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Abstract 

Principality of typings is the property that for each ty- 
pable term, there is a typing from which all other typ- 
ings are obtained via some set of operations. Type infer- 
ence is the problem of finding a typing for a given term, 
if possible. We define an intersection type system which 
has principal typings and types exactly the strongly nor- 
malizable X-terms. More interestingly, every finite-rank 
restriction of this system (using Leivant’s first notion of 
rank) has principal typings and also has decidable type 
inference. This is in contrast to System F where the fi- 
nite rank restriction for every finite rank at 3 and above 
has neither principal typings nor decidable type infer- 
ence. This is also in contrast to earlier presentations of 
intersection types where the status (decidable or unde- 
cidable) of these properties is unknown for the finite- 
rank restrictions at 3 and above. Furthermore, the no- 
tion of principal typings for our system involves only one 
operation, substitution, rather than several operations 
(not all substitution-based) as in earlier presentations 
of principality for intersection types (without rank re- 
strictions). In our system the earlier notion of expunsion 
is integrated in the form of expansion variables, which 
are subject to substitution as are ordinary variables. A 
unification-based type inference algorithm is presented 
using a new form of unification, P-unification. 

1 Introduction 

1.1 Background and Motivation 

The Desire for Polymorphic Type Inference Program- 
ming language designers now generally recognize the 
benefits (as well as the costs!) of strong static typing. 
Languages such as Haskell [PJHH+93], Java [GJS96], 
and ML [MTHMSO] were all designed with strong typ- 
ing in mind. To avoid imposing an undue burden on 
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the programmer, the compiler is expected to infer as 
much type information as possible. To avoid rejecting 
perfectly safe programs, the type inference algorithm 
should support as much type polymorphism as possi- 
ble. The main options for polymorphism are univer- 
sal types, written VCY.~, and intersection types, written 
B A 7. (Their duals are the existential types, written 
%.r, and union types, written u V r.) 

The most popular type inference algorithm is algo- 
rithm W by Damas and Milner [DM82] for the type sys- 
tem commonly called Hindley/Milner which supports 
polymorphism with a restricted form of universal types. 
In practice this type system is somewhat inflexible, 
sometimes forcing the programmer into contortions to 
convince the compiler that their code is well typed. This 
has motivated a long search for more expressive type 
systems with decidable typability. In this search, there 
have been a great number of negative results, e.g., unde- 
cidability of System F [We194], finite rank restrictions of 
F above 3 [KW94], F< [Pie94], F, [Urz97], F+Q [WelSS], 
and unrestricted intersection types [PotSO]. Along the 
way, there have been a few positive results, some ex- 
tensions of the Damas/Milner approach, but, perhaps 
more interestingly, some with intersection types. 

What are Principal Typings? The various systems of 
intersection types have generally had a principal typ- 
ings property, which differs from the principal types 
property of the Hindley/Milner system, as described by 
Jim [Jim96]: 

Principal Types 
Given: a term M typable in type environ- 

ment A. 
There exists: a type u representing all possible 

types for M in A. 

Principal Typings 
Given: a typable term M. 

There exists: a judgement A I- M : T represent- 
ing all possible typings for M. 

A typing for a program is principal if all other typings 
for the same program can be derived from it by some 
set of operations. As explained by Jim, this kind of 
approach supports the possibility of true separate com- 
pilation as well as other benefits. 
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Principal Typings with Intersection Types The first 
system of intersection types for which principal typings 
was proved (as far as we are aware) was presented by 
Coppo, Dezani, and Venneri [CDCVSO] (a later version 
is [CDCVSl]). Like many systems of intersection types, 
it is similar to ours in that “A” can not appear to the 
right of I‘+” and A-elimination can only occur at X- 
term variables. Like our system, this system is restricted 
so that the binding type of the bound variable of an 
abstraction must be an intersection of exactly the set of 
types at which it is used. However, this system differs 
from ours by allowing different occurrences of the bound 
variable to use the same member of an intersection. It 
also has a rule to assign the special type w (representing 
the intersection of 0 types) to any term. 

There is a general approach for an algorithm for 
finding principal typings that was followed by Coppo, 
Dezani, and Venneri for their type system as well as 
by Ronchi della Rocca and Venneri [RDRV84] and van 
Bake1 [vB93] for other systems of intersection types. In 
this approach, the principal typing algorithm first finds 
a normal form (or approximate normal form) and then 
creates a typing for the normal form. A separate proof 
shows that any typing for the normal form is also a 
typing for the original term. The algorithms of this 
approach are intrinsically impractical, not only due to 
the expense of normalization but, more importantly, be- 
cause there is no possibility of a short cut to normaliza- 
tion. The principality of the principal typing is shown 
using a technique of several different kinds of opera- 
tions: expansion (sometimes called duplication), Rifling 
(sometimes called rise), and substitution. The biggest 
difference with the approach we present in this paper is 
that we use expansion variables to formalize expansion 
in a much simpler way as part of substitution. This 
allows our approach to be based on both substitution 
and unification. This opens the possibility of more ef- 
ficient algorithms by adding additional (unnecessary) 
constraints to the unification problem to shortcut the 
solution, an adaptation we leave to future work. 

Sayag and Mauny [SM97, SM96] continue the ear- 
lier work cited above, and succeed in defining a simpler 
notion of principal typings for a system of intersection 
types. An important difference with our analysis is the 
continued use of an expansion operation, although con- 
siderably simplified from earlier formulations, in part 
because they restrict attention to X-terms in normal 
form. Moreover, their approach is not substitution- 
based and it is not immediately clear how to extend 
it to arbitrary X-terms not in normal form. 

The first unification-based approach to principal 
typing with intersection types is by Ronchi della 
Rocca [RDRBB]. Of course, the general method here 
will diverge for some terms in the full type system, but 
a decidable restriction is presented which bounds the 
height of types. Unfortunately, this approach uses the 
old, complicated approach to expansion and is very dif- 
ficult to understand. It also has trouble with commuta- 
tivity and associativity of “A”. 

Subsequent unification-based approaches to princi- 
pal typing with intersection types have focused on the 
rank-2 restriction of intersection types, using Leivant’s 
notion of rank (Lei83]. Van Bake1 presents a unifica- 
tion algorithm for principal typing for a rank-2 sys- 
tem [vB93]. Later independent work by Jim also at- 

tacks the same problem, but with more emphasis on 
handling practical programming language issues such 
as recursive definitions, separate compilation, and accu- 
rate error messages [Jim96]. Successors to Jim’s method 
include Banerjee’s [Ban97], which integrates flow anal- 
ysis, and Jensen’s [JenSB], which integrates strictness 
analysis. Other approaches to principal typings and 
type inference with intersection types include [CG92] 
and [JMZ92]. 

1.2 Contributions of This Paper 

The main contributions of this paper are the following: 

. 

. 

. 

1.3 

A fully substitution-based notion of principality 
for a system of intersection types (with or with- 
out a rank restriction on types). Expansion vari- 
ables abstractly represent the possibility of multi- 
ple subderivations for the same term, supporting 
a substitution-based approach in place of the old 
notion of expansion. 

This contribution makes the technology of inter- 
section types significantly more accessible to non- 
theorists. The notions of expansion in earlier liter- 
ature are so complicated that few but the authors 
could understand them. 

A unification-based type inference algorithm for in- 
tersection types using a novel form of unification, 
p-unification. The algorithm always returns prin- 
cipal typings when it halts. The algorithm is ter- 
minating when restricted to finite-rank types. 

This algorithm is the first understandable type 
inference algorithm for intersection types beyond 
the rank-2 restriction which does not require that 
terms first be P-reduced to normal form. Although 
it may seem that there is quite a bit of material 
in this report, the vast majority of it exists only 
to prove properties of the algorithm. The actual 
algorithm is largely contained in definitions 2.11, 
2.12, 2.13, 2.15, 3.1, 4.1, 4.2, 4.4, and 5.1, together 
with theorem 5.6. 

Decidability of type inference and principal typings 
for the restrictions to every finite rank. 

Ours is the first system of intersection types 
for which this has been shown. At rank 3, 
our system already types terms not typable in 
the very powerful system F,, e.g., the term 
(xx.z(z(xfu.fu))(r(Avg.gv)))(Xy.yyy), which was 
shown untypable in F, by Urzyczyn [Urz97]. 

Future Work 

Using Intersection Types in Practice This work is car- 
ried out in the context of the Church Project,’ a fo- 
cused effort to explore the implications of intersection 
types for programming language design and implemen- 
tation. The Church Project is actively implementing 
and evaluating intersection-type-based technology in an 
ML compiler. A number of practical concerns need to 
be addressed to finish the task of making the technol- 
ogy presented in this report usable in the overall project 
effort. In particular, the following tasks are important: 
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Adapt the technology to type systems in which “A” 
is associative, commutative, and idempotent. This 
will be vital for reducing the space and time com- 
plexity of our algorithm, because it will enable the 
expression of the rank restrictions without requir- 
ing an essentially linear flow analysis. 

Add support for sum types, e.g., booleans and con- 
ditionals. This is highly likely to require the addi- 
tion of union types. 

Add support for recursive definitions, e.g., a fix- 
point operator or letrec bindings. This will sig- 
nificantly complicate the analysis, because it will 
interfere with the invariant that X-compatible con- 
straint sets (definition 3.7) have constraints neatly 
divided into positive and negative types (defini- 
tion 3.3). Also, polymorphic/polyvariant analysis 
of recursion is notoriously difficult. 

Take advantage of the new notion of substitution 
developed in this report to devise efficient repre- 
sentations of polyvariant program analyses. This 
is particularly promising. 

Theoretical Concerns The work presented here in- 
spires the following possible tasks: 

l Investigate the relationship between p-unification 
and other forms of unification - decidable and 
undecidable. In particular, investigate the rela- 
tionship with second-order unification and semi- 
unification. 

l Further develop the meta-theory of @unification. 
In particular, investigate conditions under which ,B- 
unification (1) satisfies a principality property and 
(2) is decidable. Use this to develop more sophis- 
ticated type inference algorithms. 

l Investigate the complexity of the decidable finite- 
rank restriction of @unification introduced in sec- 
tion 6. Separately, investigate the complexity of 
the set of programs typable in the various finite- 
rank restrictions. 

2 intersection Types with Expansion Variables 

This section defines a system of intersection types for 
the X-calculus with the additional feature of expansion 
variables. The expansion variables do not affect what is 
typable; instead they support reasoning about principal 
typings via a notion of substitution. 

Throughout the paper, the notation 2” is meta- 
notation standing for the notation Xi,. . . , X,. The 
notation r? stands for _? for some n 2 0 which either 
does not matter or is clear from the context. A warning: 
Some authors use the notation X for similar purposes, 
but in this paper the bar mark on a symbol is not used 
to stand for a sequence. 

2.1 The Type System 

Definition 2.1 (X-Terms). Let z and y range over 
X-Var, the set of X-term variables. We use the usual set 

of X-terms 

M,NEh::=z]XCr.M]MN, 

quotiented by o-conversion as usual, and the usual no- 
tion of reduction 

(Xr.M)iv _)p M[x := N]. 

As usual, FV(M) denotes the set of free variables of 
M. cl 

The following definition gives a structure to type 
variable names that will be helpful later when we need 
to rename them distinctly. 

Definition 2.2 (Type Variables). The set of ba- 
sic type variables or basic T-variables is TVarb = 
{ ai 1 i E N }. The set of basic expansion variables or 
basic E-variables is EVarb = { Fi 1 i E JV}. We assume 
TVarb and EVarb are disjoint sets, and use Varb to denote 
the union EVarb U Tvarb. 

We use binary strings in (0, l}*, called o&et labels, 
to name (and later to rename) variables. Ifs, t E (0, l}‘, 
we write s . t for their concatenation. The statement 
s 5 t holds iff t = s . s’ for some s’ E (0, 1)‘. The 
set of type variables or T-variables and and the set of 
expansion variables or E-variables are: 

TVar={afIiEN, sE{O,l}*} 

EVar = { Ff I i E N, s E {O,l}* } 

Let TVar and EVar properly extend TVarb and EVarb by 
taking ai to be a4 and Fi to be F:, where E denotes the 
empty string. Let (a:)” denote & and let (Ff)t denote 
Ff’t. Let CY and ,B be metavariables ranging over TVar 

and let F (in italics) be a metavariable ranging over 
EVar. For example, if a denotes a:, then crt denotes az’t. 
We use v (appropriately decorated) as a metavariable 
ranging over the disjoint union Var = EVar U TVar. 0 

Definition 2.3 (Types). Let “+” and “A” be binary 
type constructors. The set T of types and its subset 
‘I” as well as metavariables over these sets are given as 
follows: 

r E T-’ ::= (Y I (T -+ T) 

?-ET ::= r I (T A 7’) I (F 7) 

Note that ? is only a metavariable over ‘I+‘. The letters 
p and cr will be used later to range over certain other 
subsets of ‘I’. Observe in the tree representation of any 
r E T that no “A” and no E-variable can occur as the 
right child of ‘I+“. We sometimes omit parentheses 
according to the rule that “-+” and “A” associate to 
the right and the application of an expansion variable 
(e.g., F T) has higher precedence than “A” which has 
higher precedence than ‘I+“. For example, F ~1 A ~-2 -+ 
73 = ((F 71) A 72) + 7-3. 0 

Definition 2.4 (Type Environments). A type en- 
vironment is a function A from X-Var to T with finite 
domain of definition. A type environment may be writ- 
ten as a finite list of pairs, as in 

21 :ri, . . . ,Xk :rk 
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for some distinct 21,. , zk E X-Var, some 71,. . , Tk E 
% and some k > 0. If A is a type environment, 
then A[z C) T] is the type environment such that 
(A[a: ti T])(X) = T and (A[a: e 7])(y) = A(y) if y # x 
and A\x = A - {x I+ A(x)}. If A and B are type envi- 
ronments, then A A B is a new type environment given 
by: 

I 
A(z) A B(x) zeFn;:A(z) and B(x) 

(A A B)(z) = ;‘,:I 
if only h(x) defined, 
if only B(z) defined, 

undefined if both A(z) and B(z) 
undefined. 

If F E EVar is an E-variable and A is a type envi- 
ronment, then F A is the type environment such that 

(FA)(z) = F(A(z)). 0 

Definition 2.5 (Skeletons and Derivations). The 
sets of judgements, rule names, and pre-skeletons are 
determined by the following grammar: 

J E Judg ::= A k M : 7 1 A b-e M : T 

R E Rule ::= VAR 1 ABS-K 1 ABS-I 1 APP l 
AIF 

Q E PSkel ::= (R, J, Q) 

Judgements formed with the I-, symbol will be used to 
restrict the A and F rules so these rules are used only 
for subterms which are the arguments of an application. 
Observe that a pre-skeleton S is a rule name, a final 
judgement, and zero or more subskeletons. The order 
of the subskeletons is significant. Note that F is a rule 
name for every F E EVar. 

A skeleton S of System I[ is a pre-skeleton Q such 
that, for every sub-pre-skeleton Q’ = (R, J, Q) occurring 
in Q, it holds that the judgement J is obtained from the 
end judgements of the pre-skeletons Q (whose order is 
significant) by rule R and rule R is one of the rules for 
skeletons of System 1 in figure 1. The rule named “(S) 
APP” is used in skeletons {or the case of APP. The 
order of the pre-skeletons Q determines the order in 
which their end judgements must match the premises of 
the rule R. A skeleton (R, J, &I . Qn) may be written 
instead as: 

Ql . . . Qn 
R 

J 

A derivation I> of System II is a skeleton S such that 
every use of the rule named “(S) APP” also qualifies 
as a use of the more restrictive rule named “(D) APP” 
in figure 1. The “(D) APP” rule differs from the “(S) 
APP” rule in requiring the type of the term in function 
position to be a function type, requiring the domain 
portion of the function type to match the type of the 
term in argument position, and requiring the codomain 
portion of the function type to match the result type. In 
interpreting the rules in figure 1, the pattern A I-? M : T 
can refer to either A + M : 7 or A t-, M : 7. Henceforth, 
all skeletons and derivations belong to System I. 

Observe that the set Deriv of derivations is a proper 
subset of the set Skel of skeletons. Henceforth, we do 
not consider pre-skeletons that are not also skeletons. 

Let the statement A b-1[ M : T hold iff there exists 
a derivation 2) of System 11 whose final judgement is 
A k M : T. When this holds, we say that V is a typing 
for M. A term M is typable in System II iff A bn M : T 
holds for some A and r. 

Observe that the rule ABS-K is not a special case 
of the rule ABS-I. This is because there is no rule or 
other provision for “weakening” (adding redundant type 
assumptions to a type environment) in our system and 
therefore, if there is a proof for the judgement A I- M : T 
where x $ FV(M), then A(x) is not defined. 17 

The following result is merely what anyone would 
expect from a system of intersection types formulated 
without a rule for w. 

Theorem 2.6 (Strong Normalization). A X-term 
M is strongly normalizable (i.e., there is no infinite ,B- 
reduction sequence starting from M) if and only if M is 
typable in System II. 0 

Corollary 2.7 (Undecidability of Typability). It 
is undecidable whether an arbitrarily chosen X-term M 
is typable in System II. 0 

Later in the paper, we will show certain restrictions 
of System II to have decidable typability. 

REMARK 2.8. System 1 does not have the subject re- 
duction property. For example, 

z : CYZ -+ a1 + ~3, w : a1 A ~2 t-1 (Xz.(Xy.zyz)x)w : a3, 

but 

2.:~2~~1-_)~3,w:~Ij\~2~~(~~.~x2)~:~3. 

By theorem 2.6, typability is preserved, so for example: 

I:ffz~al-,LY3,W:(YgACY1~-,(XX.~XX)W:(Yg. 

The reason for the lack of subject reduction is that 
(1) “A” is neither associative, commutative, nor idem- 
potent, (2) the implicit A-elimination done by the VAR 
rule and the way type environments are built together 
fix the component of an intersection type associated 
with a particular variable, and (3) there is no provi- 
sion for weakening (i.e., introducing unneeded type as- 
sumptions). If subject reduction is viewed as a means 
to achieve other goals rather than as a goal by itself, 
then the lack of subject reduction is not a problem, be- 
cause derivations of System II can be easily translated 
into derivations of more permissive systems of intersec- 
tion types (see [vB93] for a survey) for which numerous 
desirable properties have already been verified. The fea- 
tures of System I[ which prevent subject reduction make 
the later analysis of principal typings and type inference 
much easier. 0 

2.2 Substitution 

The notion of substitution defined here will be used later 
in unification for type inference and in establishing a 
principal typing property for System I[. 

Definition 2.9 (Type Contexts). The symbol Cl de- 
notes a “hole”. The set Tn of type contezts and its sub- 
set ?rz as well as metavariables over these sets are given 
as follows: 

(p E Tr;;’ ::= 0 I (Y I (‘p + p) 

‘p E To ::= (p 1 (‘P A cp’) 1 (Fv) 
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inference Rules for both Skeletons and Derivations 

VAR x:?tx:T 
A A1 t?M:q; A2 I-:, M : 72 

AlAAat-‘eM:qArz 

ABS-I 
A[z I+ T] t M : 7 

F 
At? M :T 

At (Xx.M) : (T -+ I) FAt,M:Fr 

ABS-K 
AtM:t 

At (X2.M) : (T’ -+ 7) 
if z # FV(M) Remember that Q,?’ E T-’ and F E EVar. 

Inference Rule for Skeletons Only Inference Rule for Derivations Only 

(S) APP 
A1 t M : 7; A2 t? IV : -T 

A1AA2tMN:7’ 
(23) APP 

A1 t M : T t ?; A2 t? N : T 

AlAAztMN:t 

Figure 1: Inference Rules of System II. 

Note that (p is only a metavariable over ‘ll’z. If 9 has 
n holes, we write #o(q) = n and use Cl(‘), . , IX(“) to 
denote these n holes in their order of occurrence in cp 
from left to right. Care must be applied when insert- 
ing ri,... , ~~ E T in the holes of cp in order to obtain 
a type r = &-I,... , ~~1 which is valid according to 
Definition 2.3. Specifically, if hole lJci) in cp is to the 
immediate right of I‘+“, then ri must be restricted to 
the subset ‘lI’-‘. Cl 

Definition 2.10 (Expansions). The set E of erpan- 
sions is a proper subset of To, defined by the following 
grammar: 

e E E ::= El 1 (e A e’) 1 (Fe) 

In words, an expansion is a type context which mentions 
no T-variable and no “+“. 0 

Definition 2.11 (Paths in Type Contexts). We 
define path as a partial function which determines the 
position of q lci) in ‘p as a string in { L, R, 0, l}*. The def- 
inition goes as follows, using a “value” of .I_ to indicate 
that the function is undefined on that input: 

path(Oci),O) = 1 fti,=,“,, 
{ 

path@(“), c~) = ; 
, 

L.P 

path@(“), cp + Ip) = ( R.9 

I 

0.P 

path(Cl(i), ‘p A cp’) = 1.9 

if p = path(O(i) cp) #J_ 
if q = path(~(“-#D(V)), k) 

and 4 #L 
otherwise. 

if p = path(O(i) ‘p) #I 
if q = path(n(“l#o(‘P)) ’ ’ IPP) 

and q #J-, 

IL otherwise. 

path(O(i), Fp) = path(O(i), cp) 

Let paths(q) = { path(U(if,cp) 1 1 5 i 2 #O(P) }. Be- 
cause an expansion e E E is a type context that does 
not mention “-+“, a path in e is a string in (0, 1)' rather 
than in { L, R, 0, 1)‘. We thus use binary strings in 
(0, 1)’ for a dual purpose: as paths in expansions and 
as offset labels to rename variables (see definition 2.2). 
The coincidence between the two is by design. 0 

Definition 2.12 (Variable Renaming). For every 
t E {O,l}* (we do not need to consider the larger set 
{ L, R, 0, l}), we define a variable renaming ( )” from T 
to T, by induction: 

1. (c# = & for every c$ E TVar. 

2. (7 + qt = (7)” -+ (qt. 

3. (71 A 72y = (T# A (7$. 

4. (F’ T)” = F,“t (7)” for every Ff E EVar. 

In words, (7)” is obtained from r by appending t to 
every offset that is part of a variable name in 7. 0 

Definition 2.13 (Substitution on Types). A sub- 
stitution is a total function S : Var + (E U a-‘) which 
respects “sorts”, i.e., SF E IE for every F E EVar and 
Sa E T+ for every Q: E TVar. Note that S(a) can not 
have an E-variable or “A” in outermost position. We 
write SF instead of S(F) and Scr instead of S(LY), as 
long as no ambiguity is_introduced. We lift a substi- 
tution S to a function S from ‘lf to ‘IT by induction on 
T: 

1. sa = So. 

2. S(r + 7) = (37) -+ (ST). 
- - - 

3. S(7.i A 5) = (Sri) A (S72). 

4. I = e[s((r)‘l), ,i%((~)“~)], 
where SF = e and 5% = path(Cl(i),e) for 1 5 i 5 
#o(e) = n. 

When n_o ambiguity is possible, we write S for s and 
S 7 for S(r). 0 

Definition 2.14 (Support of Substitutions). Let 
S : Var + (E U T-) be a substitution. The non- 
trivial E-domain and non-trivial T-domain of S are 
EDom(S) = {F E EVar 1 SF # FO} and TDom(S) = 
{(Y E TVar 1 Sa # CX}, respectively. The non-trivial do- 
main of S (or the support of S) is Dam(S) = EDom(S)U 

TDom(S). The notation 

([FI := el,. . . ,Fm:=em,al :=?I ,... ,cY~:=T~D 

denotes a substitution S with the indicated mappings 
where EDom(S) = {FI,.. . , Fm} and TDom(S) = 

{al,... ,&I}. 0 
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Definition 2.15 (Operations on Judgements and 
Skeletons). The notion of renaming from defini- 
tion 2.12 is lifted to type environments, judgements, rule 
names, and skeletons in the obvious way. 

The A operator and the operation of applying an 
E-variable are lifted to skeletons as follows: 

1. SAS’=(A,A~AA~~-,M:T~ATZ,S,S’)~~ 

S = (Rl,Al k? M: ~1,s) and 

S’ = (Rz, AZ ET M : r&). 

2. FS=(F,FAk,M:Fr,S)if 

S=(R,Ak?M:r$). 

Using the preceding, the notation for “expansion filling” 
is lifted to skeletons as follows: 

1. (e&e’)[&,... ,S,]=S;/\S’if#o(e)=j, 
,.‘. 7 Sj] = S, and e [&+I,. ,&I = S’. 

2. (F e)[&, . . . , S,] = F (e[&, . . . , S,]). 

3. cl[S] = s. 

The notion of substitution is lifted to type environ- 
ments so that S A is the function such that (S A)(z) = 
S(A(z)). Substitution is lifted to judgements so that 
S(A k? M : T) = S(A) l-7 M : S(r). Substitution is 
lifted to skeletons as follows: 

1. 

2. 

;(l$$S;, . . . S,) = (R, S J, (S&J.. . (S&)) if 

S(F, J,S) = e[S((S)‘l), . , S((S)an)], where 
SF = e and si = path(O(i),e) for 
1 5 i 5 #m(e) = n. 0 

Lemma 2.16 (Substitution Preserves Skeletons 
and Derivations). Let S be any substitution. 

1. If S is a skeleton, then S(S) is a skeleton. 

2. Zf 2) is a derivation, then S 2, is a derivation. 0 

Definition 2.17 (Principal Typings). A derivation 
D is a principal typing for X-term M iff 2, is a typing 
for M and for every other typing 2)’ for M, there is a 
substitution S such that V’ = S(V). The principality 
property for typings is the existence of a principal typing 
for every typable X-term. 0 

Subsequent sections will establish that System II has 
the principality property. We next give two simple 
examples to illustrate how notions introduced so far 
are used, in particular, the key concepts of “skeleton”, 
“derivation” and “substitution” in the presence of ex- 
pansion variables. 

EXAMPLE 2.18 (Principal Typing for 

(X=r)(XY.YY)). Let Ml denote the X-term 

(X=)(Xy.yy). Depicted in figure 2 is a skeleton 
S1 for Ml. The skeleton S1 is a particular one, 
produced from Ml by the Skel algorithm of section 5. 
It is just a decorated version of the parse tree of MI 
and its size is therefore “small”, i.e., proportional to 
the size of Ml: 

y\/y 

Applying an arbitrary substitution to &, we can ob- 
tain another skeleton for Ml. Thus, S1 is a scheme for 
infinitely many skeletons for MI. 

Associated with S1 is a constraint set 

produced from Ml by the l? algorithm of section 5. 
(“Constraint sets” and restrictions on them are defined 
precisely in section 3.) Note that there is one constraint 
in A, for each use of the APP rule in S1. A particu- 
lar substitution S1, obtained from Al using the Unify 
algorithm of section 4, is given by: 

SlF = FO, SIG = 0, 
S~(YI = S& = ((Fa -+ /3) A FCE) -+ ,O, 
S~(YZ=FCY+/~, SI~~=CY, S&=p. 

Applying substitution S1 to skeleton S1, we obtain an- 
other skeleton which is now a derivation Vl = Sl(&), 
depicted in figure 2. 

A consequence of the analysis in sections 4 and 5 is 
that VI is a principal typing for MI, i.e., every typing 2)’ 
for Ml is of the form 27’ = S’(Vl) for some substitution 
S’. q 

EXAMPLE 2.19 (A Principal Typing for 
(xx.xy.xy)(xz.zz)). Let M2 denote the X-term 
(Xx.Xy.zy)(Xr.az). Depicted in figure 3 is a skeleton S2 
for Mz. 

As in example 2.18, the skeleton Sz is a particular 
one, produced from Nz by the Skel algorithm. Associ- 
ated with Sz is the following constraint set, produced 
from M2 by the r algorithm of section 5: 

(~1 -+ FQ~ + ,& + H(cr3 A Gcx4 + ,62) -+ p3, 

Ha3 A H(Ga4 -+ p2) }. 

A particular substitution S2, obtained from A2 using 
the Unify algorithm of section 4, is given by: 

SzF = 0 A GO, !&G = GO, SzH = 0, 
&al = S2@3 = ((Ga -+ ,B) A Ga) + ,f3, 
SZ(Y; = SSLYB = Gcu + /3, SZ(Y: = S2a4 = a, 

SZPl = S2P2 = P. 

Observe that, in this example, SZ assigns values to the 
offsprings Q; and 0; of CYZ, but does not need to assign 
any particular value to CX:! itself. This follows from the 
way substitutions are applied “outside-in”, and becomes 
clear when we consider the action of S2 on Fcuz: 

Sz(Faz) = (0 A GO)[S(CQ)~, S(c#] = 
(0 A GO)[S& SC&] = So; A G(Sa:) = 
(GcY-+P)AGQ.. 

Applying substitution Sz to skeleton SZ, we obtain a 
new skeleton which is also a derivation V2 = S2(&), as 
depicted in figure 3. 

A consequence of the analysis in sections 4 and 5 is 
that 2)~ is a principal typing for M2, i.e., every typing VD’ 
for Mz is of the form V’ = S’(&) for some substitution 
S’. 0 
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The skeleton S1 = Skel(M1) is: 

VAR 
y:asty:ag 

VAR F 
y:a2ty:a2 y : Fa3 te y : Fa3 

APP 
y : cx2 A Fa3 t yy : 81 

VAR ABS-I 
z:a1t2:cq t Xy.yy : a2 A Fa3 + 81 

ABS-I G 
t xz.z : (11 + a1 Fe Xy.yy : G(a2 A Fa3 + PI) 

APP ._ 
t (XX.X)(XY.YY) : P2 

Letting & = I’(Ml) and Sl = Unify(Al), the derivation v1 = Sl(&) is: 

VAR 
y:aty:a 

VAR F 
y:Fa-+pty:Fa+p y:Fat_ey:Fa 

VAR APP 
x:rtx:r y:(Fa-+/?)AFcrtyy:P 

ABS-I ABS-I 
t Xx.x : 7 + l- t xy.yy : 7 

APP 
t (Xx.x)(Xy.yy) : 7 

where T = ((Fa -+ p) A Fa) + p. 

Figure 2: Skeleton S1 and derivation 2)1 for Ml = (h.z)(Xy.~~). 

rhe skeleton S2 = Skel(M2) is: 

VAR VAR 
y:crzty:az z:a4tz:a4 

VAR F VAR G 
2:a1 tx:a1 y : Fag t_e y : Fa2 z:cq.tz:a3 z : Ga4 te z : Ga4 

APP APP 
x:cq,y:Faztxy:~~ z : a3 A Ga4 t zz : 82 

ABS-I ABS-I 
x : al t Xy.xy : Fa2 -+ & t Xz.zz : a3 A Ga4 -+ p2 

ABS-I H 
t Xx.Xy.xy : al + Fa2 -+ 81 te Xz.zz : H(a3 A Ga4 -+ 82) 

APP 
t (xx.xy.xy)(xz.zz) : p3 

,etting A2 = r(M2) and S2 = Unify(Az), the derivation 272 = S2(&) is: 

VAR 
y:aty:o: 

VAR G 
y : 71 t y : 71 y:Gat,y:Ga 

VAR A VAR 
x:7-3 t x:73 y : 72 te y : 72 z:atz:a 

APP VAR G 
x:T3,y:T2 t xy:p .z : 71 t z : 71 z:Gat,z:Go: 

ABS-I APP 
2 : 73 t xy.xy : 73 2:72t zz:p 

ABS-I ABS-I 
t xx.xy.xy : T3 -+ 73 t x.Z..ZZ : T3 

APP 
t (xX.xy.Xy)(h.ZZ) : 73 

vhere ~1, ~2 and 73 abbreviate the following typeS: 

71 = Ga + p, 72 = T1 A Gcx = (Ga -b p) A Ga, T3=,-+~=(GCX+~)AGLY+~. 

Figure 3: Skeleton S2 and derivation V2 for Mz = (Xz.Xy.xy)(~z.zz). 

167 



3 Lambda-Compatible Beta-Unification 

The problem of @unification was introduced and shown 
undecidable by Kfoury in [KfoSX]. This section in- 
troduces X-compatible ,&unification, a restriction of /3- 
unification, in order to develop a principality property 
and in preparation for a unification algorithm presented 
later. 

Definition 3.1 (E-paths). The set EVar’ of all finite 
sequences of E-variables is also called the set of E-paths. 
We define a function E-path from Var x T to finite sub- 
sets of EVar’. By induction: 

1. E-path(v,cr) = 
{c} if v =cy, 
IzI 

if v #cr. 

2. E-path(v, r + 7’) = E-path(v, r) U E-path(v, r’). 

3. E-path(v, r A r’) = E-path(v, r) U E-path(v, 7’). 

4. E-path(v, Fr) = 

1 

{FG 1 G’ E E-path(v,r)} ifv#F, 

{E} U {Fe 1 G’ E E-path(v,r)} if v = F. •l 

Definition 3.2 (Well Named Types). If r E T, we 
write EVar(r) for the set of E-variables occurring in r, 
TVar(r) for the set of T-variables occurring in r, and 
Var(r) for the disjoint union EVar(r) U TVar(r). We say 
that a type r E T is well named iff both of the following 
statements hold: 

1. For every v E Var(r), it holds that E-path(v,r) = 
{G} (a singleton set) where v does not occur in G’. 

2. For all vS,vt E Var(r) with u basic and s,t E 
(0, l}‘, if s 5 t then s = t. 

Informally, the first condition says that, for ev- 
ery (type or expansion) variable v, the sequence of 
E-variables encountered as we go from the root of r 
(viewed as a tree) to any occurrence of v is always the 
same. Furthermore, E-variables do not nest themselves. 
If E-path(v,r) is the singleton set {@}, we can write 
E-path(v, r) = 1;’ without ambiguity. 

The second condition says that if a variable v occurs 
in 7, then no proper offspring of v occurs in r, where a 
variable v”~ is called an oflapring of vs. Note that types 
that mention only basic variables automatically satisfy 
the second condition. cl 

Definition 3.3 (Positive and Negative Types). 
We identify two proper subsets W and 9 of T, which 
we call the “positive types” and the “negative types”, 
respectively. We first define W and Is with polarities 
inserted, as fW and f9, defined simultaneously with 
fIR+ and fS’, together with metavariables over these 
sets, as follows: 

/s E flk’ ::= +a 1 (a -+ p) 

p E fW ::= p 1 (+Fp) 

o E fS-’ ::= -a 1 (+Fp -+ a) 

(T E f9 ::= (T 1 (CJ A a’) I (-Fo) 

We obtain W’ and R from fW” and flR, respectively, 
by omitting all polarities. Similarly we obtain 9’ and 
9 from S’ and +S. 

Note that there is a restriction that exactly one E- 
variable occurs in each positive position to the left of 
‘I+” 7 and “A” occurs only in negative positions. Note 
also that the metavariables p and (T are restricted to the 
subsets lR_’ and S-‘, respectively. 

If p E W (resp. o E S), there is exactly one way of 
inserting polarities in p (resp. c) so that the resulting 
type p’ (resp. c-r’) with polarities is in zttw (resp. f9). 
Let (p)+ E fR (resp. (a)- E M) be the uniquely de- 
fined expression obtained by inserting polarities in p E W 
(resp. u E S). We thus have two well-defined functions: 
( )+ from W to fIR and ( )- from 9 to f9. Cl 

Definition 3.4 (Constraint Sets). A constraint is 
an equation of the form r A 7’ where r,r’ E T. An 
instance A of p-unification is a finite set of constraints, 
i.e., 

Given A of the above form, we write EVar(A) for the set 
EVar(ri A.. .AT;), TVar(A) for the set TVar(ri A.. .ArA) 
and Var(A) for their disjoint union EVar(A) UTVar(A). 
If A is a set of constraints and F E EVar, we write FA 
to denote the set of constraints: 

FA = { Fr A FT’ I 7 G 7’ is a constraint in A } Cl 

Definition 3.5 (Outer and Inner E-Variable Oc- 

currences). Let @ E EVar’, p E W and u E 9, with 
Var(p) n Var(u) = 0. (All constraints generated will 
be of this form.) We say the expansion variable G 
has an outer (resp. inner) occurrence in the constraint 
$p f $0 iff G E F’ (resp. iff G E EVar(pAu)). In words, 
an “outer” occurrence appears on both sides of the con- 
straint and at the top level. Occurrences of T-variables 
are always inner; only occurrences of E-variables are 
differentiated between outer and inner. 

Let A be a finite set of constraints, each of the form 
specified in the two preceding paragraphs. We say G E 
EVar has an outer (resp. inner) occurrence in A if G 
has an outer (resp. inner) occurrence in a constraint in 
A. 

The definition of “outer” and “inner” occurrences of 
E-variables carries over, in the obvious way, to the equa- 
tion F(p)+ A z(u)- after polarities are inserted. Only 
inner occurrences are said to be positive or negative. 0 

Definition 3.0 (Connected Constraint Sets). We 
say that a constraint set A is connected iff for all con- 
straints r A 7’ and ? G ?’ in A, there are constraints 
{rr-r~,...,r~~-_~}~Asuchthat 

Var(T% k 3-i) rl Var(n+l A T,!+~) # 0 

for 1 5 i 5 n - 1 where “r A 7”’ is “ri + 7;” and 
ail _ ~‘” is “~* i ,~,I. 0 

Definition 3.7 (X-Compatibility). A constraint set 
A is X-compatible iff A is of the form: 

where @i E EVar*, and pi E R and u, E 9 such that 
if pi E W’ then ui E S’ for every 1 < i < n, and 
moreover A satisfies all of the following conditions: 
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A is well named, which we define to hold iff the 
type $ipiAFicri A’..A$~;~~~AF~~~ is well named. 

Every expansion variable F E EVar has at most 
one inner positive occurrence in A, i.e., +F oc- 
curs at most once in &A, where &A is obtained by 
inserting polarities in A: 

Every type variable (Y E TVar occurs at most twice 
in A. And if it occurs twice, it occurs once pos- 
itively as +cr and once negatively as -_(y in the 
constraint set *A. 

For every constraint $p k $cl in A, we have 
Var(p) fl Var(o) = 0. 

For every connected A’ c A and constraint 2’p G 
@:o in A - A’, either Var(A’) fl Var(p) = 0 or 
Var(A’) fl Var(a) = 0. 

In words, the variables of a connected A’ C A can 
overlap with the inner variables of at most one side 
of a constraint @p - $0 in A - A’. 

We use the name “X-compatible” because, as shown in 
lemma 5.2, every constraint set induced by a X-term 
satisfies the conditions above. 0 

Definition 3.8 (Solutions). Let S : Var + (E U T’) 
be a substitution and let A = {ri e r;, . . . , ~~ A 7:) be 
a X-compatible constraint set. We say S is a solution 
for A iff two conditions hold: 

1. Dam(S) rl Var(Sv) = 0 for every ‘u E Var. 

2. S7; = S7: for every i E (1,. . . , n}. 

The first condition is a mild restriction. It can probably 
be eliminated, at the price of making these propositions 
and their proofs more complicated. 0 

Definition 3.9 (Principal Solutions). Let S : 
Var -+ (E U II’) be a substitution and let A be a X- 
compatible constraint set. The substitution S is a prin- 
cipal solution for A iff S is a solution for A and for 
every solution S’ for A, there is a substitution S” such 
that S’A = S”(SA).’ The principality property is the 
existence of a principal solution for every constraint set 
that has a solution. 0 

EXAMPLE 3.10 (Uniqueness of Principal Solutions 
in a Weaker Sense). A peculiarity resulting from the 
presence of expansion variables is illustrated by a simple 
example. Let A be the constraint set: 

A = { FGa A (al A 52) A ((Tg A 54)) 

where ai,iiZ,&,a4 E S’ are arbitrary. Assume that 
A is X-compatible. By inspection, it is not difficult to 
see that A has three distinct principal solutions, ignor- 
ing any principal solution obtained from one of these 
three by renaming variables in its range or by adding 

*We purposely write S’A = S”(SA) instead of S’ = S” o 
S in order to avoid pitfalls associated with the composition of 
substitutions in p-unification. 

-1 

redundant mappings. The three principal solutions in 
question are: 

Si = (I F := 0, G := (0 A 0) A (0 A q )n U So 

Sz = (I F := 0 A 0, Go := 0 A 0, G1 := 0 A 0) U So 

S3 = ([ F := (0 A 0) A (0 A q ), 
Go0 := Cl, Go’ := 0, G1’ := 0, G1’ := 01 u So 

where SO = (Icr”” := ai,ool := 02,(_y1’ := 83,~” := 
84). None of the three substitutions can be obtained 
from the other two by variable renaming, in contrast 
to principal solutions in first-order unification, semi- 
unification, and other forms of unification. If Sl, 

SZ, and Ss are principal as claimed, then we must 
have $A = S(SjA) for some substitution S, where 
i, j E {1,2,3}. This is indeed the case, by taking 
S = (I D, the identity substitution. Hence, after all, 
S,A = SsA = S3A, and the uniqueness of princi- 
pal solutions is recovered in a weaker sense. However, 
there is no substitution S such that Si = S o Sj, where 
i, j E {1,2,3} and i # j. It is worth noting that algo- 
rithm Unify in section 4 on input A returns Ss, because 
Unify works in “top-down” fashion, i.e., it expands F 
before G. 0 

4 Algorithm for Lambda-Compatible Beta- 

Unification 

We design a non-deterministic algorithm Unify which 
takes a X-compatible constraint set A as input, such 
that if A has a solution then every evaluation of 
Unify(A) terminates returning a principal solution for 
A, and if A has no solution then every evaluation of 
Unify(A) diverges. 

The presentation of algorithm Unify in figure 4 is 
largely self-contained - except for two parts in the 
“mode of operation”, namely, the definition of E-env( A) 
and the evaluation of Si = S @& SO, which we now ex- 
plain. In general, the standard composition of two sub- 
stitutions using “0” does not produce a substitution, 
i.e., for substitutions Si and SZ, there does not neces- 
sarily exist a substitution Ss such that % = (?%ez). 
To work around this difficulty, we use Y&Y” to denote 
a new binary operation on substitutions, which we will 
call “safe composition relative to &“, where Z is an en- 
vironment expressing certain naming constraints. 

Definition 4.1 (E-Path Environment). Given a 
well-named type context cp, we form its E-path envi- 
ronment as follows: 

An E-path environment is a partial function & : Var + 

EVar* that is the result of applying the E-env function to 
a well-named type context. Let & be a metavariable over 
E-path environments. If A = {ri * T;, . , r, G T:} 
is a well-named constraint set, then E-env(A) = 
E-env(ri A 7; A . A ~~ A ?-A). 0 

Definition 4.2 (Safe Composition). We first define 
a function @ which, given a pair (e, S) consisting of an 
expansion e and a substitution S, returns a finite set 
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Metavariable conventions: 

l PER+, PEW, @ES+, (T,(T’E~, r,r’,ri,r,!ET, a~TVar. 

. F,G E EVar and H E Evarb, with F and G distinct and H fresh in rule 4. 

Mode of operation: 

. Initial call: Unify(A) j Unify(simplify(A), 4 D,E-env(A)). 

. Unify(O, S, E) * S. 

. Unify(As,Ss,&) + Unify(Ai,Sr,E), where Ao =AU${pku}, Al = SAo and Si = S@&So, provided p- u * S i! 
an instance of one of the rewrite rules. 

Rewrite rules: 

(Y t (T * I[o := ~78 (rule 1) FpG; + (IF := 08 (rule 3) 
p & o * {o := /SD (rule 2) F,i-Ga + {F := GHOB (rule 4) 

Fp & (T AU’ j {[F := F”O A F’U]} (rule 5) 

Applying substitutions to constraint sets: 

. S({T & T’} U A) = simplify((Sr) A (ST’)) U SA. 

. simplify({r 4 T’} U A) = simplify(r & T’) U simplify(A). 

F simplify(ri & T:) if T = FT~ and T’ = FT~, 

simplify(T{ & 71) U simplify(Q & Ti) if 7 = T1 -+ TZ and 7’ = T; --f T;, 

l simplify(r & T’) = simplify(ri - T:) U simplify(rs A T$) if r = 71 A 72 and 7’ = T; A Ti, 

0 if 7 = T’, 

{T k T’} otherwise. 

Figure 4: Algorithm Unify. 

@(e, S) of triples in {O,l}* x (0, 1)’ x (0, 1)‘. The defi- 
nition of @ is by induction on e, for a fixed S throughout: 

@(Q S) 
= {(e, s, &)I 

WeoAel,S) 

2 
.,,=g. 

P, i. q, r) I (p, q, r) E Wei, S), i E (0, 111 

~{(si~p,q,~i~r)~(p,q,r)EQi((e)~~,S),l~iIn} 
where SF = e’, #I = n, and 

.si = path(Cl(“),e’) for 1 5 i 5 n 

The intention of Cp is that if (p,q,r) E @(e,S), then 
the path p identifies hole Cl(“) in Se, the path q iden- 
tifies hole Cl(j) in e of which q lci) in Se is a copy, and 
r is the subsequence of the path p contributed by the 
substitution S. 

Given substitutions Sr and Sz, together with an E- 
path environment E, the safe composition of 541 and SZ 
relative to & is a new substitution defined by: 

( 

Sz(S1(v:))p if 2, = wOp, &(vs) = Z’, 

(Sz @E f%)(v) = 
S,(&l) = e, and 

(I D(v) 
zh;r;isz,@(e, Ss), 

0 

In lemma 4.3, we state a condition and prove that it 
is sufficient to guarantee that the action of the substi- 
tution Ss 8~ Si on a type 7 is equal to the action of the 
composition Sz 0 Si on r. 

Lemma 4.3 (Sufficient Condition for Safe Com- 
position). Let S1 and Sz be substitutions, let r be a 
type, and let S’ = S~@~SI for some E-path environment 
E. If r and SIT are well-named types and & > E-env(r), 
then S’(T) = &(S~(T)). 0 

Definition 4.4 (Unification Algorithm). The op- 

eration of Unify is based on the rewrite rules shown 
in figure 4. Because Unify is non-deterministic, there 
are in general many evaluations of Unify for the 
same input A. We exhibit the consecutive rewrite 
steps of a particular evaluation of Unify(A) by writ- 
ing: Unify(As,([D,&) + Unify(Ar,Si,E) + ... + 
Unify(Ai, Si,&) a ... where As = simplify(A) and 
& = E-env(A). To indicate that the evaluation of 
Unify(A) makes i 2 1 calls to Unify (beyond the ini- 
tial call), and that the arguments of the ith call are the 
constraint set Ai, the substitution Si, and the E-path 
environment E, we write: 

Unify(Ao, { D, E) =$ Unify(Ai, S;, E) . 

We write Unify(As, (I D,&) & Unify(A,S,&) to mean 
that either (As, ([ D,&) = (A, SE) or there is an 

evaluation of Unify(A) such that Unify(Ac, ([ D, e) & 
Unify(A, S, E) for some i > 1. 

Whenever we say A and A’ are X-compatible con- 
straint sets such that Unify(A, S, E) * Unify(A’, S’, &) 
for some substitutions S and S’ and some E-path en- 
vironment E, we assume that simplify(A) = A. The 
way Unify is defined guarantees that simplify(A’) = A’ 
again. 0 

Lemma 4.5 (X-Compatibility Is Invariant). Let 

Aa and A, be constraint sets such that 

Unify(Ao, SO, E) =G- Unify(Al, SI, &) 

for some substitutions SO and S1 and some E-path en- 
vironment & (which do not matter here). If A0 is X- 
compatible, then so is A,. In words, the properties listed 
in definition 3.7 are invariant relative to the rewrite 
rules of Unify. cl 

170 



Lemma 4.6 (Progress). Zf Ae is a non-empty X- 
compatible constraint set such that simplify(As) = As, 
together with a substitution Se and an E-path environ- 
ment E, then there is a constraint set Ai such that 

Unify(Ao, SO, E) +- Unify(Ai, SI, &) 

for some substitution Si (which does not matter here). 
In words, A0 always contains a constraint that can be 
processed by one of the rewrite rules of Unify. 0 

Lemma 4.7 (Solutions with Finite Support Suf- 
fice). Let A be a X-compatible constraint set and let 
S : Var + (E U ‘I’-‘) be a substitution. Zf S is a solution 
for A, then we can construct a substitution S’ from S 
such that: 

1. Dom(S’) is finite. 

2. S’ is a solution for A. 0 

Definition 4.8 (Size). Given a type r E ‘I’, the func- 
tion size( ) applied to r returns an integer size(r) 1 1 
which is the number of symbols in r excluding all oc- 
currences of E-variables and all parentheses. We extend 
size( ) to expansions e E E in the obvious way. Formal 
definitions, by induction on r and e respectively, are 
omitted. 0 

Definition 4.9 (Degree). Let A be a X-compatible 
constraint set, with EVar(A) = {Fi,. . . ,Fk}. Let S be 
a solution for A with finite Dam(S), say: 

S={G1:=el,..., G,:=e,,cul:=al,..., cxn:=unD 

If 2 E EVar*, let ($1 denote its length, i.e., the num- 
ber of variables in the sequence. We define a mea- 
sure degree(S,A) = (p,q,r) on the pair (S, A), where 
p,q,r E N, as follows: 

l p = Cl<i<m (size(ei) - 1) -- 

o q = size(A) 

l r = Clsisk (k - IE-path(R, A)l) 

Given two triples (p, q, r) and (p’, q’, r’) of natural num- 
bers, we write (p,q, r) < (p’,q’,r’) iff either p < p’, 
or p = p’ and q < q’, or p = p’, q = q’ and r < r’. 
This is the so-called “lexicographic ordering” on triples 
of natural numbers, and it is easy to see that it is well- 
founded. El 

Lemma 4.10 (Decreasing Degree when Solv- 
able). Let Ae be a X-compatible constraint set, let Ai 
be a constraint set, and let 

Unify(Ae, SO, E) + Unify(Ai, Si, E) 

for some substitutions Se and Si and some E-path en- 
vironment & (which do not matter here). Zf there is 
a solution Sb for A0 with Dom(Sb) finite, then there 
is a solution Si for Ar with Dom(S;) finite such that 
degree(Sj:, Ai) < degree(Sb, A,). 0 

Lemma 4.11 (Principal Solution Constructed). 
Let Ae be a X-compatible constraint set with & = 
E-env(Ae), let Ai be a constraint set, and let 

Unify(Ae, S, f) 3 Unify(Ai, S @& S, E) 
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for some substitutions S and S. Zf S1 is a principal 
solution for Ai, then S1 8s S is a principal solution for 
Ao. Cl 

The following theorem shows that the algorithm is 
sound (i.e., the substitutions Unify produces when it 
terminates are in fact solutions) and complete, (i.e., 
Unify produces a solution if there is one), as well as 
showing it produces principal solutions. 

Theorem 4.12 (Soundness, Completeness, & 
Principality). Let A be a X-compatible constraint set 
with E = E-env(A). 

1. 

2. 

A has a solution if and only if 
Unify(simplify(A), (I D, E) &- Unify(0, S, E) for 
some substitution S. 

Zf Unify(simplify(A), (I D, I) 3 Unify(0, S, E) for 
some S, then S is a principal solution for A. Cl 

Note that Unify diverges exactly when there is no 
solution. The evaluation strategy does not matter, be- 
cause lemma 4.10 implies termination when there is a 
solution and lemma 4.11 implies divergence when no 
solution exists. 

5 Type Inference Algorithm 

This section defines a procedure which, given a X-term 
M, generates a finite set I’(M) of constraints, the solv- 
ability of which is equivalent to the typability of the 
term M. We use this to prove the principality property 
for System I and to define a complete type inference 
algorithm. 

Definition 5.1 (Algorithm Generating Con- 
straints and Skeleton). For every X-term M, 
figure 5 gives an inductive definition of a set of 
constraints I’(M) and a derivation skeleton Skel(M), 
defined simultaneously with a type Typ(M) and a 
type environment Env(M). In this definition, for a 
given subterm occurrence N, when a fresh variable 
is chosen, the same fresh variable must be used in 
Env(N), Typ(N), I’(N), and Skel(N). The process 
of going from M to l?(M) and Skel(M) is uniquely 
determined up to the choice of expansion variables and 
type variables. 0 

Lemma 5.2 (Constraint Set is X-Compatible). 
Let M be an arbitrary X-term. The constraint set I’(M) 
induced by M is X-compatible. 0 

Lemma 5.3 (All Derivations Instances of 
Skel(M)). Zf V is a derivation of System I[ with 
final judgement A k M : 7, then there exists some 
substitution S such that 2, = S(Skel(M)). 0 

Theorem 5.4 (Constraint Set and Skeleton 
Equivalent). Given X-term M, a substitution S is 
a solution for I’(M) if and only if S(Skel(M)) is a 
derivation of System I[. Thus, I’(M) is solvable if and 
only if M is typable in System II. 0 

Corollary 5.5. It is undecidable whether an arbitrarily 
chosen X-compatible constraint set A has a solution. 0 

From the principality property for X-compatible p- 
unification, we can derive the following. 



If M = I, for fresh a E TVarb: TYP(M) = 0, 
Env(M) = {z ++ a}, 
I?(M) =0, 
Skel(M) = (VAR,Env(M) t- M : a). 

If M = (NiNa), for fresh F E EVarb, p E TVarb: Typ(M) = p, 
Env(M) = Env(Ni) A F Env(Nz), 
p(M) =r(&)u Fr(N2)u {Typ(N)-- Typ(N2)--+P), 

Skel(M) = (APP,Env(M) + M : P,Skel(Ni) (FSkel(N2))). 

If M = (Xz.N), for fresh a E TVarb: TYP(W = 
Env(N)(z) --t Typ(N) if Env(N)(z) defined, 

o --t TYP(N) otherwise, 

;;$M) 1 $\N)\G 

Skel(M) = (R,Ehv(M) k M : Typ(M),Skel(N)) 
where if 2 E FV(N), then R = ABS-I, else R = ABS-K. 

Figure 5: Definition of I’(M), Skel(M), Typ(M), and Env(M). 

Theorem 5.6 (Principal Typings and Complete- 
ness of Type Inference). Let PT be the algorithm 
such that 

PT(M) = (Unify(P(M)))(Skel(M)) 

If M is typable in System 1, then PT(M) returns a prin- 
cipal typing for M, else PT(M) diverges. Thus, Sys- 
tem I[ has the principality property and PT is a complete 
type inference algorithm for System 1. 0 

6 Termination and Decidability at Finite Ranks 

This section defines UnifyFR, an adaptation of algo- 
rithm Unify which produces a solution S with bounded 
rank k for a X-compatible constraint set A. The defi- 
nition of UnifyFR differs from Unify only in the “mode 
of operation” as presented in figure 6. The invocation 
of UnifyFR on A at rank k produces a solution S if 
Unify(A) produces S and the rank of S is bounded by 
k. Otherwise UnifyFR halts indicating failure, unlike 
Unify which diverges if it can not find a solution. 

Note that the principality of solutions produced by 
UnifyFR follows from the principality of solutions pro- 
duced by Unify. 

Definition 6.1 (Rank of Types). For every s E 
{ L, R, 0, l}‘, let # L(S) denote the number of occur- 
rences of L in s. Let r E T. There is a smallest (and, 
therefore, unique) 9 E To with n _> 1 holes such that 

1. 7- = /0[71,. . . ,m] for some71 ,... ,rn ET. 

2. None of the types in (~1,. . , TV} contains an oc- 
currence of “A”. 

The ran/z of hole q Ci) in cp is given by 
hole-rank@“), cp) = # L(path(Cl(i), 9)). If ‘p = 0, i.e., 
r does not mention any “A”, we define rank(r) = 0. If 
cp # 0, we define rank(r) by: 

rank(r) = 1 + max{hole-rank(Cl(“), ‘p) ( 1 5 i < #m(p)} 

This definition of rank(r) is equivalent to others found 
in the literature. 

If A = {ri - ri, . , 7n A 7;) is a X-compatible 
constraint set, we define rank(A) by: 

rank(A) = 

max{rank(ri), rank(Ti), . , rank(r,), rank(rA)} 

Definition 6.2 (Rank-k System of Intersection 
Types). Let k 1 1. If S is a skeleton of System I[ 
where every environment type has rank 5 k - 1 and 
every derived type has rank 5 k, we write rank(S) 5 k 
and say that S is a rank-k skeleton. 

We define the restriction lIk of System II as follows. 
A skeleton S of I[ is a skeleton of l[k iff rank(S) 5 k. A 
particular susbet of the rank-k skeletons are the rank-k 
derivations. 0 

Definition 6.3 (Rank-k Solution). Let A be a X- 
compatible constraint set, A 5 TVar, and k 2 1. We 
say that a substitution S : Var -+ (E U T’) is a rank-k 
solution for A relative to A provided: 

1. 

2. 

3. 

The 

S is a solution for A. 

rank(Sja) 5 k - 1, for every cy E A. 

rank(Scr) 5 k, for every cr $ A. 

set A discriminates between T-variables corre- 
sponding to environment types and T-variables corre- 
sponding to derived types in a typing; for a rank-k typ- 
ing, the first must have rank 5 k - 1, and the second 
must have rank 5 k. 0 

Lemma 6.4. Let M be a X-term and A = I’(M). Zf S 
is a rank-k solution of A, then there is a derivation of 
M is System nkf2. q 

To show that for a fixed A C TVar and fixed k 1 1, 
an evaluation of UnifyFR(A, A, k) always terminates, 
we need to reason about the rank of a constraint in a 
constraint set. The following definitions support this. 

Definition 6.5 (X-Compatible Pairs). Let (T, 7’) be 
a pair of types. We define its constraint decomposition 
sequence d(r, T’) = (cp, ?I,. ,in,f;, ,+A) with 1+2n 
entries, where cp E TO with n 2 0 holes is the largest 
(and therefore unique) type context such that 

7-= cp[n,... ,m], 

T' = &,... ,+J, 

{q,7-:} = {F;,?:} for 1 5 i 5 n, 

(r;, q!) = (Pi, ?l) if hole-rank@(“) ‘p) is even 
(G, 7,‘) = (y, ?i) if hole-rank@“): cp) is odd.’ 
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Mode of operation: 

. Initial call: UnifyFR(A, A, k) + UnifyFR(simplify(A), I[ D , E-env(A), A, k) for A E TVar and k > 1. 

l UnifyFR(0, S,&, A, k) + S. 

. UnifyFR(A0, Se, &,A,k) a UnifyFR(Ai, Si, E, A, k) if Unify(Ae, So, E) + Unify(Ai, Si ,E) and also: 

- rank(Sia) 5 k - 1 for every a E A. 

- rank(SicY) 5 k for every a e A. 

Figure 6: Algorithm UnifyFR (refer to figure 4 for missing parts). 

If G’. = E-path@ ’ ,v) for 1 5 i 5 n, then its constraint 
set ~ecomposztzon( I’s: 

. 

If A(T, r’) is a X-compatible constraint set, then (r, r’) 
is a X-compatible pair. In this case, 4 E W and +,! E 9 
for 1 5 i 5 n, so we can let ii = pi and ?,’ = ui for 
1 5 i < n and write A(r,r’) in the form: 

A(r,+) = {Glpl - GIUI,. . . , G,p, G Gnon}. 

Note that simplify(A(r, r’)) = A(r, r’), because d(r, r’) 
chooses the largest cp with the stated property. We de- 
fine the rank of constraint C?ipi A C?iai in (T, T’): 

rank(G;pi G Gigi, (r, r’)) = hole-rank(O(i), cp). 

We also define h(r, 7’): 

h(r, 7’) = min{ hole-rank(O(i), ‘p) 1 1 5 i 5 n}, 

i.e., h(r, r’) is a lower bound on the L-distance of all 
the holes in ‘p from its root (viewed as a binary tree). 
If r = 7’ = cp, i.e., p has 0 holes, we leave h(.r,~‘) 
undefined. 0 

Definition 6.6 (Evaluating X-Compatible Pairs). 
Let (~0, r;) and (71, r;) be X-compatible pairs. Let rule 
a be one of the 5 rules listed in figure 4. We write 

iffd(rc,r,$)=(cp,pr ,... ,pn,al ,... ,o,)andthereisiE 
(1,. . ,n} such that: 

1. pi A Ui * S is an instance of rule a. 

2. (71,ri) = (Go, %-A). 

In such a case, we say that (70, T;) is evaluated to (71,~;) 

by rule a. Moreover, if hole-rank(O(i),cp) = k, we say 
that the constraint pi k ui is at rank k and that the 
evaluation from (ro, 7;) to (ri, ri) is also at rank k, in- 
dicated by writing 

Wewrite(7e,r~)*(ri,r~)incase(ro,r~)~((ri,r~)for 

some rule a, and & for the reflexive transitive closure 
of *. 

Let R E (1,. ,5}. Let (TO, 7;) * . . * (m, TA) 

be an evaluation sequence with n 2 1 steps. We write 
(70,~;) + (~~,r;) to indicate that the evaluation has 

n steps, and that each step is carried out using rule a 
for some a E R. 

Finally, if there is no pair (ri, r;) such that 
(ro,rA) 9 (rl,r;), then we say that the pair (70,~;) 

is in R-normal form. 0 

Lemma 6.7 (Evaluating without Rule 5). Let 
R = {l,... ,4}, i.e., R is the set of all rewrite rules 
without rule 5. If (~0~~6) is a X-compatible pair, there 
is a bound kf(7.0,~;) solely depending on (T~,T;) such 
that for every evaluation with R.’ (TO, ~6) + (~1, T;), we 

have n 5 iVf(~o,~;). In words, a non-terminating eval- 
uation of (70,~;) must use infinitely many times rule 
5. cl 

Lemma 6.8 (Evaluating with Rule 5 at a Fixed 
Rank). Let R be the set of all rewrite rules without 
rule 5, as in lemma 6.7. 

Hypothesis: Let (TO, Th) be a X-compatible pair in 
R-normal form, with k = h(To,~;), and consider an 
arbitrary evaluation with the rules in R (with no rank 
restriction) and rule 5 restricted to rank k: 

(To,T;) 3 (TlrT;) 3 (T%T;) 3 ..’ 3 (TnrT:) 

where for every 1 5 i 5 n, either ai E R or ai = 5 and 
the step (Ti-_1,Tl_1) 3 (T;,Ti) is at rank k. 

Conclusion: There is a uniform bound N(To, T;) 

solely depending on (TO, ~6) such that n 5 N(To,T~). 
Moreover, if (TV, T:) cannot be evaluated further, i.e., if 
(TV, T;) is in R-normal form and in (5, k)-normal form 
pee definition 6.6), th en either TV = 7; or h(Tn,~A) > 

0 

Definition 6.9 (Increasing-Rank Evaluations). 
Let R be the set of all rewrite rules without rule 5, as 
in lemma 6.8. Let (~0~~6) be a X-compatible pair. An 
increasing-rank evaluation of (TO, ~6) is of the form: 

where (~1, T:) is in %normal form and, for every i 2 1, 
if Ti # Tl then ‘I& = R U ((5, ki)} where ki = h(Ti, Ti) 
and (T~+I, T,!+~) iS in ‘&-normal form. cl 

Definition 6.10 (Coding X-Compatible Con- 
straint Sets as X-Compatible Pairs). The 
coding rA’ of a X-compatible constraint set 
A = (71 & ’ TI,... ,Trz k T;} is the pair (T,T’) 

given by: 

T = (TI A A (T+1 A Tn)) 

7’ = (T: A A (T;-1 A T;)) 

It is clear that .A1 is a X-compatible pair (defini- 
tion 6.5). 0 
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Lemma 6.11 (Increasing-Rank Evaluations 
Complete). Let n be a X-compatible constraint 

set, and let (T,T’) = rA1. If an increasing-rank 

evaluation of (7,~‘) does not terminate, then A has no 
solution. q 

Theorem 6.12 (Decidability of Finite-Rank p- 
Unification). Let A be a X-compatible constraint set, 
A a set of T-variables, and k 1 1. 

1. A has a rank-k solution relative to A iff there is a 
successful evaluation UnifyFR( A, A, k) 3 S. 

2. There are no infinite (diverging) evaluations start- 

ing from UnifyFR( A, A, k). 

3. It is decidable whether A has a rank-k solution rel- 
ative to A. 0 
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