB)

Figure 5: Miss Ratio Comparison (TPC-C).

32KB, and 64KB data caches has improved respectively
from 37.5%, 39.9%, 42.6%, and 41.7% in the direct-mapped
design to 18.2%, 18.7% 19.9%, and 19.0% in the (;,A)
group-associative caches. With a slightly bigger OUT di-
rectory (h), the percentage of holes is further reduced to
15.9%, 15.5%, 15.6%, and 14.5% respectively.

In addition, the selected group-associative caches achieve
lower miss ratio than the victim and column-associative
caches and the margin can be very sizable. For instance,
for the 32KB caches, the miss ratio for the victim cache and
the column-associative cache is about 28% and 26% higher
than that for the (i,$) group associative cache. Among the
group-associative caches, those with bigger SHT and OUT
directories perform better. For example, (i, &) has the low-
est miss ratio followed by (i ,h). The victim and the column
associative caches show very similar miss ratio that is close
to that of the 2-way set-associative cache.

There are two fundamental reasons as to why the group-
associative cache is able to achieve a better overall miss
ratio. First, the group-associative cache has the ability to
capture extra hits to the out-of-position lines. Second, it is
able to do this with minimal adverse impact on the hit ratio
of the direct-mapped locations. This is illustrated in Fig-
ure 6 in which we plot the hit ratio to the direct-mapped and
the alternative locations for the victim, column-associative
and group-associative caches. As expected, the hit ratio to
the direct-mapped locations remain unchanged for the vic-
tim cache. This hit ratio is reduced for both the column-
and group-associative caches. However, due to the fex-
ible locations for the out-of-position lines and the adap-
tive sharing of these locations, the reduction in hit ratio to
the direct-mapped locations is very minimal for the group-
associative cache. For instance, the hit ratio decreases from

246

Cache Size (KB)

32

Figure 6: Impact on Direct-Mapped Hit Ratio (TPC-C).

89.1% to 88.8%, and 88.7% for the 32KB (i,&) and (i,&)
group-associative caches while it decreases to 88.1% for the
column-associative cache.

Furthermore, notice that the hit ratio of the alternative
locations is higher for the group-associative cache. With
a 32KB cache, the hit ratio of the out-of-position lines is
4.40% for the (i,&) group-associative cache and 5.24% for
the (g,$) group-associative cache. The hit ratio of the al-
ternative locations in the column-associative cache is 3.84%
while the hit ratio of the victim cache is only 2.74%. In
comparison with the victim cache, the higher hit ratio of the
group-associative cache comes from the utilization of holes
to build the bigger embedded victim cache plus the ability to
selectively bypass this embedded victim cache. When com-
pared to the column-associative cache, the group-associative
cache prevails because of its ability to dynamically adjust
the number of groups and the group associativity.

The different delays in accessing the direct-mapped and
the alternative locations should be considered in evaluating
the performance of the various cache organizations. Recall
that in our simulation model, we assume that a hit to an alter-
native location in the victim, column- and group-associative
caches takes 3 cycles. Based on results in [111, we also as-
sume that the set-associative design lengthens the cycle time
by up to 20%.

Figure 7 summarizes the average memory access time for
the data references with various cache organizations. Note
that all the results are normalized to the direct-mapped cycle
time. Due to the longer cycle time with the set-associative
cache, the conventional cache does not perform as well as
the other cache organizations. Only the 4-way set asso-
ciative design with an optimistic 10% cycle time degrada-
tion shows performance comparable to the victim and the
column-associative caches. The group-associative cache has
the shortest average memory access time. For instance, for
the 32KB cache, the best average memory access time for
the group-associative, victim and column-associative caches
is 2.44, 2.54, and 2.55 respectively.

3.2
l-

. -.“.l.” ...” --.. -.

2.3

2.2 t,-----

a 16 32

Cache Size (KB)

C

2

F

a

~

C

-I

A

PI

-

+DM

(2-way.lO%

:2-way.ZO%

)4way,lO%

)4way,ZO%

. Group-asso

b Victim

I Column-asst

64

Figure 7: Ave. Memory Access Time Comparison (TPC-C).

Total Extra Bits 11 SHT 1 OUT 1 d-bit
13.7K II 7 x 384 I (32+7) x 256 I I x 1024

I II ,\
I

Table 2: Extra Space Calculation

The group-associative cache does require additional chip
area to implement the SHT, the OUT directory and the dis-
posable bits. As shown in Table 2, the extra space needed
for the SHT and OUT directory of the 32KB ($,&) group-
associative cache with 8 sets and a 40-bit address space is
about 13.7 Kilo-bits (Kb). Without accounting for the pe-
ripheral logic, this additional area is less than 5% of that
taken up by the 32KB direct-mapped cache. In comparison,
the extra area needed for a victim cache with one-sixteenth
the number of L1 cache lines is over 6%.

5.4 Performance with Data Prefetch

Figure 8 summarizes the miss ratio improvement as well as
the increase in memory traffic that results from applying the
two simple prefetch mechanisms to the various cache de-
signs. Each column in the figure is divided into 3 segments.
The bottom-most segment depicts the cache miss ratio with
data prefetch. The second segment represents the miss ra-
tio improvement that comes from prefetching the data. The
last segment reflects the net extra memory traffic that results
when prefetching is performed. Note that in this figure, we
consider only the (:,A) group-associative cache.

As expected, the two prefetching schemes both reduce
the cache miss ratio markedly for all the cache designs.
For instance, for the 32KB caches, sequential prefetch re-
duces the miss ratio for the direct-mapped, victim, column-
associative and group-associative caches from 10.9%, 8.2%,

247

Figure 8: Mi ss Ratio and Memory Traffic with Data
Prefetching (TPC-C)

8.1%, and 6.4% to 7.9%, 6.2%, 6.3%, and 4.4% respec-
tively. However, memory traffic is also increased consid-
erably. With sequential prefetch, memory traffic is increased
by 65%, 78%, 62%, and 52% respectively. The correspond-
ing figures with filtering are 3 1 %, 4 l%, 32%, and 3 1%.

In comparison with the direct-mapped cache with sep-
arate prefetch buffer, the victim cache and the column-
associative cache, the group-associative cache handles data
prefetching better in terms of both the miss ratio improve-
ment and the additional memory traffic. This is due to the
fact that the group-associative cache is able to effectively
control any cache pollution that may result from prefetch-
ing. In addition, the adaptive group associativity allows the
prefetched lines to stay in the cache longer, thus increasing
their chances of being used before replacement.

5.5 SPEC95 Applications

Figures 9 plots the data miss ratios for TPC-C and the se-
lected programs from the SPEC95 benchmark suite. Ob-
serve that the selected SPEC95 programs, especially those
that are floating-point intensive, show vastly different cache
behavior. In these figures, we consider only two configura-
tions, namely (i, &) and (5, A), for the group-associative
cache. To reduce clutter, we only present the effect of apply-
ing filtered sequential prefetch.

The group-associative cache consistently achieves a miss
ratio that is equal to or better than that of the 4-way set-
associative cache for the selected SPEC95 programs. The
miss ratio improvement is especially significant for applica-
tions such as Gee, Go, Tomcatv, Turb3d, Vortex, and Wave5
which exhibit high conflict misses. For instance, Turb3d’s
miss ratio with a 32KB cache is reduced from 5.5% and
3.7% with the direct-mapped and 4-way set-associative de-
signs respectively to 2.6% with the ($, 6) group-associative
cache. On the other hand, since most of the conflict misses

for Compress, Hydro2d and Su2cor can be eliminated by
the 2-way set-associative design, the benefit of the group-
associative cache is not as dramatic. Observe also that the
difference in miss ratio between the two group-associative
caches is very minor for these SPEC95 applications.

Notice that the cache behavior of Tomcatv and Wave5 is
unusual in that the direct-mapped, set-associative and group-
associative designs may slightly out-perform the fully-
associative cache in certain configurations. This is due to the
fact that memory references with a constant stride are very
common in these programs. Such a reference pattern results
in heavy conflicts and pollutes the entire fully-associative
cache. On the other hand, the group-associative cache is
able to handle the conflicts by effectively using the holes
while confining the pollution to a subset of the cache.

The filtered sequential prefetch scheme improves the
miss ratio of the group-associative cache for all the pro-
grams, especially those that are floating-point intensive.
For instance, the respective improvement for Hydro2d and
Su2cor are about 60-70% and 30-60%. For Su2cor, prefetch-
ing is especially effective for the larger caches. In addition,
the difference between the two group-associative configura-
tions is much bigger when prefetching is performed. This
is because Su2cor has a large amount of strided references
and an uneven reference distribution across the cache sets.
In this case, a larger cache and a bigger SHT/OUT direc-
tory will enable the prefetched lines to be kept longer so that
they are more likely to be referenced. Gee, Li, Vortex, Tom-
catv, Turb3d, and Wave5 also show sizable improvements in
group-associative miss ratio with prefetching.

6 Related Work

A general strategy to simultaneously attain a fast cache ac-
cess time and a high hit ratio is to have two cache access
paths. A fast path is used to achieve fast access time for the
majority of memory references while a relatively slow path
is used to boost the effective hit ratio. Two broad categories
of such techniques can be distinguished.

The general idea in the first category is to decouple the
tag and data paths in cache access so that, for the major-
ity of memory references, the fast data array access and line
selection can be carried out independently of the slow tag
array access and comparison. Examples of techniques in
this category include the MRU cache [4], the line-ID predic-
tion scheme [15,3], the partial-tag matching technique [14],
the Direct-mapped Access Set-associative Check (DASC)
cache [21], the difference-bit directory [12], and the alter-
native tag path method [171.

Techniques in the second category access a direct-
mapped cache sequentially more than once in order to
achieve a fast access time for the first access and a high hit
ratio as a whole. Examples of such techniques include the
hash-rehash cache [l] and the column-associative cache [2].
A way to extend the column-associative cache to include

248

7 r-------

‘.‘\ ..\ : ‘..>.,
.---.--.>a

~

..-. . .

25

Figure 9: Cache Miss Ratio for Conventional and Group-Associative Caches (TPC-C and SPEC95).

249

multiple alternative localions is described in [28, 51.
A number of methods have been proposed to reduce

cache conflict misses. One technique is to build a small
buffer or victim cache to hold the lines that have been re-
cently evicted from the cache [lo]. The HP-PA7200 uses
a small on-chip FIFO buffer called the assist cache, in
addition to a direct-mapped L1 cache, to ensure that the
very recently used data will not be susceptible to conflict
misses [131. In [19, 81, a small fully-associative buffer is
proposed for holding the lines that exhibit poor temporal lo-
cality so as to prevent them from entering and polluting the
primary direct-mapped cache. Another approach to reduc-
ing conflict misses is to use better hashing or mapping func-
tions [23, 20,6].

7 Conclusions

In this paper, we observe that the direct-mapped cache, in-
stead of faithfully maintaining the lines that have been refer-
enced recently, retains a large number of less-recently-used
lines that are not likely to be re-referenced before they are
replaced. Based on this observation, we propose an adaptive
group-associative cache that is able to dynamically identify
the underutilized cache frames and to effectively use them
to selectively retain some of the lines that are to be replaced.
Performance evaluation using trace-driven simulations of
both the TPC-C benchmark and selected programs from the
SPEC95 benchmark suite show that the group-associative
cache is able to decisively outperform the conventional and
various performance-enhanced cache organizations. In par-
ticular, the miss ratio of the adaptive group-associativecache
is consistently better than that of the 4-way set-associative
cache and, in some cases, even approaches that of the fully-
associative cache. As a result, the adaptive group-associative
cache has the lowest average memory access time among the
different cache organizations. Furthermore, our preliminary
assessment indicates that the group-associative cache is able
to handle data prefetching better than other cache organiza-
tions. In terms of cost, a first-cut estimate shows that the
directories of the group-associative cache require about 5%
of the area taken up by the cache.

8 Acknowledgment

The authors would like to thank Honesty Young of IBM Re-
search and the anonymous referees for their valuable com-
ments.

References

[11 A. Agarwal, J. Hennessy, and M. Horowitz, “Cache Performance of
Operating Systems and Multiprogramming,” ACM Trans. Computer
Systems, Vol. 6(4), Nov. 1988, pp. 393-431.

[21 A. Agarwal, and S. Pudar, “Column-Associative Caches: A Tech-
nique for Reducing the Miss Rate of Direct-Mapped Caches,” Pmt.
20th Int’l Symp. Camp. Arch., San Diego, CA, May 1993, pp. 179-
190.

131

[41

[51

KJI

[71

@I

191

[lOI

1111

WI

[131

(141

[I51

1161

u71

1181

[I91

PO1

WI

GQI

WI

~241

WI
WI
1271

WI

B. Calder, D. Grunwald, and J. Emer, “Predictive Sequential As-
sociative Cache,” Proc. 2nd Symp. High-Perfirmance Camp. Arch.,
San Jose, CA, Jan. 1996, pp. 244-253.

J. Chang, H. Chao, and K. So, “Cache Design of A Sub-Micron
CMOS Systeml370,” Pmt. 14th Int’l Symp. Cvmp. Arch.,
Pittsburgh, PA, June 1987, pp. 208-213.
B. Chung, and J. Peir, “LRU-Based Column Associative Caches,”
Camp. Arch. News, Vol. 26(2) May 1998, pp. 9-17.
A. Gonzalez, M. Valero, N. Topham and J.M. Parcerisa, “Eliminating
Cache Conflict Misses Through XOR-Based Placement Functions,”
Proc. 1 Ith Int’l Corzference Supercomputing, Vienna, Austria, 1997,
pp. 76-83.

M. Hill “A Case for Direct-Mapped Caches,” IEEE Computer, Vol.
21(12), Dec. 1988, pp. 25-10.

T. Johnson, and W. Hwu, “Run-Time Adaptive Cache Hierarchy
Management via Reference Analysis,” Proc. 24rh Int’l Symp. Camp.
Arch., Denver, CO, Jun. 1997, pp. 315-326.

D. Joseph, and D. Cirunwald, “Prefetching using Markov Predictors,”
Proc. 24th Int’l Symp. Camp. Arch., Denver, CO, Jun 1997, pp. 252-
263.
N. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of A Small Fully-Associative Cache and Prefetch Buffers,”
Proc. 17th Int’l Symp. C&p. Arch., Seattle, WA, May 1990, pp. 364-
373.
N. Jouppi and S. Wilton “Tradeoffs in Two-Level On-Chip Caching,”
Proc. 21st Int’l Symp. Camp. Arch., Chicago, IL, April 1994. pp. 34-
45.
T. Juan, T. Lang, and J. Navarro, “The Difference-bit Cache,” Proc.
23rd Int’l Symp. Camp. Arch., Philadelphia, PA, May 1996, pp. 114-
120.

G. Kurpanek, et. al, “PA7200: A PA-RISC Processor with Integrated
High Performance MP Bus Interface,” COMPCUNDigest ofPuper.v,
San Francisco, CA, Feb. 1994, pp. 375-382.
L. Liu “Cache Design with Partial Address Matching,” MICRO’27,
San Jose, CA, Dec. 1994, pp. 128-136.
L. Liu, “History Table for Set Prediction for Accessing a Set-
Associative Cache,” United States Patent No. 5,418,922, May 1995.
S. Palacharla, and R. Kessler, “Evaluating Stream Buffers as a Sec-
ondary Cache Replacement,” Proc. 16th Int’l Symp. Camp. Arch.,
Chicago, IL, April 1994, pp. 24-33.
J. Peir, W. Hsu, H. Young, and S. Ong, “Improving Cache Perfor-
mance with Balanced Tag and Data Paths,” Pmt. 7th Int’l Corzf Ar-
chitectural Supportfor Programming Languages and Operating Sys-
tems, Cambridge, MA, Oct. 1996, pp. 268-278.
J. Pomerene, et. al, “Prefetching System for a Cache Having a
Second Directory for Sequentially Accessed Blocks,” US Patent
4807110, Feb. 1989.
J. Rivers, and E. Davidson, “Reducing Conflicts in Direct-Mapped
Caches with A Temporality-Based Design,” Proc. 1996 Int’l Cw$
Parallel Pmcessin~, Ithaca, NY, Aug. 1996, pp. 151-162.
A. Seznec, “A Case for Two-Way Skewed-Associative Caches,”
Proc. 20th Int’l Symp. Camp. Arch., San Diego, CA, May 1993, pp.
169-178.
A. Seznec, “DASC Cache,” Proc. 1st Symp. High-Pe@rmunce
Camp. Arch., Raleigh, NC, Jan. 1995, pp. 134-143.
A. Smith, “Sequential Program Prefetching in Memory Hierarchies,”
IEEE Computer, Vol. 11(12), Dec. 1978, pp. 7-21.
A. Smith, “Cache Memories,” Computing Surveys, Vol. 14(3), Sep.
1982, pp. 473-530.
K. So and R. Rechtschaffen, “Cache Operations by MRU Change,”
IEEE Trans. Computers, Vol. 37(6), Jun. 1988, pp. 700-709.
SPEC CPU95 Benchmark Suite, Version 1.10, Aug. 1995.
Sun Microsystems, “Introduction to Shade,” Revision C, April 1993.
TPC Council, “TPC Benchmark C, Standard Specification, Rev.
3.6.2,” Jun. 1997.
C. Zhang, X. Zhang, and Y. Yan, “Two Fast and High-Associativity
Cache Schemes,” lE.EEMicro, Vol. 17(5), Sep/Oct 1997, pp. 40-49.

250

