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We suggest an interesting and fast method for generating normal, exponential, t, von Mises,
and certain other important random variables used in Monte Carlo studies. The right half of a
symmetric density is cut into pieces, then, using simple area-preserving transformations,
reassembled into a rectangle from which the x-coordinate—or a linear function of the
x-coordinate—of a random point provides the required variate. To illustrate the speed and
simplicity of the Monty Python method, we provide a small C program, self-contained, for
rapid generation of normal (Gaussian) variables. It is self-contained in the sense that required
uniform variates are generated in-line, as pairs of 16-bit integers by means of the remarkable
new multiply-with-carry method.

Categories and Subject Descriptors; G.3 [Mathematics of Computing]: Probability and
Statistics; I.6.1 [Simulation and Modeling]: Simulation Theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Monty Python method, normal variates, t variates, von
Mises variates

1. INTRODUCTION

Consider the rectangle in Figure 1, base b 5 =2p, height 1/b, so the area
is 1. You may generate a normal random variable by choosing a random
point ( x, y) in that rectangle, and then

(1) If the point is in region F, ( x , a), return 6x. (Note: this step avoids
generation of y.)

(2) If the point is in region G, ( y , f( x)), return 6x.
(3) If the point is in region H, ( y . g( x)), return 6s 3 (b 2 x).
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(4) Else generate x 5 2lnU1/b, y 5 2lnU2 until y 1 y . x 3 x, then
return 6(b 1 x).

Here f is the absolute normal density; f( x) 5 2e2(1/ 2) x2

/=2p on a , x ,
b; and g is the density from 0 to a, but rotated (and stretched) to fit into
the upper right corner—the essence of the Monty Python method. Thus,
g( x) 5 1/b 2 s[ f(s(b 2 x)) 2 1/b], with s 5 a/(b 2 a), and a is the
x-coordinate of the point where f crosses the rectangle: a 5 =ln4.

The Monty Python Method has the following features:

—Since x , a ensures the random point ( x, y) will be in region F,
whatever y, we generate the required variate about half the time by
means of one uniform variate, and a test on magnitude.

—The rest of the time, we do require a second uniform, 0 , y , 1/b, and
tests y , f( x) or y . g( x). But the need to evaluate these can be reduced
to perhaps 2% by fitting a quadratic q( x) 5 c1 1 x(c2 1 xc3) below f so
that, for a , x , b, q( x) , f( x) , g( x) , q( x) 1 e.

—Since the rectangle has base b and height 1/b, its area is 1. Thus the
area between f and g is the area of the right tail, *b

` f( x)dx, and step (4)
of the algorithm provides a normal variate x from the tail x . b.

—The random 6 can be provided in a single machine cycle from the sign bit
of a random 32-bit integer, with the rightmost 31 bits used to provide a
uniform variate. The integer random number generator should be in-line,
without recourse to calling a subroutine or procedure. Then the time for
generating a normal variable will be little more than the time for calling
a random integer subroutine, since the bulk of the cost of such fast
routines is the overhead for saving and restoring registers.

—The cost of a generating procedure is sometimes given in terms of the
average number of uniform variates required. For the Monty Python
Method, that average ranges from about 1.5 to 1.8, depending on the
ratio a/b and the small frequency (e) of the tail procedure. The formula is
2 2 a/b 1 eT, with T the number required for the tail.

2. THE MONTY PYTHON METHOD

As we shall see, the above method for normal variates may be applied to
exponential, t, von Mises, and other important variates. Many methods
have been developed in the past—see, for example, the comprehensive book
by Devroye [1986]—and methods are usually given names to identify them.

Fig. 1. The Monty Python method applied to the normal distribution.
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(I, Marsaglia, called this the Monty Python method when it was developed,
some 20 years ago, because opening graphics on the British television show
Monty Python’s Flying Circus resembled the essential element of the
method. The zany Monty Python crew pictured a stylized head with a
hinged top that folded open, with all kinds of silliness pouring out. The
Monty Python Method has an analogous hinged top that is folded over to
suggest, among other things, an interesting way to generate a random
variable. You may judge for yourself its silliness.)

The fastest method for sampling from decreasing densities is probably
the ziggurat method of Marsaglia and Tsang [1984]. That method is related
to the Monty Python method, but, for extreme speed, requires slicing the
density horizontally into many pieces of equal area, with resulting complex
programs and large arrays. The method described below provides programs
that are nearly as fast as those of the ziggurat method, but simpler, with no
arrays.

2.1 Getting Started

Given a decreasing density f on 0 , x, the first step is to choose a base b,
then draw a rectangle of area 1, so the height is 1/b. The idea is to guess at
a b for which the “cap,” the region above the rectangle, seems to be an
inverted version of the northeast corner of the rectangle.

For example, with f( x) 5 2e2(1/ 2) x2

/=2p and b 5 2.29 you have a
picture such as Figure 2.

The x-coordinate of a point chosen uniformly under f will have density f,
but of course it is difficult to choose a point uniformly under f in a direct
way. But it is easy to choose ( x, y) uniformly from a rectangle, and the idea
of the Monty Python method is to choose the rectangle so that the area
under f can be folded neatly into it, and in such a way that the resulting
variate can be quickly provided by means of a few simple tests on magni-
tude.

We consider two ways for cutting and folding f into a rectangle: first, by
cutting off the cap and putting it directly into the upper right corner,
leading to the simplest but not the most efficient method, or second, by
stretching the cap so as to better fit it into the upper right corner of the
rectangle. In both cases, we are cutting f into pieces and reassembling them

Fig. 2. The basic rectangle for applying the Monty Python method.
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into a rectangle. The transformations are area-preserving, and except for
the narrow tail region, simple enough that the required variate is a simple
function of the x-coordinate of the random point ( x, y).

For the simplest method, all we need do is rotate and slide the “cap” of
the density to the upper right corner of the rectangle, as in Figure 3.

Then for x , a return x; for ( x, y) in G, return x; for ( x, y) in H, return
b 2 x. Of course we cannot completely fold the area under f into the
rectangle—the tail is still hanging out. But the area of the tail is exactly
what we have remaining to fill in the rectangle. So if our random point in
the rectangle falls in that narrow space between f and g, we just return a
variate from the normal tail by means the method of Marsaglia or the
general tail method of Marsaglia and Tsang [1984].

The choice of b is not critical, but requires care. If b is too big, then the
rotated and shifted cap will intersect the lower curve. If b is small, there is
plenty of room for the cap, but then the tail method is required too often.

2.2 Rotating and Stretching

The choice b 5 2.29 is about the maximum possible—unless one not only
rotates, but stretches, the cap so that it fits exactly from a to b. The cap
density is f( x) 2 1/b, 0 , x , a. To stretch it, we let x 5 st, with s the
stretch factor, s 5 a/(b 2 a). Then the density of t is s[ f(st) 2 1/b], and
the rotated, stretched cap leads to the test function g( x) 5 1/b 2
s[ f(s(b 2 x)) 2 1/b]. Stretching and rotating the cap about the point (a,
1/b) provides a figure such as Figure 4, (with each successive cap stretched
by a factor of s1/6):

Now we have regions F, G, and (stretched) H from which the required
variate is easily provided, as either x or s(b 2 x). The tail region is
encountered with probability about 0.012, compared to 0.022 for the un-
stretched cap with b 5 2.29. The choice b 5 =2p for the stretched cap is

Fig. 3. Rotate and slide the cap to the northeast corner.
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not critical. Any value in 2.506 to 2.5074 will do, but b 5 =2p and the
resulting a 5 =ln4 are easily identified choices to unlimited precision.

3. MONTY PYTHON FOR EXPONENTIAL-LIKE DENSITIES

The direct Monty Python method—draw a rectangle of area 1 and rotate
and stretch the cap so that it neatly fits into the upper right corner of the
rectangle—works well for normal, t, and von Mises densities. But it does
not work well for exponential, or exponential-like, densities. If you try to
rotate and stretch the cap, a too-large lenticular shape remains in the
middle.

For example, on the left of this figure is about the best that can be done
for the exponential density e2x with rotate and stretch (b 5 2.3585), while
on the right is improvement arising from the exact-approximation transfor-
mation of the cap (Figure 5).

This is the idea. We want to change the shape of the cap so that, when
rotated and stretched, it will better fit in the upper right corner and allow a
larger value for b, providing a much smaller tail probability. Some simple
transformation of the cap density is called for. We want to transform the
cap of the density, f( x) 2 f(a), 0 , x , a, to a density on 0 , z , a by
means of x 5 C( z), with C a cubic, C( z) 5 c1z 1 c2z2 1 c3z3. The density
of z must be d( z) 5 C9( z)[ f(C( z)) 2 f(a)], 0 , z , a in order that x 5
C( z) have density f( x) 2 f(a), 0 , x , a. This is the exact-approximation
method of Marsaglia [1984].

We want C(a) 5 a, (so that x and z have the same range) and sd(0) 5
f(a) 2 f(b) (to make the rotated, stretched d fit exactly at x 5 b).

Thus c1 1 c2a 1 c3a2 5 1 and c1s[ f(0) 2 f(a)] 5 f(a) 2 f(b). This
leaves one free parameter, say c3, in determining C, with the hope that the
resulting d( x), when rotated and stretched about the point (a, 1/b), will fit

Fig. 4. Rotating and stretching the cap.
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nicely in the available space. The picture on the right shows the trans-
formed cap resulting from C( z) 5 0.58242z 1 0.16259z2 1 0.1z3. When
rotated about the point (a, 1/b), and stretched by the factor s 5 a/(b 2 a),
the result fits nicely in the upper right corner, as indicated in Figure 5
above. There, the upper curve is g( x) 5 1/b 2 sd(s(b 2 x)), with d( z) 5
C9( z)[ f(C( z)) 2 1/b]. For points ( x, y) in the upper right region, the value
C(s(b 2 x)) is returned—in practice, as a Horner-form cubic in x.

Next, Figure 6 shows the exponential density and the transformed cap
density d( z) arising from x 5 C( z). The transformed cap may then be
rotated and stretched to fit as shown in the right side of Figure 5.

4. MONTY PYTHON AND THE VON MISES DISTRIBUTION

The von Mises density is f( x) 5 cek cos( x), symmetric on 2p , x , p. The
constant is c 5 [pI0(k)]21. (Twice the ordinary one, in order that the right
half have area one.) We put a random 6 on a variate from that right half.
We want to choose b and the resulting a so that the rotated and stretched
cap density just fits in the upper right corner of the rectangle with base
[0, b] and altitude h 5 1/b 5 f(a).

As with other applications of the Monty Python method, choosing b
determines h, a, s, and g by h 5 1/b, f(a) 5 h, s 5 a/(b 2 a), and g( x)
5 h 2 s[ f(s(b 2 x)) 2 h]. The problem is to choose b so that the resulting
g puts the rotated and stretched cap into the northeast corner with no
overlapping of f and g and the area between them very small. The “best” b
is the largest b that makes this true.

In order that there be a maximal b, the set of b ’s for which g( x) $ f( x),
a # x # b must be shown to have at least one element. It seems preferable
to argue that the set of a ’s for which g( x) $ f( x), with b 5 1/f(a), is not
empty. We can arrange terms so that our condition becomes

d~ x! 5
1

b 2 a
2 sf~s~b 2 x!! 2 f~ x! $ 0 for a # x # b.

Now d(a) 5 0 and d9( x) 5 s2f9(b(s 2 x)) 2 f9( x). Furthermore, d9(a) 5
(s2 2 1) f9(a) . 0. So our difference, d( x), starts off at 0 and is rising as x
“leaves” a. If a is small enough that d9( x) $ 0 for a # x # b then the

Fig. 5. Improvements for exponential-like densities.
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condition d( x) $ 0 for a # x # b will be met. We may put the
nonnegativity of d9( x) in the form

s2f9~s~b 2 x!!

f9~ x!
# 1, a # x # b.

Then, since uf9( x) u is bounded from below on a # x # b, we can make a
small enough that the condition holds.

Thus there are a ’s, and hence b ’s, for which g( x) $ f( x) for a # x # b,
and we can be sure there is a best b. This should be clear from the
graphical description of the Monty Python method. If a is very small, the
cap is virtually a little triangle that gets rotated and stretched to the upper
region of the rectangle. It starts equal to f( x), but is farther and farther
above it as x goes from a to b.

Finding maximal, or nearly maximal, b ’s is perhaps best done graphi-
cally, using, for example, Maple. One zeroes in on successive b ’s until the
rotated and stretched cap fits with no overlap and the in-between area
seems to be near its minimum. Good choices for b are shown in Figure 7, for
k 5 0.5 and k 5 4.

Results from a representative set of k ’s can be used to develop a general
formula for b as a function of k. The von Mises densities approach the
normal as k grows, since I(0, k) 5 (ek/=2pk)(1 1 (1/k) 1 o(1/k2)). The
asymptotic form for I(0, k) puts a 2k in the exponent of e in the von Mises
density, making it k(cos( x) 2 1), with dominant term 2kx2/ 2, that of a
normal density with variance 1/k.

So we may expect a formula for b as a function of k in the form b 5
(2.5074/=k)(1 1 a1/k 1 a2/k2 1 . . .), and here is one, based on fitting a

Fig. 6. The exponential density with the transformed cap.
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curve to b ’s for k 5 1, 2, 4, 8, 16, 32, 64:

b 5
2.50715

Îk
S1 1

0.19951

k
2

0.057465

k2
1

1.80372

k3
2

2.770225

k4

1
0.9601616

k5 D .

That “2.50715” can be recognized as a conservative estimate of the maxi-
mum possible for the normal, 2.5074 . . . .

The above formula for b is for k $ 1. The von Mises densities approach
the uniform distribution on (0, p) as k 3 0. Plotting a few points for small
k suggests a linear relation between ln(p 2 b) and ln(k), leading to
conservative, yet accurate, b ’s by the formula

b 5 3.14159 2 0.20086k2.0313 for k , 1/8.

For the remaining range of k, fitting a curve to b values for k 5 1, 1/ 2,
1/4, 1/8 leads to

b 5 3.141388 1 0.00248k 2 0.18047k2 2 0.116028k3, for 1/8 # k # 1.

Note that the von Mises density has finite support, 2p , x , p. So the
“tail,” extending from b to p, can be handled by a simple rejection
technique when k is small, or the general tail method as described in
Marsaglia and Tsang [1984] when k is large.

5. MONTY PYTHON AND THE t DISTRIBUTION

The t density is f( x) 5 c(1 1 x2/n)2(n11/ 2), with c 5 2G(n 1 1/ 2)/
[G(n/ 2)=np], doubled so the right half has area one.

To apply the Monty Python method, we must vary b until the resulting
translated and stretched cap just fits in the northeast corner, and the tail
area, between f and g, is small. Figure 8 shows good choices of b for n 5 8
and n 5 4.

For large n the average generating time is that for normals, very fast.
But even for small n the resulting method is still very fast, with a slight

Fig. 7. The Monty Python method applied to two von Mises densities.
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loss, not so much because of increase in the tail area, but because the
smaller ratio a/b means that a single uniform variate is returned perhaps
40% of the time, compared to the 48 to 50% for some densities.

The choices for b need not be precise. Thus it seems feasible to provide a
formula that gives the (nearly) best b as a function of n. Here are suitable
b ’s for n 5 1, 2, . . . , 8:

b1 5 4.766, b2 5 3.515, b3 5 3.143, b4 5 2.968, b5 5 2.868,

b6 5 2.783, b7 5 2.756, b8 5 2.724

For n . 8, use of bn 5 2.5074 1 1.876n21.042 will provide a conservative
value quite close to the maximum possible. Its use, rather than the
maximum possible, will have no measurable effect on the average running
time of programs based on the Monty Python method.

6. PROGRAMMING EXAMPLE

We conclude with an example of a C program for generating a normal
variable by means of the Monty Python method. Other distributions will
have similar programs; only the functions f, g, the constants b, a, and the
tail method change.

We illustrate with our practice of including an in-line random integer
generator, to avoid the overhead of a subroutine (procedure) call—in this
case, concatenation of a pair of multiply-with-carry generators on 16 bits.
Theory and description for the multiply-with-carry method is in the Post-
script file mwc1.ps of the Marsaglia Random Number CDROM [Marsaglia
1996]. The define statements provide a random znew in the top 16 bits of a
32-bit word, while wnew provides the bottom 16 bits. So the C expression
znew1wnew produces a random 32-bit integer that passes all tests in the
DIEHARD battery of tests [Marsaglia 1996]. Note that seed values for z
and w, containing the initial 16-bit integers and the “carries,” are set by
setseed( ) with two 32-bit integer arguments.

#define znew ((z536969p(z&65535)1(z..16)),,16)
#define wnew ((w518000p(w&65535)1(w..16))&65535)
static unsigned long z5362436069, w5521288629;
float rnor( ){

Fig. 8. The Monty Python method applied to two t densities.
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float x,y,v;
x5((signed long)(znew1wnew))p1.167239e29;
if(fabs(x),1.17741) return(x);
y5(znew1wnew)p2.328306e210;
if(log(y),.69314722.5p(xpx)) return(x);
x5(x.0)? .8857913p(2.5066282x) ; 2.8857913p(2.5066281x);
if(log(1.88579132y) , .57187332.5p(xpx) ) return(x);

do{
v5((signed long)(znew1wnew))p4.656613e210;
x52log(fabs(v))p.3989423;
y52log((znew1wnew)p2.328306e210);

}
while(y1y,xpx);
return( (v.0? 2.5066281x ; 22.5066282x );

}
void setseed(unsigned long i1,unsigned long i2){z5i1; w5i2;}

In many systems, inserting instructions for pretests may make the
procedure run faster: after producing y, set v 5 2.8658 2 ux u(2.0213 2
0.3605 ux u). Then if y , v return x; if y . v 1 0.0506 return 6
0.8857913(2.506628 2 uxu). With such pretests, transcendental functions f
or g will be needed only about once in 37 calls. On a 120MHz PC, pretests
led to 1.9 msecs per call to rnor(), while the average was 2.5 msecs without
pretests (for gnu C on Linux). A (Microsoft) Fortran version averaged 0.9
msecs with pretests, 3.6 without.

Remark. Similar ideas were used in the (more general, but also more
complicated) patchwork rejection technique which resulted in competitive
gamma (see Minh [1988]) and beta generators (see Zechner and Stadlober
[1993]).
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