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ABSTRACT
Online ranker evaluation is a key challenge in information
retrieval. An important task in the online evaluation of
rankers is using implicit user feedback for inferring pref-
erences between rankers. Interleaving methods have been
found to be efficient and sensitive, i.e. they can quickly de-
tect even small differences in quality. It has recently been
shown that multileaving methods exhibit similar sensitivity
but can be more efficient than interleaving methods. This
paper presents empirical results demonstrating that exist-
ing multileaving methods either do not scale well with the
number of rankers, or, more problematically, can produce
results which substantially differ from evaluation measures
like NDCG. The latter problem is caused by the fact that
they do not correctly account for the similarities that can
occur between rankers being multileaved. We propose a new
multileaving method for handling this problem and demon-
strate that it substantially outperforms existing methods, in
some cases reducing errors by as much as 50%.

1. INTRODUCTION
Online evaluation using interleaving is an increasingly pop-

ular paradigm in ranker evaluation and has been found to
be efficient and sensitive [4]. Here efficient means that rela-
tively little click feedback is required to reliably distinguish
rankers, and sensitive means that interleaving can distin-
guish between rankers with very similar retrieval quality. In
addition to these requirements an important criterion for
evaluating interleaving methods is that they be unbiased,
in the sense that they do not systematically favour certain
rankers independently of their actual quality.

Multileaving methods were recently introduced [2, 3] and
potentially offer substantial improvements over interleaving
in terms of efficiency, since they can compare sets of rankers
of arbitrary size at each comparison. They were also found
to be similarly sensitive to interleaving [3].

Section 2 describes related work, including two state of
the art methods, Team Draft Multileave (TDM) and Prob-
abilistic Multileave (PM). We observe that TDM does not
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scale well as the number of rankers in the comparison set
increases, limiting its efficiency. We show that PM can
fail to properly account for ranker similarities, introducing
bias. Section 3 then describes our proposed solution and
Section 4 provides experimental results demonstrating the
new algorithm’s superiority. Our contributions are to pro-
duce a new multileaving method which outperforms current
methods and to identify that PM can be biased.

2. RELATED WORK
Multileaving consists of two stages. First we create the

multileaved list by sampling from the individual ranked lists,
and then we credit rankers based on user clicks on the mul-
tileaved list and thereby infer a preference ordering of the
rankers. Three multileaving methods have been proposed,
namely, Team Draft Multileave (TDM) [3], Optimised Mul-
tileave [3] and Probabilistic Multileave (PM) [2]. We de-
scribe the two best performing methods, TDM and PM.

TDM creates the multileaved list in rounds. In each round
a random ordering of the rankers is decided and the top
document that has not yet appeared in the multileaving is
drawn from each ranker. This process is then repeated un-
til the multileaved list is of sufficient length. In the credit
inference stage of TDM, rankers are credited for each click
on a document drawn from the corresponding ranker. This
credit does not consider the position of the document in
the ranker’s retrieved list. A matrix, M , of pair-wise pref-
erences between pairs of rankers is then inferred based on
which ranker was given more credit.

Since rankers are only credited for clicks on documents
drawn from the corresponding ranker, TDM does not scale
well to comparing more rankers than there are documents
in the multileaved list. Since users of search engines typi-
cally only inspect the first results page, the multileaved list
is effectively only of length 10. We are often interested in
comparing significantly more than just 10 rankers, so there is
a need for multileaving methods which scale better to larger
comparison sets.

PM also creates the multileaved list in rounds. In each
round a random ordering of the rankers is decided. Then, a
document is probabilistically selected from the ranker, where
the probability of drawing a document d from ranker Rj is
determined solely by the document’s rank and is given by
Equation 1, where rj(d) is the rank of document d in ranker
Rj , and D is the set of documents ranked by Rj .

P (d|Rj) =

1
rj(d)3∑

d′∈D
1

rj(d′)3
(1)
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Note that when a document is drawn, the document is re-
moved from all the rankers’ retrieved lists. In the next
round, the probabilities of the remaining documents are
recalculated according to Equation 1, where the rankings,
rj(d), are now determined in the absence of previously cho-
sen documents.

In the credit inference stage, PM considers all possible as-
signments of documents to rankers that could have occurred,
and weight each assignment based on its probability. An as-
signment, a, has probability, P (a), given by

P (a) =

L∏
r=1

P (dr|Rα(r))P (Rα(r)) (2)

where L, is the length of the multileaved list, P (dr|Rα(r)),
is the probability of drawing document dr from the assigned
ranker, Rα(r) and is given by Equation 1, and P (Rα(r)) is
given by 1/|R|. For an assignment, a, Ranker Rj is given
credit, oj(a) equal to the number of assigned documents
clicked on. The total credit, oj(A), assigned to ranker Rj , is
given by oj(A) =

∑
a∈A oj(a)P (a), where A is the set of all

possible assignments. A matrix, M , of pair-wise preferences
between pairs of rankers is then inferred based on which
ranker was given more credit.

PM can be biased since rankers can benefit from the pres-
ence of documents contributed by similar rankers, and these
rankers will therefore perform better according to PM than
they actually do in practice. To illustrate this problem, con-
sider the following simple example: three rankers and their
corresponding retrieved lists: (R1 : D1, D2) (R2 : D2, D1),
and (R3 : D2, D1). The possible multileavings of length two,
are {D1, D2} and {D2, D1}. The former multileaving occurs
with probability 0.3704, and the latter occurs with probabil-
ity 0.6296. Assume that D1 and D2 are both relevant and
always clicked on, i.e. all three rankers have equal perfor-
mance. Even though the rankers are equally good, R1 will
lose to the other two rankers with probability 0.6296 due to
the fact that when the multileaving {D1, D2} occurs, R1 is
given more credit in the credit inference stage of PM and if
{D2, D1} occurs, R2 and R3 are given more credit. Thus,
for PM, the presence of similar rankers introduces bias and
distorts the outcome of comparisons. Similar rankers benefit
because their assignments are weighted higher.

3. SAMPLE-ONLY SCORED MULTILEAVE
We propose a multileaving method called Sample-only

Scored Multileave (SOSM) which scales well with the num-
ber of rankers being compared, without introducing bias.
The main difference relative to PM is that the score at-
tributed to each ranker only depends on how each ranker
ranks the sample of documents contained in the multileav-
ing, not how each ranker ranks documents in their original
retrieved lists. In this way, if a document is preferentially
sampled, it will not disproportionally disadvantage other
rankers provided they rank the sample well.

The process of creating the multileaved list in SOSM is
identical to that in TDM described in Section 2.

To infer preferences, each ranker ranks the documents in
the multileaved list such that r′j(d) denotes the order of doc-
ument d in the multileaved list according to ranker Rj . Let-
ting DM denote the documents of the multileaved list, the
score of document d for ranker Rj is given in Equation 3.
Letting C denote the clicked documents, ranker Rj is cred-

ited with
∑
d∈C s(d|Rj), where

s(d|Rj) =

1
r′j(d)

3∑
d′∈DM

1
r′j(d

′)3
(3)

A matrix, M , of preferences between pairs of rankers is then
inferred based on which ranker was given more credit. Note
the similarity between our scoring function in Equation 3,
and that of Equation 1 used by PM. The only difference is
that in the denominator we only sum over the documents
contained in the multileaved list.

SOSM scales well with the number of rankers being com-
pared, as verified experimentally in Section 4, and is also
unbiased. It is simple to verify that SOSM is unbiased, ac-
cording to the definition of bias given in [1]. Additionally,
we verify the unbiasedness of SOSM experimentally in Sec-
tion 4.

4. EXPERIMENTAL EVALUATION
In our problem setup, we are given a set of rankers R

whose performance we want to evaluate on a dataset using
click feedback [3]. Multileaving methods output an |R| ×
|R| matrix M after each comparison, where Mij is 1 if the
multileaving method inferred a preference for ranker Ri over
Rj , 0 if it inferred a preference for ranker Rj over Ri and 0.5
if no preference was inferred between the rankers. We then
define M̂(t) such that M̂ij is the average over t multileaved
comparisons of Mij .

The mean NDCG@10 for held out queries in the dataset
is assumed to be ground truth. We define an |R| × |R| pref-
erence matrix P in which Pij is 1 if ranker Ri has a higher
NDCG@10 than ranker Rj , 0 if Rj has a higher score than
Ri, and 0.5 if the two rankers have the same score.

For a given pair of rankers, we consider the multileaving
method to have made an error after t comparisons if M̂ij(t)
and Pij are not equal. We wish to minimize the percentage
of errors made,

E(t) =

∑
i,j∈R sgn(M̂ij(t)− 0.5) 6= sgn(Pij − 0.5)

|R|(|R| − 1)
(4)

For these experiments we compare feature rankers from
the MSLR-WEB30k [6], YLR1 and YLR2 [5] datasets. Fea-
ture rankers can be rankers like PageRank or the BM25 score
of the body of a document. Feature rankers were also used
for the experimental setup in [3, 2].

We use a simulated user setup. For each iteration we
randomly sample with replacement a query from the pool of
queries of the dataset. The rankers being compared are then
multileaved, and clicks on the multileaved list are generated
from three different probabilistic user models: the perfect,
navigational and informational click models as described in
[1].

For each dataset the queries are split into a training and
test set. For a given run on k rankers, we randomly sam-
ple k feature rankers from the given dataset and compute
NDCG@10 for each of these rankers on the test query set.
These NDCG@10 scores are used to create a ground truth
preference matrix P against which we can measure the per-
centage errors E defined in Equation 4. For each iteration
we then randomly sample a query from the training set, mul-
tileave the k rankers using each multileaving method, and
compute E for each method. We then investigate how E



develops at each iteration. Additionally we show the per-
centage errors of the NDCG@10 score computed only from
the queries so far used for multileaving. This serves as a
lower bound on the error that can reasonably be obtained.
For PM we fix the sample size parameter at 10,000 as in [2].
Findings:

Table 1 enumerates the percentage error after 2,000 and
10,000 iterations when multileaving 5, 40 or 100 rankers for
the three click models. In almost all cases SOSM is superior.
The two exceptions occur when comparing only 5 rankers. In
this case, TDM is marginally better than SOSM for the in-
formational click model, and equivalent for the perfect click
model. For 40 or 100 rankers, SOSM substantially outper-
forms TDM and PM. For example, with 100 rankers and
the informational click model, the error rates are reduced
by 50% from 32% to 16% after 10,000 iterations.

Figure 1 shows how the performances of the multileaving
methods are affected by the click model used. For all three
click models, SOSM outperforms both TDM and PM. This
is most pronounced for the navigational model, where the
percentage error for TDM and PM is 50% greater than that
of SOSM (30% compared to 20%).

Figure 2 shows the sensitivity of the multileaving meth-
ods to different choices of dataset. We repeat the experiment
from Figure 1(b) using two other datasets. All three algo-
rithms (TDM, PM, SOSM) perform similarly across datasets.
In all cases, SOSM exhibits superior performance.

(a) YLR1

(b) YLR2

Figure 2: Percentage errors (averaged over 25 runs)
versus the number of iterations on random subsets of
20 rankers for the YLR1 (a) and YLR2 (b) datasets
using a navigational click model.

Figure 3 shows how the performances of the multileaving
methods vary with the number of rankers being compared.
We show the percentage error after 2,000 iterations, as a
function of the number k of rankers that are multileaved.
For a given k, a random subset of rankers is selected and

(a) random click model

Figure 4: Percentage errors (averaged over 25 runs)
versus the number of iterations on random subsets
of 20 rankers for the MSLR dataset using a random
click model.

multileaved for 2,000 iterations. The same subset is used for
PM, TDM and SOSM. This is repeated 25 times, each time
with a different random subset of k rankers. The results in
Figure 3 are the average of these 25 runs. We observe that
for SOSM and PM the error remains relatively stable as the
number of rankers increases. However, for TDM the error
is increasing and we observe that its performance becomes
worse than PM for large numbers of rankers. This is due
to the fact that during the scoring phase, TDM is unable
to assign credit to more than the 10 rankers from which the
multileaved documents originated.

Figure 4 tests if the multileaving methods are biased. In
Section 2, we showed that PM could exhibit bias under cer-
tain conditions. For this experiment we use a random click
model, i.e. clicks are random and independent of document
relevance. In this case, we expect that the elements of the
pairwise preference matrix should converge to 0.5, i.e. there
is no observed preference between rankers i and j. In this
case, an error is declared if the value of M̂ij(t) deviates from
0.5 by more than 0.03. Figure 4 shows that PM exhibits very
strong bias, with error rates of about 60%.1 TDM’s be-
haviour is much better, but after 2000 iterations some bias
is still present. In contrast, the percentage error decreases
much quicker in SOSM, and is almost zero after just 2000
iterations.

5. CONCLUSION AND FUTURE WORK
We identified and experimentally verified weaknesses in

the scalability of TDM and the unbiasedness of PM. We
then proposed a new algorithm, SOSM, that corrects these
problems. Experimental results using simulated users (per-
fect, navigational, informational click models), on three dif-
ferent datasets confirmed that (i) SOSM scales well with the
number of rankers to be multileaved, (ii) is unbiased, and
(iii) has significantly less error than prior methods. In some
cases error rates were reduced by half.

The residual error needs investigating but is likely to be
partly due to (i) establishing a ground truth based on NDCG@10,
which is not used as the scoring function in Equation 3, and

1Note that in [2] no such bias was detected. However, in
[2] the set of multileaved rankers was not picked randomly.
Further, personal communication with an author of [2] con-
firmed the existence of a software bug in PM which we cor-
rected for these experiments.



Table 1: Percentage error, E, after 2,000 and 10,0000 iterations for each multileaving method for 5, 40 and
100 rankers and three click models. The best performing method is bolded and * indicates a statistically
significant difference with p < 0.01 to both the baseline methods according to paired t-tests.

Iterations 2,000 10,000

Click Model
``````````̀# Rankers

Method
TDM PM SOSM TDM PM SOSM

Perfect
5 rankers 18% 23% 18% 14% 18% 14%
40 rankers 23% 28% 17%* 18% 28% 15%*
100 rankers 30% 29% 18%* 21% 28% 16%*

Navigational
5 rankers 27% 30% 22% 24% 25% 16%
40 rankers 34% 30% 24%* 26% 31% 22%*
100 rankers 39% 31% 25%* 29% 29% 21%*

Informational
5 rankers 18% 29% 20% 16% 32% 18%
40 rankers 37% 32% 22%* 27% 32% 15%*
100 rankers 42% 33% 21%* 34% 32% 16%*

(a) perfect click model (b) navigational click model (c) informational click model

Figure 1: Percentage errors (averaged over 25 runs) versus the number of iterations on random subsets of 20
rankers for the MSLR dataset using perfect (a), navigational (b), and informational (c) click models.

(a) perfect click model (b) navigational click model (c) informational click model

Figure 3: Percentage errors after 2,000 iterations (averaged over 25 runs) versus the number of rankers being
compared on 25 random subsets of k rankers for the MSLR dataset with perfect (a), navigational (b), and
informational (c) click models.

(ii) the ground truth data is computed on “test” data that
is not used during the multileave experiments.

Future work will investigate scoring functions allowing the
multileaving method to optimise for specific evaluation mea-
sures such as NDCG@10 or to agree with specific measures
of user satisfaction.
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