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ABSTRACT
CRDT[24] Sets as implemented in Riak[6] perform poorly
for writes, both as cardinality grows, and for sets larger
than 500KB[25]. Riak users wish to create high cardinal-
ity CRDT sets, and expect better than O(n) performance
for individual insert and remove operations. By decompos-
ing a CRDT set on disk, and employing delta-replication[2],
we can achieve far better performance than just delta repli-
cation alone: relative to the size of causal metadata, not
the cardinality of the set, and we can support sets that are
100s times the size of Riak sets, while still providing the
same level of consistency. There is a trade-off in read per-
formance but we expect it is mitigated by enabling queries
on sets.
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1. INTRODUCTION
Riak is an eventually consistent[26] key-value database in-

spired by Dynamo[16]. To ensure write availability, Riak
allows concurrent writes to keys. Some users find resolving
conflicts resulting from concurrency hard[19] so we added
some CRDTs[23] to Riak. Our initial implementation was to
create an open source library of purely functional datatypes[9]
and embed them in Riak with an API[8]. In this paper we
consider only the Set, an Erlang implementation of the state-
based ORSWOT[13] (Observe-Remove-Set-Without- Tomb-
stones).

In this paper we show that:
1. a naive implementation of data types in Riak performs

poorly, especially for larger cardinality sets (section 2)
2. simply adding delta replication is not much better (sec-

tion 3)
3. decomposing a set CRDT into its constituent parts

(logical clock and set members) yields great improve-
ments in write performance (section 4)
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This final point above is our work’s primary contribution,
and speaks to the needs of practitioners to do more than
translate research into code, and consider the lifetime of the
CRDT in the system, including such mundane details as
durable storage. See figure 1 if you read nothing else. While
decomposing the set may itself seem a reasonably obvious
approach, it raises issues around anti-entropy and reads that
require creative solutions.

2. MOTIVATION
When Basho released Riak DataTypes in Riak 2.0[7], the

first thing users did was treat Riak Sets like Redis Sets[22]
and try and store millions of elements in a set. Redis is
a non-distributed, in-memory data structure server, not a
distributed, fault-tolerant key/value database. Riak was un-
able to perform satisfactorily to user expectations when per-
forming inserts into sets, especially as set cardinality grew.

Riak stores all data in riak-objects, a kind of multi-value-
register[23]. As Riak stores each object durably on disk in
a local key/value store (either bitcask or leveldb) there is a
limit to the size each key/value pair can be[11], and since
Riak’s CRDTs are stored in a riak-object, they inherit that
limit.

A riak-object has a version vector[17], and an opaque bi-
nary payload. The CRDT is stored in the binary payload.

Users report a degradation in write performance as sets
grow[25]. In all the literature a CRDT is a thing in memory.
There is only one of them, and every actor is a replica. In
a client/server database this is not the case: a database
services many clients, and stores many objects durably on
disk. CRDTs in Riak must therefore be serialized for both
storage and transfer over the network.

2.1 Understanding Riak Set Performance
When a client wishes to add an element to a Riak set it

sends an operation: ’add element E to set S’
Riak forwards the operation to a coordinating replica that

will: read a riak-object from disk, de-serialize the set, add
the element to the set, serialize the set, update the riak-
object’s version vector, write the riak-object to disk, and
send the riak-object downstream for replication.

Each replica will then read their local copy from disk. If
the incoming update supersedes their local copy, determined
by comparing riak-object version vectors, they simply store
the incoming riak-object. If conflict is detected, the set is
de-serialized from the riak-object, the CRDT join function
is called, and the result serialised, the riak-object version
vectors are merged, and the riak-object is finally written to
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Figure 1: Comparative benchmark using Basho Bench[4], inserting up-to 10,000 4-byte elements for 35 minutes.

disk.
The key insight is that the set is stored in a single object.

To add an element, Riak must read and write the whole
object. This dictates both performance and the size to which
a set can grow. Per-operation this yields an O(n) cost, where
n is the size of the set. However, over the life of the set the
cost is O(n2), both in terms of bytes read and written, and
transfered over the network. Where a single insert is O(n)
filling a set by single inserts from 0 · · ·n is O(n2)!

3. DELTA CRDTS
State based CRDTs are join-semi-lattices. They work by

“joining” or “merging” divergent replica state into a single
value in a deterministic way. As described above in section
2, Riak uses “full state replication” to propagate updates
to Sets. Delta-CRDTs[2] are a CRDT variant that promise
a more effecient network utilisation for replication of up-
dates. In order to improve performance we implemented
delta-datatypes[10]. A delta-CRDT is one that, when up-
dated, generates a smaller-than-full-state delta-state that
can be replicated. The performance in Riak was virtually
unchanged. As per the paper the upstream replica generates
a delta and sends it downstream. Downstream the set must
always merge the delta as an incoming delta never super-
sedes the local state, even without concurrency! The saving
in terms of network transmission comes at the expense of
always deserialising and merging downstream.

4. BIGSET: AN OVERVIEW
We wrote a prototype system, bigset , to address these

issues.
In bigset, as in Riak, the actors in the system are called

vnodes[12]. N vnodes each store a replica of each datum.
Vnodes may act concurrently. Vnodes service requests for
many clients; vnodes store many data items.

The key innovation is that bigset decomposes the Set
CRDT across a range of keys. An ORSWOT CRDT Set
is composed of a logical clock, opaque set members, and

per-member causal information called “dots”. Rather than
mapping a key (a set name) to an object that contains the
whole CRDT Set, Bigset gives each of these component el-
ements of a CRDT Set their own key in an ordered durable
key/value datastore.

A bigset is made of a set-clock, a set-tombstone, and a
collection of element-keys.

4.1 Clocks
Both the set-clock and set-tombstone are logical clocks.

The former summarises events seen by the actor, the latter
events removed by the actor. The set-clock grows as events
occur and are replicated in the system. The set-tombstone
temporalily grows as it records removal information, and
then shrinks as keys are discarded.

The clocks consist of a 2-tuple of {BaseVV(), DotCloud()}
Where BaseVV is a normal Version Vector and DotCloud is
a mapping of ActorIDs to a list of integers which denote the
events seen at the replica that are not contiguous to the base
Version Vector[2][20]. A replica will never have an entry for
itself in the DotCloud.

4.2 Elements
Elements are the opaque values that clients wish to store

in a Set. In bigset each insert of an element gets its own
key in leveldb[15]. The key is a composite made of the
set name, the element, and a dot[1]. The dot is a pair of
(actorId,Event) denoting the logical event of inserting the
element. The element-keys are also the delta that is repli-
cated.

4.3 Writes
When writing, bigset does not read the whole set from

disk; instead, it reads the set’s logical clocks only and writes
the updated clock(s) and any element-keys that are being in-
serted. For removes we need only read and write the clocks.
This is how bigset acheives its write performance.

NOTE: multiple elements can be added/removed at once,
but for brevity/simplicity we discuss the case of single ele-



ment adds/removes only.

4.3.1 Inserts
When a client wishes to insert an element it sends an op-

eration: ’add element E to set S with Ctx’. It may provide
a causal context (hereafter just context) for the operation,
which provides information as to what causal history makes
up the Set the client has observed. The context will be
empty if the client has not seen element E at all (as we
expect to be the common case.)1

Bigset sends this operation to a coordinating vnode that
will run algorithm 1 (see 9). Briefly: It reads the clock for
the set, increments it, creates a key for the new element, and
stores it and the clock, atomically.

It then sends the new key downstream as a “delta”. The
downstream replicas run algorithm 2 (see 9): read the local
clock, if the local clock has seen the delta’s dot, then it is
a no-op, otherwise the clock adds the new dot to itself, and
stores the updated clock and delta atomically.

4.3.2 Removes
Removes are as per-writes except there is no need to co-

ordinate, and no element key to write. To have an effect
the client must provide a context for a remove. The re-
move algorithm is far simpler: if the set-clock has seen the
context, add the dots of the context to the set-tombstone.
Otherwise, add them to the set-clock. This ensures that, if
the adds were unseen they never get added, and if they were
seen, they will get compacted out (see 4.3.3 below).

4.3.3 Compaction
We use leveldb[5] to store bigsets. Leveldb has a mecha-

nism to remove deleted keys called compaction[18]. We have
modified leveldb to use the set-tombstone in compaction.
As leveldb considers a key K for compaction it uses the
set-tombstone. If K.dot is seen by the tombstone, the key
is discarded. This way we remove superseded/deleted keys
without issuing a delete. Once a key is removed the set-
tombstone subtracts the deleted dot. This trims the set-
tombstone, keeping its size minimal.

4.4 Reads
A bigset read is a leveldb iteration, or fold, over the keyspace

for a set. It transforms the decomposed bigset into a tra-
ditional ORSWOT state-based CRDT. Every element key
that is NOT covered by the set-tombstone is added to the
ORSWOT.

As bigsets can be big , we don’t wait to build the entire set
before sending to the client, we stream the set in configurable
batches (by default 10000 elements at a time.)

Riak, and bigsets, allow clients to read from a quorum
of replicas. Bigset has a novel streaming ORSWOT CRDT
Join operation, that is able to perform a merge on subsets
of an ORSWOT. This is enabled by the fact that the set el-
ement keys are stored and therfore streamed in lexicograph-
ical element order. This ordering and incremental merging
allows us to query a bigset. We can discover if X is a mem-
ber of Set without reading the whole set. We can seek to a
point in the set and stream, to enable pagination or range
queries. We expect this to mitigate the current negative
performance delta between Riak DataTypes and bigset for
reads.

5. EXPERIENCE WITH BIGSETS
Not yet in production, but being developed, we do have

both initial benchmark results, and property based tests
for bigsets. Our property based tests using quickcheck[21]
show that bigset and Riak sets are semantically equivalent.
The benchmarks show us that bigsets performs far better
for writes (see figure 1), while paying a read performance
penalty (see figure 4) which we plan to engineer our way out
of with low-level code, and by providing queries over the Set,
making full set reads unnecessary in most cases.

6. SUMMARY
We’ve characterised the key difference between bigsets and

Riak DataType sets: decomposition of the CRDTs struc-
ture, minimal read-before-write, and a set-tombstone and
set-clock that make joining a delta as simple as adding its
causal data to a clock and appending the key to leveldb.

The poor performance of CRDTs in Riak led to the bigsets
design, which clearly demonstrates that considering the pri-
mary need to durably store a CRDT means optimising for
bytes read and written. We have much work to do to bring
this prototype into the Riak KV database. We plan in the
future to write more about key processes we have developed
including anti-entropy and hand-off, and also generality for
application to other data types, including Riak Maps[14].
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Notes
1Why a context? Adds are removes. If the client has

already seen some element E in the set a new insert of E
replaces the old. Adding element E at replica X will cause
all dots for E at X to be removed and the single new event
will be the sole surviving dot for E. This optimisation comes
from the reference implementation[3] and assumes that the
actor is a replica. With action-at-a-distance it is more com-
plex: the client is not a replica, so must tell the coordinating
replica what it has seen, it must read the set (or at least the
element) to get a context. To clarify why, imagine a client
reads from vnode A, but writes to vnode B.

9. APPENDIX: ALGORITHMS

Algorithm 1 bigset coordinate insert

Require: set S, element E, op-context Ctx
SC = read set-clock
TS = read set-tombstone
for Dot in Ctx do

if SC not seen Dot then
SC = join(SC, Dot)

else
TS = join(TS, Dot)

end if
end for
SC.increment()
Dot = SC.latest-dot()
Val = (S, E, Dot)
atomic-write([SC, TS, Val])
send-downstream(Val, Ctx)

Algorithm 2 bigset replica insert

Require: set S, val V, op-context Ctx
SC = read set-clock
TS = read set-tombstone
for Dot in Ctx do

if SC not seen Dot then
SC.join( Dot)

else
TS .join(Dot)

end if
end for
if SC not seen V.dot then

SC.add(V.dot)
atomic-write([SC, TS, V])

else {SC seen V.dot}
atomic-write-if-changed([SC, TS])

end if

10. APPENDIX: EVALUATION
In-progress evaluations are being run on many setups and

environments. For this paper, we used an Amazon EC2
cc2.8xlarge[29], compute-optimized, 64-bit instance type, which
includes 2 Intel Xeon processors, each with 8 cores, 3.37 TB
of internal storage, and 60.5 GB of RAM. For our Riak Sets
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and Deltas[10] runs, we used a 4-node Riak/Riak-core clus-
ter built atop on Basho’s OTP R16B02 basho8 fork[27] of
Erlang OTP.

To exercise our clusters, we used Basho Bench[4], a bench-
marking tool created to conduct accurate and repeatable
stress tests and produce performance graphs. The informa-
tion in table 1 centers on writes on a single key with a single
worker process. For table 2, we used 25 concurrent workers.

The focus of our runs are on write-performance across
increasing set cardinality. We’ve also included some prelim-
inary results with 1000-key pareto-distributed[28], 5-minute,
read loads, as well as a mixed write/read load, comparing
current Riak Sets against the ongoing Bigset work.

10.1 Write Runs

Write Runs
Riak Sets Avgs. Deltas Avgs. Bigsets Avgs.

TP M 95th TP M 95th TP M 95th

5k/4bytes 81.57 14.54 16.4 48.81 24.48 27.26 7094.66 7.07 18.71
10k/4bytes 45.58 27.62 30.98 26.79 47.28 52.43 1040.00 0.94 1.12
45k/4bytes 6.89 173.60 183.49 12.61 91.22 98.91 1060.67 0.94 1.11

Table 1: Writes Cardinality/Size-Per-Element
TP - Throughput in operations per second (Ops/sec)
M - Mean latency in microseconds
95th - 95th percentile latency in microseconds

Figure 2: Writes on a 10,000-cardinality set of 4-byte elements.
Bigsets completes getting to the chosen cardinality much
more quickly than the others.

Figure 3: Writes on a 45,000-cardinality set of 4-byte elements.
Like figure 2, it reaches its chosen cardinality much faster.

10.2 Read and Mixed Runs

Reads Runs
Riak Sets Avgs. Bigets Avgs.

TP M 99th TP M 99th

1k/1k/4bytes 6353.83 3.93 6.85 785.23 32.70 202.18
1k/10k/4bytes 1266.48 19.78 32.72 221.14 116.77 632.67
1k/100k/4bytes 64.11 390.96 693.71 38.55 652.56 965.75
∼1k/Mix-R 1198.45 4.36 40.60 2062.72 16.48 121.97
∼1k/Mix-W ” 40.00 1301.82 ” 14.40 202.50

Table 2: Reads/Mixed Keys/Cardinality/Size-Per-Element
Mix - 60/40 write-to-read ratio for 5 minute Write/Read
TP - Throughput in operations per second (Ops/sec)
M - Mean latency in microseconds
99th - 99th percentile latency in microseconds

Figure 4: Reads on a 1000-cardinality set of 4-byte elements.

Figure 5: Reads on a 100,000-cardinality set of 4-byte elements.

Figure 6: 60/40 write-to-read ratio with read-latencies below.
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