
COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 79

For programmers, designing and imple-
menting distributed multimedia applications
used to be a formidable challenge. As
recently as five years ago, tools were scarce

for developing and integrating multime-
dia content, as was system support for real-

time media streaming and its control.
Application pioneers had little choice but to
custom-build most of the technology needed
for their distributed multimedia applica-
tions. Custom building typically involved
such sophisticated elements as authoring
tools [6], reliable audio-video transport
mechanisms [9], connection management
schemes [8], and agents to coordinate the
behavior of cooperating application compo-
nents dispersed throughout a network [5].

Aside from the heavy labor requirement
implied by this approach, another practical
consequence was the difficulty of achieving
application portability.

The recent Internet revolution has greatly
affected construction of networked multime-
dia applications. New approaches to distrib-
uting application logic (such as Java applets)
and coordinating distributed processing
(such as CORBA) have claimed the attention
of application developers [4]. And Web
browsers, such as Netscape Navigator and
Microsoft Internet Explorer, now offer a uni-
versally available container in which to
assemble and integrate rich interactive soft-
ware components. Moreover, the range of
today’s multimedia toolkits and component

Start with the Internet itself for freely
available software technologies, then
add some custom software.

Collaborative
Multimedia

Applications

John R. Nicol, Yechezkal S. Gutfreund, Jim Paschetto,

Kimberly S. Rush, and Christopher Martin

How the Internet Helps Build

http://crossmark.crossref.org/dialog/?doi=10.1145%2F291469.291474&domain=pdf&date_stamp=1999-01-01

80 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

technologies has expanded significantly as a result
of a new industry driven by the World-Wide Web’s
mass appeal. Such developments have fostered
interest in creating real-time services for the Web
and the applications they enable [3].

Here, we expand on some of our experience
developing distributed multimedia applications the
hard way, explaining how they helped motivate our
migration toward Internet component technologies
as a platform on which to build a new generation of
prototype business applications. We focus on the
design and implementation of TourGuide—the
first nontrivial collaborative application we built
using this approach to integrating off-the-shelf
Internet component technologies. Though substan-
tial efforts to build variations of multimedia-
enhanced collaborative applications for the Internet
have been reported ([7], for example), a further goal
of our work has been to test the viability of build-
ing such applications using a Web browser as the
principal application container. This way, applica-
tions would be highly available (most people
already have a browser) and somewhat more plat-
form-independent (popular browsers are supported
on multiple platforms).

A critical step toward convincing potential end
users of the value of emerging network technologies
is to create what we call “concept business applica-
tions,” or service prototypes spanning vertical mar-
ket segments, designed to show how multimedia
techniques, supported by state-of-the-art network-
ing technology, influence sophisticated business
communication. Simple multimedia presentation
suites and general-purpose desktop video-confer-
encing applications are insufficient for this purpose,
since they leave too much to users to fill in con-
cerning how they alone can fundamentally change
the nature of how their organizations do business.

Our first major step in exploring the validity of
the concept business applications approach yielded
the Broadband Multimedia Applications Demon-
stration Suite (BMADS) [9]—a custom collection

of networking and middleware components and
applications—spelling out the user benefits of
broadband network support. On the basis of many
BMADS demonstrations over the past several years,
we are now convinced of the value of the concept
business applications approach, despite some prac-
tical drawbacks to BMADS. For example, a notable
lack of commercial software for such applications
during BMADS development required us to design
and implement everything we needed from scratch,
including reliable mechanisms for transporting and
switching real-time media streams, connection
management functions, video-conferencing tools,
and application-sharing widgets. This effort
involved a time-consuming and iterative process as
we augmented the demonstrations included in the
suite and enhanced the underlying technology
required for their support over a period of about
five years.

Many obstacles we faced developing BMADS
have become less problematical in recent years,
partly due to significant cultural developments con-
cerning the perceived value of multimedia technol-
ogy, as well as significant technical advances. The
spectacular growth in popularity of the Web [1] has
spawned something of a cottage industry centered
on developing multimedia-related technologies. So,
whereas the application of multimedia techniques
was recently regarded as technically impractical by
many, the Internet has changed the technology
options so much that multimedia is quickly being
accepted as a mainstream concern. Prospects for
today’s multimedia application developers have also
improved greatly. And more pragmatically, it is no
longer feasible to develop concrete plans for multi-
year investigations of application concepts and their
implementation, as we did with BMADS. Six
months has become a very long time in the multi-
media applications business.

We decided to opt in favor of a development
approach that would allow us to readily incorporate
the latest multimedia technology as part of our

We learned that we could go a
long way toward being technology
integrators (as opposed to
technology inventors).

ongoing experiment with multimedia concept busi-
ness services. We couldn’t help but turn to the Inter-
net, seeking to determine the viability of
constructing prototypical distributed multimedia
applications based as far as possible on integrating
ready-made component technologies. We therefore
began development of a distributed application we
call TourGuide to support multimedia-enhanced
collaboration over the Internet.

TourGuide
TourGuide provides an interactive multimedia
experience in which one or more users playing the
role of tour guide take a group of tourists through a
preselected set of Web sites. During a TourGuide
session, users can speak with one another, simulta-
neously view multimedia Web pages (under the tour
guide’s control), and give the tour guide feedback at
the push of a button. The communications frame-
work provided by TourGuide is general
enough that it accommodates a range
of applications, including training, cus-
tomer support, and collaboration
involving problem solving. We also cre-
ated a TourGuide demonstration sce-
nario to help viewers “connect” with
the implications of the emerging tech-
nologies we used. That is, we describe a
hypothetical business communication
problem before demonstrating a tech-
nical solution to it through a carefully
designed prototype service. As with
BMADS, the TourGuide technology
demonstrations allow us to play the
roles of both tour guide and tourist.

In the TourGuide scenario, a ficti-
tious Web-based design agency is con-
tracted by GTE Corp. to prepare a package of
Web-based content to help promote a major new
marketing campaign. The agency has been told to
take advantage of the latest audio-video streaming
technologies in order to deliver the ad’s message in
a way as eye-catching as possible for a broad range
of Web users. In our standard TourGuide demon-
stration, the agency representative (the tour guide)
gets ready to present to executive clients at various
locations (the tourists) the agency’s preliminary
Web content. The tour is scheduled, and the clients
are given a URL for the design agency’s site where
they can join the tour. Joining the tour is accom-
plished through an applet-assisted login process.
Once logged in, each tourist’s browser loads a page
containing a user interface similar to that shown in
the right-hand portion of Figure 1.

The left-hand side of the tourist’s browser
includes a shared display area; any Web location
selected by the tour guide as part of the tour causes
the referenced page to be displayed in this area, and
all participants in a TourGuide session then view
the same contents in this portion of the interface at
any given time. The right-hand side of the tourist-
user interface includes several displays and controls;
in the top-right area is the Roster, a Java applet that
dynamically displays the names of the participants
currently logged into the tour; in the bottom-right
area is a control that allows each tourist to enter and
leave a real-time voice conference with other tour
participants, and the middle-right area of the
tourist’s user interface offers an array of buttons
allowing feedback on the material being discussed.
On pressing any of these buttons, a distinctive
audio jingle is sounded at each participant’s host
computer, and a corresponding symbol is displayed

in the Roster next to the name of the tourist pro-
viding the feedback. These stimuli give the tour
guide useful feedback concerning client acceptance
of the material being discussed.

At the beginning of a tour, a tour guide loads the
TourGuide application into his or her own browser
(left-hand side of Figure 1). Tourists can join or
leave a tour at any time, resulting in a jingle being
played at all remaining participant locations, along
with an update on each participant’s Roster display.
Tourists joining the session see the Web location last
selected by the tour guide load up in the shared
Web-page area of their user interfaces.

The TourGuide user interface also features a
HotList in the top-right area, as in Figure 1, left-

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 81

Figure 1. TourGuide and tourist user interfaces

shared display TourGuide controls Tourist controls

hand side. Implemented by a Java applet, the
HotList gives the tour guide a convenient way to
create a list of locations to be visited during a tour,
as well as a way to modify such lists during a tour.
The tour guide uses the buttons associated with the
HotList to create a list of sites that can be visited,
each with an associated URL. The tour guide is
thus able to create configurations for different
tours, each of which can be loaded into the HotList
for piloting the associated tour. The tour guide can
take the tourists to any desired Web location by
clicking on the corresponding entry from the
HotList.

As part of our standard TourGuide demonstra-
tion scenario, the agency representative (the tour
guide) takes tourists on a tour illustrating how key
emerging Internet technologies are being imple-
mented. Pages visited contain mostly custom mul-
timedia content in support of GTE’s proposed
marketing campaign. We typically illustrate the col-
laborative aspect of the related communication by
developing the interaction in several phases. So, in
response to a client’s awareness that most of its
Internet customers are dial-up users, the tour guide
first demonstrates how marketing messages can be
delivered at modem speeds. This is accomplished by

visiting pages that communicate the
message through a dynamic slide
show accompanied by an audio
track, as in the shared-display area
of Figure 1, or a low-resolution
video movie that can be streamed in
real time. We use feedback buttons
throughout to illustrate how client-
acceptance ratings can be communi-
cated (while preserving floor
control) as clients are exposed to the
material prepared by the design
agency. Clients then ask to see how
the video would look at higher data
rates, and, in response, the tour
guide demonstrates higher-resolu-
tion versions of the same video con-
tent transmitted over various access
technologies with different classes of
connection speeds. Once again,
clients can view the streamed video
of the proposed marketing message
at their own locations in approxi-
mate synchronization with all other
tour participants. As the dialog pro-
ceeds, clients become increasingly
confident about the viability of

delivering a multimedia marketing message to a
range of Internet customers; their attention then
turns to aesthetic concerns. For example, the client

might want to discuss alternative page layout
designs. The tour guide then visits a page contain-
ing some basic design widgets (see Figure 2), all of
which can be manipulated in a what-you-see-is-
what-I-see (WYSIWIS) manner until the blueprint
for a preferred design is agreed upon, thus bringing
the business meeting to a close.

Our basic approach was to create a general appli-
cation support platform offering basic services pro-

82 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

Figure 2. Collaborative page layout in TourGuide

Orchestrator

Audio/video
servers

TourGuide

Tourist Tourist

Tourist

Tourist

Web
servers

Servers

Clients

Figure 3. TourGuide application support platform

vided by a federation of network servers. Tour-
Guide’s application-specific elements were then lay-
ered on the platform through a combination of
high-level application logic and scenario-specific
multimedia content. A key motivation for con-
structing such an architecture (see Figure 3) was to
explore the feasibility of building-in a high degree of
generality, and hence reusability, in terms of the
basic services and mechanisms available to applica-
tion developers.

In accordance with our objective of testing the
viability of building sophisticated Internet applica-
tions from emerging Internet software technologies,
we learned we could go a long way toward being
technology integrators (as opposed to technology
inventors). We discovered that much of the func-
tionality needed to support TourGuide was avail-
able through readily attainable technologies.

Table 1 lists the main Internet component tech-
nologies supporting TourGuide, along with com-
ments on how each contributed to developing the
platform. In addition to audio-video streaming
servers, we used the Microsoft Information Server
to serve Web content. We also created a variation of
the TourGuide demonstration featuring a Microsoft
Chat Server in support of real-time shared-text dia-
log and a Progressive Networks RealVideo server in
support of live streaming the tour guide’s talking
head to the tourists.

Despite the considerable leverage gained from
loosely integrating these component technologies,

we were not entirely surprised to find functional
holes that could be filled only with custom technol-
ogy. The principal missing component was due to
the need to coordinate events and actions between
“peer” sets of applets across the network. Such coor-
dination provides the application with the WYSI-
WIS sharing semantics characteristic of many
collaborative applications. As an example of when
such sharing is required by TourGuide, consider the
actions following the tour guide’s selection of a
HotList item. That is, the URL of the page associ-
ated with the selected HotList item must somehow
be communicated to all participating tourists. So, to
coordinate Java applets, we developed a component
we call the Orchestrator [5].

The Orchestrator, based loosely on the Linda
programming language model [2], is a multi-
threaded Java application implementing a distrib-
uted shared object space (called TupleSpace) in
which applets can post, read, or permanently store
arbitrary Java objects. Coordination events can be
posted to a TupleSpace and used to orchestrate the
actions of remote applets. Applets can share infor-
mation easily via TupleSpaces without needing to be
aware of the underlying communication mecha-
nisms. The Orchestrator manages TupleSpaces,
handles calls from the applets, and controls the
Archiver threads (see Figure 4).

A tuple has two parts—a key and a value.
Though a key can be any Java object, it is often a
string. To retrieve a tuple, an applet invokes the

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 83

Server Technology Description and Application to TourGuide

RealServer, one of the first widely available technologies supporting real-time audio
streaming over the Internet, can serve audio streams at 14.4kbps through ISDN rates in mono
or stereo and is multistream-capable. It also supports event-driven presentations featuring
playback of an audio stream with accompanying images synchronized by a common timeline.
The TourGuide demo scenario uses RealServer technology to demonstrate delivery of dynamic
presentations to users with modest Internet connection speeds (see Figure 1).

OnLive! Technology's applications include the OnLive! Conferencing Server and the Talker client,
which is a plug-in that can be embedded in a Web page for multipoint audio conferences
supported by the Conferencing Server. The Talker plug-in was used in support of TourGuide's
Internet telephony component.

The VDOLive On-Demand server is scalable and can serve multiple video streams simultan-
eously at the best connection rate for each client. The VDO encoder uses an efficient
proprietary compression algorithm based on a wavelet-encoding scheme. The server software
is specialized for streaming video accompanied by audio over low-bandwidth connections (from
14.4kbps). We used VDOLive technology to simulate the quality of video deliverable at
dial-up (28.8kbps) and ISDN (128kbps) rates as part of the TourGuide demo.

The NetShow server is an open, extensible streaming platform supporting playback of
streamed audio, video, and event-driven presentations. Because the software architecture
is codec independent, it potentially supports any video-encoding format. We used the
NetShow server as part of TourGuide to demonstrate the higher quality of video
achievable by playback at ADSL rates, or multimegabits per second.

Real Networks
RealAudio Server
www.realnetworks.com

OnLive! Technologies
Community Server
www.onlive.com

VDOnet Corp.
VDOLive
On-Demand Server
www.vdonet.com

Microsoft Corp.
NetShow Server
www.microsoft.com

Table 1. Principal Internet servers in the TourGuide testbed

fetch command on a designated TupleSpace
using a specified key. A TupleSpace is a container
for tuples. When an applet posts a tuple, it is added
to the TupleSpace. Tuples can also be deleted by an
applet. Orchestrated applets issue a connect
command to connect to the Orchestrator. If an
applet needs to post tuples to or fetch tuples from
a TupleSpace, it sends an attach command to
the Orchestrator to attach to the desired Tuple-
Space. When the tuples processing is complete, the
applet can detach from the TupleSpace. An applet
can also send commands to the Orchestrator to
create and destroy TupleSpaces.

Applets can flag a TupleSpace to be cached (mak-
ing it persistent). Cached TupleSpaces are check-
pointed to disk at regular intervals by the Archiver.

TupleSpaces are saved when the Orchestrator shuts
down and restored when it starts up.

While describing the Orchestrator’s program-
ming interface in detail is beyond the scope of this
article, we can offer a sense of how the interface is
used to support the TourGuide’s HotList feature,
as in Figure 1. The HotList applet responds to a
tour guide’s mouse-click by extracting the tuple
corresponding to the selected HotList item. The
applet then uses the Orchestrator post command
to send a URL tuple including the URL of the
selected Web location to the appropriate Tuple-
Space within the Orchestrator. Arrival of this tuple
causes a callback to a thread within each partici-
pating tourist or tour guide browser to respond by
fetching the tuple and causing the referenced loca-
tion to be loaded within the shared-display portion
of the user interface.

The Orchestrator also provides TourGuide with
whiteboard-style support for the spatial manipula-
tion of shared objects in a WYSIWIS manner—a
feature we used in our scenario to model the col-
laborative design of Web-page layouts between cor-
porate executives and the content development
agency. In this context, the action of dragging a

shared object in one user interface results in the
generation of the locus of events, or tuple postings,
at a frequency sufficient to ensure the smooth
changes of location of corresponding objects. The
Orchestrator’s ability to process several hundred
tuples per second proved sufficient for this purpose.

Conclusions
Our earlier research strongly reinforced our appreci-
ation of the value of application scenarios as a way
to demonstrate the implications of multimedia tech-
nology on business communications [9]. Our expe-
rience with TourGuide is no exception. The
TourGuide scenario was built on a platform provid-
ing general-purpose support for one style of collab-
orative multimedia applications but customized

through scenario-specific multime-
dia content and appropriate cus-
tom-application functionality. The
prototype implementation was an
example of a solution to a real-
world business communication
problem many people can relate to.

TourGuide has proved useful
for explaining the implications of
available bandwidth on the quality
of video that can be streamed in
real-time to multiple users as part

of a collaborative activity. It was a natural frame-
work within which we could tangibly demonstrate
the state of the art in terms of real-time media
streaming using commercially available technology
supporting playback at rates ranging from modem,
to ISDN, to T1, to ADSL. The application also
helps demonstrate various software capabilities sup-
porting collaboration, including open audio chan-
nels, feedback mechanisms, and WYSIWIS design
layout.

Beyond its pedagogical value, TourGuide has
also helped demonstrate the viability of building
distributed multimedia applications by synthesizing
emerging Internet component technologies.
Despite the mix of technologies we used to create
this application, we were especially pleased with the
seamless appearance of its user interfaces; avoiding
applications external to Web browsers was a key
contributing factor to the result. We learned that
the core functionality required for collaborative
applications, like TourGuide, could be supported
largely through freely available Internet software
technologies. We were also pleased by TourGuide’s
degree of platform independence.

Although we used third-party software to sup-
port most of the core TourGuide functionality, we

84 January 1999/Vol. 42, No. 1 COMMUNICATIONS OF THE ACM

Orchestrator

Tuple Tuple Tuple

TupleTupleSpace TupleSpace

Applet Applet Applet

Archiver
Tuple Tuple Tuple

Tuple

Figure 4. Orchestrator architecture

were not surprised to find functional holes. In par-
ticular, we knew of no third-party support for coor-
dinating the behavior of distributed applets. Even
so, the only substantial custom component we
implemented for this purpose—the Orchestrator—
took about three months to implement; the appli-
cation support environment and TourGuide
scenario demonstration required a similar develop-
ment effort, from concept analysis through imple-
mentation and testing. Also worth noting, however,
is that a considerable amount of effort was due to
technology evaluation and testing.

References
1. Berners-Lee, T. WWW: Past, Present, and Future. IEEE Comput. 29,

10, (Oct. 1996), 69–77.
2. Carriero, N., and Gelernter, D. Coordination languages and their sig-

nificance. Commun. ACM 35, 2 (Feb. 1992), 97–107.
3. England, P., Allen, R., and Underwood, R. RAVE: Real-time services

for the Web. In Proceedings of the 5th International World-Wide Web
Conference (Paris, France, May 6–10). O’Reilly & Assoc., Inc.,
Sebastopol, Calif., 1996, 1,547–1,558.

4. Evans, E., and Rogers, D. Using Java applets and CORBA for multi-user dis-
tributed applications. IEEE Internet Comput. 1, 3 (May–June 1997), 43–55.

5. Gutfreund, Y., and Nicol, J. The WWWinda orchestrator: A mecha-
nism for coordinating distributed flocks of Java applets. In Proceedings
of Multimedia Computing and Networking 1997 (San Jose, Calif., Feb.
10-11). Society of Photo-Optical Instrumentation Engineers, Belling-
ham, Wa., 1997, pp. 295–302.

6. Hodges, M., and Sasnett, R. Multimedia Computing: Case Studies from

MIT Project Athena. Addison-Wesley Publishers, Reading, Mass., ISBN
0-201-52029-X, 1993.

7. Maly, K., Abdel-Wahad, H., Overstreet, C., Wild, J., Gupta, A.,
Youssef, A., Stoica, E., and Al-Shaer. Interactive distance learning over
intranets. IEEE Internet Comput. 1, 1 (Feb. 1997), 60–71.

8. Nicol, J., and Phuah, V. Experiences of constructing multimedia appli-
cations over ATM. In Multimedia Services Over the Broadband Network:
Current and Future Technologies, F. Golshani, D. Minoli, and F.
Groom, Ed. Adv. Bd. International Engineering Consortium, Chicago,
Ill., 1996, pp. 365–374.

9. Phuah, V., Nicol, J., and Gutfreund, Y. ATM to the desktop: Impact-
ing modern business communications with broadband technology.
Telematics and Informatics (Special Issue on Multimedia Technologies, Sys-
tems, and Applications) 14, 1, (Feb. 1997), 5–25.

John R. Nicol (nicol@gte.com) is a senior principal member of
technical staff at GTE Laboratories Inc. in Waltham, Mass.
Yechezkal S. Gutfreund (gutfreund@acm.org) is an
independent consultant in Boston.
Jim Paschetto (jpaschetto@gte.com) is a senior member of
technical staff at GTE Laboratories Inc. in Waltham, Mass.
Kimberly S. Rush (krush@gte.com) is a member of technical staff
at GTE Laboratories Inc. in Waltham, Mass.
Christopher Martin (cmartin@gte.com) is a member of
technical staff at GTE Laboratories Inc. in Waltham, Mass.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0100 $5.00

c

COMMUNICATIONS OF THE ACM January 1999/Vol. 42, No. 1 85

For years, researchers have made their working papers available by posting

them on Web sites, department pages, or various ad hoc spots known only to

cognoscenti. Until now, there’s never been a single repository to which

researchers from the entire computing field could submit reports.

That’s all history.

Today, there is the new online Computing Research Repository (CoRR)-an

integrated collection of over 20,000 CS research reports. The Repository

reflects a partnership between ACM, the Los Alamos e-Print Archive, and the

Networked Computer Science Technical Reference Library (NCSTRL). This

valuable material has been integrated into the NCSTRL collection

(www.ncstrl.org) and will be linked to ACM’s Digital Library.

Most importantly, the Repository is free to all CS professionals.

We encourage you to join the CoRR community right away. For more details

about the site, see www.acm.org/repository; for information on how to submit

documents, browse, and search, see xxx.lanl.gov/archive/cs/intro.html. CoRR

will only gain in value as more researchers use it; so spread the word.

We’re making history.

JOIN

THE NEW

COMPUTING

RESEARCH

REPOSITORY

