
Quasi-Linear Types

Naoki Kobayashi

Department of Information Science, University of Tokyo
email:koba@is.s.u-tokyo.ac.jp

Abstract

Linear types (types of values that can be used just once)
have been drawing a great deal of attention because they
are useful for memory management, in-place update of data
structures, etc.: an obvious advantage is that a value of a
linear type can be immediately deallocated after being used.
However, the linear types have not been applied so widely
in practice, probably because linear values (values of linear
types) in the traditional sense do not so often appear in ac-
tual programs. In order to increase the applicability of linear
types, we relax the condition of linearity by extending the
types with information on an evaluation order and simple
dataflow information. The extended type system, called a
quasi-linear type system, is formalized and its correctness
is proved. We have implemented a prototype type infer-
ence system for the core-ML that can automatically find
out which value is linear in the relaxed sense. Promising re-
sults were obtained from preliminary experiments with the
prototype system.

1 Introduction

1.1 Linear types

A number of type systems based on Girard’s linear logic [6]
have been proposed [l, 3,9,13,14,22]. They guarantee that
certain data structures (called linear values) are accessed
just once (or at most once). The distinction between lin-
ear values and other values brings us several benefits: im-
provement of memory management [11, safe inlining [22], etc.
Among them, we are here interested in the improvement of
memory management. If some data structure is statically
known to be linear, it can be deallocated immediately af-
ter it is accessed. Moreover, if another heap value needs
to be created after a linear value is accessed, we can just
replace the linear value with the new value, instead of deal-
locating the linear value and allocating space for the new
data (provided that the physical size of the new value is not
greater than that of the linear value). For instance (through-
out this paper, we assume a call-by-value language), when
the function X(z, y).(z, y + 1) is called, if the argument is a

Permission to make digital or hard copies of all or part of this work for

personal or classroon~ use is granted without f’ee provided that copies

are not made or distributed for prolit or commercial advantage and that

topics bear this notice and the full citation on the first page. ‘To copy

otherwise. to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

POPL 99 San Antonio Texas USA

Copyright ACM 1999 l-581 13-095-3/99/01...$5.00

linear pair, the second element y of the pair can be destruc-
tively updated to y + 1. Similarly, the “append” of linear
lists can be performed destructively, without copying cons
cells. This kind of improvement will be especially effective
for functional programs, because many intermediate data
structures like cons cells and closures are created in naive
functional programs.

1.2 Limitation of linear types

In spite of the above-mentioned benefit from linear type sys-
tems, they do not seem to have been used so widely, even
after type inference algorithms [8,9,22] were proposed that
can automatically find which values are linear.

We think one of the major reasons for this is that
linear type systems are too naive for the above applica-
tion: what is actually important for automatic dealloca-
tion and in-place update is to identify which is the last
access to a heap value; the condition of linearity is too
strong for this purpose. For example, consider an expres-
sion M E let 2 = 2.0 in let y = x + 1.0 in y + 2: it is easy
to see that y + x is the last access to z, but linear type sys-
tems cannot insert a code to deallocate z - just because
z is used twice! This limitation also forces a programmer
to follow a particular programming style. For instance, in
Xz.(fst(z),snd(z) + l), the pair z is judged to be accessed
twice; so, if one wants the pair to be deallocated, one must
write X(z, y).(x, y + 1) instead.

1.3 Our proposal - almost linear types (quasi-linear

types)

In order to remove the above-mentioned limitation of linear
types, we relax the condition of linearity.

A key idea is to express information on the evaluation
order and dataflow by using types. Recall the above ex-
pression M: if a type system can take it into account
that z + 1.0 is evaluated before y + z, it can ignore the
use of z in z + 1.0 and treat the above expression in the
same way as let 2 = 2.0 in let y = 1.0 in y + 5. In or-
der to obtain such information on the evaluation order,
the type system should also be able to deal with some
dataflow information. Consider, for example, an expression
let y = f(x) in g(x) + h(y). f(z) is evaluated before g(z)
but it does not imply that the access to x in g(z) is the
last one: x may be returned by f(z) and accessed again in
h(y). In order to deal with this, we distinguish between the
type of a value that must be used up in an expression and

29

http://crossmark.crossref.org/dialog/?doi=10.1145%2F292540.292546&domain=pdf&date_stamp=1999-01-01

the type of a value that may be returned as a part of the
evaluation result of an expression.

It would be possible to obtain the above kinds of infor-
mation by using more sophisticated analyses, but we instead
obtain it by a very simple method - by introducing a new
use [9,22]. Advantages of that approach include: (1) the
whole analysis can be formalized uniformly in terms of a
type system (this is especially advantageous when we in-
troduce polymorphism) and (2) a program containing free
variables can be analyzed as long as their type information is
provided, which is useful for modular (or incremental) anal-
ysis and separate compilation of programs. We f&t review
the ideas of previous linear type systems [9,22] and then
overview the ideas of our system below.

1.3.1 Review of linear type systems

A use was introduced to control how often values can be ac-
cessed [9,22]: it was either 0 (not used at all), 1 (accessed at
most once), or w (accessed an arbitrary number of times) in
[9] and was either 1 or w in [22]. Types are annotated with
such uses. For example, real’ represents the type of real
numbers that can be accessed at most once, and int-b’int
is the type of functions on integers that can be called an
arbitrary number of times. A type judgment can be ac-
cordingly refined so that it gives more useful information
than the ordinary one: for example, x : real’ l- N : real”
means not only that 2 is used as a real number in N but
also that it is used at most once. So, it is invalid if N is
let y = 2 + 1.0 in x + y.

The following type derivation highlights a key point of
the linear type system:

z : real1 I- 3: + 1.0 : real’
2:reaZ’,y:reallt-z+y:real’

z : real’ + 2 : real1 (= z : real”)
I- let y = z + 1.0 in z + y : real’

The premises of the derivation imply that z is used once
each in x + 1.0 and x + y. In order to know how x is to-
tally used in the expression, we combine the type environ-
ments of subexpressions by adding the corresponding uses as
above. This is in contrast to the following rule of ordinary
type systems, where type environments are shared between
subexpressions:

rl--r :7-i r, y : 71 i- iI& : 72
r t- let y = Ml in M2 : 73

By using the linear type system, we can infer how often
each heap value is accessed, and annotate each allocation
with a use. For instance, we can annotate the expression.
M as let xy = 2.0 in let y1 = x + 1.0 in z + y, so that y
is deallocated after it is accessed in x + y while x is not
deallocated.

1.3.2 Overview of our type system

In order to express simple dataflow information, we intro-
duce another use 6. Intuitively, a value with use S (which
we call a S-value below) may be accessed many times but
only locally - it cannot be returned as (a part of) the com-
puted result. So, x can have type real6 in z + 1.0 and
(Xy.(y + l.O))z, but not in (2,l.O) or Xy.s + y. A value

with use 1 (hereafter, we call it a quasi-linear value or sim-
ply a linear value, and call a use-once value in the traditional
sense a strictly linear value) can now be accessed in a more
relaxed manner: It can be accessed many times as a b-value,
and then it can be accessed as a strictly linear value (i.e., as
a value that can be accessed once and deallocated).

In order to guarantee such usage of a value, it is crucial
that the type system can take the evaluation order into ac-
count. The type derivation shown above is now changed as
follows:

x : real6 t x + 1.0 : real’
x:reaP,y:reaPl-z+y:reall

2:rea16;z:reaZ1(=x:reaZ1)
b let y = x + 1.0 in x + y : real1

Here, the new combination (x : reals); (z : real’) of type en-
vironments captures the fact that z is first accessed as a
J-value in z + 1.0, and then it is accessed as a linear value in
x + y. Thus, 2 can be deallocated after x + y is evaluated.

Because a quasi-linear value may be used more than once,
in addition to allocation of a heap value, each access to a
heap value is also annotated with a use: it is for distin-
guishing between the last access of the value and the other
accesses. For example, the expression M is annotated as
let x1 = 2.0 in let y1 = x6 + 1.0 in y1 + z1 (actually, we
will annotate constructors and destructors of heap values
instead of variables). Here, we annotate x in y + x with 1 in
order to indicate that it is the last access, while x in x + 1.0
is annotated with 6 in order to indicate that it is not the
last one.

1.4 Main results

Main contributions of the present work are formalization
of the new type system sketched above and a proof of its
correctness. Since the evaluation order must be taken into
account, the proof is non-trivial and more involved than that
of previous type systems.

Another contribution is implementation of a type infer-
ence system for the core-ML (i.e., Standard ML without
modules [15]) based on the new type system, which in-
puts an unannotated core-ML expression and outputs a use-
annotated expression. We have so far tested several fairly
small programs and obtained promising results: for pro-
grams that use lists frequently (such as sorting programs,
the sieve of Eratosthenes and Conway’s game of life), the
type inference system could judge that most heap values (in
the case of the sorting programs and the sieve of Eratos-
thenes, all values except for top-level functions) are linear,
which indicates that they can be executed almost without
garbage collection. Moreover, the annotated programs out-
put by the system indicate that most linear cons cells in
those programs can be updated in-place (the application of
linear types to the in-place quick sort has been suggested
by Baker [2] but a remarkable point here is that it can be
performed for naive programs with no programmer’s anno-
tation).

1.5 Structure of the paper

The rest of this paper is structured as follows. Section 2 in-
troduces the syntax of the target language. Section 3 gives
our type system for judging whether an expression is cor-
rectly annotated with uses. Section 4 sketches a proof of

30

the correctness of the type system and Section 5 briefly dis-
cusses type inference issues. Section 6 discusses several ex-
tensions of the target language. Section 7 explains our pro-
totype type inference system and the results of preliminary
experiments. Section 8 discusses related work and Section 9
concludes this paper. For space restriction, we omit some
formal definitions, proofs, etc.: they are found in the full
version of this paper [12].

2 Target Language

2.1 Uses

As explained in Section 1, a use is introduced to control how
often and in which way each heap value can be accessed.

Definition 2.1 [uses]: A use is 0, 6, 1, or w.

We use metavariables ~1, ~2,. . . for uses.
A new point here is the use 6: basically, we say that a

heap value is accessed in an expression as a value of use 6
if it is accessed locally inside the expression and cannot be
returned as a part of the evaluation result,. 0 means that the
data cannot be accessed at all, 1 means that after the data
is accessed in a restricted manner as a value of use 6, it can
be either (1) accessed at most once and deallocated inside
the current expression being evaluated or (2) put into the
evaluation result as a value of use 1. w means that the data
can be accessed many times in any way.

A value of use w can be regarded as a value of any other
use, and a value of 1 can be regarded as a value of use S
or 0. In order to express this kind of relationship between
uses, we define a total order 5 on uses by 0 5 6 5 1 5 w.
We write ~1 < ~2 if ~1 # ~2 and ~1 5 ~2.

Remark 2.2: By a heap value being accessed (or used), we
mean the contents of the heap value are indeed read; so,
just passing the reference to the heap value does not count
as access. For example, we do not say that y is accessed in
(Xz.z)y, since the expression can be reduced to y without
reading the actual contents of y. A pair is considered to be
accessed only when its first or second element is extracted,
a closure is accessed only when it is invoked, and a real
number is accessed only when it is passed as an argument
to a primitive function on real numbers.

2.2 Expressions

We consider a simply-typed X-calculus with recursion and
pairs as a target language. Its extension with polymor-
phism and other data structures will be briefly discussed
in Section 6. Because our type system is sensitive to an
evaluation order, we use the K-normal form [5] in order to
make the evaluation order explicit and name each interme-
diate value. (For readability, we sometimes use expressions
that are not in K-normal form when giving examples.)

The syntax of expressions is given in Figure 1. Each
allocation or read operation of a heap value is annotated
with a use. The annotation can be automatically inferred
by a type inference algorithm explained in Section 5. We
write & for the set of expressions.

The metavariable V represents a value that can be rep-
resented in one word and need not be allocated in the heap.
Here, it is either an integer constant (denoted by n) or a
variable (denoted by 2). A variable can be considered a
heap address.

(VI, Vz)” and Xny.Ml allocate a pair and a closure re-
spectively in the heap, and records that their use is IC (which
shall be restricted to O,l, or w by the type system given
later). The recorded use expresses how the value can be ac-
cessed in the rest of the computation: 0 means that the value
cannot be accessed at all (so, (VI, V2)’ need not actually al-
locate the pair in the heap), 1 means that the value can
be accessed as a linear value and may be deallocated later,
and w means that the value can be accessed in an arbitrary
manner and can be deallocated only by other mechanisms
such as garbage collection. recn (f, y, Ml) creates a recursive
function f such that f(y) = Ml.

There are three operations to access the heap: fst”(z)
(snd”(z), resp.) extracts the first (second, resp.) element
of the pair stored at 2, and appZy”(y, V) reads the closure
stored at y and applies it to V. R attached to an access
operation represents as a value of what use the heap value
is accessed by this operation. If K. is 6, the heap is just read
and unchanged; if it is 1, the heap value is deallocated after
being read (if the use of the heap value is also 1’). If n is w,
then the operation assumes that the accessed heap value is
an w-value and does not deallocate the value. (so, w is the
same as 6 in effect and is unnecessary; it is included just for
technical convenience). If K. is greater than the actual use
recorded at the accessed address, the access is invalid and
causes an error.

A conditional expression ifD V then Ml else Ma is re-
duced to Ml if V = 0 and otherwise reduced to M2.

Example 2.3: let z = (1,2)l in let y = fst’(z) in
let z = snd’(z) in z allocates a linear pair (1,2) in the
heap, and then reads its first element; at this moment, z
is not deallocated since fst is annotated with 6. After that,
the second element, is read and the pair is deallocated.

2.3 Operational semantics

In order to clarify how use annotation is used for allocat-
ing/deallocating heap values at run-time, we define an op-
erational semantics as a rewriting relation on pairs of a heap
and an expression [17,22].

Definition 2.4 [evaluation contexts]: The set, of evalu-
ation contexts is given by the following syntax:

C[] ::= [] 1 let z = C[] in M.

We write C[M] for the expression obtained from C[] by
replacing the hole [] with M.

Definition 2.5 [heap]: A heap value, denoted by h, is a
term of the form (VI, Vz) or Xx.M. A heap is a mapping
from a finite set, of variables to pairs consisting of a use and
a heap value. We write (21 I-+~~ hl, . . . , z,, I-+~” h,} for a
heap H such that H(zi) = (Ki, hi).

The use associated with a heap value is used for judging
whether the value can be deallocated after it is accessed
as a linear value: the value can be deallocated only if the
use is 1. The use 0 means that the value has been already

‘The check of the use of the heap value is necessary, because we
allow an w-value to be accessed as a linear value. If we forbid such
coercion of an w-value into a linear value as in [22], then the check is
unnecessary. However, we prefer not to make such restriction because
the check can be implemented efficiently(see Remark 2.6).

31

A4 (expressions) ::= V 1 let z = (VI,VZ)~ in M 1 let z = fst”(y) in M 1 let z = snd”(y) in M
1 let x = X”y.Ml in M2 I let z = reC(f,y,Ml) in M2 I let z = appZy’((y, V) in M
I let z = Ml in M2 1 ifII V then MI else M2

V (non-heap values) ::= z 1 n

Figure 1: The Syntax of Expressions

deallocated. We often write h” for (VI, Vz)” or A”z.M. We
write X for the set of heaps.

The reduction relation WE (X x E) x ((74 x E) U{Error})
is defined by the rules given in Figure 2. Error indicates
that invalid access to the heap has occurred (there are other
kinds of errors such as application of a non-function to a
value, etc.; however, because the lack of those errors can be
guaranteed by a type system in the usual way, this paper
focuses on errors caused by invalid heap access).

The first two rules (R-HEAP) and (R-REC) are for allo-
cating heap values. The use K. is recorded at a new address
together with the allocated value. The heap is not changed
in (R-SVAL) since V is a one-word value.

The rules (R-APP) and (R-APP-ERROR) for function ap-

plication deserve attention. Since apply”’ (2, V) reads a clo-
sure stored at z as a value with use K’, the currently available
use K of z should be greater than or equal to PC’: otherwise,
the application causes an error. If K. = K’ = 1, the closure
is deallocated after the application and it can no longer be
called; so, the use of z should be changed to 0. It is ex-
pressed by the subtraction n - K’, whose definition is given

in Figure 3. Similarly, access to a pair fst”’ (x) or sndn’ (z)
succeeds only if K, 2 IE’, and the use is decreased by K’ after
the access ((T-FST) - (T-SND-ERROR)).

Remark 2.6: One may think that the above operation on
uses incurs a heavy overhead at run-time. However, because
the type system guarantees that no invalid access occurs, the
check of K > n’ is always guaranteed to succeed and can be
eliminated. Moreover, the use associated with a heap value
can change only from 1 to 0; since this change means that
the heap value is deallocated in the actual implementation,
the use need not be updated actually. This further implies
that the use of a heap value can be recorded not in the heap
space itself but in the pointer to it by using a one-bit tag,
and that the extra run-time cost is only to check this tag
(to know whether the use of the accessed heap value is 1 or
w) when the access operation is annotated with 1. So, we
think the actual run-time overhead is quite small.

Example 2.7: The expression in Example 2.3 is reduced
as follows:

({},let z = (1,2)l in
let y = fst’(z) in let z = snd’(z) in z)

- ({u +bl (1,2)),

9
let y = fst6(u) in let I = snd’(u) in z)

4 ({u I+)’ (1,2)},let y = 1 in let z = snd’(u) in z
‘u ({u I+’ (1,2)),let z = snd’(u) in z)
Q ({u *’ (1,2)}, let z = 2 in z)

- ({u ++O (112)), 2)

The heap value u is considered to be deallocated when
use changes from 1 to 0.

the

Example 2.8: If the expression in Example 2.3 is wrongly
annotated as:

let z = (1,2)l in let y = fst’(z) in let z = snd’(z) in z,

then it is reduced to Error as follows:

({},let z = (1,2)l in
let y = fst’(z) in let z = snd6 (z) in z)

- ({u *l (L2)L
let y = fst’(u) in let z = snd6(u) in z)

“v) ({u I+’ (1,2)},let y = 1 in let z = snd6(u) in z)

Z Lror
u I+’ (1,2)}, let z = snd’(u) in z)

3 Type System

As was shown in Example 2.8, if an expression is wrongly
annotated with uses, a run-time error may occur. In order
to reject such expressions, we introduce a type system. Our
type system is a conservative extension of the usual type
system for the simply typed X-calculus in the sense that
any expressions well-typed in the usual type system are well
typed also in our type system.

There are two major differences between our quasi-linear
type system and the usual linear type systems. As explained
in Section 1, a linear value can be accessed many times as
long as the last access is identified by the quasi-linear type
system. The other difference is the interpretation of a pair
type (see below).

3.1 Types

Definition 3.1 [types]: The set of types, ranged over by
7, is given by the following syntax.

7 ::= int 171 x6 72 I 71-bnl+Q72

n of 71 xK r2 and ~1 of r1-+K11r;2r2 expresses how a pair and
a closure can be accessed. We require n2 of rr-+~L’lnars not
to be 6. It represents how often (0, 1, or w) the closure can
be invoked in the sense of previous linear type systems [9,
221. The closure itself is allocated and deallocated based on
nl. The reason why we keep ~2 will become clear when we
present a typing rule for closure creations.

Note that the meaning of a pair type is different from
that in previous linear type systems [8,22]. In the previous
linear type systems, int x“’ (int x1 int) corresponds to the
linear logic formula !(int @ (int @ int)); so, if a pair (1, (2,3))
has this type, it can be read an arbitrary number of times,
and each time the second element (2,3) is extracted, it can
be read at most once. On the other hand, in our quasi-linear
type system, the second element (2,3) can be accessed only
linearly througghout aEZ the access to the pair (1, (2,3)) (not
each time (2,3) is extracted).

32

(If, C[let x = h” in M]) +P (H{y r-)‘(h}, C[[y/x]M]) (y fresh)
(H, C[let z = rec“(f, y, MI) in M]) w (H{z eK Xy.[z/fMr), C[[z/x]M]) (z fresh)

(K CPet z = VP>:!)>; (H, CVI4W)
_

(H{x +-FK Xy.M}, C[appZy”‘(x, V)]) ‘u (H{x t-k-’ Xy.M}, C[[V/y]M])

(fc < d) v (K’ = 0)

(H{x tie Xy.M}, C[appZy'('(x, V)]) - Error
a>>‘>0

(H{x +-bK 047 vz)}, CwqZ)]) - (H{x +b- (v-l, vi)}, C[vl])
(lc < d) v (K’ = 0)

(H{x I-+~ (VI, Vz)), C[fst”‘(z)]) u Error
K>IE’>O

(H{x I+= (V,,Vz)},C[snd’E’(x)]) “v) (H{z tiKPK’ (Vr, V,)},C[Vz])
(K < K’) v (fc’ = 0)

(H{z +-+“ (VI, Vz)}, C[snd”‘(z)]) u Error
(H, C[ifo 0 then Mi else Mz]) ti (H, C[Mi])

n#O
(H, C[ifo n then Mr else Mz]) -..+ (H, C[M2])

Figure 2: Operational Semantics

(R-HEAP)
(R-REC)

(R-SVAL)

(R-APP)

(R-APP-ERROR)

(R-FST)

(R-FST-ERROR)

(R-SND)

(R-SND-ERROR)

(R-IFT)

(R-IFF)

Example 3.2: (int x6 int)-+‘+‘int is the type of a linear
closure that takes a pair of integers as an argument, uses it
locally, and returns an integer. The function may be invoked
many times (thus its use is w in the strict sense), but it can
be invoked only linearly in the relaxed sense (i.e., invoked
as a closure of use 6 except for the last invocation). For
example, X’z.(f&(z) + snd’(z)) can have this type.

Example 3.3: Consider an expression
let f = XYz.(fst6(x) + z) in let y = fst’(snd’(x)) in M
and suppose x does not appear in M. Because the second
element of the pair x is accessed just once in fst’(snd’(x)),
it can be assigned the type int xw (int x1 int); so, the
pair of integers can be deallocated at fst’. Consider
another expression let f = X’z.(fst’(snd’(z)) + 1) in
apply’(f, x) + apply’(f, x). The second element of x is ac-
cessed once (by fst’) each time it is extracted by snd’(z).
Since it is totally accessed more than once, the type int xw
(int x w int) is assigned to x in our quasi-linear type system.

3.2 Type judgment

A type judgment is of the form r !- M : 7, where I’ (called a
type environment) is a mapping from a finite set of variables
to types. It expresses how each heap value is accessed during
evaluation of M. For example, x : int x6 int I- M : int x1 int
implies (l)M may access the heap address x, (2)the result
is a linear pair of integers, and (3)~ is used up in M and
does not escape through the result.

Notation 3.4: We write VI : ~1,. . . , V, : 7n for the type en-
vironment l? such that dom(I’) = {VI,. . . , Vn} f~ V and
l?(V;) = Ti for each vi E don@), where V denotes the
set of variables. For example, (x : int, 2 : id) denotes the
type environment that maps x to int. If V $Z dom(l?),
we write I, V : T for the type environment I such that (1)
I”=dom(r)u({V}nV)and(2) I”(x) =rifx E ({V}nV)
and r’(x) = r(x) if 2 E dam(r).

3.3 Operations on uses, types, and type environments

In presenting typing rules, we use several operations on uses,
types, and type environments given in Figure 3 and 4. As
explained in Section 1, the operation ~1 + IE~ is used for
computing the total use of a value when it is accessed as ~1
in one place and as tcz in another place. When the order of
the uses is statically known, K~;KZ is used instead. 1~1 is
the least non-6 use that is greater than or equal to K, and
]K] is the greatest non-6 use that is less than or equal to n.
~1 . ~2 is used for computing the total use of a value when
the value is used as a Kz-value ~1 times. Motivations for
these operations will become clearer when typing rules are
given below.

These operations are extended to operations on types
and type environments. For example, if a heap value is
accessed as a value of type int x6 int in one place and as a
value of type int x ’ int in another place, it is totally accessed
as a value of type (int x6 int) + (int x1 id) = int xw int,
which means that the value may be accessed more than once.

The definitions of operations on pair types and func-
tion types deserve special attention; notice that the op-
erations act on sub-components of pair type, but not on
the arguments and return types of functions. In order to
understand the reason for this, suppose x is accessed in
two places, each as a value of type (int x1 int) x1 int (i.e.,
the inner pair of integers and the outer pair are both ac-
cessed linearly). Then, both the inner pair of integers and
the outer pair are totally accessed more than once; it is
expressed by the type (int x1+’ int) x1+’ int obtained by
adding each use attached to the pair types, not by the type
(int x1 int) xl+l int (which means that the inner pair is
totally accessed only linearly). On the other hand, sup-
pose z is accessed in two places as a function of type
(int x1 int)--+‘yl(int x1 int). Then, the function is invoked
twice, and each time it is invoked, it uses an argument pair
linearly and returns a linear pair. So, the total access to the
function is expressed by (int x1 int)+‘+‘~‘+‘(int x1 int),

33

not by (int x ‘+l int)-+‘+ll’+l(int x1+’ id). Similarly, the
operation r.1 also acts on sub-components of pair type
but not on the arguments and return types of function
types. This is because [rl is intended to express the type
of an expression whose evaluation result does not contain
S-values. Although the type (int x6 int)-+‘>‘(int x1 int)
contains 6, it just means that a function of that type
uses an argument pair locally, not that the function must
be used locally. so, [(int x6 int)+l*‘(int x1 int)l =
(id x6 int)+lJ(int x1 iTId).

We often omit . and write ~1~2 for ~1 . ~2 and IEP for
K. I?. We give higher precedence to ., +, and ; in this order.

Example 3.5: Let ri be int x’ (id x6 int) and 72 be int x1

(id x0 id). Then,

h + 72 = int xy (id x’ int)

r1; 3-2 = int x1 (id x6 int)

rr11 = int x1 (int x1 int)
w * 71 = id xw (int xw hat).

(z:71,y:71)+(z:72)

= 2 : (71 + 72), y :7-l
= 2: int xw (int x6 int),y: int x6 (int x6 id).

3.4 Typing rules

3.4.1 Variables, constants, and weakening

The rule for variables and constants is:

v:rl-v:7. (T-VAL)

If an expression is well typed under some type environ-
ment, then it should also be well typed under a type environ-
ment that represents more access capabilities. For example,
if z : int x1 int t- M : int, then 2 : int xw int k M : int,
since the former judgment requires z to be used as a linear
pair, while the latter does not impose such a requirement.
The following rule allows such weakening of an assumption:

r’kM:r r’ 5 r

rkM:r
(T-WEAK)

The relation I” 5 P, which means “P represents more access
capabilities than I” (in other words, I’ allows more liberal
access to the heap),” is defined in Figure 4.

3.4.2 Allocation of heap values

Let us consider an expression let z = (y, z)~ in M. In M, y
and .z can be accessed in two ways: either directly by using
addresses y and z, or through the pair z (by extracting y and
2). If P, z : ~1 x s 72 I- M : 7, then the access in the former
way is represented by the types I’(y) and I’(z), while the
access in the latter way is represented by the types ri and
~2. Therefore, information on the total access is obtained by
adding those types. For example, if I’(y) = int x1 int and
71 = int x ’ int, then the total access to y can be represented

by P(Y) + 71 = int xy int. Thus, the rule for the allocation
of a pair is:

r,z:rlx~T22M:r3 K#d

(T-PAIR)

We require E # 6 because there is no use creating a J-value:
since it can never be deallocated, creating a J-value is the
same as creating an w-value.

Remark 3.6: Actually, annotating allocation of a pair with
6 is meaningful and may be rather useful if the type 7s of
M does not contain 6: we can modify the operational se-
mantics so that let x = (VI, V2)’ in M allocates the pair
(VI, V2) in the stack and deallocates it after M has been
evaluated (recall that a value with use 6 cannot be a part of
the evaluation result).

The rule for the allocation of a closure is:

r2,f : 71+*l+*rT22] k M2 : 5 Kl #S

l~~[l?ll + IT2 I- let f = X”‘x.M1 in MZ : 73
(T-Ass)

[7-21 in the premise Pi, x : 71 i- Ml : [-r21 guarantees that
when the closure Xx.M is called, it does not return a 6-
value as a result. PI, x : 71 I- Ml : [7-21 also means that
during each call of the closure, heap values are accessed as
described by Pi. Because the other premise means that
the closure will be called ~2 times, the total access to heap
values by MI can be represented by ~2 copies of Pi, which
is written as Icsl?i. Since the access happens only later (not
when Xx.Ml is evaluated and the closure is created), r-1 is
applied to it, so that it does not contain &values.

The following rule for recursive functions is similar to
(T-Ass) except for the estimation of the use of the created
function:

t- let f = recrK3(1+K1)1 (f, x, Ml) in M2 : 73
(T-REC)

The total number of calls of the function f is calculated by
using the number ~2 of calls in MI and the number ~4 of
calls in Ms. Since each invocation of f may result in other
~2 invocations of f, the total calls are counted as ~(1 +
~2 + K: + . . .) = ~4(1+ ~2). The use of function f itself (in
the relaxed sense) is similarly calculated by using its uses
~1 and ~3 in Ml and Ms. The ceiling function r-1 applied
to ~r(l + ~3) is just to make sure that the use is not 6.

3.4.3 Let-expressions

The following rule for let-expressions best illustrates how the
evaluation order is taken into account in our type system:

rl I- MI : [Tll r2, z : [T11 k M2 : T (T_LET)
l?l;~21-letx=MIinM2:~

Here, the premise means that heap values are accessed by
Ml as described by I’i and by Ms as described by I’s, x :
[q]. In ordinary linear type systems, the total use of heap
values in let x = Ml in M2 was computed by adding Pi and
I’s. However, since Ms is evaluated only after MI has been
fully evaluated, we estimate the total access of heap values
by sequential composition Ii; 12. We require the type of MI

34

not to contain 6 at top-level (by applying 1-1 to ri), in order
to make sure that every &value represented by Ii is really
“used up” during the evaluation of Ml and does not escape
to the rest of computation.

3.4.4 Access to heap values

The following is the rule for closure invocation:

r, z : ~1 I- M : 7-2 K>O

(f : T~-+~*~TI + V : 5); I? I- let x = appZy”(f, V) in M : ~2
(T-APP)

The access to heap values by apply” (f, V) is estimated as
f : 7y-b+ n+ V : 7-3. Note that the first use K. of the type of
f should not be zero, and that the second use is 1, since the
function is used once here. The access of heap values except
for z by M is estimated as r. Since apply” (f, V) is evaluated
before M is evaluated, the total access can be estimated as
their sequential composition (f : T~+~*‘TI + V : 7-s); r.

The rule for reading the first element of a pair is:

rly : 7:,x : Tl d 72 k M : 73 tc>o

r, 2 : CT1 + Q X-K’ 72 f- let y = f&*(x) in M : 73
(T-FST)

The premise implies that the pair is used as a &‘-value in M
after being used as a n-value in fst”(x). So, the total use of
x is estimated as K; K’. The first element may be accessed
through either y or CC, hence the total use of the first element
is estimated as ~1 + 71.

Similarly, the rule for extraction of the second element
of the pair is:

r,y:~~,x:~~x~‘72~M:73 Ic>o
I?, x : 71 xILia’ (72 + T;) t- let y = snd”(x) in M : 73

(T-SND)

3.4.5 Rules for conditionals

In the following rule for conditional expressions, we require
that the then-part and the else-part has the same typing.

rt-Ml:Tl r 1 M2 : 71

V:int+I’kifDVthenMielseMa:ri
(T-IF)

4 Type Soundness

This section sketches a proof of the type soundness property
that no invalid heap access occurs during evaluation of well-
typed expressions. The full proof is given in the technical
report [12].

The type soundness is formally stated as follows:

Theorem 4.1: If 0 l- M : 7, then (0, M) +* Error.

We want to show this property as usual [8,22], by defin-
ing a typing system for a run-time state (H, M) and prov-
ing that the reduction relation preserves typing and that no
well-typed state (H, M) causes an error immediately. Un-
fortunately, however, the reduction relation -Q defined in
Section 2.3 is not suitable for this purpose: a key feature of

our type system is to capture information on the order of
heap access (recall (T-LET), for example), whereas the flat
representation of a heap loses that information. Therefore,
we define an alternative operational semantics that repre-
sents a heap by using nested letrec-expressions, and show the
soundness of the type system with respect to that seman-
tics. Although it includes rather strange reduction rules, it
is easy to see that the alternative semantics is essentially
equivalent to the original semantics.

Before presenting the alternative semantics, we explain
why the reduction relation ?r) fails to preserve typing. Let
us consider the following configuration:

({w e1 (1,2),x ++l (w,3)},let v = MI in M2).

where Ml = let y = fst’(x) in let z = f&(y) in z. Then,
z : (id x6 int) x’ int k MI : int. So, if x : (id x1 int) x1
int k M2 : id, then by (T-LET),

x : (id x1 id) x1 int k let v = MI in M2 : int,

since ((id x6 int) x’ int);((int X1 int) X1 int) =
(id xl int) x1 int. So it is fine that w is a linear
pair. However, if we reduce the configuration by (R-FsT),
the resulting configuration:

({w e1 (1,2), 3: e1 (w, 3)],
let u = (let z = f&(w) in z) in M2)

requires w to be an w-pair: w is accessed as a linear pair in M
(through x) and as a S-pair in fst!(w), and the type system
cannot capture the order between the two uses (because the
access is made through different variables z and w).

One way to avoid the above problem would be to extend
the type system so that the order of access to different vari-
ables can be expressed, as in [ll]. Since the resulting typing
rules would become rather complex, we instead redefme the
operational semantics. The idea is, before losing informa-
tion on the order of heap access, to split the heap space in
advance by taking the order into account. For example, the
above configuration is first converted to something like:

let v = ({w H’ (1,2),x ++’ (w, 3)), MI)
in ({w ++’ (1,2),x e1 (w, 3)}, M2).

Since the heap space has been split for the definition part
and for the body part of the let-expression, we can safely
throw away information that the definition part is evaluated
before the body part. So, it can be reduced to:

let v = ({w +k’ (1,2),x I-+’ (w,3)},let z = fst’(w) in z)
in ({w +-+l (1,2),z ++’ (w,3)}, Mz).

In order to express the above kind of nested heaps and
expressions, we introduce a new class of expressions called
dynamic expressions and define a reduction relation for dy-
namic expressions. Note that this new operational seman-
tics is introduced just for proving Theorem 4.1. The actual
implementation can be based on the semantics defined in
Section 2.3 and no cost for splitting heap needs to be paid.

4.1 Dynamic expressions

The syntax of expressions given in Section 2 is extended to
that of dynamic expressions as follows:

35

Definition of IEI - KZ Definition of ~1 + ~2
I Idl\K.2 II 0 I 6 1 W
L -, ,, ,

I 0 II 0 I un , def undef undef
6 b 6 undef undef
1 1 1 0 undef

w w W W W

Definition of ~1 * ~2
IE1 Tc2 0 6 1 w

Definition of 0 0 0 0 0 [/cl

6 0 6 6
R

W
/016111w]

1r111,,,.,., I 1II0l~1 llw 1 I/cl 11 u 1111 1 w I

W llolwlwlw

Figure 3: Operations on uses

Definition of ~1; ~2
IErIE 0 6 1 w

Definition of 1~1
/c ~~0~6~1~w]

n JllOlOlllwl

Binary operations (op = +, ;)

intopint

(71 x6 T2)OP(4 xK’ T;)

(n-t =l+272)op(T~-+ 44,)

(r10pr2)(x)

Umry operations (op = r-1, fc . _)

= int

=
~~~~~dx *ziLerwise 

’ (7-20p~i) if rropri and r20pri are well defined. 

= Tl-+ 
NloPfi: ,fi20P4 h 

if x E dOm(rI) n d0m(r2) 
= lf x E dom(rl)\do~(r2) 

if x E d0m(r2)\d077i(rl) 

op(int) = int 

op(7-1 xX T2) = op(71) X”P(R) op(72) 
op(71+=1'~2T2) = T1+~P(41M2)~2 

(op(r))(x) = Opmx)) 

Figure 4: Definitions of a relation and operations on types and type environments 

let x = h” in A4 -% letrec z = h” in [z/x]M (z fresh) (DR.-HEAP) 

let u = fst”(x) in M 
==C~zlz,” 

wI4~ (DR-FST) 

D q’ D, 
K>K’>O 

letrec x = h” in D & letrec x = h”-“’ in D’ 
(DR-READ) 

D .$ D, 
(/c’ > K) v (d = 0) 

letrec x = h” in D -% Error 
(DR-ERROR) 

letrec x = hRlzs2 in let y = D1 in D2 & let y = letrec x = hnl in D1 in letrec z = hsa in D2 @R-SPLIT) 
_ 

let x = (letrec Z = Z+ in letrec 23 = hfiS3 in V) in (letrec r’= Z” in M) 

A letrec z’ = ilLGJilr’a in letrec 2u = I?‘@ in [V/z]M 
(DR-VAR) 

Figure 5: Main reduction rules for dynamic expressions 

36 



Definition 4.2 [dynamic expressions]: The set D of dy- 
namic expressions, ranged over by D, is given by the follow- 
ing syntax: 

D ::= M 1 let z = D1 in Dz 1 letrec x = h” in D 

Here, we introduced a letrec-expression letrec x = h” in D 
to express a heap binding, and extended the syntax of let- 
expressions so that heap bindings and let-bindings can be 
nested. By using the new syntax, the nested heap and ex- 
pression 

let u = ({z ti’ (w,3)}, Ml) in ({x til (w,3)}, Mz) 

can be expressed by the following dynamic expression: 

let v = (letrec x = (w, 3)’ in Ml) 
in letrec x = (u, 3)l in MZ 

The typing rules for expressions can be easily extended 
for dynamic expressions. The new rules are as follows: 

I’,x:~~x~~~i-D:r~ 2 e w, v,l 
I? + VI : 71 + V2 : 72 k letrec 2 = (VI, Vs)” in D : 73 

(DT-PAIR) 

~~(1 + ICZ.)[~~~ + r2 t- letrec f = X”x.Ml in D : 73 
(DT-ABS) 

4.2 Operational semantics of dynamic expressions 

We define an operational semantics by using a reduction 

relation D & E. D is a dynamic expression and E is 
either a dynamic expression or a special constant Error 
representing invalid heap access. The label I shows which 
heap value is accessed in the reduction step. It is either e, 
which indicates that an internal heap value is accessed, or 
x = h”, which indicates that the heap address x is accessed 
as a value with use n, or x, which indicates that the heap of 
address x is split as explained above. 

We show only the key rules in Figure 5. The rule 
(DR-HEAP) corresponds to the rule (R-HEAP) of the orig- 
inal semantics. The rules (DR-FsT), (DR-READ) and 
(DR-ERROR) correspond to the rules (R-FST) and (F-FST- 
ERROR). The rule (DR-SPLIT) is the most important rule: 
it allows the current heap to be split into that for the 
definition part of a let-expression and that for the body 
part. The rule (DR-VAR) corresponds to the rule (R- 
VAR), but it allows split heap bindings to be merged after 
the definition part of a let-expression has been fully eval- 

uated. In the rule, letrec z’= 2 in D is a shorthand for 
letrec zi = h;’ in . . . letrec z,, = hz” in D. 

Example 4.3: The expression in Example 2.3 is reduced 
as follows: 

let 2 = (1,2)l in 
let y = fst6(x) in let z = snd’(x) in z 

A letrec x = (1,2)l in 
let y = fst’(x) in let z = snd’(x) in z 

-% let y = (letrec 2 = (1,2)’ in fst6(x)) in 
(letrec x = (1,2)' in let z = snd’(x) in z) 

A let y = (letrec x = (1,2)6 in 1) in 
(letrec x = (1,2)l in let z = snd’(x) in z) 

& letrec x = (1, 2)6” in let z = snd’(x) in z 

& let z = (letrec x = (1,2)l in snd’(x)) in 
(letrec 2 = (1,2)’ in z) 

-% let z = (letrec 2 = (1,2)’ in 2) in 
(letrec x = (1,2)' in z) 

A letrec x = (1,2)’ in 2 

4.3 Proof sketch of Theorem 4.1 

Theorem 4.1 follows immediately from the soundness of the 
type system with respect to the new operational semantics 
and the fact that if an expression is reduced to Error in 
the original semantics then it is also the case in the new 
semantics. 

The type soundness with respect to the new operational 
semantics is stated as the two lemmas given below. The 
subject reduction property (Lemma 4.5) is a little more 
complicated than the usual one because even a well-typed 
dynamic expression may be reduced to an ill-typed expres- 
sion if a heap value is split in an inappropriate way. The 
second statement of the lemma says that, if heap splitting 
(the rule (DR-SPLIT)) can be applied to a well-typed ex- 
pression, there is always a good splitting that preserves the 
well-typeness of the expression. 

Lemma 4.4 [Lack of Immediate Error]: If l? F D : 7, 

then D f, Error. 

Lemma 4.5 [Subject Reduction]: 

a IfI’l-D:randDiD’,thenI’I-D’:r;and 

l If I’ I- D : r and D o\ D’, then there exists D” such 

that D % D” and I’ k D” : r. 

We write -% for the relation % a._ a&. We also 
write D t if D is reduced to Error no matter how the heap 

bindings in D are split, i.e., if D & Error and there is no 

D’ E 2) such that D 4 D’. The correspondence between 
the new semantics and the original semantics can be stated 
as follows: 

Lemma 4.6: There is a relation 7Z(s (‘H x E) x D) that 
satisfies the following conditions: 

l (0, M)‘RM; 

l if (H, M) -A (IS’, M’) and (H, M)RD, then either 

D 4 D’ and (H’, M’)RD’ for some D’ or D t; and 

l if (H, M) -A Error and (H, M)RD, then D t. 

5 Type Reconstruction 

Use annotations can be automatically inferred from unanno- 
tated expressions. Since it is done basically in the same way 
as that for previous linear type systems [9,22], we explain 
it only informally. The basic idea is to introduce variables 
ranging over uses and types, and constraints on them, so 

31 



that we can express the most general typing (principal typ- 
ing) of an expression. A new type judgment is of the form 
I’, C t- A4 : r, where a set of constraints C specifies which 
set of uses/types each use/type variable (in P, M, or 7) can 
range over. For instance, let z = (y, y) in z is typed as: 
y:a,{a>~+~,i#6,i>j}I-letx=(y,y)‘inz:/3xj~. 
This typing is principal% the sense that all the typings 
derivable from the rules in Section 3 can be obtained by in- 
stantiating variables (Y, p, 7, i and j so that the constraint is 
satisfied. (We do not give the formal definition of principal 
typings here; it is basically the same as that in [22].) 

Given an unannotated expression M, the inference of a 
use annotation proceeds as follows (actually, the second and 
third steps may overlap): 

1. Attach a fresh use variable to each place where use 
annotation is required (let the annotated expression be 
M’). 

2. Compute a principal typing P, C t- M’ : r. 

3. Solve the constraint C and apply the obtained substi- 
tution to M’. 

In the following subsections, we explain the second and third 
steps in a little more detail, and then discuss the cost of the 
analysis. 

5.1 Computing a principal typing 

An algorithm for computing a principal typing is obtained 
by constructing syntax-directed typing rules for the new 
type judgment form and by reading them from bottom to 
up. For example, we can merge the rules (T-PAIR) and 
(T-WEAK) and obtain the following rule for the new type 
judgment form: 

r,x: rl xK n,C k M: 7-3 
c + r’ 1 (r + K : r1 + v, : rz) 

C!=K#J 
P’,C E let x = (Vl,V2jR in M : 5 

(TR-PAIR) 

Here, C + Pi 1 Pz means that, for any substitution 0 on 
type/use variables, if K’ is satisfied then BI’i 1 8’1‘s is also 
satisfied. The above rule says that in order to compute a 
typing for let x = (VI,VZ)~ in M, we should first compute 
a typing for M and then add new constraints entailing I” > 
P + Vl : 71 + Vz : Q and IE # 6. 

One major difference from the previous linear type in- 
ference [8,22] is that constraints on type variables appear 
in C (recall the typing for let z = (y, y) in x given above). 
They are of the form r1 2 7s or 71 - 7s (meaning 71 and 72 
are compatible in the sense that 7-1 + 72 and 71; 72 are well 
defined). Here, the righthand type expression 72 of rl > 7-z 
may contain +, r-1, etc. as constructors of type expressions 
(rather than as functions on types). 

5.2 Solving constraints on types and uses 

An algorithm for solving constraints can be divided into two 
steps. First, a set of constraints on type/use variables can 
be simplified into a pair of a set of constraints on use vari- 
ables of the form i 2 K’ and a set of “trivial” constraints 
on type variables of the form a - /3 or cr 2 r where r is a 

‘Note that a constraint i # 6 can be expressed as i 2 [il. 

type expression (such as p + 7) constructed only from type 
variables. This simplification is performed by partial uni- 
fication of types, with some uses being kept different. For 
example, given a constraint (Y 2 (p Xj real’) + y, we can 

instantiate a and y with ,B’ xj’ real” and p” xj” real”’ for 
fresh variables ,B’, /3”, i’, i”, j’, j” and reduce the constraint 
to{p’~~+~“,i’~i+i”,j’~j+j”}. 

Next, since the set of trivial constraints on type variables 
always has a solution (let all the remaining type variables 
be instantiated with, say, id), we can obtain the least as- 
signment to use variables by solving the set of constraints 
on use variables. We can use the simple iterative method 
used in previous linear type systems [8,9]. Of course, the 
least assignment to some use variables cannot be completely 
determined until the whole program is given. For example, 
given an expression of type real’, we cannot fmd the least 
assignment to the use variable i until we know all the places 
where the evaluation result of the expression is used. For 
these unknown variables, we can either simply assign w or 
delay constraint solving. 

One important difference from the previous linear 
type inference is that the least solution is not neces- 
sarily the best solution from the viewpoint of mem- 
ory management. For example, consider an expres- 
sion let y = (1,2) in (let x = fst(y) in x). The least 
annotation is let y = (1,2)’ in (let x = fsts(y) in x). 
In this expression, y cannot be deallocated since the 
only access to the pair y (fst(y)) is annotated with 
6. Therefore, it is better to annotate the expression as 
let y = (I,2)l in (let z = fd(y) in x). We can think of 
two ways for dealing with this. One way is to classify 
uses into those for annotating heap allocation and those 
for annotating heap access. After the least solution is ob- 
tained, we can maximize heap access annotations as long 
as no heap allocation amrotations increase. The other way 
is to extend a target language with an explicit dealloca- 
tion operation free(P): It deallocates heap values as if 
the heap were accessed as described by I’. For example, 

fiee(z : reall,y : rea!6) deallocates x but not y. The rule 
(T-WEAK) can be changed as follows (l? - I” is the least 
type environment I” such that I”; I”’ = I’): 

r't-M:r r' 5 r 

r I- M;free(r - r’) : 7 
(T-WEAK’) 

This change avoids forgetting to deallocate linear values. 
We can optimize the result by moving the operation free 
leftward and merging it with heap access annotation as far 
as possible. Although there is no guarantee that these meth- 
ods give the best use annotation, we expect that both give 
enough good an annotation in practice. 

5.3 Cost of the analysis 

Unfortunately, the computational cost for type reconstruc- 
tion can be exponential in the size of an input in the worst 
case. The reason is that the number of use variables can be 
linear in the size of the type of a variable appearing in an 
input expression and that the size of a type can be expo- 
nential in the size of an input expression. For example, if a 
variable x is required to have type (int x int) x (id x int) 

by the context, its typing is: 

2 : (int x jl id) xi3 (id x i* id), {il 2 i;, i2 > i;, is > ii) 

k 2 : (int xi; int) xi; (int xi: id). 

38 



So, the number of use variables is linear in the size 3 of the 
type (int x int) x (int x int). Next, consider an expression 

let 20 = 1 in let 21 = (20,ze) in let 22 = (zi,zi) in 
. ..let 2, = (2,_1,z,_i) in zn. 

The size of the type of the expression is exponential in n. 
In spite of the above fact, we expect that the reconstruc- 

tion can be performed efficiently for realistic programs for 
the following reasons. First, the above problem occurs only 
when tuple or record types are extraordinarily nested; a huge 
flat tuple type expression int x int x ... x int or an arrow 
type expression ri+ 72 do not cause such problems. Second, 
if the computational cost is really problematic for some pro- 
gram, we can save the cost by sacrificing the accuracy of 
the analysis. For example, we can restrict the + operator 

so that (71 xK 72) + (ri x”’ ~4) is defined only if ri = ri and 
r2 = r;. This forces many type expressions to be shared and 
saves the time and space of the analysis (in fact, the pre- 
vious analysis in [8,9], which imposes a similar restriction, 
is performed in polynomial time for the monomorphic type 
system). 

6 Extensions 

We have so far considered a simply-typed X-calculus with 
recursion and pairs. It can be extended by introducing poly- 
morphism on uses and types, and by adding other kinds of 
data such as recursive data structures and reference cells. 
For lack of space, we only briefly discuss how to introduce 
polymorphism, constants such as real numbers, and recur- 
sive data structures. 

6.1 Polymorphism 

Because the type system presented in Section 3 is monomor- 
phic in both uses and types, the analysis of (quasi-)linear 
values is often rough. Consider the following expression: 

let f = Az.(z,z) in let z = upply(f,2) in 
let w = apply (f, 3) in M. 

If either z or w is used as an w-value in M, the other is 
also forced to be an w-value, because the code for the pair 
creation (i.e., the body of the function f) is shared. 

In order to avoid the above problem, we can intro- 
duce polymorphism on uses. Then, f can be given a type 
Vi # G.(int+“+‘(int xi id)) and the above expression can 
be annotated, for example, as 

let f = Ai.Xz.(z, z)~ in let L = appZy(f[l], 2) in 
let w = appZy(f[w],3) in M. 

Here, uses are explicitly passed as parameters to polymor- 
phic functions. 

In general, we need to introduce a constrained type 
scheme of the form Voi,. . . ,a,, il,. . . ,ik :: C.-r, where C 
is a set of constraints on type and use variables such as 
(~1 2 (~2 + (~3 and ii 1 iz + 1. A new rule for polymorphic 
let-expressions roughly looks like: 

rl, 4 A C2 k Ml : 1~11 

l-2,2 : trd,;:: c2.[Tll,& t- Mz : 72 
Ci, a do not affect the values of variables in Pi, M 

rl;rz,C1AC3~letz=M~inM2:r2 
(T-LETPOLY) 

6.2 Large constants 

So far, we have considered only integers as constants. In 
order to deal with large constants (i.e., constants that cannot 
be represented in one word and must be allocated in a heap), 
we need to annotate each allocation of a large constant. For 
example, allocation of a linear real number 2.0 is annotated 
as let 2 = 2.0’ in . . . . The type of a large constant is also 
annotated with a use. For instance, the type of linear real 
numbers is represented by real’. The typing rule for real 
numbers is given as follows: 

P, z : real” k M : T 

l? k let x = rK in M : r 

6.3 Primitive functions 

Primitive functions can be treated as constants of polymor- 
phic types, and each occurrence of a primitive function can 
be annotated with uses. For example, the primitive + on 
real numbers can be assigned a type 

The expression let z = 
? 

+ z in . . . can be annotated like: 
let z=+[l,l,l,l](y,z) in .... 

6.4 Recursive data structures 

Recursive data structures such as lists and trees can be 
treated in the same way as pairs, by annotating their type 
constructors with uses. The type of a list of values of type 
r is expressed as r list”, where K expresses the use of each 
cons cell of the list. For example, real’ list” is the type 
of a list whose cons cells may be accessed many times in 
an arbitrary manner, but whose elements are real numbers 
that can be accessed only linearly. Primitives for lists can 
be given the following types: 

:: : VCY, i.((a xi a liSti)+u*wa list’) 
nil : Va, i.o list’ 
hd : Vo,i :: {i > S}.(a list’+“+a) 
. . . 

In general, we can generate the types of constructors and de- 
structors from datatype declarations of Standard ML [15]. 

7 Preliminary Experiments 

We have implemented a prototype type reconstruction sys- 
tem for the core-ML (i.e., SML [15] without modules) based 
on our quasi-linear type system and a simple profiler that 
executes the output program and counts the number of al- 
located heap values. We first describe the current status 
of the system in Section 7.1 and then report the results of 
simple experiments in Section 7.2. The prototype system 
willbe availablefrom http://wuv.yl.is.s.u-tokyo. ac. jp 
/'koba/research/qlinear/. 

7.1 A prototype type reconstruction system 

Following the extensions discussed in Section 6, we have im- 
plemented a prototype analyzer. It takes an expression of 
the core-ML as an input, performs type (and use) recon- 
struction and produces a use-annotated expression. It has 

39 



been implemented by using the ML kit version 1 [4] as a 
front end, and supports full features of the core-ML: records, 
datatype declarations, references, and exceptions. Polymor- 
phism on types and uses is based on the let-polymorphism 
discussed in Section 6. 

Polymorphic recursion on uses would be sound (just as 
polymorphic recursion on regions is sound in the region in- 
ference [20]), but it is not supported currently. That is be- 
cause the algorithm would become complex and also because 
the polymorphic recursion does not seem so crucial for our 
analysis. 

The current system has the following limitations. It 
produces the least use annotation, not the best one (see 
Section 5); The analysis of the use of a reference cell is 
rough; Unnecessary uses are passed as parameters to use- 
polymorphic functions (they can be removed in the same 
manner as unnecessary region parameters are removed in a 
post-path of the region inference [5]); The current system 
is very slow for several known reasons (it is just because 
we preferred rapid prototyping and the system will be opti- 
mized in the future); A compiler that utilizes the analyzed 
information for in-place update, etc. has not been imple- 
mented yet. 

7.2 Results of preliminary experiments 

Table 1 shows the result of experiments. The columns ‘zero,’ 
‘linear,’ and ‘omega’ respectively show how many heap val- 
ues of use 0, 1, and w are allocated dynamically in each 
program. The rightmost column shows what percentage of 
heap values are zero or linear. For a use-polymorphic func- 
tion like f : Vi.(realZ+‘“+ real’), the allocation was counted 
only once; in other words, creations of instances like f[l] and 
f[w] are not counted as the heap allocation (this is because 
the current analyzer infers not the use of each instance of 
a use-polymorphic function but the total use of all the in- 
stances). 

“sumlist10000” is a program that makes a list of integers 
from 0 to 10,000 and computes the sum of them. “qsort20” 
and “msort20” sort a list of 20 real numbers by using the 
quick sort and merge sort algorithms. They were written in 
a naive way; the main part of the quick sort program is: 

fun quick (Cl> = [I 
I quick (x::l) = 

let val (11,12)=divide(x,l) 
in append(quick(ll), x::quick(l2)) end 

“sieve2000” finds prime numbers less than 2,000 by using 
the sieve of Eratosthenes. “life” computes the Iirst 10 gen- 
erations of lives generated from the initial 44 lives. “dangle” 
and “reynolds3” are programs taken from [5] (with some pa- 
rameters being changed). “reynolds3u” is a slightly modified 
version of “reynolds3, ” in which one function is uncurried so 
that our analysis works better. 

In the cases of sumlist, merge/quick sorts and the sieve of 
Eratosthenes, almost all of the heap values are linear: non- 
linear values were only top-level functions. Moreover, by 
looking at the produced use-annotated expression, we can 
find that the cons cells generated in merge/quick sorts and 
the sieve of Eratosthenes can all be updated in-place. 

In the case of the life (some curried functions in the orig- 
inal program were uncurried: see discussions in Section 9), 
dangle, and reynolds3, not all heap values are linear, but the 
number of linear values is still huge enough to greatly reduce 
the need for garbage collection. In the Knuth-Bendix and 

boyer programs, the percentage of linear values is relatively 
smaller. This is probably because unification of first-order 
terms performed in the program causes sharing of many 
heap values. 

One should, however, note that the percentages shown 
in the rightmost column do not necessarily indicate how 
much memory space can be saved by our analysis: com- 
pared with memory management using conventional garbage 
collection, extra memory space is required for representing 
use-polymorphic functions and its instances, and it is not yet 
clear how soon linear values can indeed be deallocated. Also, 
the current analysis is performed on unoptimized programs; 
other optimizations such as inlining and hoisting may reduce 
the ratio of linear values. Therefore, we know for sure the 
real impact of our analysis only after more serious experi- 
ments are carried out (for that purpose, some of the future 
work described in Section 9 must be completed). 

8 Related Work 

Previous linear type systems To our knowledge, among 
previous linear type systems [3,9,22] that can automati- 
cally infer the usage of values, only Barendsen and Smet- 
sers’s uniqueness typing [3] takes an evaluation order into 
account. The effect of taking an evaluation order into ac- 
count sometimes depends on a programming style, but it is 
evident at least for the following functions: 

fun 
I 

fun 
I 

fun 

map f Cl = Cl 
map f (x::l) = f x::map f 1 
diff ( Cl , S2) = Cl 
diff (x::Sl, S2) = 

if member(x, S2) then diff(S1, 52) 
else x::diff(Sl,SZ) 

move (p, dx) = updatecp, X, p.X+dx) 

The function f in map and the list S2 in diff (which is a 
function computing the set difference) are used many times, 
but are judged to be linear in the quasi-linear type system. 
The function move takes a record representing a point object 
as the first argument and adds dx to its X field. The point 
p is accessed twice, but it is also judged to be linear. 

The uniqueness typing [3] is different from ours in many 
ways: the evaluation order is call-by-need,3 their type sys- 
tem does not have “b-type” of values that must be used up 
locally, and instead it relies on a separate analysis for an- 
alyzing the order of memory access (so, the analysis is not 
integrated as a use-type system, and it is rather complex). 

Guzman and Hudak [7] and Odersky [18] also proposed a 
kind of an extension of a linear type system, which can take 
an evaluation order into account and check that destructive 
operations on arrays or lists are safely used. Unlike ours, 
their approach is to let programmers explicitly declare where 
destructive operations should be performed (by using special 
primitives for destructive update of data structures) and 
check whether they are safe by performing type inference. 

Region inference There is an alternative approach to static 
memory management: region inference [5,20]. The region 
inference abstracts a bunch of memory addresses as a region, 
and estimates its life-time by performing a kind of type in- 
ference. Our type system and the region inference have both 

3Recently, they dealt also with strict let expressions, but the anal- 
ysis for them seems to be more naive than our analysis [19]. 

40 



I zero I linear I omena I (zero+linear)/total I 
I v I\ I, I 

1 [ 2 1 100.0% 
$ I 4 I 99.1% 

sumlist 0 40,001 
qsort20 0 448 
msort20 0 496 4 99.2% 
sieve2000 0 256,455 8 100.0% 
life 0 2.353.116 26.600 98.9% 
Knuth-Bendix 0 10;339;410 2,949;292 77.8% 
boyer 0 1,163,786 342,642 77.3% 
mandelbrot 0 5,672,170 920,944 86.0% 
danale 20.000 20.032 34 99.9% 
reynolds3 0 1 211515 ] 2,059 ] 91.3% 
reynolds3u 0 I 21,514 1 13 ] 99.9% 

Table 1: The number of allocated heap values 

advantages and disadvantages. Because the life-time of data 
is estimated region-wise, it is difficult to use the region in- 
ference for in-place update. Another shortcoming of the re- 
gion inference is that too many data are often merged into 
the same region (especially when recursive data structures, 
higher-order functions, and reference cells are used), and as 
a result, the analysis of the life-time of data sometimes be- 
comes rough. For example, consider how to represent the 
type of a list. Because a list may contain an arbitrary num- 
ber of cons cells, it is impossible to use a distinct region for 
each cons cell; so, the type of a list must be something like 
(7 list, T) where T is the region in which all the cons cells are 
stored. This implies that a cons cell of a list can be deallo- 
cated only after all the cons cells of the list become garbage. 
On the other hand, in our analysis, the type of a list is of 
the form r list”; if K. is 1, each cons cell can be deallocated 
separately when it is accessed as a value of use 1. Thus, 
unlike in the region inference, the life-times of cons cells are 
not merged. (We do not intend to say that our analysis is 
always better for lists than the region inference. Indeed, if 
some cons cell of a list is accessed as an w-value, our analysis 
assigns type r list” to the list; hence no cons cells of the list 
can be deallocated automatically. In this case, the region 
inference would be much better.) 

On the other hand, the advantages of the region inference 
are that it is completely independent of how often values 
are accessed, and that the deallocation of data in the same 
region can be performed in a constant time. So, it may be 
interesting to use our type system and the region inference 
as complementary methods for static memory management. 

The goal of our analysis is also similar to that of the 
storage mode analysis [5], which was proposed as a comple- 
mentary to the region inference. It analyzes whether each 
access to a value is the last access to the region of the value, 
and if so, it inserts a code to deallocate all values in the 
region. Thus, unlike our analysis, with the storage mode 
analysis, a value can be deallocated only after all the data 
in the region become garbage. 

9 Conclusion and Future Work 

We proposed an extended linear type system that can el- 
egantly take an evaluation order into account, and proved 
its correctness. Static memory management like the one 
proposed here and the region inference is currently less 
popular than conventional garbage collection. However, 
we think it will become very important in the near fu- 

ture. First, static memory management is especially attrac- 
tive in parallel/distributed environments, since it requires 
much less communications/synchronizations than conven- 
tional garbage collection. Second, with the increasing im- 
portance of cache memory, saving the memory space for a 
program is also likely to save its execution time. 

The type system proposed in this paper is for call-by- 
value languages; it is not yet clear whether a similar type 
system can be developed for lazy functional languages. 

Much work is left to be done to apply our type system 
to a compiler of ML and know its real impact. We need to 
work at least on the following issues (although they seem to 
be fairly straightforward except for the last issue): 

Refinement of the type inference system As discussed in 
Section 5.2, the least use annotation may not be optimal 

from the viewpoint of memory management; so, we need 
to modify the analyzer so that it can produce a better use 
annotation. 

Transformation for in-place updates We need to imple- 
ment a compilation path that finds places where deallocation 
of a heap value is immediately followed by allocation of an- 
other value of the same type and replaces it with m-place 
update. 

Combination with conventional garbage collection Since 
the linear-type-based memory management can automati- 
cally deallocate only quasi-linear values, we need a conven- 
tional garbage collector as well. There is, however, a subtle 
problem: since the linear-type-based memory management 
is not based on the pointer traversal information, it may 
create a dangling pointer (just as the region-based mem- 
ory managements does [20]). For example, when the closure 
(Xz.(fst(y)+z), {y = (1.0,2.0)}) is traced at garbage collec- 
tion time, the second element 2.0 of y may have already been 
deallocated. There are two ways for dealing with this prob- 
lem. One way is to exclude the use 0 from the type system 
so that dangling pointers cannot be created. The other way, 
which we are currently exploring (with Atsushi Igarashi), 
is to use the idea of tag-free garbage collection [16,21]: we 
can utilize use-annotated types for tracing heap values at 
garbage collection time, instead of conventional types. For 
example, from the type real’ xy real’ of y in the above clo- 
sure, it is known that the second element of y will not be 
accessed by the closure and hence it need not be traced by 
a garbage collector. 

41 



The following improvement of the accuracy of the anal- 
ysis is also future work. 

Taking the order of access to different variables into ac- 
count Because the type system cannot deal with the order 
of access to different variables, the analysis can be rough 
when variables are aliased. For example, consider an ex- 
pression let y = z in fst’(z) + fst’(y). Since z and y re- 
fer to the same heap value, we could regard z as a linear 
value; however, the current type system judges z to be an 
w-value. We can overcome this problem by representing a 
type environment as a poset of type bindings in order to 
express the order of access to different variables, as in an 
earlier version [lo] of Kobayashi’s type system for deadlock- 
freedom [ill. 

Combining our analysis with other analyses Our analysis 
of &values is weak in dealing with curried functions. Con- 
sider an expression (Xr.(fst(z) + 1.0))(2.0,3.0) and its cur- 
ried version ((Xz.Xy.(z + 1.0))2.0)3.0. For the former ex- 
pression, 6 can be assigned to 2.0, while 1 must be assigned 
to it for the latter one. This problem may not be so serious 
because the ordinary compiler optimization uncurries func- 
tions as far as possible, but it may be interesting to improve 
the analysis by using more accurate dataflow information 
like the one obtained by the region inference. 

Acknowledgment 

We would like to thank Atsushi Igarashi, Martin Odersky, 
Kenjiro Taura, Mads Tofte, and the anonymous referees for 
useful discussions and comments. 

References 

PI 

PI 

[31 

PI 

FJI 

161 

171 

H. G. Baker. Lively linear lisp - look ma, no garbage! 
ACM Sigplan Notices, 27(8):89-98, 1992. 

H. G. Baker. A linear logic quicksort. ACM Sigplan 
Notices, 29(2):13-18, 1994. 

E. Barendsen and S. Smetsers. Conventional and 
uniqueness typing in graph rewrite systems. Technical 
Report CSI-R9328, Computer Science Institute, Uni- 
versity of Nijmegen, 1993. An extended abstract ap- 
peared in Proc. of FST&TCS 12, Springer LNCS 761, 
pp.41-51. 

L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner. 
The ML Kit (Version 1). Technical Report 93/14, De- 
partment of Computer Science, University of Copen- 
hagen, 1993. 

L. Birkedal, M. Tofte, and M. Vejlstrup. From re- 
gion inference to von neumann machines via region 
representation inference. In Proceedings of ACM SIG- 
PLAN/SIGACT Symposium on Principles of Program- 
ming Languages, pages 171-183, 1996. 

J.-Y. Girard. Linear logic. Theoretical Computer Sci- 
ence, 50:1-102, 1987. 

J. G. GuzmBn and P. Hudak. Single-threaded polymor- 
phic lambda calculus. In Proceedings of IEEE Sym- 
posium on Logic in Computer Science, pages 333-343, 
1990. 

PI 

PI 

PO1 

Pll 

P21 

1131 

[I41 

1151 

[I61 

P71 

[I81 

P91 

PO1 

WI 

P21 

A. Igarashi. Type-based analysis of usage of values 
for concurrent programming languages. Master’s the- 
sis, Department of Information Science, University of 
Tokyo, 1997. 

A. Igarashi and N. Kobayashi. Type-based analysis of 
usage of communication channels for concurrent pro- 
gramming languages. In Proceedings of International 
Static Analysis Symposium (SAS’g7), Springer LNCS 
1302, pages 187-201, 1997. 

N. Kobayashi. A Partially Deadlock-free Typed Process 
Calculus (I) - A Simple System -. Technical Report 
96-02, Department of Information Science, University 
of Tokyo, September 1996. 

N. Kobayashi. A partially deadlock-free typed process 
calculus. ACM nansuctions on Progmmming Lan- 
guages and Systems, 20(2):436-482, 1998. A prelim- 
inary summary appeared in Proceedings of LICS’97, 
pages 128-139. 

N. Kobayashi. Quasi-linear types. Techni- 
cal Report 98-02, Department of Information Sci- 
ence, University of Tokyo, 1998. Available 
through http://ava.yl.is.s.u-tokyo.ac.jp/’koba 
/publications.html. 

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linear- 
ity and the pi-calculus. In Proceedings of ACM SIG- 
PLAN/SIGACT Symposium on Principles of Progmm- 
ming Languages, pages 358-371, January 1996. 

I. Mackie. Lilac : A functional programming language 
based on linear logic. Journal of Functional Program- 
ming, 4(4):1-39, October 1994. 

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The 
Definition of Standard ML (Revised). The MIT Press, 
1997. 

G. Morrisett. Compiling with Types. PhD thesis, School 
of Computer Science, Carnegie Mellon University, 1995. 

G. Morrisett, M. Felleisen, and R. Harper. Abstract 
models of memory management. In Proceeding8 of 
Functional Programming Languages and Computer Ar- 
chitecture, pages 66-76, 1995. 

M. Odersky. Observers for linear types. In Pro- 
ceedings of 4th European Symposium on Programming 
(ESOP’g2), Springer LNCS 582, pages 390-407, 1992. 

R. Plasmeijer and M. van Eekelen. Concurrent Clean 
ver.l.3 language report, 1997. 

M. Tofte and J.-P. Talpin. Implementing the call-by- 
value lambda-calculus using a stack of regions. In Pro- 
ceedings of ACM SIGPLAN/SIGACT Symposium on 
Principles of Programming Languages, pages 188-201, 
1994. 

A. Tolmach. Tag-free garbage collection using explicit 
type parameters. In Proceedings of ACM Conference on 
Lisp and Functional Programming, pages l-11, 1994. 

D. N. Turner, P. Wadler, and C. Mossin. Once upon a 
type. In Proceedings of Functional Programming Lan- 
guages and Computer Architecture, San Diego, Califor- 
nia, pages l-11, 1995. 

42 


