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Abstract 

Memory references exhibit locality and are therefore not uni- 
formly distributed across the sets of a cache. This skew re- 
duces the effectiveness of a cache because it results in the 
caching of a considerable number of less-recently-used lines 
which are less likely to be re-referenced before they are re- 
placed. In this paper, we describe a technique that dynami- 
cally identifies these less-recently-used lines and effectively 
utilizes the cache frames they occupy to more accurately ap- 
proximate the global least-recently-used replacement policy 
while maintaining the fast access time of a direct-mapped 
cache. We also explore the idea of using these underutilized 
cache frames to reduce cache misses through data prefetch- 
ing. In the proposed design, the possible locations that a 
line can reside in is not predetermined. Instead, the cache 
is dynamically partitioned into groups of cache lines. Be- 
cause both the total number of groups and the individual 
group associativity adapt to the dynamic reference pattern, 
we call this design the adaptive group-associative cache. 
Performance evaluation using trace-driven simulations of the 
TPC-C benchmark and selected programs from the SPEC95 
benchmark suite shows that the group-associative cache is 
able to achieve a hit ratio that is consistently better than that 
of a 4-way set-associative cache. For some of the workloads, 
the hit ratio approaches that of a fully-associative cache. 

1 Introduction 

The least-recently-used (LRU) replacement policy works ex- 
tremely well for memory hierarchy caching schemes be- 
cause of the locality of reference. However, for processor 
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caches where access time and hardware complexity are ma- 
jor design issues, a global LRU replacement policy across 
the entire cache is impractical. Instead, the cache is typ- 
ically organized into sets of cache lines within which the 
LRU replacement policy is used. In this study, we observe 
that such an organization is a poor approximation to the 
global LRU replacement policy because the more-recently- 
referenced cache lines are not evenly distributed across all 
the cache sets. This non-uniform distribution results in the 
caching of a significant number of less-recently-used lines 
which are less likely to be re-referenced before replace- 
ment. Such an effect is especially pronounced for the direct- 
mapped cache which, because of its fast access time, is often 
the cache topology of choice for first level caches [7]. For 
instance, results from trace-driven simulations show that on 
average, 40% of the cache frames in a direct-mapped data 
cache contain less-recently-used lines during the execution 
of the Transaction Processing Performance Council Bench- 
mark C (TPC-C) [27], and that such lines have only about 
1% chance of being reused before they are replaced. 

In this paper, we describe a technique that dynamically 
identifies the underutilized cache frames in a direct-mapped 
cache and effectively uses them to store the data that are 
more likely to be re-referenced. In this technique, a history 
table is used to track the cache lines that have been refer- 
enced recently. When a cache miss occurs and the line being 
replaced has been referenced recently, it is moved into an al- 
ternate location within the cache. The alternate location is 
selected from among those that have not been accessed in 
the recent past. A small directory is used to keep track of 
the more-recently used lines that have been so displaced. In 
this design, the possible locations that a line can reside in is 
not predetermined as is the case in a set-associative cache. 
Instead, the cache is dynamically partitioned into groups of 
cache lines with the same index bits. Because the total num- 
ber of groups and the individual group associativity adapt to 
the reference pattern, we call this design the adaptive group- 
associative cache. 

To further improve cache performance, the underutilized 
cache frames may also be used to accommodate prefetched 
data. One of the major issues in data prefetching is that the 
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prefetched data may not actually be used and will pollute 
the cache if they are brought in. With the proposed adaptive 
group-associative cache, the prefetched data can be confined 
to the underutilized cache frames, thereby reducing cache 
pollution without the need for a separate prefetch buffer. 

Performance evaluation using trace-driven simulations 
of the TPC-C benchmark and selected programs from the 
SPEC95 benchmark suite shows that the group-associative 
cache is able to achieve a hit ratio that is consistently su- 
perior to that of a 4-way set-associative cache. For some 
of the workloads, the hit ratio approaches that of a fully- 
associative cache. The results also show that for most of the 
workloads, the miss ratio of the adaptive group-associative 
cache is more than 25% lower than those of two recently 
proposed enhanced cache organizations, namely the column- 
associative cache [2] and the victim cache [lo]. Further- 
more, by applying some simple data prefetching techniques 
to the group-associative cache, the miss ratio of TPC-C can 
be further reduced by about 20%. 

The remainder of this paper is organized as follows. In 
the next section, we demonstrate that the direct-mapped, 2- 
way set associative, and even 4-way set associative caches 
do a poor job of tracking the global LRU replacement pol- 
icy. In Section 3, we describe the proposed adaptive group- 
associative cache, present an example design, and discuss its 
performance advantages. In Section 4, we discuss simple 
data prefetching techniques for the group-associative cache. 
Section 5 contains the results of the performance evaluation 
as well as the comparison with the conventional, column- 
associative, and victim caches. A brief survey of related 
work is in Section 6. Section 7 concludes the paper. 

2 Underutilized Cache Frames 

The performance of a cache is determined both by the frac- 
tion of memory requests it can satisfy and the speed at which 
it can satisfy them. The simple direct-mapped cache pro- 
vides a fast access time but tends to have a low hit ratio 
due to conflict misses [7]. In a direct-mapped cache, a line 
can only be located at a fixed position. This restrictive line 
placement means that lines that have been assigned the same 
cache frame have to replace one another, even when they 
have been referenced very recently. In other words, the 
direct-mapped cache is unable to always retain the set of 
more-recently-used lines, lines that, because of the locality 
of reference, are the most likely to be referenced again. 

This inability to retain all the more-recently-used lines 
can be quantified by mapping the contents of a fully- 
associative, LRU-replacement cache to a direct-mapped 
cache. In this mapping, the proper index bits of each line 
in the fully-associative cache determines its location in the 
direct-mapped cache. A snapshot of such a mapping is 
shown in Figure 1. In a typical case, the more-recently- 
used lines are not evenly distributed across all the sets in 
the direct-mapped cache. For instance, several lines (a, b, c, 

Fully-Associative Cache 

Figure 1: Mapping a Fully-Associative Cache to a Direct- 
Mapped Cache. 
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Figure 2: Average Percentage of Holes (TPC-C). 

and d) cannot fit into the direct-mapped cache. As a result, 
the direct-mapped cache contains a number of empty frames 
or holes. 

Figure 2 plots the average percentage of holes that ex- 
ist in various cache configurations after each memory refer- 
ence during the execution of TPC-C. The results show that 
a very significant number of holes exist in both the instruc- 
tion and data caches. For the direct-mapped data caches, 
between 37.5% and 42.6% of the cache are holes. The cor- 
responding ranges for the 2-way and 4-way set associative 
caches are about 21-33% and 20-24% respectively. Com- 
pared with the data caches, the instruction caches have some- 
what fewer holes. About 34-37% of the direct-mapped in- 
struction caches are holes. The corresponding numbers for 
the 2-way and 4-way set associative caches are about 24- 
27% and 17-18% respectively. 

In real operation, these holes will be filled with less- 
recently-used lines which have a smaller chance of being 
reused before they are replaced. Simulations show that for 
TPC-C, the respective hit ratio to these less-recently-used 
lines is only 1.13%, 0.92%, 0.59%, and 0.30% for the 8KB, 
16KB, 32KB, and 64KB direct-mapped data cache. 
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The existence of such holes also limits the perfor- 
mance impact of hit-ratio improvement techniques such as 
the column-associative cache and the victim cache. The 
column-associative cache is a direct-mapped cache in which 
each set has an alternate backup set that is accessed through 
a secondary hash function [2]. The secondary hash func- 
tion is based on flipping the highest-order index bit used in 
the primary hash function. When a memory request misses 
in the primary set, the cache is accessed again with the 
secondary hash function. For maintaining the correct pri- 
mary/secondary sequence, a rehash bit is included with each 
tag entry to indicate whether the line is accessed through the 
secondary hash function. In essence, the column-associative 
cache is effectively a 2-way set associative cache which still 
contains a significant number of holes. The victim cache is 
a separate fully-associative buffer that holds the recent vic- 
tims of replacement, i.e. the lines that have been recently 
evicted from the direct-mapped cache [lo]. In this approach, 
the less-recently-used lines that are evicted from the direct- 
mapped cache will filter through the victim cache, thereby 
polluting it and reducing its effectiveness. Moreover, a large 
number of holes remain in the direct-mapped cache. 

3 Adaptive Group-Associative Caches 

The basic idea behind the adaptive group-associative cache 
is to approach the fast access time of the direct-mapped 
cache while improving its hit ratio by identifying and using 
the existing holes to store the lines that have been recently 
replaced. There are thus three parts to this scheme. The first 
is to dynamically identify the holes. The second is to deter- 
mine whether a line should be evicted or placed into a hole 
upon replacement. The third is to locate the out-of-position 
lines, i.e. the lines that have been displaced from their direct- 
mapped locations into holes. If the majority of holes are cor- 
rectly identified and filled with more-recently-used lines, the 
group-associative cache can achieve a hit ratio approaching 
that of a fully-associative cache. 

A straightforward approach to implementing the group- 
associative cache is to maintain two small directories. One 
directory, the Set-reference History Table (SHT), tracks the 
sets that have been referenced recently. The other directory, 
the Out-of-position Directory or OUT directory for short, 
records the tags and locations of the lines that have been re- 
cently displaced from their direct-mapped positions. When a 
miss occurs in a set that is tracked by the SHT, the line to be 
replaced is not evicted from the cache but is instead moved 
to another location within the cache. The rationale for this is 
that the replaced line must have been referenced recently for 
its set to be recorded in the SHT. In order for this displaced 
line to be located, its address tag and new location or set-ID 
is entered into the OUT directory. When a line is neither 
recorded in the SHT nor the OUT directory, it is said to be 
disposable. Disposable lines are the candidates for eviction 
when a miss occurs. 

In a group-associative cache, the lines with identical 
direct-mapped index bits belong to a congruence group. The 
total number of groups and the number of lines within each 
group adapt dynamically to the reference pattern. This is 
in contrast to conventional caches where the number of sets 
and the set-associativity are fixed. For instance, if the refer- 
ence pattern is such that different lines with the same direct- 
mapped index bits are continually accessed, all the out-of- 
position lines may belong to the same congruence group. 
When there is more than one line in a congruence group, all 
but one must be located out of the direct-mapped location. 
The line in the direct-mapped position is located through 
the regular cache tag array. As is the case in the column- 
associative cache, a fast access time can be achieved in this 
case. The out-of-position lines are located through the OUT 
directory which is searched in parallel with the cache tag ar- 
ray. Besides determining hit or miss, the OUT directory also 
provides the location of the out-of-position lines. On a hit to 
an out-of-position line, the data array is accessed again with 
the correct set-ID obtained from the OUT directory. 

3.1 An Example Design 

Figure 3 shows the block diagram of a straightforward im- 
plementation of the adaptive group-associative cache. The 
SHT contains the set-ID (SID) of the sets that have been ref- 
erenced recently. Since each set contains a single line in a 
direct-mapped cache, the SHT tracks the more-recently-used 
lines that are located in their direct-mapped positions. The 
OUT directory contains the address tag and the set-ID of 
the lines that have been recently displaced from their direct- 
mapped locations. In other words, the SHT and the OUT 
directory together define the set of lines that are not dispos- 
able, i.e. the set of lines that have been referenced recently 
and therefore should not be evicted. By design, a line can- 
not be recorded in both the SHT and the OUT directory at the 
same time. The performance of various SHT and OUT direc- 
tory topologies and replacement policies will be investigated 
in Section 5. To simplify cache management, a disposable 
or d bit is maintained for each line to indicate whether the 
line should be evicted when it is replaced. As is the case for 
the valid bits, the d bits can be kept in a separate physical 
array. 

Hit in Direct-Mapped Location. When a memory request 
occurs, the tag array, the data array, and the OUT directory 
are accessed in parallel. If there is a match in the tag array, 
the requested data is accessed as in a regular direct-mapped 
cache. The SHT is updated after a reference to reflect the 
most-recently-used line. 

Hit in Out-Of-Position Lines. If the line is found through 
the OUT directory, the data is accessed in the next cycle us- 
ing the set-ID fetched from the OUT directory. Afterwards, 
the requested line is swapped with the line located in the 
direct-mapped location so as to increase the hits to the direct- 
mapped position. A multiple-bank data array provides the 
needed bandwidth. Meanwhile, the tag corresponding to the 
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Figure 3: Block Diagram of a Group-Associative Cache. 

requested line is dropped from the OUT directory and placed 
in the tag array at the direct-mapped position. The OUT di- 
rectory is updated to record the new out-of-position line if 
it is not already there. Note that the cache tag array is used 
only to identify hits to the direct-mapped location. Out-of- 
position lines are located via the OUT directory. Therefore, 
there is no need to maintain the tags of the out-of-position 
lines in the tag array. Such entries are simply marked as 
invalid. This greatly simplifies the update of the tag array. 
In addition, unlike the fully-associative cache in which all 
the index bits are part of the address tag, none of the index 
bits is included in the direct-mapped tag array in the group- 
associative cache. 

Cache Miss. There are two cases to consider when the 
requested line is not located anywhere in the cache. The 
first case happens when the line to be replaced in the direct- 
mapped location is disposable as indicated by the d bit. In 
this case, the line is simply evicted from the cache. The sec- 
ond case occurs when the line in the direct-mapped location 
is not disposable. In this case, a hole has to be identified to 
hold this line. The primary candidate is the LRU line in the 
OUT directory because the newly displaced line has to be en- 
tered into the OUT directory if it is not already there. When 
the OUT directory has empty slots, a nearby disposable line 
is selected for eviction. Such a selection can be implemented 
by searching a word of nearby d bits with a leading- 1 detec- 
tor. When this fails to find a disposable line, the LRU line in 
the OUT directory can be used as the backup candidate. The 
non-disposable line is then moved to the evicted line location 
in the data array to make room for the requested line. The tag 
of the requested line is placed at the direct-mapped location 
of the tag array and the tag corresponding to the evicted line 
is simply invalidated. In order to avoid extraneous searching 

of the SHT and the OUT directory when a cache miss oc- 
curs, the cd bits should be accurately maintained. The d bit 
corresponding to a line is set when the line is dropped from 
the SHT or the OUT directory. It is reset when the line enters 
either directory. 

Notice that in accessing the data array, an additional mul- 
tiplexor is needed to select between the direct-mapped set 
and the set-ID retrieved from the OUT directory. However, 
this should have minimal impact on the direct-mapped hit 
time since the critical path is likely to be in the tag array ac- 
cess and the tag comparison logic [ 171, both of which remain 
unchanged from a direct-mapped design. 

3.2 Performance Impact 

The group-associative cache has a unique combination of 
features that enables it to more effectively utilize the avail- 
able cache frames so as to reduce miss ratio. First of all, the 
lines recorded in both the SHT and the OUT directory have 
been referenced recently and therefore should not be evicted 
when a cache miss occurs. In other words, the SHT and the 
OUT directory help to more accurately maintain the global 
LRU information, thus improving the overall hit ratio. 

Secondly, when a miss occurs, the line to be replaced in 
the direct-mapped location may be moved to another loca- 
tion in the cache instead of being evicted. This is similar 
to the victim cache approach where the replaced line or vic- 
tim is always moved to the victim cache. However, unlike 
the victim cache which requires a separate physical cache to 
hold the victims, the group-associative cache is able to ef- 
fectively use the large number of holes present in the direct- 
mapped cache to hold the victims. In a group-associative 
cache, only a separate directory is needed to record the tags 
and the locations of the out-of-position lines. Therefore, a 
much bigger “embedded victim cache” can be built at the 
same cost as the original victim cache. Moreover, the SHT 
and the OUT directory have a filtering effect, allowing only 
the more-recently-used lines to enter the embedded victim 
cache. This selective bypassing technique helps to reduce 
pollution in the embedded victim cache. In fact, compared 
to the fully-associative cache, the group-associative cache is 
less affected by cache pollution in that a line with poor lo- 
cality can affect only a subset of the cache lines. 

Thirdly, by recording the tag and location of the out-of- 
position lines in the OUT directory, the group-associative 
cache allows these lines to be placed anywhere in the cache, 
and not just in a fixed alternate location as is the case in the 
column-associative cache. This allows the out-of-position 
lines to share a common pool of potential holes, thus en- 
abling a more efficient utilization of the cache then would 
occur under a static partitioning scheme. In addition, by dy- 
namically allocating the holes in response to the reference 
pattern, the group-associative cache is able to minimize ad- 
verse impact on the hit ratio of the direct-mapped locations. 

Finally, the ability to dynamically adjust the number 
of groups and the group associativity enables the group- 
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Figure 4: Accessing a Group-Associative Cache. 

associative cache to approach a fully-associative cache in 
terms of miss ratio. For instance, in contrast to the column- 
associative cache which limits each set to only two lines, 
the group-associative cache can have groups containing any- 
where from 0 to s+l lines, where s is the size of the 
OUT directory. This adaptive group size enables the group- 
associative cache to better capture program locality. For in- 
stance, suppose that three consecutive memory references 
Ai, Bi, Ci are mapped to the same cache set i. After the 
three references, only Ci will remain in a direct-mapped 
cache. In a column-associative cache, Ci will be kept in the 
primary location and Bi, in the alternate location. In com- 
parison, all three most-recently-used lines will remain in the 
group-associative cache, as illustrated in Figure 4. In the fig- 
ure, sets j and k- have been identified as potential holes and 
are used to hold Ai and Ui respectively. 

4 Extension to Handle Data Prefetch 

The cache miss ratio can be further reduced by attempting 
to fetch data before they are actually needed. The major 
issue in such prefetching of data is that it may result in ex- 
traneous fetches and memory/bus traffic. Furthermore, if the 
prefetched data are entered into the cache, they may replace 
useful lines, thereby polluting the cache and generating more 
miss traffic. In order to prevent cache pollution, a separate 
stream or prefetch buffer [ 10, 93 has been used to hold the 
prefetch data. Since the group-associative cache can dy- 
namically identify the cache frames that are not being effec- 
tively utilized, it may be worthwhile to explore the idea of 
prefetching data into these underutilized cache frames. This 
eliminates the need for a separate physical buffer and enables 
a bigger “embedded” prefetch buffer. 

Several issues are involved in evaluating the cost and ef- 
fectiveness of a prefetch scheme. In this paper, we present 
some preliminary results. We consider two simple prefetch 
methods. Whenever a miss occurs, the sequential prefetch 
method prefetches the next sequential line if it is not already 
in the cache. Upon the first access to a prefetched line, it 
triggers the prefetch of the following sequential line [22]. 
Thejfiltered sequential prefetch method starts prefetching the 

next sequential line on a miss only when a previous sequen- 
tial access pattern has been identified [ 18, 161. In general, 
the filtered sequential scheme has a higher prefetch accuracy 
but results in a smaller cache hit ratio improvement. 

Extending the group-associative cache to handle data 
prefetch is straightforward. When the direct-mapped loca- 
tion for a prefetched line consists of a disposable line, the 
disposable line is simply replaced and the d bit remains 
set. When the direct-mapped location is occupied by a 
non-disposable line, a hole must be identified to hold the 
prefetched line. This goes through the same mechanism that 
is used to identify a hole when a regular cache miss occurs 
and the direct-mapped location has a non-disposable line. 
To reduce any pollution of the OUT directory, the tag corre- 
sponding to the prefetched line can be inserted into the OUT 
directory in the middle of the LRU sequence. 

To some extent, both the victim and column-associative 
caches also have the nice property of being able to accom- 
modate prefetched data with limited adverse impact to the 
existing cache contents. For the victim cache, instead of 
placing the prefetched data directly in the direct-mapped 
cache, the prefetched lines can be entered into the fully- 
associative victim cache. For the column-associative cache, 
the prefetched data can be placed at the primary or secondary 
location that has the rehash bit set. 

5 Performance Evaluation 

In this section, we evaluate the performance impact of the 
group-associative cache using trace-driven simulations of 
workloads from both the commercial and engineering envi- 
ronments. Two basic metrics, miss ratio and average mem- 
ory access time, are considered. Conventional and other 
recently proposed cache organizations, namely the victim 
cache and the column-associative cache, are evaluated and 
compared against the group-associative cache. In addition, 
the effectiveness of data prefetching on the selected cache 
organizations are also investigated. 

5.1 Simulation Model 

We simulate separate and identical instruction and data Lr 
caches. The size of the Lr cache ranges from 8 to 64KB with 
set-associativities of 1,2, and 4. Fully-associative caches are 
also considered. These Lr caches are backed up by a 5 12KB 
4-way set-associative unified level 2 (La) cache. The line 
sizes of the L1 and L2 caches are 32 bytes and the LRU re- 
placement policy is used in all the cases. Inclusion property 
is enforced between the L1 and Lz data caches. 

For the group-associative cache, we vary the number of 
entries in the SHT from one-eighth to one-half the number of 
L1 cache lines (i.e. 64 to 256 lines for 16KB cache), and the 
number of entries in the OUT directory from one-sixteenth 
to three-eighth the number of L1 cache lines (i.e. 32 to 192 
lines for 16KB cache). In addition, we vary the number of 
sets for both the SHT and the OUT directory from 1 to 16. 
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Within each set, we compare the true LRU replacement pol- 
icy with a simpler partitioned LRU (PLRU) scheme [24]. 
Note that when the requested line is found in the OUT di- 
rectory, it needs to be swapped with the line located in the 
direct-mapped location of the data array. To simplify this 
swap, the number of sets in the OUT directory must not ex- 
ceed that in the SHT. In our simulations, we assume an equal 
number of sets in both directories and an identical design for 
both the instruction and data L1 caches so as to confine the 
total design space. 

In addition, we simulate fully-associative victim caches 
of one-sixteenth the L1 cache size (i.e. 32 lines for 16KB 
cache). For the column-associative cache, we determine the 
secondary location by flipping the highest-order index bit. 
As described in [2], we include a rehash bit with each entry 
of the tag array to guide the search and replacement. 

We consider two simple data prefetching techniques, se- 
quential prefetch [22] and filtered sequential prefetch [ 18, 
161. For the filter, we use an &entry history table to iden- 
tify sequential access patterns. Based on these techniques, 
we evaluate the hit ratio improvement as well as the extra 
memory traffic generated by data prefetching. For the direct- 
mapped cache, we assume that a separate prefetch buffer 
thirty-two times smaller than the L1 cache (i.e. 16 lines 
for 16KB cache) is used to hold the prefetched lines. For 
the victim cache, we use the additional victim cache to hold 
both the recent victim lines and the prefetched lines. As in 
the group-associative cache, the prefetched line is placed in 
the middle of the LRU sequence. Finally, for the column- 
associative cache, we try to place the prefetched lines in the 
locations that contain rehashed lines. 

In order to compute the average memory access time, 
the cache miss penalties at various cache levels are needed. 
Without going into a detailed timing analysis, we estimate 
these penalties based on a general trend of current micro- 
processors. We assume that a hit in a conventional direct- 
mapped L1 cache requires a single cycle. If the mem- 
ory request hits in the Lz cache, it takes 8 cycles to sat- 
isfy the request. When the request misses both the L1 and 
Lz caches, the total access delay is 50 cycles. For set- 
associative caches, we assume that the cycle time is length- 
ened by up to 20% as suggested in [ 111, and adjust the miss 
penalties accordingly. 

For the victim, column-associative, and group- 
associative caches, an extra delay is encountered when the 
requested data is present in an alternative location. Due to 
the fact that the processor pipeline is increasingly complex 
and difficult to turn around, we assume that the extra delay 
is 2 cycles. This is a conservative assumption since no other 
request is allowed to access the cache during this three cycle 
period. Note that the search of the alternative locations does 
not add to the L1 cache miss penalty because the L1 cache 
miss can be triggered once the requested line is not present 
in the primary location. In other words, the delay of search- 
ing the alternative locations can be overlapped with the L1 
cache miss penalty. 

5.2 Workloads and Traces 

We simulate workloads from both the commercial and engi- 
neering environments. For the commercial environment, we 
use the Transaction Processing Performance Council Bench- 
mark C (TPC-C) [27]. The TPC-C benchmark is an indus- 
try standard benchmark for measuring the performance of 
on-line transaction processing systems. It is modeled after 
an order-entry environment and involves a mix of five dis- 
tinct transaction types. Our trace captures the user, kernel 
and shared library activities of the server side of the work- 
load. This was collected by a software tracing tool on an 
IBM RISC System/6000 system running AIX. 

For the engineering environment, we use 11 applications 
from the SPEC95 benchmark suite [25]. Among these 11 ap- 
plications are 5 integer intensive programs (Compress, Ccc, 
Go, Li, and Vortex), and 6 floating-point intensive programs 
(Fpppp, Hydro2d, SuZcor; Tomcatv, Turb3d, and WaveS). 
We used Sun’s Shade tool [26] in a SPARC/Solaris en- 
vironment to trace these SPEC95 applications. The stan- 
dard SPEC95 input files were used. In order to avoid the 
initialization phase and capture the essential characteristics 
of these applications, the first 2 billion instructions were 
skipped. Our results are based on simulating 2 billion in- 
structions after the caches are warmed-up. 

5.3 Performance of Group-Associative Cache 

We simulate different sizes and topologies of the SHT and 
OUT directory to establish reasonable design points. We use 
the notation (a,b) to denote a particular design point where 
the sizes of the SHT and OUT directory with respect to the 
number of L1 cache lines are a and b respectively. There are 
several important results. 

First, increasing the number of SHT entries beyond 
three-eighth the number of cache lines hardly improves the 
miss ratio. On the other hand, small SHTs with entries to 
track only one-eighth the number of cache lines do not per- 
form well. In this case, increasing the size of the OUT direc- 
tory may even hurt the miss ratio. This is because the SHT is 
responsible for identifying the more-recently-used lines that 
should be moved into the OUT directory. When the SHT is 
small, it is identifying too few more recently-used-lines. As 
a result, some lines that have not been referenced for a while 
will remain in the OUT directory. A balance between the ca- 
pacity to store more-recently-used out-of-position lines and 
the ability to identify them is desirable. 

Second, increasing the number of entries in the OUT di- 
rectory usually improves the miss ratio. However, the im- 
provement starts to diminish when more than one-quarter of 
the locations are allocated to the out-of-position lines. This 
is due to the fact that although increasing the number of OUT 
directory entries does improve the hit ratio to the out-of- 
position lines, it also hurts the hit ratio to the direct-mapped 
locations. 

Third, increasing the number of sets in the SHT and OUT 
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Table 1: Data Cache Hit Ratio with Different SHT/OUT Di- 
rectory Replacement Policies (TPC-C). 

directory from 1 to 16 has limited effect on performance. 
Moreover, as shown in Table 1, the difference between the 
true LRU and the PLRU replacement schemes is very minor. 
Intuitively, we expect a fully-associative design (i.e. set=l) 
with true LRU replacement to outperform the set-associative 
design with PLRU replacement. However, the difference 
should be very small because the SHT and OUT directory 
only help to identify the lines that should be kept in the 
cache. They do not directly determine the lines that should 
be evicted. Therefore, even though the SHT and OUT direc- 
tory become a little less accurate when they are organized 
into more sets, any adverse impact on the overall miss ra- 
tio is limited. In fact, the g-set configuration shows a little 
better hit ratios than the l-set configuration. A deeper anal- 
ysis reveals that this unexpected behavior is a consequence 
of our algorithm for filling the OUT directory. Recall that 
the algorithm tries to keep the OUT directory full. In other 
words, it always tries to hoard cache locations for storing the 
out-of-position lines. Depending on the reference pattern, 
such an aggressive policy may adversely affect the hit ratio 
to the direct-mapped locations. When the number of sets is 
increased, the hoarding phenomenon is effectively reduced 
because the OUT directory has more sets each of which has 
to be separately filled. 

Based on the simulation results, we select two SHT sizes 
-- i and i. When the number of entries in the SHT is two- 
eighth the number of cache lines, the OUT size is either & 
or &. When the SHT size is 2, the number of entries in the 
OUT directory is four-sixteenth or five-sixteenth the number 
of cache lines. Since the number of sets and the replace- 
ment schemes have little performance impact, we show only 
the results with 8 sets and true LRU replacement. While 
we evaluated the group-associative cache for both the in- 
struction and data streams, due to space constraints, we only 
present the results for the data references. 

Observe in Figure 5 that for TPC-C, the group- 
associative cache is able to achieve a miss ratio that is com- 
parable to or better than that of the 4-way set-associative 
cache. In certain cases, the miss ratio approaches that of the 
fully-associative cache. The results suggest that the group- 
associative cache can indeed retain a majority of the more- 
recently-used lines. Further confirming this effect, we find 
that the average percentage of holes in the 8KB, 16KB, 
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Figure 5: Miss Ratio Comparison (TPC-C). 

32KB, and 64KB data caches has improved respectively 
from 37.5%, 39.9%, 42.6%, and 41.7% in the direct-mapped 
design to 18.2%, 18.7% 19.9%, and 19.0% in the (;,A) 
group-associative caches. With a slightly bigger OUT di- 
rectory (h), the percentage of holes is further reduced to 
15.9%, 15.5%, 15.6%, and 14.5% respectively. 

In addition, the selected group-associative caches achieve 
lower miss ratio than the victim and column-associative 
caches and the margin can be very sizable. For instance, 
for the 32KB caches, the miss ratio for the victim cache and 
the column-associative cache is about 28% and 26% higher 
than that for the (i,$) group associative cache. Among the 
group-associative caches, those with bigger SHT and OUT 
directories perform better. For example, (i, &) has the low- 
est miss ratio followed by (i ,h). The victim and the column 
associative caches show very similar miss ratio that is close 
to that of the 2-way set-associative cache. 

There are two fundamental reasons as to why the group- 
associative cache is able to achieve a better overall miss 
ratio. First, the group-associative cache has the ability to 
capture extra hits to the out-of-position lines. Second, it is 
able to do this with minimal adverse impact on the hit ratio 
of the direct-mapped locations. This is illustrated in Fig- 
ure 6 in which we plot the hit ratio to the direct-mapped and 
the alternative locations for the victim, column-associative 
and group-associative caches. As expected, the hit ratio to 
the direct-mapped locations remain unchanged for the vic- 
tim cache. This hit ratio is reduced for both the column- 
and group-associative caches. However, due to the fex- 
ible locations for the out-of-position lines and the adap- 
tive sharing of these locations, the reduction in hit ratio to 
the direct-mapped locations is very minimal for the group- 
associative cache. For instance, the hit ratio decreases from 
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Figure 6: Impact on Direct-Mapped Hit Ratio (TPC-C). 

89.1% to 88.8%, and 88.7% for the 32KB (i,&) and (i,&) 
group-associative caches while it decreases to 88.1% for the 
column-associative cache. 

Furthermore, notice that the hit ratio of the alternative 
locations is higher for the group-associative cache. With 
a 32KB cache, the hit ratio of the out-of-position lines is 
4.40% for the (i,&) group-associative cache and 5.24% for 
the (g,$) group-associative cache. The hit ratio of the al- 
ternative locations in the column-associative cache is 3.84% 
while the hit ratio of the victim cache is only 2.74%. In 
comparison with the victim cache, the higher hit ratio of the 
group-associative cache comes from the utilization of holes 
to build the bigger embedded victim cache plus the ability to 
selectively bypass this embedded victim cache. When com- 
pared to the column-associative cache, the group-associative 
cache prevails because of its ability to dynamically adjust 
the number of groups and the group associativity. 

The different delays in accessing the direct-mapped and 
the alternative locations should be considered in evaluating 
the performance of the various cache organizations. Recall 
that in our simulation model, we assume that a hit to an alter- 
native location in the victim, column- and group-associative 
caches takes 3 cycles. Based on results in [ 111, we also as- 
sume that the set-associative design lengthens the cycle time 
by up to 20%. 

Figure 7 summarizes the average memory access time for 
the data references with various cache organizations. Note 
that all the results are normalized to the direct-mapped cycle 
time. Due to the longer cycle time with the set-associative 
cache, the conventional cache does not perform as well as 
the other cache organizations. Only the 4-way set asso- 
ciative design with an optimistic 10% cycle time degrada- 
tion shows performance comparable to the victim and the 
column-associative caches. The group-associative cache has 
the shortest average memory access time. For instance, for 
the 32KB cache, the best average memory access time for 
the group-associative, victim and column-associative caches 
is 2.44, 2.54, and 2.55 respectively. 
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Figure 7: Ave. Memory Access Time Comparison (TPC-C). 

Total Extra Bits 11 SHT 1 OUT 1 d-bit 
13.7K II 7 x 384 I (32+7) x 256 I I x 1024 

I II ,\ 
I 

Table 2: Extra Space Calculation 

The group-associative cache does require additional chip 
area to implement the SHT, the OUT directory and the dis- 
posable bits. As shown in Table 2, the extra space needed 
for the SHT and OUT directory of the 32KB ($,&) group- 
associative cache with 8 sets and a 40-bit address space is 
about 13.7 Kilo-bits (Kb). Without accounting for the pe- 
ripheral logic, this additional area is less than 5% of that 
taken up by the 32KB direct-mapped cache. In comparison, 
the extra area needed for a victim cache with one-sixteenth 
the number of L1 cache lines is over 6%. 

5.4 Performance with Data Prefetch 

Figure 8 summarizes the miss ratio improvement as well as 
the increase in memory traffic that results from applying the 
two simple prefetch mechanisms to the various cache de- 
signs. Each column in the figure is divided into 3 segments. 
The bottom-most segment depicts the cache miss ratio with 
data prefetch. The second segment represents the miss ra- 
tio improvement that comes from prefetching the data. The 
last segment reflects the net extra memory traffic that results 
when prefetching is performed. Note that in this figure, we 
consider only the (:,A) group-associative cache. 

As expected, the two prefetching schemes both reduce 
the cache miss ratio markedly for all the cache designs. 
For instance, for the 32KB caches, sequential prefetch re- 
duces the miss ratio for the direct-mapped, victim, column- 
associative and group-associative caches from 10.9%, 8.2%, 
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Figure 8: Mi ss Ratio and Memory Traffic with Data 
Prefetching (TPC-C) 

8.1%, and 6.4% to 7.9%, 6.2%, 6.3%, and 4.4% respec- 
tively. However, memory traffic is also increased consid- 
erably. With sequential prefetch, memory traffic is increased 
by 65%, 78%, 62%, and 52% respectively. The correspond- 
ing figures with filtering are 3 1 %, 4 l%, 32%, and 3 1%. 

In comparison with the direct-mapped cache with sep- 
arate prefetch buffer, the victim cache and the column- 
associative cache, the group-associative cache handles data 
prefetching better in terms of both the miss ratio improve- 
ment and the additional memory traffic. This is due to the 
fact that the group-associative cache is able to effectively 
control any cache pollution that may result from prefetch- 
ing. In addition, the adaptive group associativity allows the 
prefetched lines to stay in the cache longer, thus increasing 
their chances of being used before replacement. 

5.5 SPEC95 Applications 

Figures 9 plots the data miss ratios for TPC-C and the se- 
lected programs from the SPEC95 benchmark suite. Ob- 
serve that the selected SPEC95 programs, especially those 
that are floating-point intensive, show vastly different cache 
behavior. In these figures, we consider only two configura- 
tions, namely (i, &) and (5, A), for the group-associative 
cache. To reduce clutter, we only present the effect of apply- 
ing filtered sequential prefetch. 

The group-associative cache consistently achieves a miss 
ratio that is equal to or better than that of the 4-way set- 
associative cache for the selected SPEC95 programs. The 
miss ratio improvement is especially significant for applica- 
tions such as Gee, Go, Tomcatv, Turb3d, Vortex, and Wave5 
which exhibit high conflict misses. For instance, Turb3d’s 
miss ratio with a 32KB cache is reduced from 5.5% and 
3.7% with the direct-mapped and 4-way set-associative de- 
signs respectively to 2.6% with the ($, 6) group-associative 
cache. On the other hand, since most of the conflict misses 

for Compress, Hydro2d and Su2cor can be eliminated by 
the 2-way set-associative design, the benefit of the group- 
associative cache is not as dramatic. Observe also that the 
difference in miss ratio between the two group-associative 
caches is very minor for these SPEC95 applications. 

Notice that the cache behavior of Tomcatv and Wave5 is 
unusual in that the direct-mapped, set-associative and group- 
associative designs may slightly out-perform the fully- 
associative cache in certain configurations. This is due to the 
fact that memory references with a constant stride are very 
common in these programs. Such a reference pattern results 
in heavy conflicts and pollutes the entire fully-associative 
cache. On the other hand, the group-associative cache is 
able to handle the conflicts by effectively using the holes 
while confining the pollution to a subset of the cache. 

The filtered sequential prefetch scheme improves the 
miss ratio of the group-associative cache for all the pro- 
grams, especially those that are floating-point intensive. 
For instance, the respective improvement for Hydro2d and 
Su2cor are about 60-70% and 30-60%. For Su2cor, prefetch- 
ing is especially effective for the larger caches. In addition, 
the difference between the two group-associative configura- 
tions is much bigger when prefetching is performed. This 
is because Su2cor has a large amount of strided references 
and an uneven reference distribution across the cache sets. 
In this case, a larger cache and a bigger SHT/OUT direc- 
tory will enable the prefetched lines to be kept longer so that 
they are more likely to be referenced. Gee, Li, Vortex, Tom- 
catv, Turb3d, and Wave5 also show sizable improvements in 
group-associative miss ratio with prefetching. 

6 Related Work 

A general strategy to simultaneously attain a fast cache ac- 
cess time and a high hit ratio is to have two cache access 
paths. A fast path is used to achieve fast access time for the 
majority of memory references while a relatively slow path 
is used to boost the effective hit ratio. Two broad categories 
of such techniques can be distinguished. 

The general idea in the first category is to decouple the 
tag and data paths in cache access so that, for the major- 
ity of memory references, the fast data array access and line 
selection can be carried out independently of the slow tag 
array access and comparison. Examples of techniques in 
this category include the MRU cache [4], the line-ID predic- 
tion scheme [15,3], the partial-tag matching technique [14], 
the Direct-mapped Access Set-associative Check (DASC) 
cache [21], the difference-bit directory [12], and the alter- 
native tag path method [ 171. 

Techniques in the second category access a direct- 
mapped cache sequentially more than once in order to 
achieve a fast access time for the first access and a high hit 
ratio as a whole. Examples of such techniques include the 
hash-rehash cache [l] and the column-associative cache [2]. 
A way to extend the column-associative cache to include 
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multiple alternative localions is described in [28, 51. 
A number of methods have been proposed to reduce 

cache conflict misses. One technique is to build a small 
buffer or victim cache to hold the lines that have been re- 
cently evicted from the cache [lo]. The HP-PA7200 uses 
a small on-chip FIFO buffer called the assist cache, in 
addition to a direct-mapped L1 cache, to ensure that the 
very recently used data will not be susceptible to conflict 
misses [ 131. In [ 19, 81, a small fully-associative buffer is 
proposed for holding the lines that exhibit poor temporal lo- 
cality so as to prevent them from entering and polluting the 
primary direct-mapped cache. Another approach to reduc- 
ing conflict misses is to use better hashing or mapping func- 
tions [23, 20,6]. 

7 Conclusions 

In this paper, we observe that the direct-mapped cache, in- 
stead of faithfully maintaining the lines that have been refer- 
enced recently, retains a large number of less-recently-used 
lines that are not likely to be re-referenced before they are 
replaced. Based on this observation, we propose an adaptive 
group-associative cache that is able to dynamically identify 
the underutilized cache frames and to effectively use them 
to selectively retain some of the lines that are to be replaced. 
Performance evaluation using trace-driven simulations of 
both the TPC-C benchmark and selected programs from the 
SPEC95 benchmark suite show that the group-associative 
cache is able to decisively outperform the conventional and 
various performance-enhanced cache organizations. In par- 
ticular, the miss ratio of the adaptive group-associativecache 
is consistently better than that of the 4-way set-associative 
cache and, in some cases, even approaches that of the fully- 
associative cache. As a result, the adaptive group-associative 
cache has the lowest average memory access time among the 
different cache organizations. Furthermore, our preliminary 
assessment indicates that the group-associative cache is able 
to handle data prefetching better than other cache organiza- 
tions. In terms of cost, a first-cut estimate shows that the 
directories of the group-associative cache require about 5% 
of the area taken up by the cache. 
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