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ABSTRACT
The Memento protocol provides a uniform approach to query
individual web archives. Soon after its emergence, Memento
Aggregator infrastructure was introduced that supports query-
ing across multiple archives simultaneously. An Aggrega-
tor generates a response by issuing the respective Memento
request against each of the distributed archives it covers.
As the number of archives grows, it becomes increasingly
challenging to deliver aggregate responses while keeping re-
sponse times and computational costs under control. Ad-hoc
heuristic approaches have been introduced to address this
challenge and research has been conducted aimed at opti-
mizing query routing based on archive profiles. In this pa-
per, we explore the use of binary, archive-specific classifiers
generated on the basis of the content cached by an Aggre-
gator, to determine whether or not to query an archive for
a given URI. Our results turn out to be readily applicable
and can help to significantly decrease both the number of re-
quests and the overall response times without compromising
on recall. We find, among others, that classifiers can reduce
the average number of requests by 77% compared to a brute
force approach on all archives, and the overall response time
by 42% while maintaining a recall of 0.847.

1. INTRODUCTION
The Memento“Time Travel for the Web”protocol was first

introduced in 2009 [17] and its formal specification was con-
cluded in December 2013 with the publication of RFC7089
[16]. The protocol specifies interoperable access to resource
versions, named Mementos, and consists of two complimen-
tary components:

• A TimeGate (URI-G) associated with an Original Re-
source (URI-R) supports datetime negotiation - a vari-
ant on content negotiation - to allow access to a Me-
mento (URI-M) for the Original Resource that was
the live web version at or around a preferred datetime.
That datetime is expressed in a special-purpose HTTP
protocol request header.

Table 1: Web archives covered by the LANL Aggregator

Abbreviation Native - By Proxy Included

archive.is native yes
archiveit native yes

ba native yes
blarchive native yes

es by proxy yes
gcwa by proxy yes

hr by proxy yes
ia native yes
is native yes

loc native yes
nara by proxy no
proni native yes

pt by proxy yes
sg by proxy yes
si by proxy no

swa native yes
uknationalarchives native yes

ukparliament native yes
webcite by proxy yes

• A TimeMap (URI-T) associated with an Original Re-
source (URI-R) provides an overview of all Mementos
for an Original Resource known to the system that
provides the TimeMap. For each such Memento, the
TimeMap lists the URI-M and the archival datetime.

The Memento protocol can be adopted by web archives
and resource versioning systems. At the time of writing,
especially the former systems support the protocol either
through native or by-proxy implementations. As such, it
has become possible to uniformly interact with web archives
in order to determine which Mementos a specific archive
holds for a given URI-R (TimeMap component) as well as
to negotiate access to the Memento for a given URI-R that
is held by a specific archive and that is temporally closest
to a preferred datetime (TimeGate component). In addi-
tion, in order to provide these same functionalities across
archives, Memento Aggregator infrastructure has been intro-
duced that provides TimeMaps and TimeGates that cover
multiple archives.

The longest running Memento Aggregator infrastructure
is operated by the Research Library at the Los Alamos Na-
tional Laboratory (LANL). As shown in Table 1, it currently
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covers 19 archives1, 11 of which are natively Memento com-
pliant, and the 8 others are compliant via proxy implemen-
tations. The last column in the Table indicates whether an
archive was included in the experiments described in this
paper. This Aggregator infrastructure is leveraged to de-
liver end user web time travel services (e.g. Memento for
Chrome2, the Time Travel web portal3, Mink4) and is also
frequently used for research endeavors that require cross-
archive lookups. The Aggregator received about 1.5M in-
coming TimeGate/TimeMap requests in March 2015, nearly
18.5M in October 2015, and over 50M in December 2015.

In essence, the Aggregator infrastructure accepts TimeGate
and TimeMap requests and provides responses that reach
across all covered archives. Generating a response requires
issuing the respective Memento request against each of the
distributed archives. Since doing so is predictably resource
intensive and time consuming, an Aggregator Cache has
been introduced. The cache has URI-R as key and cross-
archive TimeMap information (URI-Ms and associated archival
datetimes) as value. The URI-Rs that are covered by the
cache are a combination of about 500K popular URIs re-
trieved from Alexa5 in December 2014 plus URIs that were
requested by users over time, for a total of about 1.2M.

On a recurrent basis, and in a background process, the
cache is refreshed by re-polling all covered web archives for
TimeMaps. TimeGate/TimeMap requests against the Ag-
gregator for any given URI-R are served from the cache if
the URI-R exists in the cache and the cache is not con-
sidered stale. For responses that can not be delivered from
cache (i.e. cache misses), the following approach is currently
taken:

1. A TimeGate response is generated by issuing a real-
time TimeGate request against each of the Memento
compliant archives, excluding by-proxy compliant ones.
The exclusion is aimed at reducing response times and
required computational resources, and is informed by
the intuition that responses from by-proxy implemen-
tations will generally be slower than those from native
ones. Depending on the application, all TimeGate
responses are returned to a client of the Aggregator
or only the response with the Memento that has an
archival datetime closest to the requested preferred
datetime.

2. A TimeMap response is generated by issuing a realtime
TimeMap request against all covered archives, both
compliant and by-proxy, merging all responses, and
returning them to a client of the Aggregator. This ap-
proach may yield significant response times but aligns
with the Memento protocol that emphasizes complete-
ness of TimeMap responses.

2. PROBLEM STATEMENT
The use of a cache for LANL’s Memento Aggregator and

the heuristic introduced for handling TimeGate requests for

1Full archive names at http://mementoweb.org/depot/
2http://bit.ly/memento-for-chrome
3http://timetravel.mementoweb.org
4http://matkelly.com/mink
5http://www.alexa.com/

Table 2: Distribution of the cached URI-R across archives

k # URI-R stored by k archives In %

0 270,495 22.17
1 407,998 33.44
2 323,596 26.52
3 120,829 9.90
4 53,212 4.36
5 25,947 2.12
6 11,819 0.97

7-19 6,100 0.50

URI-Rs that are not cached are indicative of a general chal-
lenge related to operating Memento Aggregator infrastruc-
ture. As the number of web archives increases, delivering
aggregate responses becomes more challenging as there is a
limit to the number of archives that can be polled when re-
sponse times and computational costs for the infrastructure
are a concern. But, equally important is appropriately han-
dling the load caused by requests on the individual archives.
This may not be a serious concern in case of the Internet
Archive that has sufficient machine power to handle con-
tinuously high traffic from around the globe. But, other
archives have more limited resources and sometimes even
policies aimed at reducing traffic. For example, in recent
Hiberlink6 research, we experienced a daily cap on the num-
ber of requests from a given IP address imposed by the we-
bcite archive. And, soon after the overwhelmingly successful
launch of oldweb.today7 in December 2015, several archives
struggled with the load incurred by the service, leading to
extreme response times and even a request from an archive
not to be polled. For these reasons, Memento Aggregator
infrastructures are in need of strategies that inform selec-
tive polling of archives instead of brute force polling of all
archives. This consideration is supported by Table 2, which
shows that 82.23% of URI-Rs covered by the LANL Ag-
gregator have Mementos in 0, 1, or 2 archives only. Clearly,
using a brute force strategy, many request are issued that do
not return Memento information. But how to know which
URI-R to look up in which archive? How to predict whether
an archive has Mementos for a given URI-R?

Considering the limitations of prior work in this realm (see
Section 3), we set out to explore whether a machine learning
approach could be used to inform the decision as to whether
a given URI-R should be looked up in a specific archive.
Specifically, we conduct experiments in which we use the
content of the Aggregator Cache to train one classifier per
archive covered by the Aggregator. The training is based on
features extracted from the URI-Rs stored in the cache and
uses the TimeMap information contained in the cache that
indicates whether an archive holds Mementos for that URI-
R or not. Once a classifier for an archive has been generated,
it can provide a binary response to the question whether the
archive should be polled for a given URI-R.

If such an approach were successful in reducing the amount
of distributed queries, it would be rather attractive from an
operational perspective:

6http://hiberlink.org
7http://oldweb.today

http://mementoweb.org/depot/
http://bit.ly/memento-for-chrome
http://timetravel.mementoweb.org
http://matkelly.com/mink
http://www.alexa.com/
http://hiberlink.org
http://oldweb.today


• Unlike previously explored approaches, it does not re-
quire the involvement of third-party data as it is fully
based on available cached data.

• As archive holdings, and hence the cached content
evolves, classifiers can recurrently be retrained in off-
line background processes without affecting overall Ag-
gregator performance. In addition, since we generate
the classifiers with fixed features types but dynami-
cally selectable features and number of features per
type, they can automatically adapt to a changing web
archiving landscape.

• It can be expected that the negligible overhead that
would be incurred by realtime querying all classifiers
(a fraction of milliseconds) would by far be offset by
the benefits of not having to query all archives.

The remainder of the paper is structured as follows: Sec-
tion 3 provides an overview of prior work in this realm; Sec-
tion 4 describes how classifiers are generated and details the
choice of training features and algorithms; Section 5 pro-
vides an evaluation of the classifiers using a large dataset
of URI-Rs that are distinct from those in the Aggregator
cache; Section 6 summarizes our findings.

3. RELATED WORK
Optimizing Memento query routing has been explored in

efforts that rely on archive profiling. In [4], profiles were cre-
ated based on top-level domain (TLD) that recorded URI-R
and URI-M counts per TLD for twelve public web archives.
The results show that it is possible to retrieve a complete
TimeMap for 84% of URI-R when using only the top 3
archives and in 91% of the cases when using the top 6
archives. This simple approach can reduce the number of
queries generated by a Memento aggregator significantly
with some loss in coverage. In [3] extensive profiles were
created based on URI keys, generated from URI-Rs using
various templating approaches. Doing so, they can success-
fully identify about 78% of URI-R to not be present in an
archive by means of a template approach that requires stor-
ing only 1% of what would be required to hold all URI-Rs
of the archive. Both [3, 4] ideally require obtaining URI-R
index files from archives. Profiles could also be generated
by sampling archives for URI-Rs, although determining an
appropriate sampling approach remains a research challenge
in its own right. While these research directions are interest-
ing and promising, generating profiles is resource intensive,
requires recurrent updates at unpredictable frequencies as
archives evolve, and - in case of the index file approach -
relies on the availability of third party data and, hence the
willingness of those parties to share it.

Various efforts have used machine learning techniques to
predict characteristics of a web page by merely consider-
ing its URI. The classification goals are wide ranging and
include predicting a web page’s topic [6, 7, 13], genre [2],
pagerank [13], language [1, 8] or whether it has malicious
content [5, 11, 14]. Certain URI feature classes perform
better for some goals than others. The lexical features of a
URI were successfully used to detect phishing attacks [5, 11,
14]. TLD has been used for language detection [1, 8] but re-
sults show that, due to the heterogeneous nature of domains
like com and org using TLD only is not sufficient. In [13],

several token segmentation techniques were used to deter-
mine web page topic. The resulting classifiers perform well
on long URIs but less so on typical web site entry points. An
approach that includes the use of tokens has also achieved
high accuracy in identifying suspicious URIs [5, 14]. For
text classification, n-gram approaches are widely used and
have also been applied for URI classification in combination
with tokens for topic and genre classification [2, 6, 7] as well
as for language detection [1, 8]. These efforts have achieved
good results for their respective goals, and we build on their
pioneering work. However, we apply their techniques to an
entirely different task. As we embark on the research we are
unsure whether it will be possible to characterize the respec-
tive archives by means of a limited set of features, especially
since the holdings of many are highly heterogeneous, cover-
ing many languages, topics, and - in the case of on-demand
archives - user interest.

4. BUILDING ARCHIVE-SPECIFIC CLAS-
SIFIERS

For the purpose of our experiment, we use a dump of the
content of the LANL Aggregator Cache, created on Septem-
ber 8th 2015. It contains 1,219,999 distinct cached URI-Rs
for which a total of 239,753,370 URI-Ms are known. Table
3 shows the number of cached URI-Rs for each archive as
well as the number of cached URI-Rs for which an archive
is the only one to hold Mementos. The Table shows that for
2 of the archives covered by the Aggregator (nara, si), the
cache contains no URI-M at all. As a result, these archives
are not included in the experiments as no training data is
available for them (see Table 1). As can also be seen, for
a large majority of URI-R, the Internet Archive (ia) holds
Mementos. This observation is aligned both with prior find-
ings and popular knowledge. As any sensible cross-archive
lookup strategy would always include the Internet Archive,
we decide not to train a classifier for this archive but rather
to consistently perform a lookup, the equivalent to having
a classifier that returns a positive, irrespective of the re-
quested URI. Overall, the Table clearly illustrates the value
of looking beyond the Internet Archive when in need of a
comprehensive overview of Memento holdings.

To visualize the performance of the archive-specific classi-
fiers, we use Receiver Operating Characteristic (ROC) curves
[15]. Figure 1 illustrates the specific meaning of these curves
for the case of routing Memento requests to an archive. In
ROC curves, the x-axis represents the False Positive Rate
(FPR) and the y-axis the True Positive Rate (TPR). When
requesting a prediction from a trained classifier, a specific
(TPR,FPR) pair is chosen on the curve that corresponds
with the compromise that is most acceptable for a given ap-
plication. Throughout the paper, we present ROC curves
for two archives: the left hand plots are for archiveit that
holds Mementos for a significant number of cached URI-R,
and the right hand plots are for gcwa that holds Mementos
for only a small number. To support a complete understand-
ing, the ROC curves for all archives and all experiments are
available8. To generate our classifiers, we use Apache Spark
MLlib version 1.5.1 (scala)9 on a MacBook Pro, 2.7 Ghz i7,
16GB 1600Mhz DDR3 and use 10-fold cross-validation to
train.

8http://mementoweb.org/demo/aggregator learning/
9https://spark.apache.org/mllib/

http://mementoweb.org/demo/aggregator_learning/
https://spark.apache.org/mllib/


Table 3: Distribution of the cached URI-R in the archives.

archive #URI-R stored #URI-R unique

archive.is 319,554 9,971
archiveit 168,286 1,498

ba 110,073 236
blarchive 21,300 659

es 4,170 50
gcwa 1,001 10

hr 1,245 0
ia 920,934 390,604
is 71,015 2,221

loc 150,882 1,012
nara 0 0
proni 3,946 8

pt 32,002 224
sg 3,247 9
si 0 0

swa 895 8
uknationalarchives 24,572 368

ukparliament 14 1
webcite 40,043 108

Figure 1: ROC curve for Memento requests to an archive

4.1 Selecting Features
Inspired by the aforementioned literature on using ma-

chine learning approaches for URI classification, we decide
to use the following count features:

• The character lengths of the complete URI-R and of
its host, path, and query components.

• The count of special characters (# / . ? - % = : $)
in the aforementioned URI-R components.

Since the crawling policies of various archives differ, for ex-
ample regarding depth of crawl, we expect these features to
be relevant for our goal. Instead of using a Top Level Do-
main (TLD) feature as previous work did, we add the Public
Suffix List domain10 - PSL domains - feature to our arse-
nal. It consists of a binary vector with one entry for each
considered PSL domain. The extension from TLD to PSL is

10List at https://publicsuffix.org/

Table 5: Observed and maximum features per type

Features Observed Maximum

counts 36 36
PSL domains 1,600 7,834

3-grams 40,712 46,656 (363)
4-grams 345,988 1,679,616 (364)
5-grams 864,992 60,466,176 (365)

2-10 tokens 315,798 -
total 1,569,126 -

Table 6: Final features choice

Features Type Number Selection Metric

counts 36 Take all
PSL domains 250 Most Common

3-Grams 3,000 Difference
Tokens 2,000 Entropy

guided by the observation that most archives cover the same
popular TLDs. In addition, we decide to also add n-gram
(n ranging from 3 to 7) and token features extracted from
URI-Rs as these have shown to be successful for determin-
ing the language of a web page. Since, especially, national
archives may be more likely to archive web pages in certain
languages, our intuition is that these features should add
significant discriminatory power. Full word extraction (to-
kens) present a challenge in our case as initial tests show
that using dictionary lookups is unsuccessful, a result of, for
example, the use of trademarks and concatenated words in
URI-Rs. Hence, we decide on a simple approach that con-
sists of generating tokens of length 2 to 10 by parsing a URI-
R, removing common delimiters, and turning the resulting
strings into lower case. Table 4 illustrates these features by
means of an example URI-R.

Table 5 shows the features discussed so far, and, for each,
the number observed in the set of cached URI-Rs as well
as the maximum, if any. Since one of our goals is to incur
minimal overhead by querying the archive-specific classifiers
in realtime, it is not feasible to exploit all those features for
classification. While we need not be concerned about the
number of counts features, we do need to limit the number
of PSL domains, n-gram, and token features. There are two
aspects to the desired reduction:

• Selecting a method to rank features according to their
discriminatory ability.

• Selecting the feature types to use, and, for each type,
the maximum number of features.

Regarding the selection of ranking methods for features,
we explore 4 metrics: the Most Common metric simply ranks
features according to their frequency over the whole training
set; Difference is the sum of the absolute differences between
a feature’s frequencies for URI-Rs stored by an archive and
the overall frequency of that feature (as used by Most Com-
mon); Entropy [12]; and Gini impurity [9]. The latter two
are widespread metrics for assessing the usefulness of a split
when building decision trees.

To quantify how the choice of a metric impacts the result-
ing prediction, we select 1,000 features for the n-grams and

https://publicsuffix.org/


Table 4: Example of features extracted for http://www.dailymail.co.uk/science-tech/index.html

Type Features

counts len(url)=50, len(host)=19, count(., url)=4, count(., path)=1, ...
PSL domains co.uk

3-grams on host www, dai, ail, ily, lym, yma, ail
4-grams on path scien, cien, ince, tech, inde, ndex, html

tokens on whole URI www, dailymail, co, uk, science, tech, index

token categories according to the 4 aforementioned metrics,
as well as 1,000 randomly selected features, to be used as a
reference point. We then train binary classifiers using the
logistic regression algorithm. As the ROC curves of Fig-
ure 2 illustrate, we find that the choice of metric does not
significantly impact the resulting classifier. We observe the
same lack of impact of the choice of metric for classifiers
generated for all archives and find that it relates to the sig-
nificant overlap in choice of features for each metric. For
example, we find that when it comes to selecting 1,000 3-
gram features for archiveit, the smallest overlap in features
is between the Most Common and Entropy metrics, which
still share 563 features. Nevertheless, we find small per-
formance differences, leading us to proceed with the Most
Common metric for PSL domains, Difference for n-grams,
and Entropy for Tokens.

Regarding the selection of types and numbers of features,
we evaluate various scenarios for PSL domains, n-grams, and
tokens. For each, we choose the respective metric resulting
from the above described experiments, and, again, generate
classifiers using the logistic regression algorithm to evalu-
ate performance. Regarding PSL domains, we explore the
use of different numbers of features: 20, 50, 250, 500, and
1,000. Figure 3, top, shows the resulting ROC curves. They
illustrate a pattern that occurs for all archives, namely that
performance does not increase significantly by using more
than 250 PSL domain features, which is the number we se-
lect. We next focus on n-grams and tokens and proceed
as follows: first, we compare the different types of features
(e.g. 3-grams, 4-grams, tokens) to see whether some stand
out; next, we determine the number of features per type.
We find that 3-grams and 4-grams perform best (Figure 3,
second from top) and that a number of features between
2,500 and 5,000 is desirable (Figure 3, third from top for
3-grams, and bottom for tokens). After conducting more
detailed assessments in the range 2,500-5,000, we decide to
settle on 3,000 3-grams and 2,000 tokens. This is a some-
what arbitrary decision because adding more features fur-
ther improves the predictions. However, the gains become
too small to justify the additional computational cost. Table
6 summarizes the chosen features and respective numbers.

We conclude our exploration of features by assessing the
performance of several feature combinations. As Figure 4
shows, we find that performance can substantially be im-
proved by using 3-grams and tokens in addition to the basic
(counts and PSL domains) features. Of all the variations
we try, it turns out that basic combined with 3-grams and
tokens extracted from the whole URI-R perform best.

4.2 Selecting Training Algorithms

So far, we have used logistic regression only as the al-
gorithm to train the classifiers. Here, we assess the per-
formance of different algorithms using the features selected
above. We are specifically interested in algorithms that re-
sult in classifiers that have a low computational load and
small memory footprint at runtime. Hence, we exclude al-
gorithms such as Nearest Neighbors that require the avail-
ability of the entire training set at runtime. The choice of the
Spark framework, selected among others because its ability
to deal with extensive datasets, further limits the choice
of algorithms to Logistic Regression, Multinomial Bayes,
Random Forest, and Support Vector Machine (SVM) with
stochastic gradient descent.

Figure 5 shows the ROC curves whereas Table 7 lists, per
algorithm, the time required to train the classifier and to ob-
tain 100K predictions. We find that Random Forest yields
the worst results both regarding algorithm performance and
prediction times; we therefore discard it. We find no clear
winner among the remaining 3 algorithms. Their perfor-
mance and runtime prediction times are very similar; the
latter are negligible as anticipated. The learning times dif-
fer but are not a significant concern for our application be-
cause training can be done in offline processes. We proceed
to train 3 classifiers per archive, one using each algorithm.
In preparation of evaluating their performance (see Section
5), we need to determine the thresholds under which the
classifiers must perform in order to achieve a targeted True
Positive Rate (TPR). We initially rely on a subset of the
cached entries, distinct from the training set, to determine
these thresholds. However, when evaluating the classifiers
on third party URI samples, we find that they are overly op-
timistic in the sense that they recommend too few lookups.
We assume this is related to the nature of pockets of cached
URI-Rs that share the same baseURL, a result of users look-
ing up batches of URIs for a same domain. Hence, we bring
in an external dataset of 100,000 totally unrelated URI-Rs
extracted from log files of the Internet Archive covering re-
quests issued on January 27th 2012. We use these URI-Rs
to determine the threshold at which to query each archive-
specific classifier to achieve a required TPR, and, for each
archive, select the algorithm that yields the lowest False Pos-
itive Rate (FPR). We find that Logistic Regression performs
best for 10 archives (archiveit, ba, blarchive, es, loc, proni,
pt, uknationalarchives, ukparliament, webcite) and Multi-
nomial Bayes for 6 (archive.is, gcwa, hr, is, sg, swa). The
inclusion of this external data is somewhat of a setback since
we had hoped to fully rely on cached data only. Neverthe-
less, we note that this dataset can be the same for recurrent
classifier training as long as associated Memento informa-
tion would recurrently be updated. Such information can
be gathered using TimeGate requests, which are cheaper
than TimeMap requests. Also, this information has shown

http://www.dailymail.co.uk/science-tech/index.html


archiveit gcwa

Figure 2: Comparison of feature selection strategies. Plots at the top: 1,000 3-grams. Plots at the bottom: 1,000 tokens.

Algorithm Learning 100K Predictions
Time (s) Time (s)

Logistic Regression 18.47 0.609
Multinomial Bayes 5.14 0.487

Random Forest 76.13 11.45
SVM 261.94 0.48

Table 7: Learning time averages over all archives and 3 runs

to evolve slowly over time[10], making polling these URI-Rs
for each recurrent classifier training unnecessary, although
this finding would need to be reconfirmed.

5. EVALUATION
Having trained the classifiers, we proceed to evaluate their

performance using an unrelated datasets consisting of URI-
Rs extracted from logs of oldweb.today covering 200,000 ran-
domly selected requests issued in the week of December 14th
2015. We remove URI-Rs that are syntactically invalid, du-
plicate, already covered by our cache, or blocked by our
adult-content filters. The resulting set has 187,449 URI-Rs.
Since these originate from requests issued to a service that
operates across archives, and are not covered by our cache,
they are representative of the URI-Rs for which the Aggre-
gator infrastructure would need to send distributed requests

to archives in order to assemble an aggregate response.
To evaluate the performance of the classifier-based ap-

proach to sending requests, for each URI-R, we:

• Issue a TimeMap request to determine which archives
hold associated Mementos.

• Query each archive-specific classifier to determine whether
it advises a lookup in the archive or not. We query the
respective classifiers at several FPR levels: 0.9, 0.8,
0.7, 0.6, and 0.5.

• Assess recall, computational cost, and response times
using the obtained data.

We use the common definition of recall ( TP
TP+FN

), with TP
being True Positive, and FN False Negative. To assess com-
putational cost, we use the sum of the time it takes to poll
each archive recommended by the classifiers for a given URI-
R as this relates to the load on the Aggregator infrastructure
and on the archives. To assess response times experienced
by a user of Aggregator services, we take the maximum re-
sponse time over the archives polled for a given URI-R. In
order to avoid issuing hundreds of thousands of requests to
archives, we simulate the response time for a given URI-
R per archive. To do so, we collect 1,000 response times
per archive. Table 8 shows the range of observed response
times, listing minimum, average, and maximum. Then, for
our computations, we randomly select with replacement -



archiveit gcwa

Figure 3: Comparison of number of features. Plots at the top: PSL domains. Plots second from top: n-grams and tokens.
Plots third from top: 3-grams. Plots at the bottom: tokens.



archiveit gcwa

Figure 4: Combining basic (count, PSL domains), 3-grams, and token features

archiveit gcwa

Figure 5: Comparison of training algorithms

per archive and per URI-R - a response time from the 1,000
observed ones. That selected response time is used for clas-
sifiers operated at the different levels of TPR. Table 9 shows
the results, based on the 187,449 URI-Rs from oldweb.today,
distinguishing between using all archives or only Memento
compliant ones. Note that the FPR value of 1.0 corresponds
to not using classifiers but rather the brute force approach.
The results indicate that the currently used heuristic to
query all Memento-compliant archives yields the best recall
(disregarding the brute force approach on all archives), yet
that computational cost and response time can be reduced
by using classifiers without significantly decreasing recall.
Viable strategies exist both using all archives or compliant
ones only, but the latter consistently perform better regard-
ing recall and response time at equivalent request numbers.
The result at TPR 0.6, using Memento compliant archives
only, looks extremely attractive: compared to a brute force
approach on all archives, classifiers can reduce the average
number of requests by 77% (from 17 to 3.985), and the over-
all response time by 42% (from 3.712 to 2.16 seconds) while
maintaining a recall of 0.847. At this TPR level, significant
optimizations can be achieved while maintaining acceptable
recall, even when compared to brute force on Memento com-
pliant archives only. When operating at FPR level 0.45,
we reach an average number of 2.994 requests per URI-R

and find that complete TimeMaps are collected for 83.4% of
URI-R. This result fully aligns with [4], which found that it
is possible to retrieve a complete TimeMap for 84% of URI-
R when using only the top 3 archives. But, in contrast to
[4], our approach only marginally relies on third party data,
and can actually be brought into production.

We zoom in on the 0.6 TPR level. For that level, Table 10
shows, per archive, the true positives (TP), false negatives
(FN), true negatives (TN), and false positives (FP). Note
that TP+FN for an archive is equal to the number of URI-
R of the sample for which the archive holds Mementos. Also,
TP+FP is the number of queries sent to an archive. For sg
and ukparliament, only FP is listed as neither archive has
Mementos for URI-Rs in the oldweb.today dataset. Since a
request is always sent to ia, no FN are listed. Note, for ia, the
significant number of URI-R for which it has no Mementos.
Table 11 compares the number of requests sent according to
various strategies. We see that, when including all archives,
the classifiers at TPR level 0.6 recommend sending a total
of 916,881 requests: 171,862 TP and 745,019 FP. The high
FP count relates to our desire to achieve low FN and hence
miss few Mementos; FN stands at 26,304. The total number
of requests would have been 3,186,633 for the brute force ap-
proach (TPR 1.0) on all archives. In this case, the classifiers
achieve a 71% reduction. When only Memento compliant



Table 8: Response time [ms] statistics

Archive Min Average Max

archive.is 35 434 2,770
archiveit 140 342 9,585

ba 226 1,740 60,372
blarchive 338 562 59,087

es 438 464 1,387
gcwa 219 464 2,516

hr 407 428 2,817
ia 71 1,485 24,967
is 402 838 3,215

loc 191 381 3,804
proni 181 234 5,793

pt 57 821 9,328
sg 443 836 9,035

swa 2 3 352
uknationalarchives 190 308 6,320

ukparliament 186 312 32,278
webcite 495 1217 60,050

Table 9: Average (#requests, recall, sum(T), max(T)) per
URI-R on oldweb.today sample, with T the response time
[s]

TPR All archives Memento compliant archives

1.0 (17.00, 1.000, 10.90, 3.712) (11.00, 0.971, 6.640, 3.084)
0.9 (9.134, 0.955, 6.533, 2.983) (6.447, 0.929, 4.506, 2.558)
0.8 (7.429, 0.924, 5.562, 2.760) (5.384, 0.900, 3.995, 2.409)
0.7 (6.213, 0.896, 4.792, 2.534) (4.619, 0.874, 3.597, 2.283)
0.6 (5.220, 0.867, 4.233, 2.418) (3.958, 0.847, 3.229, 2.160)
0.5 (4.303, 0.835, 3.614, 2.226) (3.349, 0.818, 2.867, 2.041)

archives are considered a reduction of 67% is achieved.
Figure 6 details the relation between recall and the num-

ber of requests sent, again for classifiers operating at 0.6
TPR. The left hand plot considers a situation in which all
archives are involved, the right hand one pertains to Me-
mento compliant ones only. In each case, brute force re-
quests are depicted in red and requests based on the advise
of classifiers in blue. Each plot covers all URI-Rs of the
oldweb.today dataset and the size of the respective dots
is proportional to the number of URI-R for a given (re-
call,requests) combination. The dots at the very right hand
side of each plot pertain to URI-R for which no Mementos
exist in any archive, and, hence, for which recall is unde-
fined. We see a very significant number of URI-R for which
classifiers reach the maximum recall by sending between 1
and 9 requests but also some URI-R for which Mementos
are missed even when sending up to 13 requests.

6. CONCLUSIONS
We explored the use of binary classifiers to guide the rout-

ing of Memento requests for Memento Aggregators. To train
the classifiers, we solely relied on data that is recurrently
gathered by the LANL Aggregator as part of its daily oper-
ation. We used features that have been shown to perform
well for other URI-based classifier tasks and determined a
combination of number and types of features that worked

Table 10: Performance on oldweb.today dataset at TPR 0.6

Archive TP FN TN FP

archive.is 14 62 185,541 2,518
archiveit 7,694 4,927 124,580 50,934
ba 19,888 9,593 95,988 62,666
blarchive 1,665 582 131,985 53,903
es 670 284 135,254 51,927
gcwa 210 113 149,161 38,651
hr 0 3 176,272 11,860
ia 122,787 0 65,348 0
is 5,362 2,381 94,760 85,632
loc 6,625 4,769 111,518 65,223
proni 489 336 140,201 47,109
pt 2,289 909 119,650 65,287
sg 0 0 188,135 0
swa 2,320 1,239 93,093 91,483
uknationalarchives 1,185 531 134,500 51,919
ukparliament 0 0 188,135 0
webcite 664 575 120,989 65,907
Total 171,862 26,304 2,255,110 745,019

Table 11: Number of requests using different strategies

TPR #Requests #Requests
all archives Memento compliant

1.0 3,186,633 2,061,393
0.6 916,881 676,884

well for the novel challenge of routing Memento queries. We
also trained archive-specific classifiers using various training
algorithms on the basis of the same data. However, in order
to optimally operate the classifiers, we had to bring in a third
party set of URI-Rs to compensate for bias in the Aggrega-
tor Cache. Our evaluation of this approach, performed on
the basis of an unrelated set of URI-Rs from oldweb.today,
shows that classifiers can significantly reduce the number of
requests sent to archives, and hence reduce the load on both
the Aggregator and the archives. It can also reduce over-
all response times. These reductions can be achieved with-
out significantly compromising recall. Improvements over
the reported work are definitely possible. We must ensure
that the cache contains URI-Rs with associated Mementos
in all archives as the lack of training data led us to exclude
two from our experiments. More advanced machine learn-
ing techniques can be explored that may yield even better
results. But, overall, the results are so compelling that we
already devised a workflow based on Spark that can recur-
rently train archive-specific classifiers on the basis of cached
data. The training of classifiers is set up such that it can
dynamically adapt with regard to specific features and num-
ber of features, as the archives evolve. We plan to bring this
capability in production to guide the LANL Aggregator and
will also expose a public API to support Memento clients in
determining which archives to poll for a given URI-R.
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