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Abstract 

Our new out-of-order processor simulatol; 
FastSim, uses two innovations to speed up simula- 
tion 8-15 times (vs. Wisconsin SimpleScalar) with 
no loss in simulation accuracy. First, FastSim uses 
speculative direct-execution to accelerate the 
functional emulation of speculatively executed 
program code. Second, it uses a variation on 
memoization-a well-known technique in pro- 
gramming language implementation-to cache 
microarchitecture states and the resulting simula- 
tor actions, and then ‘yast forwards ” the simula- 
tion the next time a cached state is reached. Fast- 
forwarding accelerates simulation by an order of 
magnitude, while producing exactly the same, 
cycle-accurate result as conventional simulation. 
Keywords: Out-of-order processor simulation, direct- 
execution, memoization. 

1. Introduction 
Microarchitectural simulation is an essential tool in the 
research and design of processors, compilers, and other 
system software. Unfortunately, existing simulators of out- 
of-order processors run programs thousands of times slower 
than actual hardware. By applying techniques used to 
implement fUnctiona programming languages, we reduced 
the cost of simulation by up to an order of magnitude, with 
no effect on its accuracy. 

FastSim is a new direct-execution simulator of a speculative, 
out-of-order uniprocessor with non-blocking caches. Its two 
primary contributions are speculative direct-execution, 
which efficiently performs the functional simulation of a 
program, and fast-forwarding, which dramatically 
accelerates the time-consuming simulation of an out-of- 
order microarchitecture. 

Direct-execution simulators run machine code from a target 
program directly on a host processor, and use a variety of 
methods to interleave simulation code. This widely used 
technique allows functional simulation to run at near- 
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hardware speed. Direct-execution, however, has not been 
previously used to simulate out-of-order processors, because 
of the difficulty of reconciling the fixed behavior of an 
executing program with the fluid behavior of a speculative 
out-of-order microarchitecture. FastSim solves this problem 
by decoupling the simulation of out-of-order execution from 
the functional execution of instructions. With a new 
technique called speculative direct-execution, FastSim 
allows mispredicted branch paths to be executed directly, 
then rolled back. Without further optimization (e.g., fast- 
forwarding), FastSim runs 1.1-2.1 times faster then the well- 
known SimpleScalar out-of-order simulator, which does not 
use direct-execution.2 

FastSim’s primary contribution is the application of 
memoizatiorz-result caching--to the expensive process of 
simulating an out-of-order microarchitecture. Traditionally, 
memoization was used to implement functional 
programming languages by caching function return values. 
Expensive computation can be avoided by returning a 
previously cached value, when available. 

FastSim’s fast-forwarding technique is similar. Fast- 
forwarding records microarchitecture configurations and the 
simulator actions that result from them. When a previously 
recorded configuration is encountered, the associated actions 
can be replayed at high speed until a previously unseen 
configuration is encountered. Fast-forwarding makes the 
simulator run 5-12 times faster, with no change in 
simulation results (e.g., cycle count.) Combining direct- 
execution and memoization, FastSim simulates a MIPS 
RlOOOO-like architecture with a 190-360 times slowdown 
(i.e., simulation time over native benchmark execution time 
on the host), which is an order of magnitude faster than 
SimpleScalar. 

The rest of this paper is organized as follows: Section 2 
discusses related work. Section 3 describes the 
implementation of direct-execution in conjunction with an 
out-of-order microarchitecture simulator, including our new 
technique for simulating speculative execution. Section 4 
describes memoization of FastSim’s out-of-order pipeline 
and discusses strategies for limiting the size of the 
memoization cache. Section 5 presents performance results 
for these optimizations including a comparison of FastSim 

’ Current address: James Larus, Microsoft Research, One Microsoft 
Way, Redmond, WA 98052. Email: larus@microsoft.com. 

2 We do not have a version of FastSim without direct-execution. In- 
stead, we use SimpleScalar as a surrogate, as it simulates compa- 
rable processors at an equivalent level of detail. 
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basic blocks and updates the simulated cycle count each 
time a basic block is executed [6]. Pai et al. have shown that 
out-of-order processors cannot be approximately accurately 
by in-order pipeline models due to the unpredictable effects 
of memory instruction reordering [7]. In comparison, 
FastSim has no loss of accuracy, preferring to trade space 
for speed. 

and the SimpleScalar out-of-order simulator. Section 6 
concludes. 

2. Related Work 
SimpleScalar [ 11, RSIM [8], and MXS [4] are contemporary 
simulators for out-of-order processors. None use direct- 
execution or memoization. They all execute thousands of 
host cycles per simulated cycle. SimpleScalar, one of the 
fastest out-or-order simulators using traditional technology, 
simulates a MIPS-like architecture and runs target programs 
with a 4,000 times slowdown [l]. RSIM emulates a multi- 
processor with a SPARC-like architecture and typically 
simulates 10,000-l 5,000 instructions per second on a SUN 
Ultra l/140 workstation [S]. MXS is the detailed, dynamic 
execution processor simulator from SimOS. It executes 
approximately 20,000 instructions per second, with a 
“several thousand times slowdown” [4]. 

Other simulators use direct-execution. Shade performs 
functional simulation and instrumentation by dynamically 
translating target instructions into host instructions. 
Collecting traces and similar kinds of information incurs a 
2.8-6.1 slowdown [2]. Mipsy and Embra are functional 
CPU models in SimOS. Mipsy does not use direct-execution 
and runs 100-200 times slower than native hardware, while 
Embra runs only 10-30 times slower by translating target 
instructions into native instructions that execute directly on 
the host [4]. None of these direct-execution simulators 
perform detailed out-of-order microarchitectural simulation, 
as does FastSim. 

Some simulation strategies trade-off accuracy for speed. 
Trace sampling has been used successfully in cache and 
processor simulation. Tom Conte et al. applied trace 
sampling to the simulation of an out-of-order processor and 
describe techniques for reducing state loss between sample 
clusters [3]. .&other strategy is to approximate complex 
hardware using a simplified processor model. For example, 
WWT2 statically determines pipeline performance within 

3. The Structure of FastSim 
FastSim is a cycle-accurate, direct-execution simulator of an 
out-of-order uniprocessor. Like RSIM, it models a 
SPARC v.8 [9] instruction set running on a MIPS RlOOOO- 
like [lo] microarchitecture-Figure l-although, unlike 
RSIM, FastSim only simulates a single processor. FastSim’s 
processor model supports out-of-order instruction 
execution, speculative execution, and an aggressive non- 
blocking cache. Table 1 lists the processor parameters used 
in this paper. 

Direct-execution is not easily applicable to speculative, out- 
of-order processor simulation. The first problem is 
simulating out-of-order execution using direct-execution, 
which is inherently in-order. As discussed in section 
Section 3.1, FastSim directly executes groups of 
instructions in program order, then subsequently simulates 
their behavior with respect to the out-of-order pipeline 
model. This is possible in FastSim, because loads, stores 
and other instructions do not require precise timing 
information to execute correctly on a uniprocessor machine. 

Section 3.2 discusses FastSim’s speculative direct- 
execution. Briefly, FastSim saves register and memory state 
at branches, then allows mispredicted branches and 
consequent execution paths to directly execute. Feedback 
from the p-architecture simulator tells direct-execution 
when to restore register and memory state and restart 
execution at the corrected branch target. Hence 
mispredicted execution paths are directly executed, and data 
is collected for use in FastSim’s processor simulator. 
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Figure 2. Overview of the FastSim simulator: 1) The tool fs rewrites a target executable. 2) The edited execut- 
able directly executes target instructions. 3) Instrumentation records information about loads, 
stores, and branches that is later used for u-architecture and cache simulation. 4) The u-architecture 
and cache simulators are called periodically to simulate FastSim’s processor model. 

Decode 4 instructions per cycle. 
2 integer ALUs, 2 FPUs, and 1 load/store address adder. 
64 physical 32-bit integer registers, and 
64 32-bit (or 32 64-bit) floating point registers. 
2-hit/512-entry branch history table for branch prediction. 
Speculatively execute instructions through up to 4 conditional branches. 
Non-blocking Ll and L2 data caches, 8 MSHRs each. 
16 KByte 2-way set associative write through Ll data cache. 
I MByte 2-way set associative write back L2 data cache. 
8 byte wide, split transaction bus 

Table 1: FastSim’s processor model parameters. 

3.1 Direct-execution & 000 Simulation 
Figure 2 shows the major components of the FastSim 
simulator. FastSim uses a binary rewriting tool (fs) based on 
the Executable Editing Library (EEL) [5] to instrument a 
statically linked SPARC program executable and link it with 
FastSim’s p-architecture and cache simulators. 

The key to using direct-execution in out-or-order processor 
simulation is to separate functional-in order+xecution of 
target instructions from simulation of the out-of-order 
pipeline. This is possible for two reasons. First, FastSim 
simulates a uniprocessor, hence loads and stores can be 
executed before their precise timing is known without 
affecting their result. Second, out-of-order pipelines 
preserve the appearance of executing instructions in 
program order. FastSim exploits these properties by directly 
executing groups of instructions in program order, then 
simulating their behavior with respect to FastSim’s out-of- 
order pipeline model. 

A target executable is instrumented to record the addresses 
accessed by every load and store, and the target of every 
conditional branch and indirect jump. Load and store 
addresses are put in queues, called 1Q and SQ respectively, 
for FastSim’s cache simulator. Instrumentation also calls 
FastSim’s p-architecture simulator at every conditional 
branch and indirect jump (including return instructions). 
Since FastSim’s p-architecture simulator is invoked at every 
control transfer instruction with more than one possible 
target, a single variable records whether a branch is taken or 
not-taken or the target of an indirect jump. 

FastSim’s p-architecture simulator decides when the 
processor being modeled would have fetched, decoded, 
executed, and retired instructions previously executed via 
direct-execution. This simulator does not manipulate 
program data values or compute any functional results of 
the target program. These tasks are handled by direct- 
execution. When invoked, the p-architecture simulator 
advances the out-of-order pipeline simulation up to the fetch 
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Figure 3. Instrumentation inserted among original program instruction by fs, to maintain FastSim’s data struc- 
tures and call the l-architecture simulator. Instrumentation to implement speculative execution is 
shown in bold. 

of the current branch or indirect jump. Control flow 
information previously recorded for the last conditional 
branch or indirect jump is used to fetch instructions along 
the same execution path as direct-execution. When !.L- 
architecture simulation catches up with direct-execution, the 
simulation is suspended and direct-execution continues to 
the next branch or indirect jump. 

The p-architecture simulator in turn calls FastSim’s cache 
simulator. The queued load and store addresses along with 
timing information provided by the p-architecture simulator 
permit accurate simulation of an aggressive non-blocking 
cache. The p-architecture simulator computes the cycle at 
which load and store instructions are issued to the cache 
simulator. The simulator then models the cache’s behavior 
for loads and stores, and informs the p-architecture 
simulator how long each load will take to produce the 
requested data. Note that no program data is returned by the 
simulator, only the time taken to obtain the data. 

3.2 Simulating Speculative Execution 
In the behavior described so far, direct-execution drives 
FastSim’s p-architecture and cache simulators and no 
information flows in the other direction. Speculative 
execution, however, requires feedback from the p- 
architecture simulator. The decision when to roll-back, 
following a mispredicted branch, is made by the p- 
architecture simulator and must control direct-execution. On 
the other hand, the p-architecture and cache simulators 
require data collected by direct-execution before they can 
run. Speculative direct-execution is our new technique that 
solves this problem. The idea is to directly execute 
mispredicted execution paths, while recording enough 
information to restore processor and memory state after a 

misprediction is detected by the p-architecture. Figure 3 
shows where instrumentation is inserted into a target 
executable to perform speculative direct-execution. 

All conditional branches in a target executable are replaced 
with instrumentation that first calls the p-architecture 
simulator then consults FastSim’s branch predictor and 
branches in the predicted direction. Mispredictions are 
detected immediately by comparing the original branch 
condition to the predicted branch direction. Instrumentation 
along the two arcs out of each branch detect 
mispredictions-the original branch instruction is used as 
part of this instrumentation. If mispredicted, all register 
values--integer, floating point and control registers-are 
saved in FastSim’s bQ data structure. The bQ can hold 
register data for up to four mispredicted branches, which is 
all that is required by FastSim’s current processor model. In 
the common case, in which a branch is predicted correctly, 
no state is saved, as the simulation never rolls-back a 
correctly predicted branch. 

The bQ allows FastSim to restore register values when the 
p-architecture simulator detects a misprediction. Other 
techniques are used to restore memory. Instrumentation 
before every store instruction records the value in memory 
before the store is executed (its pre-store value) and puts 
this data in the same sQ entry that records the store’s 
effective address. When a misprediction is detected, all pre- 
store memory values following the mispredicted branch are 
restored, in reverse order 

Using these techniques, mispredicted execution paths 
directly execute on a host processor, thereby collecting 
information needed by FastSim’s p-architecture and cache 
simulators. Conditional branches are executed based on the 
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Figure 4. Memoization of FastSim’s p-architecture simulator. 1) A detailed simulator models the out-of-order 
microarchitecture. 2) Actions of the detailed simulator are recorded in the p-action cache, indexed 
by u-architectural configurations. 3) Cached simulator actions are replayed for previously simulated 
configurations, thereby avoiding expensive detailed simulation. 

results of prediction rather than using target program values, . . 
and only state changes subsequent to mispredictions are 
recorded for roll-back. When the y-architecture simulator 
discovers a misprediction, FastSim rolls-back execution of 
the target program by restoring host memory and registers, 
then continues direct-execution of the target program from 
the corrected target of the mispredicted branch. 

4.1 p-architecture Simulator 

4. Fast-Forwarding 
FastSim’s primary contribution is the application of 
memoization to microarchitecture simulation. FastSim uses 
a technique called fast-forwarding that caches p- 
architecture configurations and the resulting simulator 
actions for use in subsequent simulation. Figure 4 shows the 
structure of FastSim’s fast-forwarding p-architecture 
simulator. 

FastSim’s p-architecture simulator has been carefully 
designed to minimize the space needed to represent the state 
of its out-of-order pipeline-approximately 16 bytes plus 2 
bytes per instruction in the pipeline-without reducing the 
complexity of its processor model. At the same time, we 
have minimized the amount of interaction between the p- 
architecture simulator and other FastSim components. 
These are necessary first steps to perform fast-forwarding 
simulation. Larger state encodings consume more space in 
the cache. Interactions between the u-architecture simulator 
and other components result in explicit states, which must 
be stored in the cache. 

The next section (Section 4.1) describes the construction of 
FastSim’s u-architecture simulator, focusing on the 
techniques used to centralize simulator state and reduce the 
space requirements for encoding this state-a necessary 
first step for implementing fast-forwarding. Section 4.2 
describes how simulator configurations (i.e., u-architecture 
state) and the resulting simulator actions are further 
compressed and cached into FastSim’s p-action cache. This 
p-action cache is subsequently used to fast-forward 
simulation. Fast-forwarding produces the same result as 
detailed simulation, since p-architecture simulator state 
stored in the p-action cache completely determines 
consequent actions of the detailed simulator. Finally, 
Section 4.3 discusses strategies for further reducing the size 
of the p-action cache. 

FastSim’s l.t-architecture simulator is simplified by only 
simulating the timing of instructions, not their functional 
behavior. For example, values in registers and memory are 
not considered by the p-architecture simulator, although the 
cache simulator does use addresses recorded in the 1Q and 
sQ. 
Another simplification is that FastSim’s cache simulator is 
not memoized. The cache simulator is called by the p- 
architecture simulator as infrequently as possible through a 
simple interface. The cache simulator is invoked each time a 
load or store is chosen from FastSim’s Rl 0000-like address 
queue and begins its simulated execution. For loads, the 
cache simulator immediately returns the shortest interval (in 
cycles) before the requested data could become available, 
considering all other loads and stores already executing. The 
u-architecture waits for this interval before again invoking 
the cache simulator for this load, although the simulator 
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may be called in the meanwhile to handle other loads and 
stores. This call to the cache simulator either returns that 
data is now available or returns a new interval for the p- 
architecture to wait. A common example is a load that first 
misses in the Ll cache (usually a 6 cycle delay), then misses 
in the L2 cache resulting in an additional delay depending 
on the current state of the cache. With this interface, the p- 
architecture simulator is oblivious to the internal workings 
of its associated non-blocking cache simulator. 

FastSim’s u-architecture simulator is built around one 
central data structure, the iQ, which contains one entry for 
every instruction currently in the out-of-order pipeline. 
Between simulated cycles, the iQ contains the entire 
configuration of the p-architecture simulator, which can be 
used to index into FastSim’s cache of memoized actions. 
The iQ is only an abstraction in FastSim’s p-architecture 
simulator that centralizes simulator state. It can be easily 
adapted to model a variety of pipeline designs. 

Entries remains in the iQ from the time an instruction is 
fetched until it is retired. The iQ records an instruction’s 
address (from which the instruction itself can be looked up) 
and a small amount of state information. This per- 
instruction state information identifies in which pipeline 
stage an instruction resides and the minimum number of 
cycles before this stage might change. For example, an 
integer divide instruction may be executing-in the execute 
stage--with up to 34 cycles before it finishes executing and 
can be retired. 

At every simulated cycle, FastSim’s p-architecture 
simulator makes a complete pass over instructions in the iQ, 
in program order, from oldest to newest. Retired instructions 
are removed, state information for each instruction is 
updated for one cycle of execution, and new instructions are 
fetched into the queue. Most implementation constraints in 
FastSim’s p-architecture model can be implemented with 
simple counters. One constraint is that RlOOOO’s integer 
instruction queue (see Figure 1) holds at most 16 
instructions. FastSim counts the number of integer 
instructions already in the queue stage before allowing later 
integer instructions to move into this stage. Since this type 
of constraint is recomputed every cycle, it is not part of the 
y-architecture state carried between cycles. 

Other constraints are more complex, but can still be 
implemented without explicit state information. Consider 
the RlOOOO register renaming scheme. FastSim recomputes 
register renaming information every cycle. This is possible, 
since the actual map of logical to physical registers does not 
affect the simulated time. The only consideration is the 
number of physical registers required to hold all output 
values of enqueued and executing instructions. FastSim 
builds up a new logical to physical register map every cycle, 
which models the physical register limitation of an RlOOOO 
and finds all true data dependencies between instructions. 
Similarly, a simple counter limits the pipeline to execute at 
most four speculative branches. 

4.2 P-Action Cache and Fast-Forwarding 
FastSim’s processor-action cache (thep-action cache) stores 
a map from u-architecture configurations to simulator 
actions that result from those configurations. A u- 
architecture configuration is simply a snapshot of the iQ 
taken between cycles. Simulator actions are events, such as 
calling the cache simulator for a load or store, returning to 
the direct-execution, or updating the simulation cycle 
counter. In general, actions stored in the p-action cache 
represent the ways in which FastSim’s p-architecture 
simulator interacts with direct-execution or cache 
simulation, or update counters, such as the simulation cycle 
counter. Figure 5 shows one possible p-architecture 
configuration and some of the actions resulting from this 
conliguration. 

At the start of simulation, FastSim’s p-action cache is 
empty. u-architecture simulation starts by running 
FastSim’s detailed p-architecture simulator. Whenever the 
detailed simulator interacts with either direct-execution or 
FastSim’s cache simulator, it allocates a new action, 
describing the interaction, in the p-action cache. These 
actions are linked to the most recent u-architecture 
configuration, which captures the simulator state before 
these actions executed. 

When FastSim encounters a configuration already in the p- 
action cache, it looks up and replays the associated actions 
rather than using the detailed (slow) p-architecture 
simulator to recompute them. We call this process fast- 
forwarding, and it produces exactly the same results as the 
detailed p-architecture simulation. Actions are replayed in 
the same order-calling the cache simulator, returning to 
direct-execution, and updating simulation statistic-s 
when they were first generated. 

The only variation in u-architecture behavior arises from 
different cache behavior (caused by the unpredictable 
internal state of the cache simulator or different values in 
the 1Q or sQ) or from different control flow in the direct- 
execution. These variations are checked when the actions 
are replayed, and previously unseen behaviors terminate 
fast-forwarding, so that the detailed simulator can simulate 
the new scenario. 

Configurations stored in the p-action cache are a 
compressed representation of data in the iQ. This 
compression takes advantage of having instructions listed in 
program order. To encode the sequence of instruction in the 
iQ, we only save the starting addresses (PC and nPC) of the 
oldest instructions in the iQ, plus one bit per conditional 
branch (taken/not-taken), plus the target address of any 
indirect jumps. The iQ’s per instruction state information 
can be compressed into 1.5 bytes per instruction, which 
subsumes the 1 bit of taken/not-taken information needed 
for conditional branches. Including some additional header 
information, this compresses a configuration to 16 bytes 
plus 4 bytes per indirect jump plus 1.5 bytes per instruction. 
New configurations are allocated at the end of a cycle in 
which an action was allocated. Hence at most one 
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Addr. Instruction Tag1 Tag2 P-Action Cache Entries 

0x10074 clr %fp done 
0x10078 Id [ %sp + 0x40 1, %I0 cache 6 
0x1007~ add %sp, 0x44, %I1 exec 1 
0x10080 sub %sp, 0x20, %sp queue 
0x10084 tst %gl queue 
Ox10088 be Ox 1009)8 queue 
0x1008~ mov %gl, %oO queue 
0x10098 sethi %hi(Ox5bOOO), %oO fetch 
0x1009~ or %oO, 0x148, %oO fetch 
OxlOOaO call Ox3f378 fetch 
Ox100a4 nop fetch 
Ox3f378 save %sp, -96, %sp 
Ox3f380 sethi %hi(Ox75cOO), %oO 
Ox3f384 call Ox56ce8 

Ox3f388 or %oO, Ox2e0, %oO 
Ox56ce8 save %sp, -96, %sp 
Ox56cec sethi %hi(Ox77000), %gl 
Ox56cfo Id [ %gl + 0x17~ 1, %gl 
Ox56cf4 call %gl 
0x56&3 restore 

-architectural 

igure 5. A p-architectural configuration in the detailed simulator and associated entries recorded in the p- 
action cache. The instructions on the left are taken from the dynamic instruction stream. The top 11 
instructions are currently in the pipeline and considered part of the configuration. As a result of this 
configuration, the p-architecture will execute for 6 cycles, then call the cache simulator for the load 
at 0x10078. These actions are encoded in the p-action cache, indexed by a compressed representation 
of the p-architecture configuration. 

configuration is stored per simulated cycle, but several 
simulated cycles are often associated with a single 
configuration. Note that all interactions between the p- 
architecture and other FastSim components take place in the 
last cycle associated with a configuration because of the 
way configurations are allocated. 

Multiple actions can be associated with a single 
configuration. FastSim allocated 2.s5.7 actions per 
configuration while simulating the SPEC95 benchmarks. 
The first action following a configuration identifies the 
number of simulated cycles associated with the 
configuration. Other actions, such as calling the cache 
simulator or returning to direct-execution, are linked in the 
order in which they were produced by the detailed 
simulator. The last action in a chain of actions associated 
with a configuration is linked to the first action of the 
following configuration, forming an unbroken chain of 
actions. 

Variations in behavior, caused by different values from the 
cache simulator or changes in control flow following a 
branch or indirect jump, cause the fast-forwarding simulator 
to choose one of several possible successor actions in the 

action chain. For example, there are four possible outcomes 
following a conditional branch in the direct-execution (i.e., 
taken/predicted, taken/mispredicted, not-taken/predicted, 
and not-taken/mispredicted) and arbitrarily many return 
values for a load event sent to the cache simulator (i.e., 
possible intervals before data becomes available). If the 
action for a particular outcome is not in the p-action cache 
(e.g., the outcome has not yet occurred for the current 
configuration), fast-forwarding stops and detailed 
simulation resumes. Subsequent detailed simulation 
computes the p-architecture behavior for this new outcome, 
and generates actions along a new branch of the action chain 
to handle this outcome in the future. Figure 6 illustrates the 
graph structure of the p-action cache in terms of 
configurations and action chains, and shows how new 
configurations and actions are linked into the existing graph 
structure to handle new outcomes. 

4.3 Limiting P-Action Cache Size 
Fast-forwarding accelerates p-architecture simulation at the 
cost of increased memory consumption. Without limitation, 
the p-action cache can grow to hundreds of megabytes for 
the more complex SPEC95 benchmarks (e.g., 889MB for 
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Figure 6. The upper diagram is a sample graph of configurations and actions in the p-action cache. The lower 
diagram shows how new configurations and actions might get linked into the existing graph when the 
detailed simulator is invoked to handle an alternate branch outcome. 

go, 296MB for gee). Test results presented in the next 
section were collected on a host machine with 2GB of 
physical memory, but few people will have machines this 
large in the next few years. Consequently we investigated 
several techniques for handling FastSim’s memory 
consumption. 

Our first trivial p-action cache replacement policy allows 
unbounded growth of the p-action cache. This policy 
produces fast simulation times, providing the p-action cache 
fits in physical memory. If it does not fit in physical 
memory, then the OS will page (and likely thrash). A better 
replacement policy is to flush the p-action cache when full. 
This cache flush policy is easy to implement and can limit 
the p-action cache to any size, but there is a performance 
trade-off. Whenever the cache is flushed, FastSim must use 
detailed (slow) p-architecture simulation to recompute 
actions and configurations. 

A drawback of the cache flush policy is that useful actions 
are flushed along with never to be uses ones. An alternative 
policy, which also maintains pointers and avoids 
fragmentation, is to use a copying garbage collector. Only 
actions that were accessed since the last garbage collection 
are copied. This policy incurs extra overhead-the cost of 
copying-which would be offset by increased reuse of 
cached actions. A further refinement is to use a generational 
garbage collector, so frequently replayed actions will not be 
copied by the garbage collector as often-hopefully 
reducing garbage collection overhead. 

5. FastSim Performance 
This section describes some performance measurements of 
FastSim running the SPEC95 benchmarks. Experiments 
were run on a Sun Microsystems Ultra Enterprise E5000 
with 167MHz UltraSPARC processors and 2 GBytes of 
physical memory. All programs, except compress, were run 
using their “test” input sets to reduce simulation time. 
Compress, which requires less time, used its “train” data set. 

Table 2 shows the performance of FastSim, as compared 
against the original benchmarks (before they were 
instrumented) and against a direct-execution simulator 
without memoization. SlowSim is FastSim with 
memoization disabled-the fast-forwarding simulator was 
turned off and no configurations were encoded or put in the 
p-action cache. The table shows that memoization improves 
overall simulation performance by a factor of 4.9-l 1.9 
times. Despite this dramatic speedup, the cycle counts---and 
all other processor statistics--generated by FastSim are 
identical. 

Table 3 compares FastSim against the SimpleScalar out-of- 
order simulator [l] using similar processor and cache 
parameters. Despite their differences-e.g., SimpleScalar 
models a different instruction set-SimpleScalar provides a 
good baseline for measuring FastSim’s performance and 
demonstrating the benefit of its techniques. With only 
direct-execution, FastSim runs I. l-2.1 (mgrid-gcc) times 
faster than SimpleScalar. With fast-forwarding, FastSim 
runs 8.5-14.7 (fppppijpeg) times faster than SimpleScalar. 

One reason for memoization’s large benefit is that FastSim 
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Benchmark 
099.go 
124.m88ksim 
126.gcc 
129.compress 
13O.G 
132.ijpeg 
134.perI 
147.vortex ,,.- ,.l.ll**.......l.... 
lOl.tomcatv 
102.swim 
103.su2cor 
104.hydro2d 
107.mgrid 
llO.applu 
125.turb3d 
14l.apsi 
145.fPPPP 
146.wave5 

Program 
138.2 

2.9 
12.3 
0.3 
8.6 
3.3 

18.0 
82.2 

-----ini 
4.5 
6.9 

3z 
122:7 
114.1 

66.8 
14.9 
36.6 

SlowSim / FastSim / Slow / Fast 
1.554.2 248.4 6.3 -.- 
lI363.3 249.5 5.5 
1,122.7 215.1 5.2 
1.304.4 218.2 6.0 
1,435.6 293.5 4.9 
1,837.5 199.4 9.2 
1.1159 177.8 6.3 
1.310.7 -I 221.8 

I 
5.9 

1.322.3 - '~T?Jcx 8 " ------'--c6- 
(460.4 191.3 7.6 
1,934.6 251.4 7.7 
2,174.l 232.8 9.3 
2369.6 215.9 11.9 
1,982.8 292.5 6.8 
1,992.g 254.5 7.8 
2,758.1 357.7 7.7 
2,423.7 322.9 7.5 
2,169.4 303.8 7.1 

Table 2: Performance of the FastSim simulator running SPEC95 benchmarks. “Program” is time (in 
seconds) to execute the original, uninstrumented executables. The two simulator slowdowns show 
how many times slower the benchmarks ran in FastSim without memoization (SlowSim) and with 
memoization (FastSim). The final column is the factor by which memoization improved the 
simulation. 

I 

Benchmark 
099.go 
124.m88ksim 
126.gcc 
129.compress 
13O.li 
132.ijpeg 
134.oerl 
147.bortex "i-Z)"i.tomc~~- 

Program I FastSiml FastSim I 
cycles - insts. SimpleScalar SlowSim Kinstdsec. SimpleScalar 

l.l4E+lO 1.64E+lO 76.2 477.0 
2.78E+08 4.8lE+08 
9.27E+08 1.4lE+09 
2.74E+07 4.43E+07 
8.87E+08 1.24E+09 
2.61E+08 4.8lE+08 
1.34E+09 1.93E+09 
5.76E+09 l.O9E+lO 
?ir33%TlrnW~' 
2.35E+08 4.23E+08 
5.48E+08 9.14E+08 
6.28E+08 8.46E+08 
2.96E+09 5.26E+09 
B.53E+09 1.51E+lO 
B.87E+09 1.59E+lO 
6.28E+09 8.57E+09 
1.20E+09 1.99E+09 
2.59E+09 4.64E+09 

58.4 
47.2 
51.9 

121.8 
102.8 
104.5 
100.4 

80.4 
96.5 

101.1 
-'m-r 

64.5 
68.7 
42.7 
61.4 
61.9 
70.0 
46.5 
55.1 
58.4 

11.4 
11.4 
12.0 

102.swim 
103.su2cor 
104.hydro2d 
107.mgrid 
llO.applu 
125.turb3d 
14l.apsi 
145JPPPP 
146.wave5 

50.2 
48.1 

579 
"- 

55:3 
56.1 

56.5 

48.9 

target instructions. However, the performance improvement 
does not appear to be directly attributed to this fraction 
(compare ijpeg). 

Table 5 reports measurements of the memoization process. 
The first column reports size of the p-action cache. In many 

14.7 
12.6 

-----ill 
8.9 
9.4 

12.9 

8.5 

Table 3: Program cycles and instructions are the total number of cycles and retired instructions resulting 
from out-of-order simulation in FastSim. Next are the average instructions retired per second by the 
SimpleScalar simulator, FastSim without memoization (SlowSim), and FastSim with memoization 
(FastSim). The last column shows FastSim’s performance improvement relative to SimnleScalar. 

was able to replay simulator actions for almost all 
instructions. Table 4 shows the fraction of instructions 
simulated in detail compared against the much larger 
proportion of instructions for which actions were replayed. 
For all benchmarks except gee and ijpeg, FastSim used its 
detailed u-architecture simulator for fewer than 0.1% of 

291 



Detailed Replay Detailed / 
Benchmark (ins&.) (insts.) Total 

099.go 1.6lE+07 1.64E+lO 0.099% 
124.m88ksim 6.49E+04 4.8lE+08 0.013% 
126.gcc 4.40E+06 1.41E+09 0.311% 
129.compress 3.4lE+04 4.42E+07 0.077% 
13O.I 4.17E+04 1.24E+09 0.003% 
132.ijpeg 9.78E+05 4.80E+08 0.203% 
134.perl 4.34E+05 1.93E+09 0.022% 
147.vortex 8.37E+05 l.O9E+lO 0.008% -*...... ,,..-..""".,".--, ."."...."..... . 
lC)l.tomcatv 

-. .**."...**"-.... 
4.KG+#4 

l~'ETo~- .-.. ..I.. - 
cl.003 /, 

'ii"' - 

102.swim 9.93E+04 4.23E+08 0.023% 
103.su2cor 2.35E+05 9.14E+08 0.026% 
104.hydro2d 2.4lE+05 8.46E+08 0.028% 
107.mgrid 6.72E+04 5.26E+09 0.001% 
llO.applu 1.40E+05 1.51E+lO 0.001% 
125.turb3d 8.75E+04 1.59E+lO 0.001% 
14l.apsi 1.52E+05 8.57E+09 0.002% 
145.fPPPP 2.53E+05 1.99E+09 0.013% 
146.wave5 2.39E+05 4.64E+09 0.005% 

Table 4: Instructions that FastSim simulated by fast-forwarding (Replay) and by detailed simulation 
(Detailed). The last column is the fraction of instructions that FastSim simulated in detail. 

P-Action # Static # Static Actions I Cycles I Dyn. Chain Length 
Benchmark Cache (MB) Configs. Actions Config. Config. Avg. Max. 

099.go 889.4 5,096,560 14,764,742 15 17,300 1,882,lOl 
124.m88ksim 4.6 26,660 89,180 t; 1'5 190,974 592,750,035 
126.gcc 296.0 1,774,016 5,353,318 3:5 1:5 5,354 1,618,693 
129.compress 2.8 13,475 57,429 3.5 1.4 35,711 5,231,549 
13OSi 3.2 18,944 60,581 3.4 1.4 645,873 49,204,501 
132.ijpeg 199.5 816,075 3,343,805 3.7 1.5 19,142 2,679,671 
134.perl 142.9 559,449 3,205,519 3.6 1.6 51,189 13,495,080 
147.vortex 108.6 557362 2037172 3.7 1.3 259,160 32,527,035 .j"@.j-..firil~", .-,, *. --,.,- -**. .*, -., La".. "-.-."*L~"","","!-".*" I I. -," ,,"..-.- 

!Tx-- 2Wl 114,445 -zGY-----iTTT'm 6lmTT& 
102.swim 16.8 79,002 262,422 4.5 1.2 '426,471 491,018,150 
103.su2cor 32.8 156,603 642,213 4.1 1.1 178,467 182,556,421 
104.hydro2d 35.5 174,422 679,767 

2 
1.2 244,809 194,389,159 

107mgrid 9.5 47,035 192,098 1.0 3,788,172 322,900,913 
llO.applu 19.5 94,893 375,606 4:7 1.0 7,414,106 38,010,020,845 
125.turb3d 10.4 50,275 205,181 4.1 1.2 10,490,459 2,555,810,836 
14l.apsi 20.3 98,550 409,502 4.7 1.0 5,122,367 784,023,417 
145JPPPP 25.4 127,051 460,440 3.8 27,784,740 
146.wave5 I 38.31 180,398 752,237] 4.9 $1 1 ,E~:~: 458,444,554 

Table 5: Measurements of memoixation. “P-Action Cache” is the total memory used to record configurations 
and actions. The next two columns report the static number of configurations and actions allocated. 
“ActionsKonfig.” is the average dynamic number of actions associated with each configuration, 
and “Cycles/Config.” is the dynamic number of simulation cycles per configuration. The final two 
columns report average and maximum lengths of action chains played back without stopping to 
perform detailed simulation. 

programs, it was manageably small. However, in five Table 5 also reports the number of actions and 
applications it grew to over one hundred megabytes. The go configurations statically generated for each program. 
benchmark generated nearly 900MB of p-action data, by far Although the number of actions and configurations varied 
the most. Fortunately, a simple cache replacement policy, greatly between programs, the dynamic number of actions 
discussed later, can greatly reduce the memory requirements per configuration remains relatively consistent--between 
for simulating most benchmarks. 3.4 and 4.9-for all benchmarks. This number is a measure 
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+ 129.compress 

-o- 13O.li 

-t 132.ijpeg 

- 134.perl 

- 147.uMex 
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- 145. fPPPP 
A--- 146.waE5 - 

Figure 7. Graph of FastSim’s speedup due to memoization with limited p-action cache space using the cache 
flush replacement policy. 

of how much work can be directly replayed at a memoized 
configuration. By dividing the actions per configuration by 
the dynamic cycles per configuration, we get an indication 
of how much simulated work is performed by the p- 
architecture each cycle. The average actions per cycle over 
all the integer benchmarks is 2.4, compared to 3.9 for 
floating-point benchmarks, which corresponds to our 
pipeline’s ability to execute more instructions in parallel if 
there is a mix of integer and floating point operations. The 
final two columns report the average and maximum number 
of chained actions that fast-forwarding was able to replay 
without calling the detailed simulator. The large values in 
both columns reflect the extremely long intervals during 
which only previously cached configurations were 
encountered. 

Figure 7 shows the result of limiting p-action cache size 
using the cache flush on full policy. The graph shows 
simulator speed-up (non-memoized/memoized time) for p- 
action cache sizes ranging from 512Kb to 256MB. Most 
benchmarks could tolerate an order-of-magnitude reduction 
in p-action cache size with little or no impact on simulator 
performance. This includes the go benchmark, which 
naturally uses 889MB but shows no slowdown when limited 
to 256MB and only moderate slowdown at 64MB. A few 
benchmarks did not perform well with reduced cache 
sizes----notably ijpeg, which slowed dramatically with only 
moderate cache reductions--although even these 

benchmarks ran several times faster than simulation without 
memoization for all but the most restrictive cache sizes. 

We also tried garbage collecting the p-action cache, keeping 
only those configurations and actions that had been used 
since the last garbage collection. Despite the potential 
savings from keeping useful actions in the cache, FastSim’s 
performance with garbage collection was nearly identical to 
its performance using the simple flush on full policy. 
Furthermore, since we used a copying garbage collector, the 
total memory in use during a collection could be up to twice 
the maximum allowed p-action cache size. Taking this into 
account, garbage collecting the p-action cache is almost 
always worse than simply flushing it. Experiments with a 
generational garbage collector were no better. The 
additional complexity--+.g., handling pointers from older 
generations back to younger generations-offset any 
savings from copying smaller portions of the cache. 

The garbage collector’s poor performance can be attributed 
to two factors: Garbage collections (or cache flushes) are 
infrequent and few actions survive each collection. 1-4 
garbage collections or cache flushes occur when the p- 
action cache is sized just smaller than the maximum space 
used by a benchmark. For each factor of two decrease in 
cache size there is only a 3.8 times increase in the number of 
collections on average. Infrequent collections means that 
few configurations are discarded over a program’s 
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execution and that the amortized cost of regenerating them 
is small. Another factor is that only 18% of the p-action 
cache survives each garbage collection on average. Little is 
gained by finding and copying these actions over flushing 
the cache and regenerating them, when compared to the 
total simulation time. 

6. Conclusion 
FastSim uses two, well-known, but previously unapplied 
techniques to greatly speed the detailed, accurate 
microarchitectural simulation of an out-of-order 
uniprocessor. FastSim demonstrates that direct-execution is 
compatible with out-of-order simulation, although the 
benefits are small because of the cost of simulating a 
complex microarchitectural model. 

FastSim also directly attacks this cost, by using 
memoization to dramatically reduce the cost of detailed 
simulation, A key observation is that out-of-order 
microarchitecture configurations are often repeated and 
result in identical simulator behavior. By caching these 
configurations and their corresponding simulator actions, 
subsequent visits to a configuration can be replayed many 
times faster. This fast-forwarding speeds processor 
simulation by a factor of 5-12 times, at the cost of increased 
memory consumption. 

Experiments with cache replacement policies show that 
most benchmarks only need a fraction of the p-action data 
they generate over the course of simulation. A simple flush 
on full policy is suficient to limit the p-action cache size 
without a large impact on performance. More complex 
cache replacement policies, such as copying garbage 
collection, are not worth the effort, since they are difficult to 
implement and perform no better than the simple flush on 
full policy. 
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