

Understanding and Improving JVM GC Work Stealing at the
Data Center Scale

Wessam Hassanein

Google Inc., Mountain View, CA, USA
wessam@google.com

Abstract
Garbage collection (GC) is a critical part of performance in
managed run-time systems such as the OpenJDK Java Virtual
Machine (JVM). With a large number of latency sensitive
applications written in Java the performance of the JVM is
essential. Java application servers run in data centers on a large
number of multi-core servers, thus load balancing in multi-
threaded GC phases is critical. Dynamic load balancing in the
JVM GC is achieved through work stealing, a well known and
effective method to balance tasks across threads. This paper
analyzes the JVM work stealing behaviour, and introduces a novel
work stealing technique that improves performance, GC CPU
utilization, scalability, and reduces the cost of jobs running on
Google’s data-centers. We analyze both the DaCapo benchmark
suite as well as Google’s data-center jobs. Our results show that
the Gmail front-end server shows a 15-20% GC CPU reduction,
and a 5% CPU performance improvement. Our analysis of a
sample of ~59K jobs shows that GC CPU utilization improves by
38% geomean, 12% weighted geomean. GC pause time improves
by 16% geomean, 20% weighted geomean. Full GC pause time
improves by 34% geomean, 12% weighted geomean.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—memory management, optimization,
run-time environments

General Terms Algorithms, Languages, Performance

Keywords work stealing, garbage collection, dynamic load
balancing

1. Introduction
Today Java is one of the most popular languages for application
development. Large scale real-time data-intensive Java
applications run in large data centers taking advantage of
heterogeneous multi-core hardware. Java applications include
Google Web Search, Gmail, Docs, social networking, etc. These
latency critical (LC) applications [21] process large amounts of
data and have tight response time requirements. These
requirements are set by service level agreements (SLAs) [21] in
data centers. Hundreds to thousands of parallel threads are used
by applications. Thus real time performance of the JVM is
imperative.

A data-center houses a cluster [21] of machines. Borg [21] is
Google’s cluster manager which runs hundreds of thousands of
applications. An application (submitted as a Borg Job) usually
consists of hundreds of tasks. Each job runs in one Borg cell, a set
of machines managed as a unit. A task consists of the application
binary, associated data, and a Borg configuration file that
specifies application requirements such as processor architecture,
number of cores, memory, disk space, as well as machine
scheduling requirements, such as only a single task to run on the
machine. Borg handles task scheduling, reserves resources, and
uses resource containers to isolate different tasks running on the
same machine. Borg also monitors tasks, can change resources
reserved, and can kill tasks that use more resources than
requested. Hence seemingly unhealthy jobs due to large GC pause
times can get killed.

A major component of JVM performance is Garbage
Collection. GC performs automatic memory management, one of
the main advantages of managed languages such as Java, where
developers need not worry about de-allocating memory but can
rely on GC. GC contains multiple stop-the-world phases where
all application threads are halted and only GC threads are
executing. At scale, GC CPU utilization translates into real
resource usage and power consumption. Thus reducing GC pause
times, GC CPU utilization, and improving scalability for such
phases is critical. Dynamic load balancing in the OpenJDK JVM
GC is achieved through work stealing
[2,3,4,5,6,8,16,18,26,27,28,29], a well known and effective
method to balance gc-tasks across threads. In this paper we show
wasted CPU utilization in the current JVM GC work-stealing
mechanism and present a new work-stealing technique that
considerably reduces GC CPU utilization (percentage of CPU
time spent in GC for that workload) and improves scalability and
GC performance.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
Copyright is held by the owner/author(s).

ISMM’16, June 14, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4317-6/16/06...$15.00
http://dx.doi.org/10.1145/2926697.2926706

46

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs International 4.0 License.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2926697.2926706&domain=pdf&date_stamp=2016-06-14

In this paper we characterize the behaviour of the OpenJDK
JVM GC in Google’s Borg managed data-centers showing the
effects of the newly proposed work-stealing protocol on large
scale data center deployment within Google. We use Google Wide
Profiling (GWP) [24, 25] to gather hardware-counter performance
data as well as job profiling data. We present both data-center
scale data as well as isolated machine results that reduce both
noise and result variations. We also present a study of the Gmail
front-end server application (a highly scalable application)
showing the effects of the newly proposed work-stealing
technique.

This paper is organized as follows: Section 2 describes

Google’s OpenJDK-based JVM GC. In Section 3, we present the
details of a new work-stealing technique namely; Optimized Work
Stealing Threads (OWST). Sections 4 and 5 discuss the
experimental methodology and results, respectively. Section 6
presents related work. Finally, conclusions are provided in Section
7.

2. Background
One of the main features of managed runtime systems is
automatic memory management through Garbage collection (GC).
The OpenJDK JVM has several types of GCs including; Serial,
Parallel Scavenge (PS), Concurrent Mark-Sweep (CMS), and G1.
Due to performance reasons on multi-core hardware the parallel
collectors have been widely preferred over the serial collector and
are studied in most previous work [5,12,13,14,15,19,20,23]. The
G1 collector has not been widely accepted for use in our
applications as of yet due its lagging performance to CMS.
However, future improvements to the G1 collector are expected in
future JDK versions (e.g. JDK9) and hence could be potential
future work. The proposed work-stealing algorithm improves both
CMS and PS garbage collectors. This paper targets the CMS
collector which is widely used and is the default collector at
Google for JDK8. CMS features both concurrent as well as
parallel multithreaded garbage collection phases. CMS is
introduced in the following subsection.

2.1 The OpenJDK JVM CMS Garbage Collector

The CMS collector is a mostly-concurrent semi-space
generational collector [23,31] (based on the hypothesis that most
objects die young) where the heap is divided into the young
generation (YoungGen) and the old generation (OldGen). The
young generation is further divided into the Eden space, and two
survivor spaces known as S0 and S1. Within our JVM garbage
collection, 3 separate collectors are used; 1- ParNew: YoungGen
stop-the-world copying collector. 2- CMS: Concurrent + stop-the-
world phases, mark and sweep collector. 3- Full GC: OldGen
stop-the-world parallel mark-sweep-compact collector. This is a
parallel version of the OpenJDK full GC collector developed
within Google. The default full GC collector within the OpenJDK
is a serial collector.

Both concurrent and parallel GC phases are multithreaded.
Concurrent phases execute while the application is running, while
stop-the-world phases cause all application threads to be halted.
Hence stop-the-world GC pauses are critical for application
performance and response time.

2.2 The CMS GC Parallel Thread Task Queues

The OpenJDK JVM uses a GenericTaskQueue which implements
an ABP, Aurora-Blumofe-Plaxton [1], double-ended-queue
(deque) for use in work stealing. Queue operations are non-
blocking. A queue owner thread performs push and pop_local
operations on one end of the queue, while other threads may steal
work using the pop_global method. The main difference to the
original ABP algorithm is that the OpenJDK JVM implementation
allows wrap-around at the end of its allocated storage, which is an
array. [2] provides the correctness proof and an implementation
for weakly ordered memory models including (pseudo-) code
containing memory barriers for a Chase-Lev deque [17,18].
Chase-Lev is similar to ABP, with the main difference that it
allows resizing of the underlying storage. pop_local_slow is used
by the owning thread when it is trying to get the last task in the
queue. It will compete with pop_global that is used by other
threads. Only a single task gets stolen at a time from the deque.

2.3 The CMS GC Parallel Work-Gang

During JVM initialization the VM (Virtual Machine) thread
initiates two sets of work-gangs; the Parallel-GC work-gang and
the Concurrent-GC work-gang. Each work-gang contains a
number of threads that will be used during the different phases of
GC. The number of threads and priority is set at this initial stage,
thus determining the max number of threads that can be used. A
subset of the work-gang can be used through FlexibleWorkGangs.
In this work we are primarily concerned with the Parallel-GC
work-gang. After each GC thread is initialized, it enters an infinite
double loop where a monitor is used to control the threads.

The VM thread does initial work distribution and setup and
calls WorkGang::run_task for the GC worker threads to execute
the task. This is done through a monitor->notify_all call. The VM
thread then waits until the number of finished_workers equals the
no_of_parallel_workers through a monitor->wait call. Once all
workers have finished their work the task is complete and the VM
thread resumes execution. This is repeated per task for the
different phases of GC.

2.4 Dynamic Load Balancing and Work Stealing in GC

Dynamic load balancing (DLB) is a crucial part of optimizing the
performance of parallel GC threads. DLB makes sure that no
thread is overloaded while other threads are idle. Hence, it
redistributes the tasks between threads dynamically. Work
stealing is a well known DLB approach [2,3,4,5,6,8,16,18] that is
used in the OpenJDK JVM.

Figure 1 shows a stop-the-world GC pause. In a stop-the-world
GC pause, all mutator (application) threads are halted and the VM
thread takes over. The VM thread distributes the tasks across the
GC parallel threads in the parallel-GC work-gang. The VM thread
issues the run command to the GC parallel threads and suspends
itself, waiting for the GC threads to complete their work. When all
GC threads enter the parallel GC thread termination phase, this
signals the end of the GC work and the VM thread regains
control. The VM thread then awakens the mutator threads and the
application continues its execution.

JVM GC work stealing is achieved as follows; After a GC
thread finishes all its work, it checks to see whether it can steal
work from other threads’ task queues. If it can, it steals one task at
a time and executes it. The task stealing cycle continues until no
further tasks are available to steal in all the task queues. When a
thread can no longer steal any work it enters the parallel GC
thread termination phase as shown in Figure 1.

47

Figure 1. Stop-the-world GC phase showing the parallel GC
thread termination protocol phase.

The OpenJDK JVM parallel-GC thread termination phase
consists of 3 states; 1- CPU spinning in a spin loop with an
exponentially increasing number of iterations (up to 4K spin loop
iterations). Ten state 1 invocations before going to the next yield
state. 2- A yield state where the GC thread does an OS yield call.
By default, 5K yields before going to the next sleep state. 3- A
sleep 1ms state. A GC thread entering the termination phase goes
through a loop of all 3 states in-order checking whether work
exists to steal at each state transition. If work exists to steal, a GC
thread exits the termination phase and continues with its work-
stealing and execution. At each state transition the number of GC
threads in the parallel-GC thread termination phase is checked. If
all threads are offering termination, then all threads exit and the
termination phase ends. All GC threads return to the parallel-GC
threads work-gang and the VM thread resumes.

The OpenJDK JVM work stealing algorithm used to decide
which task queue to steal from is a maximum of two random
selections. This is repeated 2n times, where n is the number of
task queues. This algorithm performs quite well according to our
experiments and outperforms both an overall maximum algorithm
as well as a random algorithm. These results agree with previous
publications [9].

We have identified parallel task termination as a cause for
wasted GC CPU cycles through a perf hardware events cycle-
accounting analysis on the DaCapo benchmark suite described in
Section 4.1.1 and through a Google-wide GWP analysis as
described in Section 4.1.2.

3. Optimized Work-Stealing Threads (OWST)
In this section we present a new work stealing technique where
the parallel-GC thread termination protocol reduces CPU spinning
considerably, is more scalable, improves GC pause times, and
reduces GC thread contention. We refer to our new technique as
Optimized Work-Stealing Threads (OWST).

In OWST only a single GC thread is used as the master thread

(spin-master). The spin-master thread is identified as the first GC
thread that enters the parallel-GC thread termination phase if no
other GC thread has already been identified as a spin-master. All
other GC threads that enter the parallel GC thread termination
phase enter a wait state. The spin-master thread is the only thread
that spins and the only thread that checks for work to steal. This is
achieved by checking all other thread queues. If work exists to
steal, the spin-master thread calculates the number of GC threads
needed for this work based on the number of tasks available to

steal, and wakes up the specified number of threads -1. The spin-
master thread then exits the parallel-GC thread termination phase
relinquishing its spin-master status to execute as a worker thread
its share of work stealing. All threads that have been woken up
from the previous wait state will steal and execute the stolen tasks
until no further work can be stolen. Then the parallel-GC thread
termination phase will start again with a new spin-master. Upon
the final GC thread entering the parallel-GC thread termination
phase, all waiting threads are woken up and exit the parallel-GC
thread termination phase, thus ending execution of this phase.

Although threads can race to acquire the spin-master status,
which thread wins doesn’t make a difference. Only the first thread
that acquires the spin-master lock becomes the spin-master, all
other threads will be wait-type threads. There are no race
conditions to enter sleep, or to wake up sleepers.

Threads that go into the wait state periodically wake up and
check whether they should continue into another wait state or not.
If tasks are available to steal they should exit the wait state and
steal them.

OWST uses the queue length as a good predictor of work to be
done because the queue holds work at the granularity of a task
which is the granularity at which work is stolen in the OpenJDK
JVM. Tasks that represent large sub-graphs are dynamically
popped-off the queue by the owning thread, divided into their
subtasks, and pushed back into the queue as tasks that can be
potentially stolen by other threads. Thus the number of tasks that
can be stolen is represented by the overall queue length of all
threads which is used by OWST and dynamically represents the
work available.

In the OpenJDK JVM a single JVM main thread is used to
control all GC threads. Similarly, in OWST a single GC thread is
used to wake up N GC threads through the same JVM monitor
wait and notify calls. Only a single thread can acquire the monitor
lock at a time to issue these calls. Thus having multiple threads
attempt to acquire the monitor lock results in thread contention
and performance degradation. Therefore, having a single thread
issue the notify calls does not reduce the scalability of the
OpenJDK JVM. If the number of tasks to be stolen is larger than
the number of waiting threads, then a notify_all call is used to
wakeup all waiting threads.

OWST reduces CPU spinning considerably as well as thread
contention as only a single thread is spinning some of the time and
only a single thread is checking for available work to steal.
Moreover, unlike the original work stealing technique where all
threads are spinning, contending for locks, and checking for work
to steal, OWST is a scalable mechanism that eliminates contention
on the shared resources. OWST dynamically selects the number of
threads needed for the work stealing tasks.

We have experimented with a 1ns sleep only solution as well
as a reduction in the number of parallel GC threads remaining in
work-stealing. However, our current solution showed better
performance, scalability, and dynamic load balancing.

4. Experimental Methodology

4.1 DaCapo Benchmark Suite on Isolated Lab Machines

We use isolated Intel Xeon SandyBridge machines to reduce noise
and variations associated with production machines and achieve
accurate 1:1 comparison. Our SandyBridge machines are dual-
socket, 8 cores each, HT with 32 threads total, with 2MB L2

48

cache and 20MB L3 cache. Our JVM is based on the OpenJDK
JVM with some modifications that improve GC performance such
as the parallelization of the full GC phase. We run the DaCapo
2009 Benchmark Suite [22]. To reduce variations and noise we
run each benchmark 30 runs per configuration and take the
average. Each run containing 9 warm-up runs + 1 measurement
run. To test scalability, we measure both 8 parallel GC threads
and 23 parallel GC threads configurations. We choose the max
heap size per benchmark based on a 2.5x heap multiplier of the
GC thrashing heap size. Heap sizes are shown in Table 1.

Table 1. DaCapo 2009 Benchmark Suite max heap size
configuration

Benchmark Heap Size (MB)

avrora 4

luindex 10

lusearch 20

xalan 44

fop 54

jython 54

tomcat 54

sunflow 64

pmd 74

tradesoap 134

tradebeans 140

eclipse 172

h2 574

4.2 Data-Center Scale Data Collection GWP

We use the Google Wide Profiling (GWP) [24, 25] infrastructure
to collect hardware counter performance data as well as profiling
data. GWP is a low-overhead continuous profiling infrastructure
that collects random-sampling based performance data. Results
presented in this paper use the Google JVM which is based on the
OpenJDK JDK8.

To do an A/B comparison of GWP data from comparable same
jobs we compare jobs with the following factors constant; job,
program name, user, last change ID, hardware platform, heap size
(YoungGen and OldGen), and memory heap committed bytes. We
average values from the same jobs and compare two versions of
the OpenJDK JVM before OWST enabling and after. We show
the geomean across different jobs as well as the weighted
geomean where values are weighted by the number of jobs.

5. Results

5.1 DaCapo Benchmark Suite Analysis

In this section we describe the results of DaCapo benchmark suite
using the infrastructure described in Section 4.2. The DaCapo
benchmark suite gives a wide range of application behaviour
resulting from its different applications and hence is useful in
understanding the OpenJDK JVM GC behaviour. Our
experimental setup described in Section 4.2 reduces experimental
noise considerably, thus isolating the effects of changes on the
OpenJDK JVM GC. Figures 2 and 3 show the number of work
stealing spin invocations for 23 parallel GC threads (23T) and 8
parallel GC threads (8T) respectively. We choose 23T since it is
the default OpenJDK parallel GC thread configuration for a 32
thread SandyBridge machine used in our experiments as described
in Section 4.1.1. We choose 8T since it is the experimental
optimal parallel GC thread configuration based on our
performance results for the DaCapo benchmark suite using the
OpenJDK JVM. Baseline runs use the default OpenJDK JVM
work stealing technique described in Section 2.4. Our results
show that OWST reduces the number of spin invocations
considerably by up to 97%, 92% on average (23T) and up to 86%,
79% on average (8T). This results in considerable savings in CPU
utilization, an important metric at the data-center scale as it
translates into real resources usage and power consumption as will
be shown in Section 5.1.3.

In Figure 4 we analyze the scalability of OWST compared to

the baseline JVM work-stealing. Scalability is a major factor at
the data-center scale as application sizes keep increasing as well
as memory consumption. Hence, scalable, more efficient memory
management is crucial. Our analysis shows that as the number of
threads increase from 8 to 23 threads most DaCapo benchmarks
suffer an increase in the number of CPU spin invocations per
thread. This is due to the contention between threads. However, as
we compare the performance of OWST as we scale from 8 to 23
threads we can see that the number of CPU spin invocations per
thread in all DaCapo benchmarks decreases indicating a scalable
solution. This is due to the replacement of an all thread spin non-
scalable work-stealing with a single thread spin OWST scalable
technique.

Figures 5 and 6 show the YoungGen and OldGen GC pause

times respectively. Both YoungGen and OldGen GC use OWST
parallel GC threads and are StopTheWorld phases. Hence, the
application is stopped while parallel GC threads are used to
collect the heap. OWST reduces YoungGen GC pause time by up
to 13% (23T) and (10%) 8T. OWST reduces OldGen GC pause
time by up to 45% (23T) and 5% (8T). These GC pause time
improvements are a result of the reduction of parallel GC thread
termination cycles as well as the improvement of work-stealing
task execution by the GC threads. In OWST useless threads no
longer try to steal tasks from other useful threads or from each
other. OWST reduces the contention on monitors, locks as well as
shared hardware resources between the parallel GC threads. This
is important as useless threads have no value (no work to execute)
and only result in the degradation of the performance of the
OpenJDK JVM GC in addition to the wasted cycles both in CPU
utilization as well as power consumption. The overall reduction in
GC pause times in OWST improves performance by up to 7%
(23T and 8T) on the DaCapo benchmark suite.

49

Figure 2. Number of work-stealing CPU spin invocations using
23 parallel GC threads (23T) on the DaCapo Benchmark Suite

Figure 3. Number of work-stealing CPU spin invocations using 8
parallel GC threads (8T) on the DaCapo Benchmark Suite

Figure 4. Scalability Analysis. Number of work-stealing CPU spin invocations per thread on the DaCapo Benchmark Suite

Figure 5. YoungGen GC pause time

50

Figure 6. OldGen GC pause time. In some cases, there are no OG GCs.

5.2 Gmail Front-End Server

Gmail is a latency critical application that runs a large number of
jobs within Google data centers. The performance of Gmail scales
well with JVM GC threads and hence it uses 23 parallel GC
threads on an Intel SandyBridge machine. With OWST Gmail
shows a 15-20% GC CPU reduction as shown in Figure 7 and a
5% CPU performance improvement as shown in Figure 8. OWST
also resulted in a 0.2% memory usage reduction. Results were
measured using a control (baseline) and test jobs chosen in the
same cell and with the same characteristics. OWST has been
enabled by Gmail in production.

Figure 7. Gmail GC CPU Utilization

Figure 8. Gmail CPU Time

5.3 Data-Center Scale Results

We have rolled out OWST to production as a default enabled in
the Google JDK8 JVM. Initial GWP results have shown that the
wasted CPU spin cycles observed in the GC parallel termination
phase with our original JVM has been reduced by over 50% by
OWST. As the OWST is further adapted in Google applications
we expect the wasted CPU spin cycles to go down further.

In this section we analyze the results of a set of ~59K

production jobs we gathered through GWP. The results compare
two versions of the OpenJDK JVM without (prior to enabling
OWST) and with OWST. We use the number of instances of a job
as the weight in our weighted-geomean calculations.

We calculate the GC CPU utilization ratio for each job
(proportion of total CPU cycles spent in GC) as shown in equation
(1). The improvement in GC CPU utilization ratio is calculated by

51

comparing without (Baseline) vs with OWST as shown in
equation (2). We calculate GC pause time per GC event as shown
in equation (3).

Our results show that overall GC CPU utilization improves by
38% geomean, 12% weighted geomean. GC pause time per GC
improves by 16% geomean, 20% weighted geomean. Full GC
pause time per GC improves by 34% geomean, 12% weighted
geomean.

- Job GC CPU utilization ratio = Avg over all instances of Job
(GC time / CPU time) (1)

- GC CPU utilization ratio improvement = (Baseline Job GC
CPU utilization ratio) / (OWST Job GC CPU utilization ratio) (2)

- GC CPU utilization ratio improvement values above 1 indicate a
reduction in the CPU time consumed by GC.

- GC time per GC = GC time / GC count. (3)
where GC count = the number of GC occurrences.

Figures 9, 10, and 11 show that the Geomean improves
(whether weighted by the number of jobs or not) across different
applications for GC CPU utilization, GC time, and Full GC time
respectively. Figure 9 shows the GC CPU utilization ratio
improvements in top application performers from our ~59K job
sample. Our top performers contribute ~11K jobs. Figures 10 and
11 show the corresponding improvements in GC pause time and
full GC pause time. Weighted geomean GC CPU utilization ratio
has improved by up to 3.9x, while weighted geomeans of GC time
ratio and full GC time ratio improved by up to 2.05x and 1.34x
respectively.

Figure 9. GC CPU utilization ratio of top OWST job performers.

Figure 10. GC time per GC ratio of top OWST job performers.

Figure 11. Full GC time per GC ratio of top OWST job
performers. In some cases, there are no full GCs.

6. Related Work
Several GC thread load-balancing mechanisms have been
proposed in the literature. Pool-sharing [13, 14] uses a global task
pool for work-stealing. GC threads that have completed their
assigned work can steal tasks from the global task pool. This
technique however requires synchronization of the shared task
pool and thus results in synchronization overhead and non-optimal
performance. In [30] work packets are used instead of mark stacks
to distribute objects evenly between threads through a pool where
a thread doesn’t keep the work it generates.

 Task-pushing [11] attempts to eliminate the synchronization

overhead by allowing GC threads to add tasks to other GC
threads’ task Queues (taskQs). In order to achieve this a taskQ for
each GC thread is created in each GC thread. Thus the number of
taskQs created is n2 in addition to a private marking stack per GC
thread. Synchronization is needed for the queue operation into
another GC thread’s taskQ. A GC thread is arbitrarily designated
to be the termination detecting thread. GC threads have to finish
the work on their marking stacks as well as all their taskQs from

52

all other threads. To improve task selection for sharing tasks,
marking stacks are allowed to drip from the bottom of the
marking task if other threads are free and hence uses the same
technique as work-stealing [1]. This old-task dripping achieves
the best performance.

Work-Stealing (Task-polling) [5,9,14,15] is the technique

currently used in the OpenJDK JVM. GC threads that have
completed their assigned task check whether any other GC thread
has a task for them to steal, if so, it steals it. Otherwise, the thread
spins/yields/sleeps waiting for tasks to be created or the GC phase
to end. Only a single task is stolen at a time and hence
synchronization only happens on the last task in the taskQ. In [14,
5] stealing half of the tasks in another GC’s thread showed good
scalability. In [14] each GC thread has a localQ and an auxiliaryQ
where it keeps tasks that another thread can steal. Periodically
each thread checks its auxiliaryQ and if empty it moves half of its
tasks into the empty Q. They proposed a try-lock-then-steal
synchronization. In [15] improved over the previous design in
[14] by adding a non-blocking double-ended queue. JVM already
uses a non-blocking deque with sync only on the last element
popQ. Implementing the steal-half technique in the OpenJDK
JVM has been shown by [9] to not give performance
improvements. Using different stealing algorithms than steal best
of 2 random selections currently used by the OpenJDK JVM (e.g.
best of all or random selection) has also been shown to not give
performance improvements in [9] and agrees with our results.

In [29] Balanced Work Stealing (BWS) a linux OS scheduling

algorithm that uses work-stealing is proposed. BWS targets multi-
applications running on the OS and hence suffers from different
system characteristics and problems. BWS has no spinning as it is
a yield/sleep OS scheduling algorithm and threads belong to
different applications. This is in contrast to OWST a JVM GC
algorithm where spinning is a major component resolved by the
OWST algorithm and consumes a large amount of CPU cycles. A
yield call as used in BWS will immediately return (effectively
continues running/spinning) if there is an available CPU as a yield
simply adds the thread to the end of the queue and hence does not
resolve the CPU spinning issues that OWST resolves. The
OpenJDK JVM work-stealing algorithm is different from the ABP
algorithm given in the BWS paper [29], as no yielding occurs
before work-stealing. BWS randomly selects a single worker to
steal from. In contrast, OWST uses a max of 2 random selections
algorithm repeatedly until it finds a task to steal or 2n times,
where n is the number of task queues. OWST work-stealing
algorithm performs better than just a random selection in our
experiments as well as in previous studies [9] as it is better able to
find a task to steal if one exists in any thread. BWS relies on each
thread using 2 counters to guess how it should behave (each
thread has to randomly select a victim and decide whether to
yield/sleep). Each thread can wake-up 2 other worker threads and
a watchdog thread uses the same algorithm but doesn’t sleep.
OWST does not use yield or sleep but uses a wait/notify algorithm
that is controlled by a single master thread that is aware of how
many tasks exist in all queues and is able to notify the correct
needed number of waiting threads. Thus OWST does a better
decision based on the overall status of all threads’ task queues and
notifies exactly the number of threads needed.

Mark-Sharing [12] relies on both task-stealing and task-

releasing. [12] uses transactional memory (HTM), is simulation-
based using the Simics simulator, and uses an in-order

microprocessor. Each thread maintains a local taskQ and a
globally accessible auxiliaryQ. Each GC thread steals from its
own auxiliaryQ first then from any global auxiliaryQ. Task-
release occurs when a thread traverses a node with degree >
threshold. In this operation the tasks are added to the auxiliaryQ
and not the localQ. A selection manager is used to minimize
contention and keep task information. It shows which auxiliaryQs
have tasks and which to avoid (least recently retained tasks).
Thread termination uses distributed local flags and a single global
flag. One thread (the selection thread) determines termination
only.

Work-sharing [10] uses the address of a word in the mark-

bitmap as the key to stripe work among parallel threads. This
reduces contention during the update of the mark-bit-map. [16]
shows locality guided work-stealing. Message-Passing work-
stealing [4] has proposed removing all concurrent deques and
replacing them with totally private deques and using message
passing for work stealing whether sender or receiver initiated.

7. Conclusion
This paper presents a novel JVM GC work-stealing technique that
reduces GC CPU utilization, GC pause time, and improves GC
scalability. At scale, GC CPU utilization translates into real
resource usage and power consumption. GC CPU spinning in the
OpenJDK JVM GC work-stealing parallel task termination is
reduced by up to 86% (8T) and 97% (23T) on DaCapo
benchmarks. YoungGen GC pause time is reduced by up to 13%
(23T) and (10%) 8T. OldGen GC pause time is reduced by up to
45% (23T) and 5% (8T). Performance improved by up to 7% (23T
and 8T) on DaCapo benchmarks. A study of Gmail front-end
server shows a 15-20% GC CPU reduction, a 5% CPU
performance improvement. We further analyze the effects of the
presented GC work-stealing technique on the Google data-center
production jobs by enabling OWST and rolling out to production
in the Google JVM. We use GWP to profile and measure
hardware counter performance of data center Jobs. Our results
show that GC CPU utilization improves by 38% geomean, 12%
weighted geomean. GC pause time improves by 16% geomean,
20% weighted geomean. Full GC pause time improves by 34%
geomean, 12% weighted geomean. These improvements translate
into real resource savings in CPU and power consumption in the
Google data centers.

References
[1] Arora, N. S., Blumofe, R. D., and Plaxton, C. G. Thread scheduling

for multiprogrammed multiprocessors. Theory of Computing Systems
34, 2 (2001), 115-144.

[2] Le, N. M., Pop, A., Cohen A., and Nardell, F. Z. Correct and efficient
work-stealing for weak memory models. Proceedings of the 18th
ACM SIGPLAN symposium on Principles and practice of parallel
programming (PPoPP 2013), 69-80.

[3] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram
Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages 53:1–53:11. ACM,
2009.

[4] Umut A. Acar, Arthur Chargueraud, and Mike Rainey. Scheduling
parallel programs by work stealing with private deques. Proceedings
of the 18th ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPoPP 2013).

53

[5] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues.
In PODC, pages 280–289, 2002.

[6] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat.
Idempotent work stealing. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 45–54, 2009.

[7] Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar Ghuloum, Mohan
Rajagopalan, Richard L. Hudson, Leaf Petersen, Vijay Menon, Brian
Murphy, Tatiana Shpeisman, Jesse Fang, Eric Sprangle, Anwar
Rohillah, and Doug Carmean. Enabling scalability and performance in
a large scale chip multiprocessor environment. Technical Report. Intel
Corp., 2006.

[8] Marc Tchiboukdjian, Nicolas Gast, Denis Trystram, Jean-Louis Roch,
and Julien Bernard. A tighter analysis of work stealing. In Algorithms
and Computation - 21st International Symposium, ISAAC 2010,
Proceedings, Part II, volume 6507 of Lecture Notes in Computer
Science, pages 291–302. Springer, 2010.

[9] Helin, Eric. Improving load balancing during the marking phase of
garbage collection. 2012

[10] Iyengar, B., Gehringer, E., Wolf, M., & Manivannan, K. (2013).
Scalable concurrent and parallel mark. ACM SIGPLAN Notices,
47(11), 61-72.

[11] Wu, M., & Li, X. (2007). Task-pushing: a scalable parallel GC
marking algorithm without synchronization operations. Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International. IEEE.

[12] Park, H., Lee, C., Kim, S. H., Ro, W. W., & Gaudiot, J. (2013).
Mark-Sharing: A Parallel Garbage Collection Algorithm for Low
Synchronization Overhead. Parallel and Distributed Systems
(ICPADS), 2013 International Conference on. IEEE.

[13] Imai, A., & Tick, E. (1993). Evaluation of parallel copying garbage
collection on a shared-memory multiprocessor. Parallel and
Distributed Systems, IEEE Transactions on, 4(9), 1030-1040.

[14] Endo, T., Taura, K., & Yonezawa, A. (1997). A scalable mark-sweep
garbage collector on large-scale shared-memory machines.
Supercomputing, ACM/IEEE 1997 Conference. IEEE.

[15] Flood, C. H., Detlefs, D., Shavit, N., & Zhang, X. Parallel Garbage
Collection for Shared Memory Multiprocessors. Java Virtual
Machine Research and Technology Symposium. (2001)

[16] Acar, U. A., Blelloch, G. E., & Blumofe, R. D. The data locality of
work stealing. Proceedings of the twelfth annual ACM symposium
on Parallel algorithms and architectures. ACM. (2000).

[17] Chase, D., & Lev, Y. Dynamic circular work-stealing deque.
Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures. ACM. (2005).

[18] Hendler, D., Lev, Y., Moir, M., & Shavit, N. A dynamic-sized
nonblocking work stealing deque. (2005).

[19] Gidra, L., Thomas, G., Sopena, J., & Shapiro, M. A study of the
scalability of stop-the-world garbage collectors on multicores. ACM
SIGPLAN Notices (2013), 48(4), 229-240.

[20] Gidra, L., Thomas, G., Sopena, J., & Shapiro, M. Assessing the
scalability of garbage collectors on many cores. Proceedings of the
6th Workshop on Programming Languages and Operating Systems.
ACM. (2011).

[21] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David
Oppenheimer, Eric Tune, John Wilkes. (2015). Large-scale cluster
management at Google with Borg. Proceedings of the European
Conference on Computer Systems (EuroSys), ACM, Bordeaux,
France (2015).

[22] Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M.,
McKinley, K. S., Bentzur, R., et al. The DaCapo benchmarks: Java
benchmarking development and analysis. ACM Sigplan Notices.
ACM. (2006).

[23] Printezis, T., & Detlefs, D. A generational mostly-concurrent
garbage collectorACM SIGPLAN Notices (2000, October 16). (Vol.
36, pp. 143-154). ACM.

[24] Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., & Hundt, R.
Google-wide profiling: A continuous profiling infrastructure for data
centers. IEEE micro (2010), (4), 65-79.

[25] Kanev, S., Darago, J. P., Hazelwood, K., Ranganathan, P., Moseley,
T., Wei, G., et al. Profiling a warehouse-scale computer. Proceedings
of the 42nd Annual International Symposium on Computer
Architecture. ACM. (2015).

[26] Burton, F. W., & Sleep, M. R. Executing functional programs on a
virtual tree of processors. Proceedings of the 1981 conference on
Functional programming languages and computer architecture.
ACM. (1981).

[27] Halstead Jr, R. H. Implementation of Multilisp: Lisp on a
multiprocessor. Proceedings of the 1984 ACM Symposium on LISP
and functional programming. ACM. (1984).

[28] Kumar, V., Frampton, D., Blackburn, S. M., Grove, D., & Tardieu,
O. Work-stealing without the baggage. ACM SIGPLAN Notices.
ACM. (2012).

[29] Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, and Xiaodong
Zhang. BWS: balanced work stealing for time-sharing multicores.
Proceedings of the 7th European Conference on Computer Systems
(EuroSys 2012), pages 365-378, 2012.

[30] Barabash, Katherine et al. "A parallel, incremental, mostly
concurrent garbage collector for servers." ACM Transactions on
Programming Languages and Systems (TOPLAS) 27.6 (2005):
1097-1146.

[31] Lieberman, Henry, and Carl Hewitt. "A real-time garbage collector
based on the lifetimes of objects." Communications of the ACM 26.6
(1983): 419-429.

54

