skip to main content
10.1145/2925426.2926275acmconferencesArticle/Chapter ViewAbstractPublication PagesicsConference Proceedingsconference-collections
research-article

Galaxyfly: A Novel Family of Flexible-Radix Low-Diameter Topologies for Large-Scales Interconnection Networks

Authors Info & Claims
Published:01 June 2016Publication History

ABSTRACT

Interconnection network plays an essential role in the architecture of large-scale high performance computing (HPC) systems. In the paper, we construct a novel family of low-diameter topologies, Galaxyfly, using techniques of algebraic graphs over finite fields. Galaxyfly is guaranteed to retain a small constant diameter while achieving a flexible tradeoff between network scale and bisection bandwidth. Galaxyfly lowers the demands for high radix of network routers and is able to utilize routers with merely moderate radix to build exascale interconnection networks. We present effective congestion-aware routing algorithms for Galaxyfly by exploring its algebraic property. We conduct extensive simulations and analysis to evaluate the performance, cost and power consumption of Galaxyfly against state-of-the-art topologies. The results show that our design achieves better performance than most existing topologies under various routing algorithms and traffic patterns, and is cost-effective to deploy for exascale HPC systems.

References

  1. D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy proportional datacenter networks. In Proceedings of International Symposium on Computer Architecture (ISCA), pages 338--347, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber. Hyperx: Topology, routing, and packaging of efficient large-scale networks. In Proceedings of International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), pages 41:1--41:11, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Ankit, H. Chi-Yao, P. Lucian, and G. P. Brighten. Jellyfish: Networking data centers randomly. In Proceedings of Symposium on Network System Design and Implementation (NSDI), pages 225--238, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter network topology. In Proceedings of International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), pages 348--359, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn. The role of optics in future high radix switch design. ACM Sigarch Computer Architecture News, 39(3):437--448, June 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Chrysos, C. Minkenberg, M. Rudquist, C. Basso, and B. Vanderpool. Scoc: High-radix switches made of bufferless clos networks. In Proceedings of High-Performance Computer Architecture (HPCA), pages 402--414, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  7. G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard. Cray cascade: A scalable hpc system based on a dragonfly network. In Proceedings of International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), pages 103:1--103:9, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Fujiwara, M. Koibuchi, H. Matsutani, and H. Casanova. Skywalk: a topology for hpc networks with low-delay switc. In Proceedings of International Parallel and Distributed Processing Symposium (IPDPS), pages 263--272, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, and et al. Bcube: A high performance, server-centric network architecture for modular data centers. In Proceedings of International Conference on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM), pages 63--74, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Computer Communication Review, 38(4):75--86, Aug. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. R. Hafner. Geometric realisation of the graphs of mckay- miller- siran. Journal of Combinatorial Theory, 90(2):223--232, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tanwer. Firefly: A reconfigurable wireless data center fabric using free-space optics. In Proceedings of International Conference on the applications, technologies, architectures, and protocols for computer communication (SIGCOMM), pages 319--330, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. https://en.wikipedia.org/wiki/Isomorphism.Google ScholarGoogle Scholar
  14. http://www.avagotech.com/optical_fpga#.Google ScholarGoogle Scholar
  15. http://www.colfaxdirect.com.Google ScholarGoogle Scholar
  16. http://www.mellanoxstore.com.Google ScholarGoogle Scholar
  17. F. Ikki, K. Michihiro, O. Tomoya, M. Hiroki, and C. Henri. Augmenting low-latency hpc network with free-space optical links. In Proceedings of High-Performance Computer Architecture (HPCA), pages 390--401, 2015.Google ScholarGoogle Scholar
  18. S. Jeloka, R. Das, R. G. Dreslinski, T. Mudge, and D. Blaauw. Hi-rise: A high-radix switch for 3d integration with single-cycle arbitration. In Proceedings of IEEE Computer Society Technical Committee on Microprogramming and Microarchitecture (MICRO), pages 471--483, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: A cost-efficient topology for high-radix networks. In Proceedings of International Symposium on Computer Architecture (ISCA), pages 126--137, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable dragonfly topology. In Proceedings of International Symposium on Computer Architecture (ISCA), pages 77--88, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Koibuchi, I. Fujiwara, H. Matsutani, and H. Casanova. Layout-conscious random topologies for hpc off-chip interconnects. In Proceedings of High-Performance Computer Architecture (HPCA), pages 484--495, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova. A case for random shortcut topologies for hpc interconnects. ACM Sigarch Computer Architecture News, 40(3):177--188, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. B. Mark, D. Mark, H. Ram, K. James, L. Tom, R. Todd, D. U. Keith, and R. C. Zak. Intel omni-path architecture: Enabling scalable, high performance fabrics. In Proceedings of Symposium on High-Performance Interconnects (HOTI), pages 402--414, 2015.Google ScholarGoogle Scholar
  24. B. D. McKay, M. Miller, and J. Siran. A note on large graphs of diameter two and given maximum degree. Journal of Combinatorial Theory, 74(1):110--118, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. P. Morgan. The road to 200g networks starts with the transceiver. http://www.nextplatform.com.Google ScholarGoogle Scholar
  26. J. Nan, U. B. Daniel, M. George, B. James, T. Brian, K. John, and J. D. William. A detailed and flexible cycle-accurate network-on-chip simulator. In Proceedings of International Symposium on Performance Analysis of Systems and Software (ISPASS), pages 86--96, 2013.Google ScholarGoogle Scholar
  27. A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, and et al. A reconfigurable fabric for accelerating large-scale datacenter services. In Proceedings of International Symposium on Computer Architecture (ISCA), pages 13--24, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Satpathy, K. Sewell, T. Manville, Y.-P. Chen, R. Dreslinski, D. Sylvester, T. Mudge, and D. Blaauw. A 4.5Tb/s 3.4Tb/s/W 64x64 switch fabric with self-updating least-recently-granted priority and quality-of-service arbitration in 45nm CMOS. In Proceedings of International Solid-State Circuits Conference (ISSCC), pages 478--480, 2012.Google ScholarGoogle Scholar
  29. S. Scott, D. Abts, J. Kim, and W. J. Dally. The blackwidow high-radix clos network. In Proceedings of International Symposium on Computer Architecture (ISCA), pages 16--28, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Xiangke, P. Zhengbin, W. Kefei, L. Yutong, X. Min, X. Jun, D. Dezun, and S. Guang. High performance interconnect network for tianhe system. Journal of Computer Science & Technology, 30(2):259--272, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  1. Galaxyfly: A Novel Family of Flexible-Radix Low-Diameter Topologies for Large-Scales Interconnection Networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ICS '16: Proceedings of the 2016 International Conference on Supercomputing
      June 2016
      547 pages
      ISBN:9781450343619
      DOI:10.1145/2925426

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 June 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate584of2,055submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader