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Abstract  
Garbage collection (GC) is a critical part of performance in 
managed run-time systems such as the OpenJDK Java Virtual 
Machine (JVM). With a large number of latency sensitive 
applications written in Java the performance of the JVM is 
essential. Java application servers run in data centers on a large 
number of multi-core servers, thus load balancing in multi-
threaded GC phases is critical. Dynamic load balancing in the 
JVM GC is achieved through work stealing, a well known and 
effective method to balance tasks across threads. This paper 
analyzes the JVM work stealing behaviour, and introduces a novel 
work stealing technique that improves performance, GC CPU 
utilization, scalability, and reduces the cost of jobs running on 
Google’s data-centers. We analyze both the DaCapo benchmark 
suite as well as Google’s data-center jobs. Our results show that 
the Gmail front-end server shows a 15-20% GC CPU reduction, 
and a 5% CPU performance improvement. Our analysis of a 
sample of ~59K jobs shows that GC CPU utilization improves by 
38% geomean, 12% weighted geomean. GC pause time improves 
by 16% geomean, 20% weighted geomean. Full GC pause time 
improves by 34% geomean, 12% weighted geomean.  

 

Categories and Subject Descriptors D.3.4 [Programming 
Languages]: Processors—memory management, optimization, 
run-time environments 

General Terms Algorithms, Languages, Performance  

Keywords work stealing, garbage collection, dynamic load 
balancing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
Today Java is one of the most popular languages for application 
development. Large scale real-time data-intensive Java 
applications run in large data centers taking advantage of 
heterogeneous multi-core hardware. Java applications include 
Google Web Search, Gmail, Docs, social networking, etc. These 
latency critical (LC) applications [21] process large amounts of 
data and have tight response time requirements. These 
requirements are set by service level agreements (SLAs) [21] in 
data centers. Hundreds to thousands of parallel threads are used 
by applications. Thus real time performance of the JVM is 
imperative. 

A data-center houses a cluster [21] of machines. Borg [21] is 
Google’s cluster manager which runs hundreds of thousands of 
applications. An application (submitted as a Borg Job) usually 
consists of hundreds of tasks. Each job runs in one Borg cell, a set 
of machines managed as a unit. A task consists of the application 
binary, associated data, and a Borg configuration file that 
specifies application requirements such as processor architecture, 
number of cores, memory, disk space, as well as machine 
scheduling requirements, such as only a single task to run on the 
machine. Borg handles task scheduling, reserves resources, and 
uses resource containers to isolate different tasks running on the 
same machine. Borg also monitors tasks, can change resources 
reserved, and can kill tasks that use more resources than 
requested. Hence seemingly unhealthy jobs due to large GC pause 
times can get killed.  

A major component of JVM performance is Garbage 
Collection. GC performs automatic memory management, one of 
the main advantages of managed languages such as Java, where 
developers need not worry about de-allocating memory but can 
rely on GC.  GC contains multiple stop-the-world phases where 
all application threads are halted and only GC threads are 
executing. At scale, GC CPU utilization translates into real 
resource usage and power consumption. Thus reducing GC pause 
times, GC CPU utilization, and improving scalability for such 
phases is critical. Dynamic load balancing in the OpenJDK JVM 
GC is achieved through work stealing 
[2,3,4,5,6,8,16,18,26,27,28,29], a well known and effective 
method to balance gc-tasks across threads. In this paper we show 
wasted CPU utilization in the current JVM GC work-stealing 
mechanism and present a new work-stealing technique that 
considerably reduces GC CPU utilization (percentage of CPU 
time spent in GC for that workload) and improves scalability and 
GC performance. 
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In this paper we characterize the behaviour of the OpenJDK 
JVM GC in Google’s Borg managed data-centers showing the 
effects of the newly proposed work-stealing protocol on large 
scale data center deployment within Google. We use Google Wide 
Profiling (GWP) [24, 25] to gather hardware-counter performance 
data as well as job profiling data. We present both data-center 
scale data as well as isolated machine results that reduce both 
noise and result variations. We also present a study of the Gmail 
front-end server application (a highly scalable application) 
showing the effects of the newly proposed work-stealing 
technique.  

 
This paper is organized as follows: Section 2 describes 

Google’s OpenJDK-based JVM GC. In Section 3, we present the 
details of a new work-stealing technique namely; Optimized Work 
Stealing Threads (OWST). Sections 4 and 5 discuss the 
experimental methodology and results, respectively. Section 6 
presents related work. Finally, conclusions are provided in Section 
7. 

 

2. Background  
One of the main features of managed runtime systems is 
automatic memory management through Garbage collection (GC). 
The OpenJDK JVM has several types of GCs including; Serial, 
Parallel Scavenge (PS), Concurrent Mark-Sweep (CMS), and G1. 
Due to performance reasons on multi-core hardware the parallel 
collectors have been widely preferred over the serial collector and 
are studied in most previous work [5,12,13,14,15,19,20,23]. The 
G1 collector has not been widely accepted for use in our 
applications as of yet due its lagging performance to CMS. 
However, future improvements to the G1 collector are expected in 
future JDK versions (e.g. JDK9) and hence could be potential 
future work. The proposed work-stealing algorithm improves both 
CMS and PS garbage collectors. This paper targets the CMS 
collector which is widely used and is the default collector at 
Google for JDK8. CMS features both concurrent as well as 
parallel multithreaded garbage collection phases. CMS is 
introduced in the following subsection.  

2.1 The OpenJDK JVM CMS Garbage Collector 

The CMS collector is a mostly-concurrent semi-space 
generational collector [23,31] (based on the hypothesis that most 
objects die young) where the heap is divided into the young 
generation (YoungGen) and the old generation (OldGen). The 
young generation is further divided into the Eden space, and two 
survivor spaces known as S0 and S1. Within our JVM garbage 
collection, 3 separate collectors are used; 1- ParNew: YoungGen 
stop-the-world copying collector. 2- CMS: Concurrent + stop-the-
world phases, mark and sweep collector. 3- Full GC: OldGen 
stop-the-world parallel mark-sweep-compact collector. This is a 
parallel version of the OpenJDK full GC collector developed 
within Google. The default full GC collector within the OpenJDK 
is a serial collector. 

Both concurrent and parallel GC phases are multithreaded. 
Concurrent phases execute while the application is running, while 
stop-the-world phases cause all application threads to be halted. 
Hence stop-the-world GC pauses are critical for application 
performance and response time.  

2.2 The CMS GC Parallel Thread Task Queues 

The OpenJDK JVM uses a GenericTaskQueue which implements 
an ABP, Aurora-Blumofe-Plaxton [1], double-ended-queue 
(deque) for use in work stealing. Queue operations are non-
blocking. A queue owner thread performs push and pop_local 
operations on one end of the queue, while other threads may steal 
work using the pop_global method. The main difference to the 
original ABP algorithm is that the OpenJDK JVM implementation 
allows wrap-around at the end of its allocated storage, which is an 
array. [2] provides the correctness proof and an implementation 
for weakly ordered memory models including (pseudo-) code 
containing memory barriers for a Chase-Lev deque [17,18]. 
Chase-Lev is similar to ABP, with the main difference that it 
allows resizing of the underlying storage. pop_local_slow is used 
by the owning thread when it is trying to get the last task in the 
queue. It will compete with pop_global that is used by other 
threads. Only a single task gets stolen at a time from the deque. 

2.3 The CMS GC Parallel Work-Gang 

During JVM initialization the VM (Virtual Machine) thread 
initiates two sets of work-gangs; the Parallel-GC work-gang and 
the Concurrent-GC work-gang. Each work-gang contains a 
number of threads that will be used during the different phases of 
GC. The number of threads and priority is set at this initial stage, 
thus determining the max number of threads that can be used. A 
subset of the work-gang can be used through FlexibleWorkGangs. 
In this work we are primarily concerned with the Parallel-GC 
work-gang. After each GC thread is initialized, it enters an infinite 
double loop where a monitor is used to control the threads. 

The VM thread does initial work distribution and setup and 
calls WorkGang::run_task for the GC worker threads to execute 
the task. This is done through a monitor->notify_all call. The VM 
thread then waits until the number of finished_workers equals the 
no_of_parallel_workers through a monitor->wait call. Once all 
workers have finished their work the task is complete and the VM 
thread resumes execution. This is repeated per task for the 
different phases of GC. 

2.4 Dynamic Load Balancing and Work Stealing in GC 

Dynamic load balancing (DLB) is a crucial part of optimizing the 
performance of parallel GC threads. DLB makes sure that no 
thread is overloaded while other threads are idle. Hence, it 
redistributes the tasks between threads dynamically. Work 
stealing is a well known DLB approach [2,3,4,5,6,8,16,18] that is 
used in the OpenJDK JVM.  

Figure 1 shows a stop-the-world GC pause. In a stop-the-world 
GC pause, all mutator (application) threads are halted and the VM 
thread takes over. The VM thread distributes the tasks across the 
GC parallel threads in the parallel-GC work-gang. The VM thread 
issues the run command to the GC parallel threads and suspends 
itself, waiting for the GC threads to complete their work. When all 
GC threads enter the parallel GC thread termination phase, this 
signals the end of the GC work and the VM thread regains 
control. The VM thread then awakens the mutator threads and the 
application continues its execution. 

JVM GC work stealing is achieved as follows; After a GC 
thread finishes all its work, it checks to see whether it can steal 
work from other threads’ task queues. If it can, it steals one task at 
a time and executes it. The task stealing cycle continues until no 
further tasks are available to steal in all the task queues. When a 
thread can no longer steal any work it enters the parallel GC 
thread termination phase as shown in Figure 1.  
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Figure 1. Stop-the-world GC phase showing the parallel GC 
thread termination protocol phase. 
 

The OpenJDK JVM parallel-GC thread termination phase 
consists of 3 states; 1- CPU spinning in a spin loop with an 
exponentially increasing number of iterations (up to 4K spin loop 
iterations). Ten state 1 invocations before going to the next yield 
state.  2- A yield state where the GC thread does an OS yield call. 
By default, 5K yields before going to the next sleep state. 3- A 
sleep 1ms state. A GC thread entering the termination phase goes 
through a loop of all 3 states in-order checking whether work 
exists to steal at each state transition. If work exists to steal, a GC 
thread exits the termination phase and continues with its work-
stealing and execution. At each state transition the number of GC 
threads in the parallel-GC thread termination phase is checked. If 
all threads are offering termination, then all threads exit and the 
termination phase ends. All GC threads return to the parallel-GC 
threads work-gang and the VM thread resumes. 

The OpenJDK JVM work stealing algorithm used to decide 
which task queue to steal from is a maximum of two random 
selections. This is repeated 2n times, where n is the number of 
task queues. This algorithm performs quite well according to our 
experiments and outperforms both an overall maximum algorithm 
as well as a random algorithm. These results agree with previous 
publications [9].  

We have identified parallel task termination as a cause for 
wasted GC CPU cycles through a perf hardware events cycle-
accounting analysis on the DaCapo benchmark suite described in 
Section 4.1.1 and through a Google-wide GWP analysis as 
described in Section 4.1.2.  
 
3. Optimized Work-Stealing Threads (OWST)  
In this section we present a new work stealing technique where 
the parallel-GC thread termination protocol reduces CPU spinning 
considerably, is more scalable, improves GC pause times, and 
reduces GC thread contention. We refer to our new technique as 
Optimized Work-Stealing Threads (OWST).  

 
In OWST only a single GC thread is used as the master thread 

(spin-master). The spin-master thread is identified as the first GC 
thread that enters the parallel-GC thread termination phase if no 
other GC thread has already been identified as a spin-master. All 
other GC threads that enter the parallel GC thread termination 
phase enter a wait state. The spin-master thread is the only thread 
that spins and the only thread that checks for work to steal. This is 
achieved by checking all other thread queues. If work exists to 
steal, the spin-master thread calculates the number of GC threads 
needed for this work based on the number of tasks available to 

steal, and wakes up the specified number of threads -1. The spin-
master thread then exits the parallel-GC thread termination phase 
relinquishing its spin-master status to execute as a worker thread 
its share of work stealing. All threads that have been woken up 
from the previous wait state will steal and execute the stolen tasks 
until no further work can be stolen. Then the parallel-GC thread 
termination phase will start again with a new spin-master. Upon 
the final GC thread entering the parallel-GC thread termination 
phase, all waiting threads are woken up and exit the parallel-GC 
thread termination phase, thus ending execution of this phase.  

Although threads can race to acquire the spin-master status, 
which thread wins doesn’t make a difference. Only the first thread 
that acquires the spin-master lock becomes the spin-master, all 
other threads will be wait-type threads. There are no race 
conditions to enter sleep, or to wake up sleepers. 

Threads that go into the wait state periodically wake up and 
check whether they should continue into another wait state or not. 
If tasks are available to steal they should exit the wait state and 
steal them. 

OWST uses the queue length as a good predictor of work to be 
done because the queue holds work at the granularity of a task 
which is the granularity at which work is stolen in the OpenJDK 
JVM. Tasks that represent large sub-graphs are dynamically 
popped-off the queue by the owning thread, divided into their 
subtasks, and pushed back into the queue as tasks that can be 
potentially stolen by other threads. Thus the number of tasks that 
can be stolen is represented by the overall queue length of all 
threads which is used by OWST and dynamically represents the 
work available. 

In the OpenJDK JVM a single JVM main thread is used to 
control all GC threads. Similarly, in OWST a single GC thread is 
used to wake up N GC threads through the same JVM monitor 
wait and notify calls. Only a single thread can acquire the monitor 
lock at a time to issue these calls. Thus having multiple threads 
attempt to acquire the monitor lock results in thread contention 
and performance degradation. Therefore, having a single thread 
issue the notify calls does not reduce the scalability of the 
OpenJDK JVM. If the number of tasks to be stolen is larger than 
the number of waiting threads, then a notify_all call is used to 
wakeup all waiting threads. 

OWST reduces CPU spinning considerably as well as thread 
contention as only a single thread is spinning some of the time and 
only a single thread is checking for available work to steal. 
Moreover, unlike the original work stealing technique where all 
threads are spinning, contending for locks, and checking for work 
to steal, OWST is a scalable mechanism that eliminates contention 
on the shared resources. OWST dynamically selects the number of 
threads needed for the work stealing tasks.  
 

We have experimented with a 1ns sleep only solution as well 
as a reduction in the number of parallel GC threads remaining in 
work-stealing. However, our current solution showed better 
performance, scalability, and dynamic load balancing.  
 
4. Experimental Methodology 

4.1 DaCapo Benchmark Suite on Isolated Lab Machines 

We use isolated Intel Xeon SandyBridge machines to reduce noise 
and variations associated with production machines and achieve 
accurate 1:1 comparison. Our SandyBridge machines are dual-
socket, 8 cores each, HT with 32 threads total, with 2MB L2 
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cache and 20MB L3 cache. Our JVM is based on the OpenJDK 
JVM with some modifications that improve GC performance such 
as the parallelization of the full GC phase. We run the DaCapo 
2009 Benchmark Suite [22]. To reduce variations and noise we 
run each benchmark 30 runs per configuration and take the 
average. Each run containing 9 warm-up runs + 1 measurement 
run. To test scalability, we measure both 8 parallel GC threads 
and 23 parallel GC threads configurations. We choose the max 
heap size per benchmark based on a 2.5x heap multiplier of the 
GC thrashing heap size. Heap sizes are shown in Table 1. 

 
 

Table 1. DaCapo 2009 Benchmark Suite max heap size 
configuration 

 

Benchmark Heap Size (MB) 

avrora 4 

luindex 10 

lusearch 20 

xalan 44 

fop 54 

jython 54 

tomcat 54 

sunflow 64 

pmd 74 

tradesoap 134 

tradebeans 140 

eclipse 172 

h2 574 
 
 

4.2 Data-Center Scale Data Collection GWP 

We use the Google Wide Profiling (GWP) [24, 25] infrastructure 
to collect hardware counter performance data as well as profiling 
data. GWP is a low-overhead continuous profiling infrastructure 
that collects random-sampling based performance data.  Results 
presented in this paper use the Google JVM which is based on the 
OpenJDK JDK8.  

To do an A/B comparison of GWP data from comparable same 
jobs we compare jobs with the following factors constant; job, 
program name, user, last change ID, hardware platform, heap size 
(YoungGen and OldGen), and memory heap committed bytes. We 
average values from the same jobs and compare two versions of 
the OpenJDK JVM before OWST enabling and after. We show 
the geomean across different jobs as well as the weighted 
geomean where values are weighted by the number of jobs.  

  
 

5. Results 

5.1 DaCapo Benchmark Suite Analysis 

In this section we describe the results of DaCapo benchmark suite 
using the infrastructure described in Section 4.2. The DaCapo 
benchmark suite gives a wide range of application behaviour 
resulting from its different applications and hence is useful in 
understanding the OpenJDK JVM GC behaviour. Our 
experimental setup described in Section 4.2 reduces experimental 
noise considerably, thus isolating the effects of changes on the 
OpenJDK JVM GC.  Figures 2 and 3 show the number of work 
stealing spin invocations for 23 parallel GC threads (23T) and 8 
parallel GC threads (8T) respectively. We choose 23T since it is 
the default OpenJDK parallel GC thread configuration for a 32 
thread SandyBridge machine used in our experiments as described 
in Section 4.1.1. We choose 8T since it is the experimental 
optimal parallel GC thread configuration based on our 
performance results for the DaCapo benchmark suite using the 
OpenJDK JVM. Baseline runs use the default OpenJDK JVM 
work stealing technique described in Section 2.4. Our results 
show that OWST reduces the number of spin invocations 
considerably by up to 97%, 92% on average (23T) and up to 86%, 
79% on average (8T). This results in considerable savings in CPU 
utilization, an important metric at the data-center scale as it 
translates into real resources usage and power consumption as will 
be shown in Section 5.1.3. 

 
In Figure 4 we analyze the scalability of OWST compared to 

the baseline JVM work-stealing. Scalability is a major factor at 
the data-center scale as application sizes keep increasing as well 
as memory consumption. Hence, scalable, more efficient memory 
management is crucial. Our analysis shows that as the number of 
threads increase from 8 to 23 threads most DaCapo benchmarks 
suffer an increase in the number of CPU spin invocations per 
thread. This is due to the contention between threads. However, as 
we compare the performance of OWST as we scale from 8 to 23 
threads we can see that the number of CPU spin invocations per 
thread in all DaCapo benchmarks decreases indicating a scalable 
solution. This is due to the replacement of an all thread spin non-
scalable work-stealing with a single thread spin OWST scalable 
technique. 

 
Figures 5 and 6 show the YoungGen and OldGen GC pause 

times respectively. Both YoungGen and OldGen GC use OWST 
parallel GC threads and are StopTheWorld phases. Hence, the 
application is stopped while parallel GC threads are used to 
collect the heap. OWST reduces YoungGen GC pause time by up 
to 13% (23T) and (10%) 8T. OWST reduces OldGen GC pause 
time by up to 45% (23T) and 5% (8T). These GC pause time 
improvements are a result of the reduction of parallel GC thread 
termination cycles as well as the improvement of work-stealing 
task execution by the GC threads. In OWST useless threads no 
longer try to steal tasks from other useful threads or from each 
other. OWST reduces the contention on monitors, locks as well as 
shared hardware resources between the parallel GC threads. This 
is important as useless threads have no value (no work to execute) 
and only result in the degradation of the performance of the 
OpenJDK JVM GC in addition to the wasted cycles both in CPU 
utilization as well as power consumption. The overall reduction in 
GC pause times in OWST improves performance by up to 7% 
(23T and 8T) on the DaCapo benchmark suite. 
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Figure 2. Number of work-stealing CPU spin invocations using 
23 parallel GC threads (23T) on the DaCapo Benchmark Suite 
 

 
Figure 3. Number of work-stealing CPU spin invocations using 8 
parallel GC threads (8T) on the DaCapo Benchmark Suite 
 

 
Figure 4. Scalability Analysis. Number of work-stealing CPU spin invocations per thread on the DaCapo Benchmark Suite 

 

 
Figure 5. YoungGen GC pause time 
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Figure 6. OldGen GC pause time. In some cases, there are no OG GCs. 

 
5.2 Gmail Front-End Server 

Gmail is a latency critical application that runs a large number of 
jobs within Google data centers. The performance of Gmail scales 
well with JVM GC threads and hence it uses 23 parallel GC 
threads on an Intel SandyBridge machine. With OWST Gmail 
shows a 15-20% GC CPU reduction as shown in Figure 7 and a 
5% CPU performance improvement as shown in Figure 8. OWST 
also resulted in a 0.2% memory usage reduction. Results were 
measured using a control (baseline) and test jobs chosen in the 
same cell and with the same characteristics. OWST has been 
enabled by Gmail in production. 
 
 

 
 

Figure 7. Gmail GC CPU Utilization 
 

 
 

 

 
 

Figure 8. Gmail CPU Time 
 

5.3 Data-Center Scale Results 

We have rolled out OWST to production as a default enabled in 
the Google JDK8 JVM. Initial GWP results have shown that the 
wasted CPU spin cycles observed in the GC parallel termination 
phase with our original JVM has been reduced by over 50% by 
OWST. As the OWST is further adapted in Google applications 
we expect the wasted CPU spin cycles to go down further.  

 
In this section we analyze the results of a set of ~59K 

production jobs we gathered through GWP. The results compare 
two versions of the OpenJDK JVM without (prior to enabling 
OWST) and with OWST. We use the number of instances of a job 
as the weight in our weighted-geomean calculations. 

We calculate the GC CPU utilization ratio for each job 
(proportion of total CPU cycles spent in GC) as shown in equation 
(1). The improvement in GC CPU utilization ratio is calculated by 
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comparing without (Baseline) vs with OWST as shown in 
equation (2). We calculate GC pause time per GC event as shown 
in equation (3). 

Our results show that overall GC CPU utilization improves by 
38% geomean, 12% weighted geomean. GC pause time per GC 
improves by 16% geomean, 20% weighted geomean. Full GC 
pause time per GC improves by 34% geomean, 12% weighted 
geomean.   
 
 
- Job GC CPU utilization ratio = Avg over all instances of Job 
(GC time / CPU time)                         (1) 
 
- GC CPU utilization ratio improvement = (Baseline Job GC 
CPU utilization ratio) / (OWST Job GC CPU utilization ratio)  (2) 
 
- GC CPU utilization ratio improvement values above 1 indicate a 
reduction in the CPU time consumed by GC. 
 
- GC time per GC = GC time / GC count.                                  (3) 
where GC count = the number of GC occurrences.        

 
 

Figures 9, 10, and 11 show that the Geomean improves 
(whether weighted by the number of jobs or not) across different 
applications for GC CPU utilization, GC time, and Full GC time 
respectively. Figure 9 shows the GC CPU utilization ratio 
improvements in top application performers from our ~59K job 
sample. Our top performers contribute ~11K jobs. Figures 10 and 
11 show the corresponding improvements in GC pause time and 
full GC pause time. Weighted geomean GC CPU utilization ratio 
has improved by up to 3.9x, while weighted geomeans of GC time 
ratio and full GC time ratio improved by up to 2.05x and 1.34x 
respectively. 

 
 

 
Figure 9. GC CPU utilization ratio of top OWST job performers. 

 

 
Figure 10. GC time per GC ratio of top OWST job performers. 

 
 

 
Figure 11. Full GC time per GC ratio of top OWST job 
performers. In some cases, there are no full GCs. 
 
 

6. Related Work 
Several GC thread load-balancing mechanisms have been 
proposed in the literature. Pool-sharing [13, 14] uses a global task 
pool for work-stealing. GC threads that have completed their 
assigned work can steal tasks from the global task pool. This 
technique however requires synchronization of the shared task 
pool and thus results in synchronization overhead and non-optimal 
performance. In [30] work packets are used instead of mark stacks 
to distribute objects evenly between threads through a pool where 
a thread doesn’t keep the work it generates. 

 
 Task-pushing [11] attempts to eliminate the synchronization 

overhead by allowing GC threads to add tasks to other GC 
threads’ task Queues (taskQs). In order to achieve this a taskQ for 
each GC thread is created in each GC thread. Thus the number of 
taskQs created is n2 in addition to a private marking stack per GC 
thread. Synchronization is needed for the queue operation into 
another GC thread’s taskQ. A GC thread is arbitrarily designated 
to be the termination detecting thread. GC threads have to finish 
the work on their marking stacks as well as all their taskQs from 
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all other threads. To improve task selection for sharing tasks, 
marking stacks are allowed to drip from the bottom of the 
marking task if other threads are free and hence uses the same 
technique as work-stealing [1]. This old-task dripping achieves 
the best performance.  

 
Work-Stealing (Task-polling) [5,9,14,15] is the technique 

currently used in the OpenJDK JVM. GC threads that have 
completed their assigned task check whether any other GC thread 
has a task for them to steal, if so, it steals it. Otherwise, the thread 
spins/yields/sleeps waiting for tasks to be created or the GC phase 
to end. Only a single task is stolen at a time and hence 
synchronization only happens on the last task in the taskQ. In [14, 
5] stealing half of the tasks in another GC’s thread showed good 
scalability. In [14] each GC thread has a localQ and an auxiliaryQ 
where it keeps tasks that another thread can steal. Periodically 
each thread checks its auxiliaryQ and if empty it moves half of its 
tasks into the empty Q. They proposed a try-lock-then-steal 
synchronization. In [15] improved over the previous design in 
[14] by adding a non-blocking double-ended queue. JVM already 
uses a non-blocking deque with sync only on the last element 
popQ. Implementing the steal-half technique in the OpenJDK 
JVM has been shown by [9] to not give performance 
improvements. Using different stealing algorithms than steal best 
of 2 random selections currently used by the OpenJDK JVM (e.g. 
best of all or random selection) has also been shown to not give 
performance improvements in [9] and agrees with our results.  

 
In [29] Balanced Work Stealing (BWS) a linux OS scheduling 

algorithm that uses work-stealing is proposed. BWS targets multi-
applications running on the OS and hence suffers from different 
system characteristics and problems. BWS has no spinning as it is 
a yield/sleep OS scheduling algorithm and threads belong to 
different applications. This is in contrast to OWST a JVM GC 
algorithm where spinning is a major component resolved by the 
OWST algorithm and consumes a large amount of CPU cycles. A 
yield call as used in BWS will immediately return (effectively 
continues running/spinning) if there is an available CPU as a yield 
simply adds the thread to the end of the queue and hence does not 
resolve the CPU spinning issues that OWST resolves. The 
OpenJDK JVM work-stealing algorithm is different from the ABP 
algorithm given in the BWS paper [29], as no yielding occurs 
before work-stealing. BWS randomly selects a single worker to 
steal from. In contrast, OWST uses a max of 2 random selections 
algorithm repeatedly until it finds a task to steal or 2n times, 
where n is the number of task queues. OWST work-stealing 
algorithm performs better than just a random selection in our 
experiments as well as in previous studies [9] as it is better able to 
find a task to steal if one exists in any thread. BWS relies on each 
thread using 2 counters to guess how it should behave (each 
thread has to randomly select a victim and decide whether to 
yield/sleep). Each thread can wake-up 2 other worker threads and 
a watchdog thread uses the same algorithm but doesn’t sleep. 
OWST does not use yield or sleep but uses a wait/notify algorithm 
that is controlled by a single master thread that is aware of how 
many tasks exist in all queues and is able to notify the correct 
needed number of waiting threads. Thus OWST does a better 
decision based on the overall status of all threads’ task queues and 
notifies exactly the number of threads needed. 

 
Mark-Sharing [12] relies on both task-stealing and task-

releasing. [12] uses transactional memory (HTM), is simulation-
based using the Simics simulator, and uses an in-order 

microprocessor. Each thread maintains a local taskQ and a 
globally accessible auxiliaryQ. Each GC thread steals from its 
own auxiliaryQ first then from any global auxiliaryQ.  Task-
release occurs when a thread traverses a node with degree > 
threshold. In this operation the tasks are added to the auxiliaryQ 
and not the localQ. A selection manager is used to minimize 
contention and keep task information. It shows which auxiliaryQs 
have tasks and which to avoid (least recently retained tasks). 
Thread termination uses distributed local flags and a single global 
flag. One thread (the selection thread) determines termination 
only.  

 
Work-sharing [10] uses the address of a word in the mark-

bitmap as the key to stripe work among parallel threads. This 
reduces contention during the update of the mark-bit-map. [16] 
shows locality guided work-stealing. Message-Passing work-
stealing [4] has proposed removing all concurrent deques and 
replacing them with totally private deques and using message 
passing for work stealing whether sender or receiver initiated.  

 

7. Conclusion 
This paper presents a novel JVM GC work-stealing technique that 
reduces GC CPU utilization, GC pause time, and improves GC 
scalability. At scale, GC CPU utilization translates into real 
resource usage and power consumption. GC CPU spinning in the 
OpenJDK JVM GC work-stealing parallel task termination is 
reduced by up to 86% (8T) and 97% (23T) on DaCapo 
benchmarks. YoungGen GC pause time is reduced by up to 13% 
(23T) and (10%) 8T. OldGen GC pause time is reduced by up to 
45% (23T) and 5% (8T). Performance improved by up to 7% (23T 
and 8T) on DaCapo benchmarks. A study of Gmail front-end 
server shows a 15-20% GC CPU reduction, a 5% CPU 
performance improvement. We further analyze the effects of the 
presented GC work-stealing technique on the Google data-center 
production jobs by enabling OWST and rolling out to production 
in the Google JVM. We use GWP to profile and measure 
hardware counter performance of data center Jobs. Our results 
show that GC CPU utilization improves by 38% geomean, 12% 
weighted geomean. GC pause time improves by 16% geomean, 
20% weighted geomean. Full GC pause time improves by 34% 
geomean, 12% weighted geomean. These improvements translate 
into real resource savings in CPU and power consumption in the 
Google data centers. 
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