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ABSTRACT
This is a system paper about a new GPLv2 open source C library
GBLA implementing and improving the idea [7] of Faugère and
Lachartre (GB reduction). We further exploit underlying structures
in matrices generated during Gröbner basis computations in algo-
rithms like F4 or F5 taking advantage of block patterns by using a
special data structure called multilines. Moreover, we discuss a new
order of operations for the reduction process. In various different
experimental results we show that GBLA performs better than GB
reduction or Magma in sequential computations (up to 40% faster)
and scales much better than GB reduction for a higher number of
cores: On 32 cores we reach a scaling of up to 26. GBLA is up
to 7 times faster than GB reduction. Further, we compare different
parallel schedulers GBLA can be used with. We also developed a
new advanced storage format that exploits the fact that our matrices
are coming from Gröbner basis computations, shrinking storage by
a factor of up to 4. A huge database of our matrices is freely avail-
able with GBLA.

Keywords
Gröbner bases, specialized linear algebra, parallel computations

1. INTRODUCTION
In [11, 7], Faugère and Lachartre presented a specialized lin-

ear algebra for Gröbner basis computation (GB reduction). The
benefit of their approach is due to the very special structure the
corresponding matrices have. Using algorithms like F4 the tasks
of searching for reducers and reducing the input elements are iso-
lated. In the so-called symbolic preprocessing (see [6]) all possible
reducers for all terms of a predefined subset of currently available
S-polynomials are collected. Out of this data a matrix M is gen-
erated whose rows correspond to the coefficients of the polynomi-
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Figure 1: F4 Matrix of degree 6 for homogeneous KATSURA-12

als whereas the columns represent all appearing monomials sorted
by the given monomial order on the polynomial ring. New ele-
ments for the ongoing Gröbner basis computation are computed
via Gaussian elimination of M, i.e. the reduction process of several
S-polynomials at once. M always has a structure like presented in
Figure 1, where black dots correspond to nonzero coefficients of
the associated polynomials. Faugère and Lachartre’s idea is to take
advantage of M’s structure nearly being in triangular shape, already
before starting the reduction process.

This is a system paper introducing in detail our new open source
plain C parallel library GBLA. We have chosen C to enable easy
comparisons with BLAS and LAPACK implementations (written
in C resp. FORTRAN), to avoid the overhead of virtual function
calls as well as to keep compile time at a minimum. GBLA includes
efficient implementations not only of the GB reduction but also new
algorithmic improvements. It is implemented for prime fields with
special optimizations for 16-bit primes, but can also be used for
floating point coefficient representations or even 32-bit unsigned
integeres. Here we present new ways of exploiting the underlying
structure of the matrices, introducing new matrix storage formats
and various attempts to improve the reduction process, especially
for parallel computations. We discuss different experimental results
showing the benefits of our new attempt.

The paper is structured as follows: In Section 2 we give an
overview of the structure of our library. Section 3 discusses the
special matrix structure and presents a new efficient storage for-



Folder Files Description

src types.* general data types
matrix.* matrix and multiline vector types;

conversion routines for sparse, hy-
brid, block, multiline matrices

mapping.* splicing of input matrix (Step 1 in
GB reduction); different routines for
usual block and multiline vector sub-
matrix representations

elimination.* elimination routines including
Steps 2´ 4 of GB reduction as well
as adjusted routines for new order of
operations (see Section 4.3)

cli io.* input and output routines
gbla.* main routines for GB reduction

tools dump_matrix.* routines for dumping matrices; es-
pecially towards MatrixMarket or
Magma formats

converter.c converting matrices from format 1 to
format 2 (see Section 3.2)

Table 1: Description of GBLA’s structure

mat. This is important for testing and benchmarking purposes. We
also recall the general process used for reducing these matrices. In
Section 4 we first review the main steps of the GB reduction. Af-
terwards we propose improvements to the sequential algorithm by
further exploiting patterns in the matrices. This is implemented in
our new library by specialized data structures and a rearrangement
of the order of steps of the GB reduction. Section 5 is dedicated to
ideas for efficient parallelization of our library that also takes into
account the improvements discussed beforehand. In Section 6 we
show GBLA’s efficiency by giving experimental results comparing
it to several other specialized linear algebra implementations for
Gröbner basis computations.

2. LIBRARY & MATRICES
Our library is called GBLA (Gröbner basis linear algebra) and

is the first plain C open source package available for specialized
linear algebra in Gröbner basis-like computations. It is based on a
first C++ implementation of Fayssal Martani in LELA, which is a
fork of LinBox [5] and which is no longer actively developed.

The sources of our library can be found at: http://hpac.imag.fr/
gbla/. Under this website a database of our input matrices in differ-
ent formats (see Section 3) is available as well as the routines for
converting matrices in our special format.

The general structure of the library is presented in Table 1.
Input can come from files on disk or the standard input. The

latter is especially useful because we can use a pipe form zcat
and never uncompress the matrices to the disk. Uncompressed, our
library of matrices would represent hundreds of gigabytes of data.

GBLA supports the following data representations:
1. The code is optimized for prime fields Fp with pă 216 using

SIMD vectorization [2] and storing coefficients as uint16.
2. The library also supports a coefficient representation using

float such that we can use optimized SIMD instructions
for floating point arithmetic. In this way 32-bit floating points
can be used for exact computations over Fp with pă 223.

3. There is also a version for 32-bit field characteristic using
uint32 data types that needs further optimization in terms
of delayed modulus and SIMD operations.

Note that whereas it is true that vectorization in CPUs is faster for
floating point arithmetic compared to exact arithmetic we show in

Section 6 that for 16-bit computations memory usage can become
a bottleneck: Representing data via uint16 can make matrices
manageable that are not feasible when using float data type.

For parallelization GBLA is based on OpenMP. As current ver-
sions of XKAAPI can interpret OpenMP macros one can also eas-
ily use GBLA with XKAAPI as scheduler.

In order to assure cache locality we use blocks, all of them of
dimension 256ˆ 256 by default. The matrix is thus represented
by an array of small submatrices of size 256ˆ256 each. The user
has the freedom to set this to any power of 2, but in all of our
experiments the preset size is advantageous due to L1 cache size
limitations.

At the moment we have two different types of implementations
of the usual GB reduction (see Section 1) and the new order of
operations for rank computations (see Section 4.3) each:

1. The first type of implementations is completely based on the
multiline data structure, denoted GBLA-v0.1.

2. The second type is nearly always faster and denoted GBLA-
v0.2 in this paper. There we use multilines only in a very
specific block situation where we can nearly guarantee in ad-
vance that they give a speedup due to cache locality. Oth-
erwise we use usual sparse resp. dense row representations
that are advantageous when sorting rows by pivots.

Note that GBLA-v0.2 is able to reduce matrices that GBLA-v0.1
cannot due to its smaller memory footprint not introducing too
many zeroes in multilines (see also Section 6).

3. FILE FORMATS AND FL MATRICES
Input matrices in the GB reduction have some nearly-triangular

structure and patterns in the coefficients that we take advantage of.
We describe GB matrices and an efficient way to store them.

3.1 Description of FL matrices
Matrices coming from Gröbner basis computations represent a

set of polynomials in a polynomial ring w.r.t. to some given mono-
mial order. This order sorts the columns of the matrix, each column
represents a monomial. Each row represents a polynomial whereas
the entries are just the coefficients of the polynomial for the cor-
responding monomial in the appropriate column. Due to this, GB
matrices are sparse. We can assume that the matrix has been sorted
by weight (number of non zero elements) with row 0 the heaviest1.
Pivoting the rows corresponds to reordering of the polynomials;
permuting non pivot columns is allowed once before the GB re-
duction and re-done after the elimination steps.

The first non zero element on each row is a 1 (each polynomial
is monic), and this element will be called pivoting candidate. Ev-
ery such pivoting candidate lies below the main diagonal. Columns
whose last non zero element is not a pivoting candidate can be per-
muted in order to separate them from the pivot ones.

Now, the first npiv columns contain pivoting candidates, called
pivot columns. Among the pivoting candidates of a given column,
one row is selected, the pivot row. This selection tries to keep A (a
npivˆnpiv matrix, see Section 4.1) as sparse as possible.

3.2 Compressed binary format
In standard Matrix Market2 file format, GB matrices are huge

(hundreds of Gb) and slow to read. We compress them to a CSR-
like (Compressed Storage Row) format and store them in binary
format (i.e. streams of bytes rather than a text file). We propose
two different formats , see Table 2. The files consist of consecutive
sequences of elements of type size repeated length times.
1Throughout this paper, indexing is zero-based.
2http://math.nist.gov/MatrixMarket/



Format 1 Format 2

Size Length Data Size Length Data

uint32_t 1 b
uint32_t 1 m uint32_t 1 m
uint32_t 1 n uint32_t 1 n
uint32_t 1 p uinty_t 1 p
uint64_t 1 nnz uint64_t 1 nnz
uint16_t nnz data uint32_t m rows
uint32_t nnz cols uint32_t m polmap
uint32_t m rows uint64_t 1 k

uint64_t k colid
uint32_t 1 pnb
uint64_t 1 pnnz
uint32_t pnb prow
xinty_t pnnz pdata

Table 2: Structure of the binary matrix formats.

In Format 1, m, n, p, nnz resp. represent the number of rows,
columns, modulus and the number of non zeros in the sparse ma-
trix. rows[i] represents the length of the ith row. If j is the
sum row[0]` ¨¨ ¨`row[i-1], then on row i, there is an ele-
ment at column cols[j+r] with value data[j+r] for all r in
t0, . . . ,row[i]´1u.

In Format 2, we separate the location of the non zero entries and
the data. We store the data of the polynomials separately since
there is redundancy: many lines will be of the form mi f j where mi
is some monomial and f j is a polynomial in the intermediate Gröb-
ner basis. Hence the coefficients in all lines of this type correspond
to the same polynomial f j and represent the same data, only the
location on the basis changes. We allow to store the data on differ-
ent machine types to adapt to the size of p. Data is blocked, so we
utilize the fact that several non zero elements on a row may be adja-
cents, allowing compression of their consecutive column numbers.
In this format matrices must have less than 231 rows.

First, the lowest 3 bits of the first element b represent the value
of x and y in xinty_t, namely b“ u OR (v « 1) where u is
1 iff the type is signed and y corresponds to a type on 8 ¨2v bits (for
instance 0112

“1 OR (1 « 1) represents uint16_t type. On
the highest bits a mask is used to store a file format version.

The ith row has rows[i] elements. We prefer storing the row
length since it fits on 32 bits while pointers (the accumulated row
length) would fit on 64 bits.

We compress the column indices: If s ą 1 several non zero el-
ements are consecutive on a row and if f is the first one, then we
store f s in the format. If s “ 1 then we use a mask and store
f AND (1 « 31). Here we lose a bit for the number of rows.

So far, we have stored the locations of the non zero elements.
The polynomial data on a row is stored in pdata in the following
fashion. prowris gives the ith polynomial number of elements (its
support). There are pnb polynomials. j “ polmap[i] maps the
polynomial number j on row i. The polynomial data is laid out con-
tiguously in pdata, polynomial 0 finishes at pdata+prow[0],
polynomial 1 finishes at pdata+prow[0]+prow[1], and so on.

In table 3 we show the raw size (in gigabits) of a few sparse
matrices in their binary format, compressed with gzip3 (default op-
tions) and the time it takes (in seconds). Compressing format 2
yields an 8 time improvement on the original uncompressed binary
format 1 storage and over 4 times better than compressed format 1,
in a much shorter time. The compressed format 2 is hence much
faster to load and it makes it easier to perform tests on.

3http://www.gzip.org/

Matrix Format 1 Format 2

Size Compressed Time Size Compressed Time

F4-kat14-mat9 2.3Gb 1.2Gb 230s 0.74Gb 0.29Gb 66s
F5-kat17-mat10 43Gb 24Gb 4419s 12Gb 5.3Gb 883s

Table 3: Storage and time efficiency of the new format

Submatrix Dimensions approx. density

A npivˆnpiv ă 2%
B npivˆpn´npivq 12%
C pm´npivqˆnpiv 15%
D pm´npivˆn´npivq 35%

Table 4: Characteristics of submatrices in GB reduction

4. GRÖBNER BASES REDUCTION
In this section we present new developments in the implemen-

tation of the GB reduction that can be found in our library (see
Section 2). Section 4.2 presents ideas to exploit the structure of
the input GB matrix M further with dedicated data structures, and
Section 4.3 gives an alternative ordering of the steps of the GB re-
duction if a non-reduced row echelon form of M is sufficient.

4.1 The reduction by Faugère and Lachartre
There are 4 main steps in the GB reduction:
1. The input matrix M already reveals a lot of its pivots even be-

fore the Gaussian elimination starts. For exploiting this fact
we rearrange the rows and the columns: we reach a cutting

of M into
ˆ

A B
C D

˙

. After this rearrangement one can see 4

different parts of M: A very sparse, upper triangular unit ma-
trix on the top left (A) representing the already known pivots.
A denser, but still sparse top right part (B) of the same num-
ber of rows. Moreover, there are two bottom parts, a left one
which is still rather sparse (C) and a right one, which tends to
be denser (D). Whereas A represents already known leading
terms in the intermediate Gröbner basis, D corresponds to the
new polynomials added to the basis after the reduction step.
If M is of dimensions mˆ n and if npiv denotes the number
of known pivots the characteristics of the four submatrices
of M are given in Table 4. In general, npiv " m´ npiv and
npiv " n´npiv.

2. In the second step of the GB reduction the known pivot rows
are reduced with each other, we perform an TRSM4. Alge-
braically, this is equivalent to computing BÐ A´1ˆB. A is
invertible due to being upper triangular with 1s on the diago-
nal. From an implementational point of view one only reads
A and writes to B. After this step, we receive a representation

of M in the format
ˆ

Idnpiv A´1ˆB
C D

˙

.

3. In the third step, we reduce C to zero using the identity matrix
Idnpiv performing AXPY5. Doing this we also have to carry
out the corresponding operations induced by B on D. We get

ˆ

Idnpiv A´1ˆB
0 D´Cˆ

`

A´1ˆB
˘

˙

.

4. The fourth step now reveals the data we are searching for:
Via computing a Gaussian Elimination on D´Cˆ

`

A´1ˆB
˘

we receive new pivots reaching an upper triangular matrix
4Solves a triangular matrix equation.
5Computes a vector scalar product and adds the result to a vector:
y :“ ax` y.
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Figure 2: Exploiting horizontal and vertical patterns in the TRSM
step.

D1. Those new pivots correspond to new leading terms in our
Gröbner basis, thus the corresponding rows represent new
polynomials to be added to the basis. On the other hand,
rows reducing to zero correspond to zero reductions in the
Gröbner basis computation.

5. As the last step we rearrange the columns of the echelon form
of M and read off polynomials whose monomials are sorted
correctly w.r.t. the monomial order.

If one is interested in a reduced row echelon form of M we have
to perform the GB reduction a second time, but only on the right

part
ˆ

A´1ˆB
D1

˙

. From the Gröbner basis point of view a fully

reduced row echelon form has the advantage that also the multiples
of polynomials already in the basis, i.e. elements representing the
rows

`

A B
˘

are reduced. Thus, reusing them in later reduction
steps of the Gröbner basis computation can be beneficial; we refer
to Section 2.4 in [6] discussing the Simplify procedure.

4.2 Multiline data structure
As already seen in Section 4.1, matrices coming from Gröbner

basis computations are structured in a way that can be exploited for
a specialized Gaussian Elimination. Furthermore, there are even
more patterns in such matrices that we use in order to speed up the
computations. In Figure 1 we can see that the nonzero entries are,
in general, grouped in blocks. In other words, if there is a nonzero
element mi, j at position j in row i then also mi, j`1 (horizontal pat-
tern) and mi`1, j (vertical pattern) tend to be nonzero, too. This fact
can be used, for example, to optimize the AXPYresp. TRSM com-
putations in the second step of the GB reduction as illustrated in
Figure 2: Assuming that ai, j and ai`1, j are both not zero (horizon-
tal pattern), element bi,` is updated by both nonzero elements bk,`
and bk`1,` (vertical pattern). Whereas the horizontal patterns are
canonically taken care ofstoring blocks row-wise, we have to pack
the vertical pattern in a dedicated data structure.

DEFINITION 1. An n-multiline vector ml is a data structure
consisting of two vectors in a sparse representation:

1. A position vector pos of column indices such that at each in-
dex at least one of n rows of elements has a nonzero element.

2. A value vector val of entries of M. The entries of all n rows
in column posris are stored consecutively, afterwards the n
entries at position posri`1s are stored. Note that val may
have zero elements.

If pos has a length `, val has length n ¨ `. In this situation we say
that ml has length `. For a 2-multiline vector we use the shorthand
notation multiline vector.

EXAMPLE 1. Consider the following two rows:

r1 “ r 2 0 0 1 0 0 5 s,
r2 “ r 1 7 0 0 0 1 0 s.

A sparse representation is given by vi (values) and pi (positions):

v1 “ r 2 1 5 s v2 “ r 1 7 1 s,
p1 “ r 0 3 6 s p2 “ r 0 1 5 s.

A 2-multiline vector representation of r1 and r2 is given by

ml.val “ r 2 1 0 7 1 0 0 1 5 0 s,
ml.pos “ r 0 1 3 5 6 s.

Four zero values are added to ml.val, two from r1 and r2 resp. We
do not add column 2 since there both, r1 and r2 have zero entries.

Multiline vectors are especially useful when performing AXPY.
In the following we use multiline vectors to illustrate the reduc-
tion of two temporarily dense rows dense1 and dense2 with one
multiline vector ml of length `. For the entries in ml.val two sit-
uations are possible: Either there is only one of ml.valr2is and
ml.valr2i` 1s nonzero, or both are nonzero. Due to the vertical
pattern of GB matrices very often both entries are nonzero. We can
perform a specialized AXPY operation on dense1 and dense2 with
scalars λ1,1,λ1,2 coming from column j and λ2,1,λ2,2 from column
j`1 where j is the loop step in the corresponding TRSM opteration:

Algorithm 1 AXPY of two dense rows of length ` with a multiline
vector.
Require: dense1, dense2, λ1,1, λ1,2, λ2,1, λ2,2, ml.
1: v1, v2, i, k
2: for pi“ 0; iă `; iÐ i`1q do
3: kÐ ml.posris
4: v1 Ð ml.valr2is
5: v2 Ð ml.valr2i`1s
6: dense1rks Ð λ1,1v1`λ1,2v2
7: dense2rks Ð λ2,1v1`λ2,2v2

The benefit of Algorithm 1 is clear: We perform 4 reductions
(each dense row is reduced by two rows) in one step. On the
other hand, if the horizontal pattern does not lead to two succes-
sive nonzero entries (for example if ai, j`1 is zero in Figure 2), then
Algorithm 1 would not use ml.valr2i`1s. This would introduce
an disadvantage due to using only every other element of ml.val.
In our implementation we take care of this situation and have a spe-
cialized AXPY implementation for that. Still, we are performing two
reductions (each dense row is reduced by one row) in one step.

Assuming general n-multiline vectors the problem of introduc-
ing useless operations on zero elements appears. For multiline vec-
tors, i.e. n “ 2, we can perform lightweight tests before the ac-
tual loop to ensure execution only on nonzero λ1,1,λ1,2 (for single
AXPY) resp. λ1,1,λ1,2,λ2,1,λ2,2 (for Algorithm 1). For general n
we cannot predict every possible configuration of the n2 scalars
λ1,1, . . . ,λn,n. Moreover, for n-multiline vectors the memory over-
head can get problematic, too. For n “ 2 we can lose at most
sizeofpentryq bytes per column index, but for arbitrary n this
increases to pn´1q ¨sizeofpentryq bytes. All in all, we note the
following fact that is also based on practical experimental results.

REMARK 1. Based on cache efficiency as well as memory over-
head due to adding zero entries to the val vector 2-multiline vector
data structures are the most efficient.

As already mentioned in [9], representing the matrices A, B, C
and D in blocks has several benefits: Firstly, we can pack data in
small blocks that fit into cache and thus we increase spatial and
temporal locality. Secondly, separating the data into column blocks
we can perform operations on B and D rather naturally in parallel.
Thus we are combining the multiline vector data structure with a



block representation in our implementation. In the following, pre-
sented pseudo code is independent of the corresponding row resp.
block representation, standard row representation is used. Multiline
representations impede the readability of the algorithms, if there is
an impact on switching to multilines, we point this out in the text.

Using multilines is useful in situations where we can predict hor-
izontal and vertical patterns with a high probability, in order to
see advantages and drawbacks we have two different implementa-
tions, GBLA-v0.1 and GBLA-v0.2, which use multilines in differ-
ent ways (see also Section 2).

4.3 New order of operations
If the number of initially known pivots (i.e. the number of rows

of A and B) is large compared to the number of rows of C and D,
then most work of the GB reduction is spent in reducing A, the
TRSM step A´1B. For the Gröbner basis the new information for
updating the basis is strictly in D. Thus, if we are not required to
compute a reduced echelon form of the input matrix M, but if we
are only interested in the reduction of D resp. the rank of M we
can omit the TRSM step. Whereas in [9] the original GB reduction
removes nonzero entries above (A´1B) and below (deleting C) the
known pivots, it is enough to reduce elements below the pivots.

Thus, after splicing the input matrix M of dimension mˆ n we
can directly reduce C with A while reflecting the corresponding
operations with B on D with the following steps.

Algorithm 2 Reduction of C and D
Require: submatrices A

`

npivˆnpiv
˘

, B
`

npivˆpn´npivq
˘

,
C
`

pm´npivqˆnpiv
˘

, D
`

pm´npivqˆpn´npivq
˘

.
1: denseC , denseD, i, j
2: for

`

i“ 0; iă m´npiv; iÐ i`1
˘

do
3: denseC Ð copy_sparse_row_to_densepCri,˚sq
4: denseD Ð copy_sparse_row_to_densepDri,˚sq
5: for

`

j“ 0; jă npiv; jÐ j`1
˘

do
6: if pdenseCr js ‰ 0q then
7: AXPYpdenseC,denseCr js,Ar j,˚sq
8: AXPYpdenseD,denseCr js,Br j,˚sq
9: Dri,˚sÐ copy_dense_row_to_sparsepdenseDq

Whereas Algorithm 2 describes the idea of reducing C and D
from a mathematical point of view, in practice one would want to
use a block representation for the data in order to improve cache
locality and also parallelization. Strangely, it turned out that this is
not optimal for efficient computations: In fact, in the implemem-
tion we do not reduce C by A to zero, but store the corresponding
multiples needed to update D by B later on. In order for a block rep-
resentation to make sense one needs to completely reduce all rows
resp. multilines in a given block before reducing the next block.
That is not a problem for B and D since their blocks do not depend
on the columns, but it is disadvantageous for A and C. Assuming
an operation on a lefthand side block of C due to a reduction from a
block from A, any row operation on C must be carried out through
all blocks on the right. Even worse, whenever we would try to han-
dle C per row resp. multiline and D per block at the same time this
would introduce a lot of writing to D. Thus, in our implementation
we found the most efficient solution to be the following:

1. Store A and C in multiline representation and B and D in
block multiline representation as defined in Section 4.2.

2. Carry out the reduction of C by A, but store the corresponding
coefficients needed for the reduction of D by B later on.

3. Transform C to block multiline representation C1.
4. Reduce D by B using thecoefficients stored in C1.
Thus we have an optimal reduction of C and an optimal reduction

of D. The only overhead we have to pay for this is the transforma-

tion from C to C1. But copying C into block format is negligible
compared to the reduction operations done in C and D.

In Section 6 we see that this new order of operations is faster
than the standard GB reduction for full rank matrices from F5. The
density of the row echelon form of M does not vary too much from
M’s initial density which leads in less memory footprint.

4.4 Modified structured Gaussian Elimination
Computing the row echelon form of D the original FL Imple-

mentation used a sequential structured Gaussian Elimination. Here
we use a modified variant that can be easily parallelized.

Algorithm 3 Modified structured Gaussian Elimination of D
Require: submatrix D

`

pm´npivqˆpn´npivq
˘

.
Ensure: rankD, rank of D
1: denseD, i, j
2: rankD Ð 0
3: for

`

i“ 0; iă m´npiv; iÐ i`1
˘

do
4: normalizepDri,˚sq
5: denseD Ð copy_sparse_row_to_densepDri,˚sq
6: for p j“ 0; jă i´1; jÐ j`1q do
7: if pheadpdenseDq “ headpDr j,˚sqq then
8: AXPYpdenseD,headpdenseDq,Dr j,˚sq
9: Dri,˚sÐ copy_dense_row_to_sparsepdenseDq

10: normalizepDri,˚sq
11: if pnot_emptypDri,˚sqq then
12: rankD Ð rankD`1
13: return rankD

In Algorithm 3 we do a structured Gaussian Elimination on the
rows of D. Note that the rows of D have to be normalized and
inverted afterwards in order to be correctly reconverted to polyno-
mials for a Gröbner basis algorithm.. At the very end the rank of D
is returned. The modification lies mainly in the fact that once we
have found a new pivot row, we do not sort the list of known pivot
rows, but just add the new one. This is due to the usage of mul-
tilines in our implementation. Storing two (or more) rows in this
packed format it is inefficient to sort pivots by column index. Pos-
sibly we would need to open a multiline row and move the second
row to another position. For this, all intermediate multiline rows
need to be recalculated. Thus we decided to relinquish the sorting
at this point of the computation and sort later on when reconstruct-
ing the row echelon form of the initial matrix M. Note that whereas
we use multilines everywhere in GBLA-v0.1, in GBLA-v0.2 (see
Section 6) we restrict the usage of multilines to specific block situ-
ations and no longer use them for the dense Gaussian Elimination
of D. Thus we are able to perform a sorting of the pivots.

5. PARALLELIZATION
In this section we discuss improvements concerning parallelizing

the GB reduction taking the new ideas presented in the last section
into account. For this we have experimented with different parallel
schedulers such as OpenMP, XKAAPI and pthreads. Moreover,
whereas the initial implementation of Faugère and Lachartre used
a sequential Gaussian Elimination of D we are now able to use a
parallel version of Algorithm 3.

5.1 Parallelization of the modified structured
Gaussian Elimination

As already discussed in Section 4.4 we use a modified structured
Gaussian Elimination for multilines which omits sorting the list of
known pivots, postponed to the reconstruction of the echelon form
of the input matrix M. In our library GBLA there is also a non-
multiline version with sorting, see Section 6 for more information.



Assuming that we have already found k pivots in Algorithm 3,
we are able to reduce several rows of index ą k in parallel. The
k pivots are already in their normalized form, they are readonly,
thus we can easily update Dr`,˚sÐDr`,˚s`

řk
i“0 λiDri,˚sfor all

k ă ` ă m´ npiv and corresponding multiples λi. Clearly, this in-
troduces some bookkeeping: Whereas in the above situation Drk`
1,˚s is fully reduced with the k known pivots, the rows Drk` j,˚s
for j ą 1 are not. Thus we can add Drk`1,˚s to the list of known
pivots, but not Drk` j,˚s. We handle this by using a global wait-
ing list W which keeps the rows not fully reduced and the indices
of the last pivot row up to which we have already updated the cor-
responding row. Different threads share a global variable lp: the
last known pivot. Each thread performs the following operations:

1. Fetch the next available row Dr j,˚s which was not updated
up to this point or which is already in the waiting list W .

2. Reduce it with all pivots not applied until now, up to lp.
3. If j “ lp`1, Dr j,˚s is a new pivot and lp is incremented.
4. If j ‰ lp`1, Dr j,˚s is added to W keeping track that lp is

the index of the last row Dr j,˚s is already reduced with.
Naturally, the above description leaves some freedom for the de-

cision which row to fetch and reduce next in Step 1. We found the
following choice to be the most efficient for a wide range of exam-
ples: When a thread fetches a row to be further reduced it prefers
a row that was already previously reduced. This often leads to a
faster recognition of new known pivots in Step 3. Synchronization
is needed in Steps 3 and 4, besides this the threads can work inde-
pendent of each other. We handle the communication between the
threads using spin locks whose implementation w.r.t. a given used
different parallel scheduler (see Section 5.2) might differ slightly.

Talking about load balancing it can happen that one thread gets
stuck in reducing already earlier reduced rows further, whereas
other threads fetch pristine rows and fill up W more and more. In
order to avoid this we use the following techniques:
‚ If a thread has just fully reduced a row r and thus adds a new

known pivot, this thread prefers to take an already reduced
row from W possibly waiting for r to become a known pivot.

‚ If a thread has added t new rows to W consecutively, it is trig-
gered to further reduce elements from W instead of starting
with until now untouched rows from D.

For efficiency reasons we do not directly start with the discussed
parallel elimination, but we do a sequential elimination on the first
k rows resp. multiline rows of D. In this way we can avoid high
increasing on the waiting list W at the beginning, which would lead
to tasks too small to benefit from the available number of cores
executing in parallel. Thus k depends on the number of threads
used, in practice we found that k “ 2ˆ pnumber of threadsq is a
good choice. Clearly, the efficiency of this choice depends on how
many of the first k rows resp. multiline rows of D reduce to zero in
this step. This is not a problem for full rank matrices coming from
F5 Gröbner basis computations.

5.2 Different parallel schedulers
We did some research on which parallel schedulers to be used

in our library. For this we tested not only well known schedulers
like OpenMP [3] and Intel TBB [12] but also XKAAPI [10] and
StarPU [1]. We also did experiments with pthreads and own im-
plementations for scheduling. Most of the schedulers have advan-
tages and disadvantages in different situations like depending on
sparsity, blocksizes or relying on locking for the structured Gaus-
sian Elimination. Moreover, all those packages are actively devel-
oped and further improved, thus we realized different behavoiour
for different versions of the same scheduler. In the end we decided
to choose OpenMP for the current state of the library.

1. It is in different situations usually not the fastest scheduler,
but often tends to be the fastest for the overall computation.

2. Our library should be plain C as much as possible, thus we
discarded the usage of Intel TBB which is based on high-
level C++ features for optimal usage.

3. Current versions of XKAAPI are able to interpret OpenMP
pragmas. Thus one can use our library together with XKAAPI
by changing the linker call: instead of libgomp one has to
link against libkomp (see also Section 6).

4. Using pthreads natively is error-prone and leads to code that
is not portable (it is not trivial to get them efficiently work on
Windows machines). OpenMP’s locking mechanism boils
down to pthreads on UNIX and their pendants on Windows
without having to deal with different implementations.

5. StarPU’s performance depends highly on the used data struc-
tures. Since the representation of our data is special (see Sec-
tions 3 and 4) we need further investigations on how to get
data and scheduler playing together efficiently. Moreover,
the fact that StarPU can be used for task scheduling even on
heterogeneous multicore architectures like CPU/GPU com-
binations makes it a good candidate for further experiments.

6. EXPERIMENTAL RESULTS
The following experiments were performed on http://hpac.imag.

fr/ which is a NUMA architecture of 4x8 processors. Each of
the 32 non hyper-threaded Intel(R) Xeon(R) CPUs cores clocks at
2.20GHz (maximal turbo frequency on single core 2.60GHz). Each
of the 4 nodes has 96Gb of memory, so we have 384Gb of RAM
in total. The compiler is gcc-4.9.2. The timings do not include
the time spent on reading the files from disk. We state matrix char-
acteristics of our example set in Table 5.

We use various example sets: There are well known benchmarks
like Katsura, Eco and Cyclic6. Moreover, we use matrices
from minrank problems arising in cryptography. Furthermore we
have random dense systems randx-d2-y-mat* in x variables,
all input polynomials are of degree 2. Then we deleted y poly-
nomials to achieve higher-dimensional benchmarks. All examples
are done over the biggest 16-bit prime field, F65521. We use the
uint16 coefficient representation in GBLA. If not otherwise stated
GBLA’s timings are done using OpenMP as parallel scheduler.

6.1 Behaviour on F5 matrices
We show in Table 6 a comparison with Faugère and Lachartre’s

FL Implementation from [9] and GBLA. Timings are in seconds,
using 1, 16 or 32 threads. This is done for F5 matrices, thus we can
use GBLA’s new order of operations (see Section 4.3) to compute
a Echelon form and to verify that the matrices have full rank.

Usually GBLA-v0.1 is faster even on one core than FL Im-
plementation, GBLA-v0.2 is even faster than GBLA-v0.1. Both
GBLA implementations have a much better scaling than FL Imple-
mentation, where GBLA-v0.2 preforms better than GBLA-v0.1,
even scaling rather good for smaller examples, where the overhead
of scheduling different threads starts to become a bottleneck. The
only example where FL Implementation is faster than GBLA is
mr-9-10-7-mat3, a very dense (35.5%) matrix. This good be-
haviour for FL Implementation might be triggered from the fact
that FL Implementation allocates all the memory needed for the
computation in advance. Usually the user does not know how much
memory the computation might need, so this approach is a bit error-
prone. Still, FL Implementation is faster than GBLA only on one
core, starting to use several CPU cores the better scaling of GBLA
6Also including a version where we have applied the symmetry of
the cyclic group action of degree 1, see [8].



Matrix Rows Columns Nonzeros Density
ˆ103 ˆ103 ˆ106 %

F4 kat12 mat9 18.8 22.3 17.1 4.07

kat13 mat2 4.68 6.53 1.45 4.74
mat3 12.1 14.6 7.78 4.35
mat5 35.4 38.2 63.7 4.13
mat9 43.5 49.2 75.3 3.52

kat14 mat8 100 103 352 3.39

kat15 mat7 168 178 832 2.77
mat8 197 210 1,060 2.55
mat9 228 234 1,521 2.84

eco14 mat24 105 107 91.1 0.81

eco16 mat13 157 141 293 1.32

mr-9-8-8-5 mat7 26.0 34.1 236 26.6
mat8 22.1 34.6 189 25.5

rand16-d2-2 mat5 67.1 106 199 2.80
mat6 146 217 689 2.19

rand16-d2-3 mat8 587 874 4,328 0.84
mat9 980 1,428 8,378 0.60
mat10 1,544 2,199 14,440 0.43
mat11 2,287 3,226 23,823 0.32

rand18-d2-9 mat5 430 1,028 1,048 0.24
mat6 1,212 2,674 3,879 0.12

F5 kat13 mat5 28.4 35.5 26.8 2.66
mat6 34.5 42.3 35.9 2.46

kat14 mat7 69.6 84.5 118 2.01
mat8 81.0 96.9 156 1.98

kat15 mat7 139 167 383 1.63
mat8 168 199 507 1.51
mat9 187 219 640 1.56
mat10 195 227 725 1.63

kat16 mat5 83.8 110 139 1.50
mat6 168 208 485 1.38
mat9 393 456 2,234 1.25

cyc10 mat19 192 256 1,182 2.40
mat20 303 378 2,239 1.95

cyc10-sym1 mat17 29.8 43.3 114 0.09

mr-9-10-7 mat3 20.1 74.5 532 35.5
mat7 88.5 192 4,055 23.8

rand16-d2-2 mat11 1,368 1,856 15,134 0.60
mat12 1,806 2,425 22,385 0.51
mat13 2,310 3,076 31,247 0.44

rand16-d2-3 mat8 578 871 3,140 0.62
mat9 973 1,426 6,839 0.49
mat10 1,532 2,198 13,222 0.39
mat11 2,286 3,226 23,221 0.31
mat12 3.266 4,550 37,796 0.25

rand18-d2-9 mat5 429 1,027 9,65 0.22
mat7 3,096 6,414 12,594 0.06
mat11 1,368 1,856 15,135 0.60

Table 5: Some matrix characteristics

wins (already at 2 cores the timings are nearly identical). More-
over, for dense matrices like the minrank ones we can see a benefit
of the multiline structure, at least for fewer cores. Once the number
of cores increases the better scaling of GBLA-v0.2 is favourable.

For cyc10-sym1-mat17 the speedup between 16 and 32 is
quite small. Due to the applied symmetry the matrix is already
nearly reduced, so the scheduling overhead has a higher impact
than the gain during reduction for anything greater than 16 cores.

For the higher-dimensional random examples the row dimension
of C and D is very small (ă 300). Our new order of operations (Sec-
tion 4.3) enables GBLA to reduce matrices the FL Implementation
is not able to handle. For rand18-d2-9-mat7 even GBLA-
v0.2 reaches the memory limit of the machine, but it is still able
to reduce the matrix. Memory overhead due to multilines hinders
GBLA-v0.1 to compute rand16-d2-3-mat11, but is more ef-
ficient on rand16-d2-3-mat10 for one core.

Implementation FL Implementation GBLA-v0.1 GBLA-v0.2

F5 Matrix / # Threads 1 16 32 1 16 32 1 16 32

kat13-mat5 16.7 2.7 2.3 14.5 2.02 1.87 14.5 1.73 1.61
kat13-mat6 27.3 4.15 4.0 23.9 3.08 2.65 25.9 3.03 2.28
kat14-mat7 139 17.4 16.6 142 13.4 10.6 122 11.2 8.64
kat14-mat8 181 24.95 23.1 177 16.9 12.7 158 14.7 10.5
kat15-mat7 629 61.8 55.6 633 55.1 38.2 553 46.3 30.7
kat16-mat6 1,203 110 83.3 1,147 98.7 69.9 988 73.9 49.0

mr-9-10-7-mat3 591 70.8 71.3 733 57.3 37.9 747 52.8 33.2
mr-9-10-7-mat7 15,787 1,632 1,565 15,416 1,103 793 15,602 1,057 591
cyc10-mat19 7,482 693 492 1,291 135 103 1,030 80.3 62.9
cyc10-mat20 17,853 1,644 1,180 2,589 274 209 2,074 171 152

cyc10-sym1-mat17 11,083 1,982 1,705 2,463 465 405 2,391 275 245
rand16-d2-2-mat11 mem mem mem 2,568 946 883 4,553 425 360
rand16-d2-2-mat12 mem mem mem 5,751 1,252 1,219 6,758 632 527
rand16-d2-2-mat13 mem mem mem mem mem mem 8,435 816 721
rand16-d2-3-mat8 2,084 500 472 2,243 339 282 1,654 144 106
rand16-d2-3-mat9 bug bug bug 2,938 827 781 2,308 236 227
rand16-d2-3-mat10 mem mem mem 2,528 922 940 4,518 427 372
rand16-d2-3-mat11 mem mem mem mem mem mem 11,254 931 696
rand16-d2-3-mat12 mem mem mem mem mem mem 15,817 1,369 1,150
rand18-d2-9-mat5 1,469 287 250 350 297 306 340 52.9 50.3
rand18-d2-9-mat7 mem mem mem mem mem mem 8,752 1,112 1,098
rand18-d2-9-mat11 bug bug bug 2,540 923 882 4,600 415 363

Table 6: GB reduction vs. GBLA (time in seconds)

Implementation Magma GBLA-v0.1 GBLA-v0.2

F4 Matrix / # Threads 1 1 16 32 1 16 32

kat12-mat9 11.2 11.4 1.46 1.60 11.3 1.40 1.40

kat13-mat2 0.94 1.18 0.38 0.61 1.11 0.26 0.33
kat13-mat3 9.33 11.0 1.70 3.10 8.51 1.07 1.13
kat13-mat9 168 165 16.0 11.8 114 9.74 6.83

kat14-mat8 2,747 2,545 207 165 1,338 104 65.8

kat15-mat7 10,345 9,514 742 537 4,198 298 195
kat15-mat8 13,936 12,547 961 604 6,508 470 283
kat15-mat9 24,393 22,247 1,709 1,256 10,923 779 450

eco14-mat24 524 169 22.2 21.9 146 16.2 16.5

eco16-mat13 6,239 1,537 184 176 1,346 104 72.9

mr-9-8-8-5-mat7 1,073 1,080 88.5 57.9 550 41.6 24.7
mr-9-8-8-5-mat8 454 600 48.5 30.3 318 25.6 14.9

rand16-d2-2-mat5 740 778 62.2 40.8 589 43.6 28.6
rand16-d2-2-mat6 4,083 4,092 375 219 3,054 224 133

rand16-d2-3-mat8 55,439 48,008 3,473 2,119 26,533 1,782 1,027
rand16-d2-3-mat9 91,595 65,126 4,869 2,983 39,108 2,614 1,372
rand16-d2-3-mat10 mem - 9,691 6,223 - 3,820 1,972
rand16-d2-3-mat11 mem mem mem mem - 5,399 2,385

rand18-d2-9-mat5 2,020 1,892 414 388 630 63.1 61.8
rand18-d2-9-mat6 4,915 6,120 981 941 1,736 220 218

Table 7: Magma vs. GBLA (time in seconds)

6.2 Behaviour on F4 matrices
In Table 7 we compare Magma-2.19 [?] to GBLA. Since there

is no F5 implementation in Magma we can only compare matri-
ces coming from F4 computations. Since Magma is closed source
we are not able to access the specialized linear algebra for Gröb-
ner basis computations directly. Thus, we are comparing the same
problem sets with the same degrees running Magma’s F4 imple-
mentation. Note that Magma generates matrices that are, for the
same problem and same degree, slightly larger, usually 5 to 10%.
Note that we use only Magma’s CPU implementation of F4, but
not the rather new GPU one. We think that it is not really useful
to compare GPU and CPU parallelized code. Furthermore, most
of our examples are too big to fit into the RAM of a GPU, so data
copying between CPU and GPU might be problematic for an accu-
rate comparison.

For small examples Magma, not splicing the matrices, has an
advantage. But already for examples in the range of 10 seconds
GBLA, especially GBLA-v0.2 gets faster on single core. The dif-



Implementation GBLA-v0.1 GBLA-v0.2

# Threads 16 32 16 32
Matrix / Scheduler OMP XK OMP XK OMP XK OMP XK

F4-kat15-mat8 961 916 604 1,223 470 463 283 277
F4-kat15-mat9 1,709 1,679 1,256 2,122 779 774 450 431

F4-rand16-d2-3-mat8 3,4732 3,447 2,119 1,964 1,782 1,818 1,027 1,017
F4-rand16-d2-3-mat9 6,956 7,073 4,470 3,783 3,214 3,141 1,776 1,785

F5-kat16-mat6 98.7 105 69.9 67.2 73.9 75.3 49.0 49.0
F5-mr-9-10-7-mat3 57.3 59.6 37.9 38.8 52.8 54.8 33.2 34.7
F5-cyc10-mat19 135 140 103 101 80.3 86.7 62.9 60.9
F5-cyc10-mat20 274 292 209 206 171 203 152 141

F5-cyc10-sym1-mat17 465 496 405 406 275 272 245 217

Table 8: OpenMP vs. XKAAPI (time in seconds)

ference between Magma and GBLA-v0.1 is rather small, whereas
GBLA-v0.2 becomes more than twice as fast. Moreover, GBLA-
v0.1 and GBLA-v0.2 scale very well on 16 and 32 cores. Due to
lack of space we do not state timings for the FL Implementation.
It behaves in nearly all examples like expected: Due to prealloca-
tion of all memory it is very fast on sequential computations (nearly
as fast as GBLA-v0.2), but it scales rather bad. For example, for
kat14-mat8 FL Implementation runs in 1,571s, 861s and 868s
for 1, 16 and 32 cores, respectively. Also note that FL Implemen-
tation’s memory consumption is higher than GBLA’s.

For the random, higher dimensional examples Magma cannot
reduce matrices starting from rand16-d2-3-mat9 due to the
float representation of the matrix entries and resulting higher
memory usage on the given machine. For rand16-d2-3-mat11
even GBLA-v0.1 consumes too much memory by using multilines
and thus introducing too many zeros (see Section 4.2). Even GBLA-
v0.2 comes to the limit of our chosen compute server, but it can
still reduce the matrix: At the end of the computation the process
consumed 98% of the machine’s RAM.

6.3 Comparing OpenMP (OMP) and XKAAPI (XK)
We compare the different behaviour of the parallel schedulers

that can be used in GBLA (see also Section 5.2): The default sched-
uler in GBLA is OMP, here we use the latest stable version 4.0. XK
can interpret OMP pragmas, too, so we are able to run GBLA with
XK by just changing the linker call from libgomp to libkomp.
The latest stable version of XK we use is 3.0. In Table 8 we com-
pare both schedulers on representative benchmarks in GBLA-v0.1
and GBLA-v0.2 on 16 and 32 cores. The timings show that in many
examples both schedulers are on par. XK tends to be a bit more effi-
cient on 32 cores, but that is not always the case. F4-kat15-mat8
and F4-kat15-mat9 are cases where XK has problems on 32
cores for GBLA-v0.1. This comes from the last step, the struc-
tured Gaussian Elimination of D where GBLA-v0.1, using multi-
lines, cannot sort the pivots which seems to become a bottleneck
for XK’s scheduling. For the same examples in GBLA-v0.2 (now
with sorting of pivots) we see that XK is even a bit faster than OMP.
All in all, in our setting both schedulers behave nearly equal.

7. CONCLUSION
We presented the first open-source, plain C library for linear al-

gebra specialized for matrices coming from Gröbner basis com-
putations including various new ideas exploiting underlying struc-
tures. This led to more efficient ways of performing the GB re-
duction and improved parallel scaling. Moreover, the library uses
a new compressed file format that enables us to generate matrices
not feasible beforehand. Corresponding routines for dumping and
converting own matrices are included such that researchers are able
to use their own data in our new format in GBLA.

Also the time needed to reduce D during GB reduction is in gen-

eral very small compared to the overall reduction, we plan to inves-
tigate our parallel structured Gaussian elimination implementation
in the future. For this we may again copy D1 first to a different data
representation and use external libraries for fast exact linear algebra
such as FFLAS-FFPACK [4] in given situations.
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