
Supporting data-driven I/O on GPUs using GPUfs

Sagi Shahar
Technion - Israel Institute of Technology

sagi@tx.technion.ac.il

Mark Silberstein
Technion - Israel Institute of Technology

mark@ee.technion.ac.il

Abstract
Using discrete GPUs for processing very large datasets is
challenging, in particular when an algorithm exhibit unpre-
dictable, data-driven access patterns. In this paper we in-
vestigate the utility of GPUfs, a library that provides direct
access to files from GPU programs, to implement such al-
gorithms. We analyze the system’s bottlenecks, and suggest
several modifications to the GPUfs design, including new
concurrent hash table for the buffer cache and a highly par-
allel memory allocator. We also show that by implementing
the workload in a warp-centric manner we can improve the
performance even further. We evaluate our changes by im-
plementing a real image processing application which cre-
ates collages from a dataset of 10 Million images. The en-
hanced GPUfs design improves the application performance
by 5.6× on average over the original GPUfs, and outper-
forms both 12-core parallel CPU which uses the AVX in-
struction set, and a standard CUDA-based GPU implemen-
tation by up to 2.5× and 3× respectively, while significantly
enhancing system programmability and simplifying the ap-
plication design and implementation.
Categories and Subject Descriptors. D.4.7 [Operating
Systems]: Organization and Design; I.3.1 [Hardware Ar-
chitecture]: Graphics processors
Keywords. Operating Systems, GPGPUs, File Systems

1. Introduction
Discrete GPUs are commonly used for speeding up a vari-
ety of data processing applications. However, accelerating
computations on large data sets which exceed GPU physi-
cal memory is a challenge. In fact, many algorithms that are
known to be highly efficient on GPUs for small data sets,
such as kNN search [9], do not scale to real-world data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SYSTOR ’16, June 6–8, 2016, Haifa, Israel.
Copyright c© 2016 ACM 978-1-4503-4381-7/16/06. . . $15.00.
http://dx.doi.org/10.1145/2928275.2928276

Computations on large data sets necessarily involve file
accesses, but current GPUs cannot access a host file system
directly because they lack file system access support. There-
fore, an application developer needs to coordinate GPU ac-
cesses to secondary storage via explicit application-level
management code running on a CPU. This code performs
file accesses on GPU’s behalf and manages low level data
transfers to/from GPU memory. Furthermore, all the data
that a GPU may need must be resident in the GPU mem-
ory prior to computations, and it is the responsibility of a
GPU developer to ensure that this is the case. As a result, all
the potential GPU accesses to data must be known before the
GPU execution starts. This requirement impedes the use of
GPUs to run data processing algorithms with irregular data
access pattern on large datasets.

Recently, GPUfs [10] introduced file system (FS) support
for GPUs. By providing a standard FS API to GPU code,
GPUfs enables processing of large datasets by reading files
from a running GPU kernel on demand, thereby eliminating
the need to know all future GPU data accesses in advance,
and obviating CPU-side data management code.

These features make GPUfs ideal for implementing ap-
plications with input-dependent data accesses, like image
collage. This application takes a single image as an input,
breaks it into blocks, and replaces each block with a visu-
ally similar image from a large dataset. To quickly find the
matching image from a multi-million image dataset, the al-
gorithm employs a Locality Sensitive Hashing (LSH) [11]
heuristic, which enables to narrow down the search to only
a few images. In particular, the algorithm computes the LSH
keys of each block in the input image which in turn identifies
a subset of images in the dataset that are then exhaustively
searched through. Therefore, the accesses to the dataset are
input-dependent and cannot be predicted without comput-
ing the LSH first. The collage application represent a large
family of LSH-based algorithms used in many areas deal-
ing with large datasets, such as image similarity search [1],
image classification [9] or related tweet search [14].

This work examine the applicability of GPUfs to imple-
menting large data-set processing applications with unpre-
dictable data access pattern. Such applications stress various
parts of GPUfs, revealing several significant concurrency
bottlenecks in the original design. We identify the main

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2928275.2928276&domain=pdf&date_stamp=2016-06-06

issues, and implement and evaluate the improved design
which achieves significant application performance boost.

Performance optimization is an inherently iterative pro-
cess because solving one source of slowdown may poten-
tially expose a number of others, previously hidden scala-
bility bottlenecks. We describe this process in detail. First
we look at the traditional read-optimized implementation of
the buffer cache which uses radix trees. This implementa-
tion fails to scale to support highly concurrent mixed read-
/write workloads, induced on the buffer cache by the data-
driven access pattern. Yet, replacing the radix tree with a
highly concurrent hash map exposes the GPUfs dynamic
memory allocator as the next target for optimization. We
build a novel, lock-free concurrent allocator which uses mul-
tiple rings to eliminate contention among cores. While work-
ing well in isolation, it reveals that GPUfs fails to utilize the
PCIe bandwidth between CPU and GPU due to the lack of
appropriate support for small page sizes, essential to sup-
port data accesses with low spatial locality. We introduce op-
portunistic batching of memory transfers from the host, and
show that it benefits from higher effective concurrency en-
abled by earlier optimizations. Interestingly, integrating all
the optimized data structures and mechanisms into GPUfs
poses a number of additional challenges that we solve and
describe in this paper.

We evaluate the performance of the enhanced GPUfs
layer by implementing the image collage application. We
show that the new version achieves an average of 5.6×
speedup over the original GPUfs. Moreover it is up to 2.5×
faster than a 12-core CPU implementation using Intel’s
Threading Building Blocks and the AVX instruction set, and
up to 3× faster than a GPU implementation without GPUfs.

In summary, the paper makes the following contribu-
tions.

1. We provide an in-depth analysis of the GPUfs scalability
bottlenecks in applications with a complex data-driven ac-
cess pattern.

2. We introduce a new concurrent GPU hash map, a con-
current memory allocator and an opportunistic host-device
batching mechanism, and integrate them into the GPUfs

3. We show significant performance improvements on realis-
tic workloads over CPU and native GPU implementations,
as well as over the original GPUfs version.

The rest of the paper is structured as follows. Section 2
provides an overview on GPUs, the GPUfs system, the LSH
algorithm, and the image collage application, which is based
on the LSH programming scheme. Section 3 analyzes the
impact of the LSH input-dependent memory access pattern
on the system performance, highlighting the main GPUfs
bottlenecks. We then describe our optimizations of the origi-
nal GPUfs design in Section 4, and additional modifications
required to support the full set of GPUfs API in Section 5.
We present our results in Section 6, discuss related work in
Section 7 and conclude in section 8.

2. Background
We provide a brief description of GPU programming princi-
ples and GPUfs system.

2.1 GPUs
We briefly outline the basic concepts of the GPU architecture
and programming model, focusing on discrete GPUs, using
NVIDIA CUDA terminology; more details about CUDA and
the GPU model can be found in [6].
Execution hierarchy. GPUs are parallel processors that run
thousands of threads. Threads are grouped into warps, warps
are grouped into threadblocks, and multiple threadblocks
form a GPU kernel which is invoked on the GPU by the
CPU. A warp is a set of 32 threads that are executed in
lockstep, i.e., at a given step all the threads in the warp
execute the same instruction. Threads in a threadblock are
invoked on the same core called Streaming Multiprocessor
(SM) and may communicate and synchronize efficiently.
Memory hierarchy. Each thread has a set of dedicated
private registers. Registers are the fastest type of memory.
Threads in the same threadblock share a fast threadblock-
private on-die scratchpad called shared memory. All threads
in the kernel share global GPU memory. Global memory
provides about an order of magnitude lower bandwidth than
shared memory. Accesses to global memory are cached in
a two-level hardware cache. The GPU can also access the
CPU’s memory over the PCIe bus, using pinned pages. Such
access has many limitations such as lack of cache coherency
and atomic operations, incur high latencies, and is an order
of magnitude slower than the GPU’s internal global memory.
Inter-thread communication. Threads in the kernel may
communicate via global memory. Threads in the same
threadblock may also communicate via shared memory, and
synchronize by using efficient hardware barriers.

2.2 GPUfs
GPUfs [10] is a file system layer which exposes a POSIX-
like file system API to GPU applications.

The high level design is presented in Figure1. GPUfs
library is linked to the GPU kernel. It provide the basic file
operations such as gopen, gclose, gread and gwrite, as
well as gmmap, gfsync, gftruncate, etc. All these calls
are blocking calls, similarly to the standard CPU OS system
calls.

In the original GPUfs implementation, these calls have
threadblock level semantics, meaning that all the threads in
the threadblock are required to issue the call together, using
the same arguments. This semantics is easier to implement
and use, however higher performance can be achieved by a
finer-grained warp-level semantics, as we show in Section 4.

In addition, GPUfs manages a buffer cache in GPU mem-
ory in order to minimize redundant accesses to the host
file system. The buffer cache itself is managed in pages of
the same size, configured at system initialization. The man-

Figure 1. GPUfs Architecture (reprinted from [10])

agement of these pages is achieved using a radix tree per
opened files. Each radix tree allows lock-free reads but re-
quire global locking for updates.

If a requested page is not found in GPU memory, GPUfs
accesses the host file system by issuing a Remote Procedure
Call that is handled by the CPU. When there’s no more
available space in the buffer cache, old pages are evicted,
base on Least Recently Used policy. Note that since all pages
in the buffer cache has backing store in the file system, the
buffer cache does not need to handle a swapping area.

The GPUfs system supports the close-to-open consis-
tency model, which is also used in the NFS file system [3].
Meaning that files that are re-opened in the GPU, after be-
ing touched and closed in the CPU, need to be invalidated
and re-read into the GPU buffer cache in order to reflect the
updates done on the CPU.

2.3 The Locality Sensitive Hash algorithm
Locality Sensitive Hash-based algorithms is a family of
algorithms used mainly for fast retrieval of high dimen-
sional data from large datasets. These algorithms use special
locality-preserving hash functions, which map neighboring
objects in high dimensional space into approximately neigh-
boring objects in the low dimensional space. In other words,
neighboring objects in the data set are likely to have the
same hash key and therefore placed in the same bucket in a
hash table. This property makes LSH particular useful for a
variety of applications that require sub-linear-time data re-
trieval from large datasets, like image similarity search [1],
related tweets search [14] and image classification [9].

The use of LSH in these applications follows a common
structure as we describe below.

First, the dataset is reorganized off-line, such that each
object is placed in multiple hash tables, each with its own
LSH function.

The online part, which we implement in this paper, is
detailed in Algorithm 1.

Algorithm 1 LSH based Approximate Nearest Neighbor
for each query do . Can be done in parallel

Extract features

for i← 1, numKeys do
k ← calculate LSH key

for each item in bucket[k] do
Insert to shortList . Unique list

end for
end for
for each item in shortList do

Read from file

Calculate distance

Update minimum

end for
end for

1. Perform feature extraction for the query and compute its
LSH hash keys. This stage executes independently for each
query, requires no access to the actual dataset, and its com-
pute intensity can vary depending on the feature extraction
method.

2. Fetch candidate objects from the dataset by retrieving the
buckets corresponding to the LSH keys computed in (1).
Merge all the retrieved objects into a shortlist while re-
moving duplicates (different buckets may contain the same
object).

3. Choose the closest object(s) to the query by performing
brute-force search in the shortlist. This is the most compute
intensive part of the algorithm since the list may contain
several dozens of entries.
The second stage of the algorithm accesses the dataset

based on the keys computed in the first stage. Therefore,
the actual data accesses are input-dependent and cannot be
predicted in advance. Moreover, these algorithms are applied
to very large datasets that do not fit even into CPU memory,
and certainly exceed the even more limited GPU memory,
making prefetching of the complete data set into CPU or
GPU memory is impossible.

2.4 Image collage application
In this paper we use an approximate nearest neighbor search
based on LSH as a building block for an image collage
application.

The application accepts an image from the user. For each
32×32 pixels block in the image, we search for a similar
image inside a 10 Million images dataset. The dataset itself
holds the precomputed Red-Green-Black (RGB) histograms
of the input images in a continuous array, while each his-
togram location is 4KB aligned.

We create 32 hash tables (using different LSH functions),
where each hash table bucket contains the file offsets of im-
ages corresponding to that bucket. The application is imple-
mented as follows. In the first stage we compute the LSH
keys of each of the 32×32 pixels blocks in the input im-

	
Figure 2. Collage example

age, based on the block color histogram. Then for each of
those keys, we gather the locations of candidate images in
the dataset. In the last stage we read the candidates from
disk and perform the short list comparison to find the best
match. An example image created by the collage application
is presented in Figure 2.

3. GPUfs performance analysis
In this section we analyze the performance of GPUfs on
a complex workload by implementing the image collage
application described in Section 2.4.

This application is among the most appealing use cases
for GPUfs. Yet, it poses many challenges to the GPUfs sys-
tem due to its data-driven accesses to files reading small
blocks of data (3KB at a time) with low spatial locality. In
particular, it induces many concurrent accesses to different
pages in the GPUfs buffer cache, resulting in a mixed read-
/write workload on the internal buffer cache data structures.
Further, it requires frequent transfers of small data chunks
into GPU memory, stressing the data transfer subsystem run-
ning on the host.

As we show shortly, the original GPUfs implementation
turns out to be highly inefficient for this workload, setting
the stage for a thorough investigation of the bottlenecks and
the consequent changes in the design to eliminate them,
which we describe in Section 4.
Implementation. We evaluate three versions of the collage
algorithm.

• CPU: Multithreaded CPU version implemented using In-
tel’s Threading Building Blocks (TBB) [5]. The computa-
tion portions of the application are optimized using the AVX
instruction set [12].

• CPU-GPU: Traditional GPU-accelerated version which
uses two GPU kernels for Step 1 and Step 3 of Algorithm 1
respectively, and uses CPU to create the shortlist and read
data from files in Step 2.

• GPUfs: GPUfs version, implemented as a single kernel
executing all the stages of the algorithm, including Step 2
for which it uses GPUfs to accesses file system.

Both the CPU and GPUfs versions follow a straight-
forward approach to access data from files. Specifically,
after computing the LSH values and finding the buckets
with the indices of the candidate images in Stage 2, they
fetch the images from the dataset in Stage 3 by mapping

the relevant parts of the file using mmap (gmmap in GPUfs).
Importantly, If an image is used by two different blocks, only
the first access to the image will result in disk access, while
the rest will be served from the buffer cache. Thus, these
implementations take advantage of the file system layer to
eliminate redundant reads from disk.

In contrast, the CPU-GPU implementation must explic-
itly eliminate such redundant accesses. This is because even
though the CPU buffer cache does prevent redundant disk
accesses, the CPU must transfer the images to GPU memory
for performing Step 3 on the GPU. Thus, if the same image
appears twice in the shortlists of different blocks, it will be
read once from the disk, but transferred twice to the GPU.

In our implementation, the CPU first filters out duplicate
images by using a hash table, then reads the images into
a staging area in CPU memory 1, builds a list of memory
offsets to each image in the buffer, and transfer the images
with the list to the GPU. One particular limitation of this
implementation is that it only works as long as all the images
in the shortlists fit into GPU memory. The GPUfs-based
implementation does not suffer from such limitation.
Dataset. We evaluate all the three implementations by gen-
erating collages from the Tiny Images dataset [2]. We use a
subset of this dataset with 10 million images. We store the
histograms of all the images in a continuous array, 39GB of
raw data in total, including padding for 4KB data alignment.
Hardware/Software configuration. We run on a Super-
Micro server featuring 2 × 6-core Intel i7-4960X CPUs at
3.6GHz with 15MB L3 cache per CPU, and an NVIDIA
GeForce GTX TITAN GPU with 6 GB of GDDR5 memory.
We run Ubuntu Linux kernel 3.13.0-32, with CUDA SDK
7.0 and NVIDIA GPU driver 346.29. GPUfs is configured
to use 4K pages in its buffer cache, in order to match the
sizes of the histograms. We store the data in CPU memory
using RAMfs to avoid slow disk accesses and analyze the
performance of the software implementation. We run each
test ten times, clearing the GPU buffer cache between runs,
and use the first 3 runs as a warm up. We report an average
of the last 7 iterations.
Results.

Figure 3 shows the results of running the collage on sev-
eral images of increasing sizes ranging from 512× 384 (192
blocks) to 4096 × 3072 (12288 blocks). The CPU version
outperforms both the CPU-GPU nor GPUfs implementa-
tions. Moreover, the GPUfs implementation is the slowest
across all the image sizes. We further investigate this prob-
lem and resolve it in the next section.

1 CPU memory used for data transfers to/from the GPU must be pinned, so
we cannot copy directly from the CPU buffer cache.

�

�����

�����

�����

�����

	����

	����

	����

	����

	����

	����� 	������ �����	
�� ��������

�
�
�
��
�
�
�	
�

�
�
�
��
��
�
��

���������	
���

�������
 �������
 ���������

Figure 3. Runtime of the image collage implementations,
normalized per image block. Lower is better

Image size Access time (ms) Spinlock time (ms)
512x384 291 (96%) 286 (95%)
1024x768 665 (96%) 654 (95%)
2048x1536 3011 (96%) 2950 (94%)
4096x3072 3827 (91%) 3718 (89%)

Table 1. Aggregate radix-tree based buffer cache access
time. The number in parentheses is the percentage of the
total running time, lower is better

4. GPUfs Analysis & Optimizations
In this section we dive deeper into the GPUfs performance,
focusing on its three major components: the buffer cache, the
memory allocator, and the CPU-GPU transfer mechanism.

As we show, each of these components does not scale
under high concurrency and becomes a performance bottle-
neck. However, poor scaling of one component may poten-
tially hide the scalability limitations of the others. We there-
fore optimize one component at a time, and iteratively elim-
inate all these major bottlenecks.

4.1 Radix tree bottleneck
GPUfs maintains all the buffer cache contents in a set of
radix trees, one tree per file.

In order to evaluate the overhead of the radix tree we time
the radix tree traversals while accessing the buffer cache. We
use clock() GPU intrinsics which samples internal GPU
clock.

The first column in Table 1 shows that the radix tree
search time comprises up to 96% of the total runtime. Fur-
ther analysis shows that the implementation suffers from
heavy contention, spending more than 97% of the radix tree
search time on a global spinlock. As a result, accesses to files
from different threadblocks are serialized.

These performance bottlenecks have not been observed
in the workloads with which GPUfs was evaluated earlier,
such as matrix product and image search, because they have
high data reuse (over 99%) and result in predominantly read-
only access pattern on the radix tree. The original radix tree

���

���

����

����

���

���
���

���

�

���	

��	

���	

���	

���	

	

�	

�	

�	

�	

�		

������ �	����� �	������ �	���	��

��
�
�
�
��
�
��
�
��
�
	
�

�
�

��
��
��
��
�

�
�

���������������

������������ ���������

Figure 4. Buffer cache miss rate for images of different
sizes. The right axis shows the number of unique pages
accessed. Some images experience lower miss rate because
neighboring blocks in the image are mapped to the same
LSH bucket due to smoothness of natural images

design in GPUfs has been optimized for read-only access
and uses no locks at all for such accesses.

However, in the image collage we consider here, the
buffer cache miss rate is high, in particular for smaller im-
ages, and therefore the radix tree experiences a mixed read-
/write workload. Figure 4 shows that up to 58% of the file
accesses result in buffer cache misses. Those accesses mod-
ify the radix tree, acquiring a global spinlock first, which
leads to major contention and slowdown.
Solution: concurrent hash table. We replace the per-file
radix tree design with a single concurrent hash table. The
table resolves a tuple [file ID, file offset] to the
buffer cache page holding file data in GPU memory. The
capacity of the hash table is set to be 16 times the number of
pages in the buffer cache. This configuration provides a rea-
sonable balances between the collision probability (theoret-
ically 3% for fully occupied buffer cache) and the memory
overhead (5% of the buffer page size). We implement fine-
grain locking per bucket for insertion and lock-free reads.

We also considered a concurrent lazy list [15] as an al-
ternative for the lock-per-bucket design, but decided against
it. In the lazy list implementation each insertion or removal
requires two locks, which improves concurrency for hash
tables with high collision rate. In our case, however, these
locks are likely to lock the entire bucket since the average
size of each bucket is less than 2. In our implementation we
require only a single lock per bucket, while providing similar
level of concurrency.

We integrate the new hash table-based buffer cache with
GPUfs and evaluate the performance under high contention
by eliminating CPU-GPU data transfer overhead (we replace
the CPU-GPU data transfers with empty stubs). This results
in about 350K insertions per seconds when running the col-
lage application.

Table 2 confirms that the new hash table implementa-
tion is much faster. The buffer cache access time is reduced

Image size Access time (ms) Allocation time (ms)
512x384 48 (84%) 43 (76%)
1024x768 124 (81%) 114 (74%)
2048x1536 696 (88%) 615 (78%)
4096x3072 777 (58%) 616 (46%)

Table 2. Aggregate hash table-based buffer cache search
time and memory allocation time using old memory alloca-
tor. The number in parentheses is the percentage of the total
running time. The evaluation is performed without CPU-to-
GPU data transfers

by 5× on average compared to the radix tree-based imple-
mentation performance shown in Table 1 even under much
higher contention.

4.2 Memory allocator bottleneck
Despite the improvement, we observe that buffer cache ac-
cesses time still occupies a significant portion of the total
runtime. Further investigation reveals a new, previously hid-
den, bottleneck. As we see in Table 2 the access time is
dominated by the memory allocator used to allocate new
buffer cache pages. This is, in fact, not surprising because
the GPUfs memory allocator uses a simple free list with a
single global lock. The radix tree bottleneck masks this ob-
vious scalability bottleneck, however the memory allocator
becomes a hotspot once the new efficient concurrent hash
table implementation is in place.
Solution: ring-buffer allocator. We implement a memory
allocator using a ring buffer. Each element points to a pre-
allocated page in the GPU memory. Pages are thus allocated
by updating the head pointer via a simple atomic operation
without using locks.

The deallocation is only performed as a result of page
eviction from the buffer cache – pages are not returned to
the pool of free pages otherwise. Thus, the system does
not deallocate specific page, rather its goal is to free some
space in the buffer cache. We discuss the page eviction in
Section 4.4.

The new allocator reduces the overall buffer cache access
overhead by an average of 10×, even when dealing with
530K insertions per second that can be delivered by the new
system.

The end-to-end performance of the new buffer cache im-
plementation including the new memory allocator and con-
current hash table is presented in Table 3.

4.3 Optimizing CPU-GPU transfers
The performance of memory transfers between the CPU and
the GPU over the PCIe bus is particularly critical in I/O-
bound applications, such as image collage.

We estimate the data transfer by using a standard effec-
tive bandwidth metric, defined as the ratio between the total
amount of data transferred from the CPU to the GPU, and

Image size Access time (ms)
512x384 3 (21%)
1024x768 8 (15%)
2048x1536 89 (37%)
4096x3072 161 (19%)

Table 3. Aggregate buffer cache access time (not including
CPU-GPU data transfers) in the implementation that com-
bines concurrent hash table and ring-buffer memory alloca-
tor. The number in parentheses is the percentage of the total
running time

the aggregate application running time. This metric is use-
ful since it reflects both the actual throughput per request,
and the system ability to overlap computation and I/O. In
this work we improve the effective bandwidth by optimizing
both these factors as we show in this section and in Sec-
tion 4.3.2.
Background: data transfers in GPUfs. GPUfs needs to
transfer data in two cases: upon reading it from the file,
and upon writing it back as a result of page eviction or file
write back. In this paper we primarily focus on the read
data path. When gread request cannot be served from the
buffer cache, the GPU-side library issues the request to the
CPU-side Remote Procedure Call (RPC) daemon to transfer
the file contents directly into the buffer cache page. This
transfer is performed as part of the gread call, hence the
call is blocking. The CPU-side daemon transfers one page at
a time.
GPUfs performance with 4K pages. We run the image col-
lage workload using the modified GPUfs with the enhanced
buffer cache as we described above. We store the file con-
tents in CPU RAM using RAMfs, and compute the effec-
tive bandwidth. We measure very low effective bandwidth
of 0.31GB/s on average across all the input images. The
obvious conclusion is that the PCIe is underutilized.
Increased page size does not work. One obvious solution is
to increase the system page size in GPUfs. This solution, in
fact, has been shown to work well in GPUfs when used with
simple streaming workloads, or workloads with high spatial
locality. In such workloads large pages are efficient because
all the data in the page are eventually used by the program.

In workloads with low spatial locality and small reads,
like in image collage where each threadblock reads 3KB per
histogram, the page size increase leads to redundant data
transfers and therefore harms performance. The following
experiment confirms this observation.

We run the image collage multiple times, each with dif-
ferent page size ranging from 4KB to 64KB. For each run
we measure the relative amount of redundant data transfers.
Specifically, we compute the ratio between the total amount
of data transferred to the GPU from the CPU, and the amount
of data that the algorithm actually needs for computations.

�

��

��

��

��

���

���

���

���	
�� ����	��� ����	��
� ����	
���

��
�
��
�
�
�
�	
�
�

�
��
��
	�
�

��������������

��� ��� ����
��� ����

Figure 5. The amount of redundant data transferred for
different buffer cache page sizes and different inputs. For
example, 2 means that there was twice more data transferred
than used

For applications which transfer no redundant data, this ratio
is 1.

As Figure 5 shows, running the image collage with larger
pages results in large amount of redundant data transfers.
Doubling the page size from 4KB to 8KB almost doubles
the amount of transfered data, half of which remains unused,
wasting the CPU-GPU memory bandwidth. Larger pages
only exacerbate the problem.

4.3.1 Solution: opportunistic I/O Batching
The change involves two parts: batching of requests on the
CPU, and dispatching the file contents to the respective
pages in the buffer cache in the GPU.

The first part is performed by the CPU. The GPU’s RPC
requests are accumulated in the RPC request queue shared
between the CPU and the GPU. The CPU reads the data from
files into the stage area and transfers it as a single continuous
buffer into the GPU staging area.

The second part is performed by the GPU. After the data
transfer completes, the CPU notifies each GPU threadblock
which requested it. Then the threadblock copies the contents
from the GPU staging area into the respective GPU buffer
cache page.
Batch size and batching delay. Usually, batching involves
delaying certain requests in order to accumulate more data
from multiple transfer requests. In our case, delaying the re-
quests on the CPU may actually hurt the application perfor-
mance. This is because GPUfs gread calls are blocking and
use busy wait in GPU, wasting GPU resources due to the
lack of an I/O preemption mechanism in GPUs. Therefore,
we employ opportunistic batching, which relies on the high
rate of gread requests from the GPU, and naturally enables
accumulating several requests while the previous batch is be-
ing transferred. As a result, the number of pages per batch
depends on the GPU request rate.
Results. We evaluate the batching mechanism by running
the collage application using the largest image as its input.

����

������

�	���
�
��� ����� ���� ����

��������

���������		�����

��������

��������
��������

��������

��������

��������

��	�����

�������

�������

�	�����

��������

����

����

�����

����

������

�����

������

����
 � � �
� ��

�
�
�
�
�
��
��
	

�
�
�
�

�
�
��
�
�	
�
��
	

�
�
�

��������	�
������������

����������		������������ ����
����������

Figure 6. Effective bandwidth and average transfer size
with batching (threadblock-level API calls)

The results are shown in Figure 6. We run several experi-
ments, with different number of worker threads on the CPU
that are responsible for handling data transfer requests.

We compare both the average transfer size per transfer,
and the effective transfer bandwidth experienced by the ap-
plication. Increasing the number of worker threads leads to
lower effective bandwidth. This is because the GPU requests
handling rate by multiple threads is higher than the GPU re-
quest rate, as is also evident from the reduction in the average
transfer size. This workload achieves a maximum effective
bandwidth of 0.81GB/s for a single worker thread, improv-
ing the original design by 2.6×.

4.3.2 Increasing the request rate
We aim to further improve the effective bandwidth by in-
creasing the GPU read request rate. The original GPUfs
provides threadblock-level API, namely, it requires all the
threads in a single threadblock to issue the GPUfs API calls
at the same point in a program with the same arguments.
While the threadblock-level API is easier to use, it limits
the maximum number of concurrent requests to the number
of actively running threadblocks, which ranges from tens to
about a hundred in a typical GPU application running on
modern GPUs. We can significantly increase this number
by reducing the granularity of the GPUfs API calls from
threadblock-level to the level of a single warp.

We therefore implement the GPUfs API with a warp-
level granularity. We note that this implementation would
be inefficient in the original GPUfs without the buffer cache
optimization we described earlier.

In addition, we also modify the collage application in
order to use these fine-grain API as follows. As before, one
threadblock is allocated to process one block of the input
image. However, the shortlist of the dataset images for that
block is divided between the threadblock warps. Each warp
reads the data from the file using warp-level GPUfs API,
and processes it independently of the other warps. Since now
each warp produces one best match, the final threadblock
result is computed by choosing the best among the warp’s
results.

������

������

����� ����� �	���
���

�������

�������

�������

�������

�������

��
����

��������

��������

��	�����

�������

�������

�	�����

��������

����

����

�����

����

������

�����

������

 � � �
� ��

�
�
�
�
�
��
��
	

�
�
�
�

�
�
��
�
�	
�
��
	

�
�
�

��������	�
������������

����������		������������ ����
����������

Figure 7. Effective bandwidth and average transfer size
with batching of warp level workload

The warp-level implementation increases the number of
in-flight GPU file read requests by 8×.
Results. We evaluate the effective bandwidth of the warp-
level implementation and show results in Figure 7. As in
Figure 6, we vary the number of worker threads used for data
transfer on the CPU. We see that four workers are necessary
to achieve the maximum bandwidth of 1.9GB/s. This is
more than a 2× increase in the highest bandwidth compared
to the batching results with the threadblock-level design.

4.4 Resolving page eviction bottleneck
Our collage application supports large images, requiring
more data than fit into the buffer cache, or in the GPU mem-
ory. For example, processing an image of size 8192x6144
requires reading 1.3 million unique pages (4.9GB). Since
the buffer cache is configured to 2GB, processing this image
necessarily results in page eviction from the buffer cache.
We note that the buffer cache is essential for processing this
image, because about 89% of file accesses read the data that
has already been accessed before (and would be read from
the buffer cache if it were large enough to hold the entire
working set).

We evaluate the system performance under page eviction,
and run the warp level implementation of image collage on
this large image. We find that the processing time is as high
as 44s, which is more than 45× the processing time for the
4096x3072 image with small working set that fits in the
buffer cache.

While investigating the reasons for the slowdown we
found that the eviction mechanism is too slow, and eventu-
ally the whole GPU stalls while waiting for free pages.

The eviction mechanism traverses the ring buffer of the
memory allocator from the tail pointer to find the pages to
evict. Ideally, evicting pages from the tail is fast, and imple-
ments the least recently allocated eviction policy, which has
been used in the original version of GPUfs. Unfortunately,
such eviction is not always possible because the page may be
pinned, and therefore cannot be evicted. We, therefore, keep
searching for the non-pinned page. When found we swap the

�

�����

�����

�����

�����

�����

� � � � �� �� ��

�
�
�
�
��
�
��
��

	
�

�
��

��������	��
�����������

������
��
����
�� ��������
��

Figure 8. Processing time of a 8192x6144 image while
varying the number of memory allocators

victim page with the one pointed by the tail pointer in the
ring buffer and evict the victim page. This process is pro-
tected by a global lock for simplicity, therefore the eviction
is performed by a single thread and is slow.
Solution: multiple ring-buffer allocators. To reduce con-
tention when evicting pages we use two techniques. First, we
start evicting pages when the ring buffer is nearing its full ca-
pacity but there are still pages left for allocation. This allows
the allocator to service allocation requests while pages are
evicted from the buffer cache.

The second technique is to distribute the available mem-
ory between multiple allocators. Each allocator runs inde-
pendently.When a thread allocates a new page, the allocation
is performed by one of the allocators chosen based on the ID
of the calling thread.

Figure 8 shows the processing time of a 8192x6144 image
while the system uses multiple allocators. The performance
improves 12× compared to a single allocator. Further, the
percentage of the overall execution time consumed by page
eviction drops significantly from 15% for the single allocator
to 0.06% when using 64 allocators.

5. Adjusting GPUfs to hash table-based
buffer cache

The new buffer cache design that uses one global hash table
instead of the radix-tree-per-file design in the original GPUfs
introduces a new challenge: it removes the ability to quickly
find the set of pages belonging to a certain file. Maintaining
this information creates a contention point on the first access
to the page, and requires bookkeeping upon page eviction.

We now explain how we modify GPUfs to accommodate
this change.

5.1 Write back
GPUfs writes back dirty pages to disk after a file is closed
by the GPU to implement close-to-open consistency with the
CPU, or after an explicit call to gfsync.

In both cases we need to traverse the file’s dirty pages so
that they can be written to disk.

Solution: multiple writeable pages lists. For every file
we maintain several linked lists, each holding a subset of
writable pages. The list to which the writable page is added
is determined by the thread ID, thus reducing contention
when pages are inserted to the writable pages list by multiple
threads. Importantly, there is no danger of adding the page
twice to the writable page list, because the pages are added
to the list on the first insertion to the buffer cache.

This approach is simple and saves the overhead of main-
taining the list while accessing read-only files. However, it is
too coarse-grained, because it keeps track of all the pages in
files opened with write permissions, instead of a more fine-
grained management of dirty blocks alone. We leave this op-
timization for future work.

5.2 File invalidation
GPUfs implements a close-to-open consistency model, in
which the file updates are guaranteed to become visible to
other processes only when the file is closed and then re-
opened again. Implementing this model requires invalidating
the cached contents of a file in the GPU memory. In partic-
ular, if a file is cached on the GPU, modified by the CPU,
and then again accessed by the GPU, the GPU buffer pages
caching the file contents must be invalidated.
Solution: file versioning. We assign a version number to
each file descriptor and to each page in the system. When a
file is opened for the first time, it is assigned a version num-
ber. The first time each page is inserted into the buffer cache
it is assigned the same version number. On each subsequent
access the page version must match the file version, other-
wise the page is invalidated and re-fetched from the CPU.

When a file is reopened in the GPU after it has been
modified by the CPU its version number is incremented.
Thus, the pages are invalidated lazily.

6. Results
We combine all the optimizations and changes, and show the
end-to-end performance for two applications. The first is the
image collage application described in section 2.4 which was
used throughout the performance analysis phase. The second
is a brute force, approximate image search, which was used
for the evaluation of the original GPUfs system. Our goal
has been to show that the optimizations which contribute to
the performance of the complicated collage task do not harm
the performance of other applications.

6.1 Image collage application
Figure 9 shows the overall performance evaluation for the
image collage application for the different implementations.

Note that for the 8192×6144 image, the GPU implemen-
tation is unable to run at all since the required data exceeds
the physical memory size of the GPU. Given that, when cal-
culating average speedups which involves GPU implemen-
tation, we omit results for the largest image.

�

�����

�����

�����

�����

	����

	����

	����

	����

	����

	����� 	������ �����	
�� �������� �	����	��

�
�
�
��
�
�
�	
�

�
�
�
��
��
�
��

���������	
���

�������
 �������
 ���������
 �������
� ����������

Figure 9. Runtime of the image collage implementations,
normalized per image block. Lower is better

The new GPUfs implementation achieves 2× speedup on
average over the original GPUfs on the image collage appli-
cation. When using the warp level workload we can increase
the average speedup to 5.6× over the original GPUfs im-
plementation. Importantly, our optimizations of the GPUfs
layer allow the warp-level GPUfs-based collage implemen-
tation to outperform the 12-core CPU implementations by
an average of 1.5× with speedup as high as 2.5× for the
largest image. Comparing our implementation to the native
CUDA-based GPU implementation, we can see an average
of 2.5× with a speedup as high as 3×, while using fewer
lines of code.

6.2 Approximate image search
The approximate image search application accepts as input a
set of query images, and several image datasets. The applica-
tion then performs brute force search, comparing each query
image to the images in each of the datasets until a match is
found. The image matching is done using the euclidean dis-
tance metric, similarly to the one used in the image collage
application.

We run the application using 560 queries and 3 datasets,
each with about 10000 images. Each image is represented as
a 1K-element vector, same as a 32x32 gray scale image.

Since the application performs brute force search on
the datasets, it exhibits sequential data access pattern for
dataset accesses, which reduces write-contention on the
buffer cache. When data is being read sequentially by multi-
ple threads, most threads will request either the same pages
as the other threads, or pages which has already been read
by the other threads. For such an access pattern, the number
of reads which causes page faults is small.

Exploring the application access pattern further, we can
see that since the entire dataset is being read sequentially,
the application exhibit perfect spatial locality and therefore
increasing the page size will only improve performance. In
addition, each dataset which is read into the GPU memory is
used for comparison against each of the queries, in our case
560 times, achieving a much higher temporal locality than
the one achieved by the image collage application.

�

����

����

����

����

����

����

�� 	� ��� ��� ��� ��	� ���� ���� �

�
�
�
�
��
�
��
��

	
�

�
��

����������������

���������� ���������

Figure 10. Approximate image search application perfor-
mance for different page sizes, for both the baseline and new
GPUfs implementations

We run the application on both the baseline and the new
GPUfs implementations and vary the system’s page size for
both implementations. We present the results in Figure 10.

As can be seen, both implementations achieves similar
performance across all page size, with differences within
±7%. Both implementation also shows significant speedup
of 8× when increasing the page size from 4KB to 1 MB.

As expected, given the application’s access pattern, our
changes to the GPUfs system had little effect on the overall
performance, neither improving it nor harming it.

7. Related work
The problem of automatic and efficient GPU data manage-
ment has been addressed in several recent works, however
handling input-dependent data accesses from GPU to files is
the novel contribution of this paper.

Several approaches have been proposed to handle large
datasets. Some of them are application-specific, like Shred-
der [13] while others, such as PTask [4] require using a
special programming model. Both of these approaches use
data chunking and multiple kernel invocations to achieve
their goal. However, static data chunking requires advanced
knowledge of the data that will be accessed at each stage of
the algorithm. Therefore, for many structured applications
such as dense matrix operations or streaming applications,
data chunking works well. Yet, this approach is difficult to
apply for applications that exhibit input-dependent data ac-
cesses, like the one used in this paper.

Lee at al. [8] propose to predict an application data access
pattern by combining static analysis of GPU kernel code,
and execution of an inspection kernel. This inspection ker-
nel is a modified version of the original GPU kernel leav-
ing only the code responsible for computing data access lo-
cations. This mechanism, however, cannot handle complex
data-driven accesses.

NVIDIA recently introduced a Unified Virtual Memory
mechanism that allows both CPU and GPU to share data us-
ing a unified address space. The memory is allocated on the

device and is moved transparently between the GPU and the
CPU on demand. Even though this mechanism may be used
to store our dataset and let the GPU driver handle the neces-
sary data transfers, it has two major limitation in the context
of our application that accesses files. (1) Data access from
a CPU to the buffer located in Unified Memory can not be
performed while a kernel is running. In particular, in order
to access data from a file, a GPU kernel still needs to be
broken into several separate kernels, where the file accesses
are performed by a CPU between kernel invocations. (2) The
maximum size of the Unified Memory buffer is limited be-
cause this buffer is allocated on the GPU. Therefore its size
cannot exceed the physical memory size of the GPU. This
limitation only allows us to work on datasets that can reside
inside the GPU memory and is inapplicable to processing
large datasets, which is the main focus of this work.

Similarly to the Unified memory concept by NVIDIA,
Region-based Virtual Memory for GPUs was proposed by Ji
at al. [7]. Here, the buffers are allocated on the host, therefore
the allocation size is not limited to the size of GPU physical
memory. Further, data can be accessed from the host while
the GPU kernel is running. This approach, however, still
requires the entire dataset to be copied into a dedicated
memory location on the host prior to GPU execution and
does not support direct file system access from GPU.

8. Conclusion
In this work we explore the utilization of the GPUfs system
to handle the data management requirements of irregular
workloads. Such workloads can exhibit unpredictable, fine
grain accesses to a large dataset which often can not fit in
its entirety inside the GPU physical memory. We examine
the LSH-based image collage application as a representative
example of such irregular workloads.

While the original implementation is able to support such
workloads, the basic design of the GPUfs system is unable
to handle the demanding requirements of such workloads
efficiently, and fail to reach a higher performance than the
CPU implementation.

We propose several modifications, both to the data struc-
tures used for the internal management of the GPUfs system,
and to the data transfer mechanism between the host and de-
vice. By incorporating these modifications we show a sig-
nificant performance improvement for irregular workloads
while maintaining the same performance for previously ex-
amined workloads.

Acknowledgements
Mark Silberstein is supported by the Israel Science Founda-
tion (grant No. 1138/14), the National Science Foundation
(grant No. CCF-1333594), the Israeli Ministry of Science,
and the Israeli Ministry of Economics via HiPer consortium.

References
[1] Aleksandar Stupar, Sebastian Michel and Ralf Schenkel.

RankReduce–Processing K-Nearest Neighbor Queries on Top
of MapReduce. In Proceedings of the 8th Workshop on Large-
Scale Distributed Systems for Information Retrieval, pages
13–18, 2010.

[2] Antonio Torralba, Robert Fergus and William T Freeman. 80
Million Tiny Images: A Large Data Set for Nonparametric
Object and Scene Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11):1958–1970, 2008.

[3] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith,
Diane Lebel and Dave Hitz. NFS Version 3: Design and Im-
plementation. In USENIX Summer, pages 137–152. Boston,
MA, 1994.

[4] Christopher J Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray and Emmett Witchel. PTask: Operating Sys-
tem Abstractions to Manage GPUs as Compute Devices. In
Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, pages 233–248. ACM, 2011.

[5] Chuck Pheatt. Intel R© threading building blocks. Journal of
Computing Sciences in Colleges, 23(4):298–298, 2008.

[6] David B Kirk and Wen-mei W Hwu. Programming massively
parallel processors: a hands-on approach. Newnes, 2012.

[7] Feng Ji, Heshan Lin and Xiaosong Ma. RSVM: A Region-
Based Software Virtual Memory for GPU. In Proceedings of
the 22nd International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 269–278. IEEE,
2013.

[8] Janghaeng Lee, Mehrzad Samadi, Scott Mahlke. VAST: The
Illusion of a Large Memory Space for GPUs. In Proceedings

of the 23rd International Conference on Parallel Architectures
and Compilation, pages 443–454. ACM, 2014.

[9] Jia Pan and Dinesh Manocha. Fast GPU-based Locality Sen-
sitive Hashing For K-nearest Neighbor Computation. In Pro-
ceedings of the 19th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, pages
211–220. ACM, 2011.

[10] Mark Silberstein, Bryan Ford, Idit Keidar and Emmett
Witchel. GPUfs: Integrating a File System with GPUs. In
ACM SIGARCH Computer Architecture News, volume 41,
pages 485–498. ACM, 2013.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk and Vahab S Mir-
rokni. Locality-Sensitive Hashing Scheme Based on P-Stable
Distributions. In Proceedings of the Twentieth Annual Sym-
posium on Computational Geometry, pages 253–262. ACM,
2004.

[12] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri and
Shihjong Kuo. Intel avx: New frontiers in performance im-
provements and energy efficiency. Intel white paper, 2008.

[13] Pramod Bhatotia, Rodrigo Rodrigues and Akshat Verma.
Shredder: GPU-Accelerated Incremental Storage and Compu-
tation. In FAST, page 14, 2012.

[14] Saša Petrović, Miles Osborne and Victor Lavrenko. Stream-
ing First Story Detection with Application to Twitter. In Hu-
man Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computa-
tional Linguistics, pages 181–189.

[15] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,
William N Scherer III and Nir Shavit. A Lazy Concurrent
List-Based Set Algorithm. In Principles of Distributed Sys-
tems, pages 3–16. Springer, 2006.

	Introduction
	Background
	GPUs
	GPUfs
	The Locality Sensitive Hash algorithm
	Image collage application

	GPUfs performance analysis
	GPUfs Analysis & Optimizations
	Radix tree bottleneck
	Memory allocator bottleneck
	Optimizing CPU-GPU transfers
	Solution: opportunistic I/O Batching
	Increasing the request rate

	Resolving page eviction bottleneck

	Adjusting GPUfs to hash table-based buffer cache
	Write back
	File invalidation

	Results
	Image collage application
	Approximate image search

	Related work
	Conclusion

