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ABSTRACT
Learning to Rank (LtR) is the machine learning method of
choice for producing high quality document ranking func-
tions from a ground-truth of training examples. In prac-
tice, efficiency and effectiveness are intertwined concepts and
trading off effectiveness for meeting efficiency constraints
typically existing in large-scale systems is one of the most
urgent issues. In this paper we propose a new framework,
named CLEaVER, for optimizing machine-learned ranking
models based on ensembles of regression trees. The goal is
to improve efficiency at document scoring time without af-
fecting quality. Since the cost of an ensemble is linear in its
size, CLEaVER first removes a subset of the trees in the
ensemble, and then fine-tunes the weights of the remaining
trees according to any given quality measure. Experiments
conducted on two publicly available LtR datasets show that
CLEaVER is able to prune up to 80% of the trees and pro-
vides an efficiency speed-up up to 2.6x without affecting the
effectiveness of the model.
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1. INTRODUCTION
The problem of ranking objects in response to a user query

is of general interest as it is of paramount importance for all
kinds of information systems. In Web Search, for example,
the problem of ranking documents is particularly challeng-
ing due to the large amount of data to manage. Modern
Web search engines are expected to return highly relevant
results in a fractions of seconds to satisfy hard back-end la-
tency requirements. Nowadays, Learning-to-Rank (LtR) [6]
methodologies are pervasively used as effective solutions to
the most difficult ranking problems. LtR methods, which
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score a set of candidate documents according to their rel-
evance to a given user query, use machine learning models
trained on ground truth datasets providing an ideal rankings
compiled either using human-based or automatic methods.
Typically these approaches do not directly take into account
efficiency concerns resulting in models that cannot be used
in production environments because they do not meet their
strict efficiency requirements.

In this paper, we tackle the problem of improving effi-
ciency in (LtR). We present a framework, named CLEaVER,
for the optimization of tree ensemble ranking models after
the learning phase has completed. The cost of predicting the
relevance for a document by using a tree ensemble model is
linear in the number of trees. Larger ensembles, despite be-
ing more accurate, come with larger costs thus being very
expensive. We study the following novel problem: given a
tree ensemble model is it possible to improve its efficiency
without affecting its quality? We show that the answer is
positive, and we solve the problem by pruning some of the
trees in the ensemble and re-weighting the remaining ones.

CLEaVER integrates in a novel way a number of tree
pruning strategies with a local optimization method aimed
at re-weighing the trees in the pruned ensemble. We ana-
lyze several pruning strategies for the identification of the
less relevant trees in a given ensemble, and we conduct a
comprehensive evaluation of the various strategies on two
publicly available datasets. The CLEaVER framework is
able to improve the efficiency of a given ranking ensemble
up to a 2.6x speed-up without affecting the effectiveness of
original the model.
Related Work. Efficiency in Learning to Rank has been in-
vestigated in the past from two different research directions.
The first includes proposals that trade efficiency off for ef-
fectiveness in the learning algorithm. Asadi and Lin observe
that compact, shallow, and balanced trees yield faster pre-
dictions [1]. They incorporate a notion of execution cost dur-
ing training to encourage trees with these topological charac-
teristics. Authors propose two strategies for accomplishing
this: i) by directly modifying the node splitting criterion
during tree induction, and ii) by stage-wise tree pruning.
Experiments on a standard learning-to-rank datasets show
that the pruning approach is the best. Wang et al. present a
unified framework for jointly optimizing effectiveness and ef-
ficiency [10]. Authors propose new metrics that capture the
trade-off between these two competing forces and devise a
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strategy for automatically learning models that directly op-
timize the trade-off metrics. Experiments show that models
learned in this way provide a good balance between retrieval
effectiveness and efficiency. Authors also show that their ap-
proach naturally leads to a reduction in the variance of query
execution times, which is important for query load balancing
and user satisfaction.

The second research line considers low-level optimizations
to the inference phase by speeding-up the traversal of a
given tree ensemble. Asadi et al. [2] propose to rearrange
the code visiting the ensemble by transforming control haz-
ards into less expensive data hazards, i.e., data dependen-
cies introduced when one instruction requires the result of
another. Lucchese et al. [7] propose QuickScorer a scoring
algorithm, which adopts a new representation of the tree
ensemble based on bit-vectors. The tree traversal, aimed to
detect the leaves contributing to the final scoring of a doc-
ument, is performed feature by feature, over the whole tree
ensemble, through efficient logical bitwise operations.

To the best of our knowledge this is the first work focus-
ing on post-learning optimization of tree-based LtR models.
The two research directions above are orthogonal to ours
as we aim at producing a faster model that does not lose
its effectiveness and that can by integrated in any scoring
algorithm. Moreover, our methodology is totally agnostic
w.r.t. both the LtR algorithm. It can be applied to all LtR
algorithms producing ensemble models.

2. OPTIMIZATION OF TREE ENSEMBLES
Let F = {t1, . . . , tn} be an additive ensemble of regression

trees, composed of n decision trees. Let si(q, d) be the score
returned by decision tree ti to document d in response to
query q. Moreover, we denote with S(q, d) the final score
predicted by forest F for query-document pair (q, d), ob-
tained as a linear combination of tree predictions:

S(q, d) =

n∑
i=1

λi · si(q, d)

where λi is the weight associated with tree ti.
We make no assumption on the learning algorithm used

to train F and on the loss function optimized during the
training. Independently of the algorithm or the loss func-
tion adopted, we observe that the cost for computing score
S(q, d) is linear in the size n of the forest. As it is desir-
able to keep this cost as low as possible, either to comply
with time budget constraints or to improve the overall ef-
fectiveness of query processing by ranking larger amount of
candidate documents returned for a given query [4], we aim
at reducing the complexity of a tree-based model by pruning
trees. Specifically, given an input forest F providing the de-
sired quality, CLEaVER produces a smaller forest Fp with
at least the same effectiveness as F but with higher effi-
ciency. Our solution consists in a combination of pruning
strategies and tree weighting optimization. The CLEaVER
framework encompasses the two following steps:

1. prune F to select a subset Fp of p, p < n trees. We
propose and assess different strategies to choose the
trees to be removed from F . These strategies estimate
differently the impact of each tree in order to devise
the less relevant ones;

2. assign new weights to the trees in Fp so as to optimize

a given loss function. We use a greedy line search
algorithm to optimize the weights λi by minimizing a
given loss function.

The resulting forest Fp therefore contains a subset of the
trees in F but with a different weighting scheme. Since our
goal is to produce a more efficient model without affecting its
effectiveness, CLEaVER evaluates different pruned model
sizes p, and then returns the smallest forest Fp providing
at least the same quality as F according to the user-defined
loss function.

In the following, we first discuss the pruning strategies
integrated in CLEaVER, and then discuss how line search
is used to improve weights λi.

Ensemble Pruning Strategies. Let p < n be the number
of trees in the pruned forest Fp. The goal of CLEaVER is
to remove n− p trees without affecting the predictive power
of the initial forest F . To this end, we propose the following
strategies:

• Last: the last n−p trees in the forest are pruned. The
rationale is that forests are usually build sequentially
by progressively adding trees optimizing a given loss
function. The last trees learned generally provide lim-
ited changes in the predicted scores and ranking. The
resulting model is equivalent to a model trained with
p trees.

• Random: selects uniformly at random n−p trees from
the forest and removes them.

• Skip: keeps p equidistant trees from the forest. The
rationale is that close trees are quite similar and po-
tentially redundant. The distance between the selected
trees is computed as dn

p
e.

• Low-Weights: removes the n−p trees with the lowest
weights λi. The assumption is that they are less rele-
vant for the final document scoring. When the learn-
ing algorithm used associates uniform weights to all
the trees, a preliminary line search process is applied
to F in order to obtain the initial vector Λ to which
this strategy is applied.

• Score-Loss: considers the contribution given by each
tree to the final score of a document. The normalized
contribution for each tree is measured as si(q, d)/S(q, d)
and used to select the n− p trees that contribute less.

• Quality-Loss: is based on the impact of each tree
to the optimization of a given loss function L. For a
given tree ti, the average quality loss over the train-
ing dataset is computed by scoring the document with
S(q, d) − si(q, d). The n − p trees that generate the
smallest quality drop can be considered less important
and thus removed from the forest.

All the pruning strategies are followed by the line search
optimization aimed at tuning the weights of the trees in the
pruned forest Fp.

Tree Weighting with Line Search. Let L : Rp → R be
a given loss function, and let Λ = {λ1, λ2, . . . , λp} be the
current weighting schema for forest Fp. Optimizing the tree
weighting means finding:

Λ = argmin
Λ∈Rp

L(Λ).



Due to the large dimensionality involved and the non differ-
entiability of most loss functions, finding Λ is not possible.
We thus adopt a heuristic approach to improve the weighting
schema Λ obtained after pruning: i) find a descent direction
D ∈ Rp along which L decreases, and ii) compute a step
length α so as to minimize L(Λ + α ·D). This procedure is
iterated as long as the solution improves beyond a given tol-
erance. The descent direction D can be chosen with various
methods, e.g., by computing gradient, and the step length
α can be computed either exactly or approximately. The
strategy we use to find α is referred to as line search. It is
worth noting that the above process performs a local explo-
ration of the solution space, without making any assumption
on the loss function employed.

In our LtR scenario, we are interested in ranking loss func-
tions such as NDCG , for which it is not possible to directly
compute the gradient. Therefore, we adopt a greedy variant
of the above procedure as in [9]. Given the current solu-
tion Λk at iteration k, we perform a line search along each
axis of the weight vector independently, i.e., find the value
di = δi + λk

i that optimizes the loss function while keep-
ing fixed all the other directions. The value of δi is found
by choosing it among σ equi-spaced samples in an inter-
val [−ω,+ω] around λk

i , excluding negative values. The re-
sulting vector D defines a promising descent direction along
which to perform line search. The new weight vector Λk+1

is chosen by optimizing L(Λk +α ·D). In this case, the best
value for α is chosen among σ equi-spaced samples in the
same interval [0, 1]. The above procedure is iterated until
no improvement is measured on a separate validation set.

In order to make faster the above search process, at each
iteration the search interval [−ω,+ω] is reduced by a shrink-
ing factor η. In addition, thread-level parallelism is used in
order to evaluate different directions di and different σ sam-
ples in parallel. Finally, we avoid to visit the whole forest
at each step. The ensemble of trees is in fact visited only
once and tree predictions si(q, d) for all the documents of
the training dataset are stored in a memory data structure.

3. EXPERIMENTS
Experiments were conducted with two publicly available

datasets: the MSN-11 (Fold 1) dataset and a new dataset
provided by Istella2 (Small) we make publicly available with
this work. The MSN-1 dataset consists of 31,351 queries and
136 features extracted from 3,771,125 query-document pairs,
while the Istella dataset is composed of 33,018 queries and
220 features extracted from 3,408,630 query-document pairs.
The query-document pairs in both the datasets are labeled
with relevance judgments ranging from 0 (irrelevant) to 4
(perfectly relevant). Each dataset is split in train, validation
and test sets according to a 60%-20%-20% scheme.

Training and validation data were used to learn a full
reference model, to which we applied CLEaVER3 by test-
ing different pruning levels in the range 0%-90% with steps
of 10%. Eventually, we selected the smallest (and thus
most efficient) model generated by CLEaVER still pro-
viding greater or equal performance on the validation set
w.r.t. the reference un-pruned model, measured in terms
of NDCG@10. The parameters adopted for the greedy line

1
http://research.microsoft.com/en-us/projects/mslr/

2
http://blog.istella.it/istella-learning-to-rank-dataset/

3
CLEaVER is available here: http://quickrank.isti.cnr.it.

search are σ = 20 equi-spaced samples taken from an inter-
val of radius ω = 2 and adopting a shrinking factor η = 0.95.

For the sake of fairness, we aimed at building a full refer-
ence model that is the best performing state-of-the-art rank-
ing ensemble. On both datasets, we trained two different al-
gorithms: i) the Gradient Boosting Regression Tree (GBRT,
a.k.a., MART), a point-wise algorithm that uses the root
mean squared error as loss function, resulting in a predictor
of relevance labels [5], and ii) λ-MART, a list-wise algorithm
that is capable of using NDCG in its loss function, result-
ing in a predictor of the ranking [11]. We used the open-
source implementation of these algorithms provided by [3].
Both were fine-tuned by sweeping their parameters aiming
at maximizing NDCG@10. The maximum number of leaves
was tested in the set {5, 10, 25, 50}, while the learning rate
in {0.05, 0.1, 0.5, 1.0}. To avoid overfitting, we allowed the
algorithm to train up to 1, 500 trees unless the relative im-
provement in NDCG@10 on the validation set during the last
50 iterations was smaller than 0.5‰. The resulting forests
include 737 and 736 trees for MSN-1 and Istella, respectively,
with unitary weighting schema (i.e., λi = 1, 1 ≤ i ≤ n). To
assess the validity of the pruning strategies also for smaller
forests, we build two more reference models consisting of the
first 100 and 500 trees of the full reference. NDCG@10 values
for the Random strategy were averaged over 10 runs. We
also performed randomization test [8] to assess if the differ-
ences in effectiveness between the reference models and the
pruned ones are statistically significant.

We found that the largest number of leaves and the smaller
learning rate always provide the best results with both LtR
algorithms. We highlight that it was not possible, by varying
the training parameters, to build more efficient rankers (e.g.,
with smaller total number of nodes) providing the same level
of quality of the reference models. MART resulted the best
performing on MSN-1, and λ-MART on Istella.

Results. Table 1 reports the performance of CLEaVER
on MSN-1 and Istella datasets. In bold the best performance
in terms of number of trees composing the pruned forest.
Interestingly, both Random and Skip perform quite well,
meaning that trees are somehow redundant by construction.
Strategy Last is the worst performing, suggesting that the
last trees built by the model still provide a relevant contri-
bution. The Low-Weights pruning performs worse than
expected, especially with the largest models. We deduce
the tree weight cannot be evaluated in isolation from the
actual predictions at the tree leaves. The pruning based on
Score-Loss exhibits good performance on average, espe-
cially on the Istella dataset. We highlight that this strat-
egy approximates well the final document score, but small
score variations may generate large rank variations, thus re-
sulting in a negative impact on the NDCG metric. Finally,
Quality-Loss is quite consistently the best pruning strat-
egy on both the datasets and for all the model sizes, except
for the full λ-MART model on Istella dataset where Skip
and Score-Loss are able to prune 10% more trees. Indeed,
Quality-Loss is the only strategy that takes into consider-
ation the target quality function NDCG@10.

Pruning the reference models allows to significantly re-
duce the number of trees from 50% to 70% thus obtaining
a scoring speed-up from 1.6x to 2.6x while preserving the
effectiveness of the original reference model.

We run statistical significance tests, with significance level
p = 0.05, obtaining a two-fold result. On the one hand, they
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Table 1: Comparison of CLEaVER pruning strategies against the reference models. Pruned forest size,
document scoring time (µs), and NDCG@10 are reported for each of the pruned models.

MART on MSN-1

100 Trees 500 Trees 737 Trees

Strategy Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10

Reference 100 5.55 – 0.4590 500 19.36 – 0.4749 737 27.46 – 0.4766

Random 40 3.28 1.7x 0.4603 350 14.27 1.4x 0.4756 516 19.64 1.4x 0.4768

Last 60 3.93 1.4x 0.4601 400 16.17 1.2x 0.4755 590 22.76 1.2x 0.4771

Skip 30 2.84 2.0x 0.4593 300 12.98 1.5x 0.4749 442 17.25 1.6x 0.4766

Low-Weights 40 3.26 1.7x 0.4609 400 15.75 1.2x 0.4753 663 25.28 1.1x 0.4779

Quality-Loss 30 2.89 1.9x 0.4618 150 7.35 2.6x 0.4752 369 14.42 1.9x 0.4771

Score-Loss 50 3.50 1.6x 0.4591 250 11.16 1.7x 0.4751 442 17.47 1.6x 0.4766

λ-MART on Istella

100 Trees 500 Trees 736 Trees

Strategy Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10

Reference 100 5.37 – 0.6923 500 15.74 – 0.7397 736 20.40 – 0.7432

Random 30 2.65 2.0x 0.7003 250 9.10 1.7x 0.7424 515 14.81 1.4x 0.7449

Last 70 4.22 1.3x 0.6969 400 13.55 1.2x 0.7418 442 14.09 1.4x 0.7437

Skip 20 2.36 2.3x 0.6976 250 9.09 1.7x 0.7416 368 11.42 1.8x 0.7438

Low-Weights 30 2.85 1.9x 0.6986 350 11.07 1.4x 0.7418 589 15.55 1.3x 0.7437

Quality-Loss 20 2.29 2.3x 0.6989 200 7.83 2.0x 0.7412 442 13.22 1.5x 0.7438

Score-Loss 20 2.13 2.5x 0.6976 300 10.68 1.5x 0.7407 368 12.39 1.6x 0.7433

show a statistical equivalence when dealing with forests of
500 or more trees. On the other hand, they prove that the
improvement of the pruned model w.r.t. the reference one
when dealing with 100-tree models is statistically significant.
Smaller models, whose quality is still far from optimal, can
greatly benefit from the line search optimization, which can
also better deal with a low-dimensional search space.

To confirm the effectiveness of CLEaVER we also per-
formed the following experiment. We allowed pruning as
long as no statistically significance difference w.r.t. the ref-
erence model is observed. In this setting, CLEaVER pro-
vides an even further improvement on the largest models:
70% pruning (221 trees) with Quality-Loss on MSN-1 and
60% (294 trees) with Skip on Istella, corresponding to a scor-
ing speed-up of 2.9x and 2.1x respectively.

An important outcome of this work is that, in order to
build a model with a given number of trees, we found to be
best performing to use CLEaVER to prune a large model
than to exploit line search optimization only. As an example,
a λ-MART model with 100 trees on Istella dataset provides
an NDCG@10 of 0.6923 and of 0.7085 after line search re-
weighting. Instead, by pruning a larger model of 500 trees
with the Quality-Loss strategy, CLEaVER produces a
model providing an outstanding NDCG@10 of 0.7329.

4. CONCLUSION AND FUTURE WORK
We proposed a novel algorithm, named CLEaVER, which

is able to improve the efficiency of a given ensemble-based
model. CLEaVER, first removes the less relevant elements
in the ensemble according to their expected impact, then
fine-tunes the weights of the remaining ones through line
search. Eventually, CLEaVER provides a smaller and more
efficient model with at least the same quality as the origi-
nal one. In our experiments, CLEaVER allowed to built
models being more than twice as fast. As future work we
intend to integrate CLEaVER in several ensemble learning
algorithms to systematically prune and improve the mod-
els while being generated. We also believe CLEaVER can
be successfully extended to non tree-based ensembles and

applied to other tasks than document ranking.
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