
On the Complexity of Solving
Zero-Dimensional

Polynomial Systems via Projection
Cornelius Brand

Saarland University
Cluster of Excellence (MMCI)∗

Michael Sagraloff
Max-Planck-Institut für Informatik, Saarbrücken

January 25, 2018

Abstract
Given a zero-dimensional polynomial system consisting of n integer polynomials

in n variables, we propose a certified and complete method to compute all complex
solutions of the system as well as a corresponding separating linear form l with
coefficients of small bit size. For computing l, we need to project the solutions into
one dimension along O(n) distinct directions but no further algebraic manipulations.
The solutions are then directly reconstructed from the considered projections. The
first step is deterministic, whereas the second step uses randomization, thus being
Las-Vegas.
The theoretical analysis of our approach shows that the overall cost for the two

problems considered above is dominated by the cost of carrying out the projections.
We also give bounds on the bit complexity of our algorithms that are exclusively
stated in terms of the number of variables, the total degree and the bitsize of the
input polynomials.

1 Introduction
Let fi ∈ Z[x1, . . . , xn], with i = 1, . . . , n, be polynomials of total degree di and with
integer coefficients of bitsize at most τ , i.e., fi has magnitude (di, τ). We further assume
that the system

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0, (1)
∗Part of this work was done while visiting the Simons Institute for the Theory of Computing

1

ar
X

iv
:1

60
4.

08
94

4v
1

 [
cs

.S
C

]
 2

9
A

pr
 2

01
6

has only finitely many solutions (also "at infinity").
There is an extensive literature describing numerous approaches to compute the set
S of complex solutions of (1), and any attempt to provide a comprehensive overview
would go far beyond the scope of this work. Instead, we refer the reader to one of the
excellent textbooks [8, 29, 7]. A well-studied approach based on elimination techniques
such as multivariate resultants or Gröbner Bases first projects the solutions into one
dimension and then recovers them from the projections. That is, given a linear form
l =

∑n
i=1 lixi with integer coefficients li, we may ask for the image of S under the mapping

πl : Cn 7→ C that sends a point (x1, . . . , xn) ∈ Cn to the value
∑n
i=1 lixi ∈ C. Using

elimination techniques, we can compute a univariate polynomial El ∈ Z[x], which we call
an elimination polynomial along l, such that the set V (El) = {z ∈ C : El(z) = 0} of roots
of El contains the image S l := πl(S) of S under πl. When reconstructing the solutions
from the roots of El, several problems may arise: The set V (El) may contain projections
of solutions at infinity, so that V (El) 6= S l. This can be resolved by considering a suitable
change of coordinates that transforms the corresponding homogeneous polynomial system
into a system with only finite solutions. What is even worse, l may be non-separating for
S, that is, there exist two solutions that map to the same point. In this case, πl does not
define a bijective mapping between S and V (El), and thus S cannot be recovered directly
from V (El). In contrast, if the linear form is known to be separating, then efficient
methods exist (e.g. by means of computing a univariate rational representation [27, 1])
to obtain the solutions from the projections.
One possible way [27] of computing a separating linear form (SLF for short) is to

consider a large enough set L of linear forms, which is known to contain at least one
SLF, and to carry out projections along each l ∈ L (i.e. we compute El and its roots).
Then, each linear form l ∈ L that maximizes the number of distinct roots of El must be
separating. For instance, the approach in [27] considers the set

L := {x1 + i · x2 + · · ·+ in−1xn : 0 ≤ i ≤ (n− 1)dn(dn − 1)/2},

where d is an upper bound on the degree of all fi. Hence, we need to employ Ω(nd2n)
projections along linear forms of bitsize O(n2 log d) to compute an SLF, which renders
the approach impractical. Our work is driven by the question whether it is possible to
compute an SLF using a considerably smaller number of projections. Since two solutions
might share n − 1 coordinates, a reasonable lower bound for the needed number of
projections seems to be n. Here, we show that 2n− 1 projections along linear forms of
bitsize O(n log d) are sufficient, and that the cost for computing an SLF is dominated by
the cost for the projections. In addition, the computed linear form has bitsize O(n log d),
thus being a factor n smaller than what can be obtained with the approach above.
The main tool underlying our approach is a fast method for the computation of

a linear form l = x + sy, with s ∈ Z, that is separating for a two-dimensional grid
G := X × Y ⊂ C2, where X and Y are the sets consisting of the distinct roots of
univariate integer polynomials f and g of magnitude (D,L), respectively. In Section 3,
we show how to compute such an s ∈ {1, . . . , D4}, using Õ(D3 +D2L) bit operations.
This bound is noteworthy as it matches the best bound [23, 25, 2] known for isolating

2

all complex roots of f and g, and thus for computing X and Y . Notice that using the
above result, we may immediately derive the current record bound [18, 3] of Õ(d6 + d5τ)
operations for computing an SLF for the solutions of a bivariate system defined by two
polynomials of magnitude (d, τ). Indeed, using resultant computation we may first project
the solutions of this system on both coordinates. Then, the grid G defined as the product
of the roots of the two corresponding resultant polynomials (of magnitude (d2, Õ(dτ)))
contains all solutions of the system, and thus an SLF for G also constitutes an SLF for
the solutions.

We extend this approach to compute an SLF for the solutions of a general n-dimensional
system as given in (1): We first project the solutions on each of the coordinate axes, which
yields sets X1 to Xn in C. Then, the n-dimensional grid G := X1 × · · · ×Xn contains all
solutions. However, instead of computing an SLF for G, we recursively compute SLFs
l′ = l[i1, . . . , ik] for the canonical embeddings of S into proper sub-products Xi1×· · ·×Xik

of G until we eventually obtain an SLF l for S. This can be achieved by means of a
divide-and-conquer strategy, which uses projections along the linear forms l′ and our
fast method for the computation of an SLF for a two-dimensional grid. Our method
can be combined with any elimination technique that allows to carry out projections of
the solutions along linear forms. The worst case bit complexity of our method is then
bounded by

Õ(n · (D3 +D2L) + n ·Π), (2)

where Π bounds the cost of computing an elimination polynomial for (1) along a linear
form of bitsize O(n log d), and D and L constitute bounds on the degrees and the bitsizes
of the produced elimination polynomials. If a deterministic method is used to compute
the elimination polynomials, our method is deterministic as well. Using the Las-Vegas
algorithm from [12, 28] to compute the hidden-variable resultant, we have D ≤ dn,
L = Õ((nd)n−1(nd+ τ)), and1 Π = Õ(n(n−1)(ω+1)(d+ τ)d(ω+2)n−ω−1). Then, (2) writes
as

Õ(n(n−1)(ω+1)+1(nd+ τ)d(ω+2)n−ω−1), (3)

which bounds the number of bit operations that our algorithm uses in expectation. Indeed,
within the same complexity, we can even compute (nd)O(1) different SLFs for the solutions
of (1). With high probability, we may then choose an SLF l in a certified manner such
that each root of the corresponding elimination polynomial El lifts to a solution of the
system. Using the (intermediate) separating forms l′ = l[i1, . . . , ik] from the computation
in the first step, we can finally recover all solutions from the projections along l. The
total cost for this step is also bounded by (3).

1Here, ω denotes the exponent in the complexity of matrix multiplication. In the general case,
where each of the considered hidden variable resultants R(x) are obtained from the formula
R(x) = detM(x)/detS with a non-singular matrix S, the bound for Π improves by a factor
(nd)n−1. In this case, the bound in (3) also improves by a factor (nd)n−1; see Section 2 for
more details.

3

The complexity of all steps in our algorithm, except for the computation of the
elimination polynomials, is within the best known bound for the computation of the
roots of the occurring elimination polynomials. Since the latter bound is suspected
to be near-optimal and since any elimination based approach has to compute certain
elimination polynomials of comparable magnitude as well as the roots of such polynomials
at some point, there is some evidence that our method may perform near-optimal (at
least for elimination approaches). Note that the bound in (3) is dominated by the bound
for the computation of the hidden variable resultant. In particular, for fixed n, the cost
for the latter task (approximately) scales like d(ω+2)nτ , whereas the cost for all other
steps (approximately) scales like d3nτ . Hence, any improvement on the complexity of
computing elimination polynomials yields an improvement of the bound in (3).

How does our bound compare to the complexity results stated in the literature? There
has been extensive research [13, 20, 17, 19, 21, 27] in the 80s and 90s showing that the
computation of multivariate resultants or Gröbner Bases as well as the computation of the
solutions of a zero-dimensional polynomial systems has (arithmetic) complexity bounded
by dO(n), thus being polynomial in the size of the dense input representation; see also [16]
for a more comprehensive overview. There also exist more specific bounds [24, 4, 26]
yielding an arithmetic complexity for computing the solutions of size approximately Õ(d3n).
However, we are not aware of any general bound on the bit complexity that is comparable
to ours, even not for lower-dimensional polynomial system with 3 or 4 variables, whereas
remarkably, within the last two decades, the thorough investigation [15, 9, 10, 18, 3] of the
(bit) complexity of solving bivariate systems eventually yielded bounds (i.e. Õ(d6 + d5τ))
for the computation of an SLF and of all solutions) that are likely to be near-optimal
and comparable to our result. The method from [6] for solving zero-dimensional system
shares some similarities with our approach. There, it is proposed to recursively compute
SLFs lk =

∑k
i=1 lixi for the "solutions" of the elimination ideals Ik := I ∩Q[x1, . . . , xk],

where k = 1, . . . , n and I := (fi)i=1,...,n is the ideal defined by the polynomials fi. The
crux is that this is done so that all solutions (ξ, xk+1) of Ik+1 obtained from lifting a
specific solution ξ of Ik project via lk+1 into a small neighborhood of lk(ξ). Following
this approach, the solutions of I can be represented as linear combinations of the
roots of univariate polynomials. The method seems to perform well in practice as the
actual separation bounds for the roots of the considered elimination polynomials is small
compared to the worst-case. However, no complexity analysis is given, and we suspect
that the method is not very well suited for a worst-case analysis as it considers the
computation of elimination polynomials along linear forms of a very large bitsize (at least
in theory).

2 Preliminaries
We consider a zero-dimensional polynomial system as in (1). Then, the homogenized
system

F1(x1, . . . , xn+1) = · · · = Fn(x1, . . . , xn+1) = 0, (4)

4

with Fi(x1, . . . , xn+1) ∈ Z[x1, . . . , xn] a homogenous polynomial of degree di and

Fi(x1, . . . , xn, 1) = fi(x1, . . . , xn)

has only finitely many solutions in the complex projective n-space Pn. Then, Bézout’s
Theorem says that the total number of solutions in Pn is upper bounded by B :=
d1 · · · dn ≤ dn. A solution of the form (x1, . . . , xn, 1) ∈ Pn is called finite, whereas each
solution of the form (x1, . . . , xn, 0) is called infinite. The solution x1 = · · · = xn+1 = 0
is called trivial. Let S ⊂ Cn be the set of all complex solutions of (1). Then, the finite
solutions (x1, . . . , xn, 1) of (4) exactly correspond to the solutions (x1, . . . , xn) ∈ S of
(1), whereas the solutions at infinity exactly correspond to the solutions in Pn−1 of the
(homogeneous) system F̄1(x1, . . . , xn) = · · · = F̄n(x1, . . . , xn) = 0, with F̄i := Fi

∣∣
xn+1=0.

We now briefly review the hidden variable approach based on resultant computation,
which allows us to project the solutions of (1) on one of the coordinates; for more details,
see [7, 14]. We may assume that x1 is the coordinate onto which we project. For a fixed
value x1 = ξ ∈ C, (1) transforms into

f ′1(x2, . . . , xn) = · · · = f ′n(x2, . . . , xn) = 0, (5)

with f ′i := fi
∣∣
x1=ξ of generic2 degree d′i ≤ di. Let F ′i ∈ C[x2, . . . , xn, xn+1] be the

corresponding homogenized polynomial of degree d′i, then

F ′1(x2, . . . , xn+1) = · · · = F ′n(x2, . . . , xn+1) = 0 (6)

defines a system of n homogeneous polynomials in n variables. It is a well-known fact
that there exists a homogeneous polynomial of total degree D′ :=

∑n
i=1

∏
j 6=i d

′
i ≤ ndn−1

in the coefficients of the polynomials F ′i , the so-called resultant Res(F ′1, . . . , F ′n) of the
polynomials F ′i , which vanishes if and only if the system (6) has a non-trivial solution in
Pn−1. The resultant is a factor of the determinant of an m×m-matrix M , the so-called
Macaulay matrix, whose entries are given in terms of the coefficients of the polynomials
F ′i ; here, N :=

∑n
i=1(d′i − 1) + 1 < nd and m =

(N+(n−1)
n−1

)
< (nd)n−1. Since f ′i has the

same coefficients as F ′i , one usually defines Res(f ′1, . . . , f ′n) := Res(F ′1, . . . , F ′n).
In order to compute the projections of the solutions S of (1) onto the first coordinate,

we consider fi as elements of Z[x1][x2, . . . , xn] with coefficients in Z[x1] of magnitude
(di, τ). Hence, x1 is treated as a constant (also "hidden variable"). The hidden variable
resultant Rx1 = Resx1(f1, . . . , fn) is a univariate integer polynomial of degree V in x1,
with V ≤ B, that vanishes at x1 = ξ if and only if (6) has a non-trivial solution in
Pn−1. In particular, each solution (x1, . . . , xn) ∈ S yields a root x1 of Rx1 . Hence, the
set V (Rx1) contains the set Sx1 = πx1(S) of projections of all solutions onto the first
coordinate. In general, it is wrong that each root of Rx1 also extends to a solution of (1).
However, under certain assumptions, this can be ensured.

2For finitely many ξ, the degree of f ′i can be smaller than d′i, however, for all other values of ξ,
each f ′i has degree d′i, which is the degree of fi considered as a polynomial in the variables
x2, . . . , xn with coefficients in Z[x1].

5

Lemma 1. Suppose that (4) has no infinite solution and that each fi contains a term of
total degree di that does not depend on x1. Then, for all ξ ∈ C, the specialized system (6)
has no infinite solution. In addition, V (Rx1) = Sx1.

Proof. Under the given assumption, we have d′i = di, and each polynomial F ′i (x2, . . . , xn, 0)
is exactly the sum of all terms of the form c ·xi22 · · ·xinn , with i2 + · · ·+ in = di and c a non-
zero constant, as they occur in fi. Hence, we have Fi(0, x2, . . . , xn, 0) = F ′i (x2, . . . , xn, 0),
which shows that each infinite solution of (6) extends to an infinite solution of (4). This
shows (a).

Now, let ξ be a complex root of Rx1 . Then, there exists a non-trivial solution in Pn−1

of the specialized system (6). From (a), we conclude that (6) has no solution at infinity,
and thus there exists a solution (ξ2, . . . , ξn) ∈ Cn−1 of the specialized affine system (5).
We conclude that (ξ, ξ2, . . . , ξn) is a solution of (1). �

In general, Rx1 can be written as detM(x1)/detS, where M(x1) is the Macaulay
matrix with entries in Z[x1] and S a non-singular square sub-matrix of M(x1) that
does not depend on x1. In the special case, where S is singular, we may use Canny’s
approach [5],[7, §4] (known as Generalized Characteristic Polynomial) to compute Rx1

as the quotient of the trailing coefficients of the (non-zero) characteristic polynomials
of the matrices M(x1) and S. From the bounds on m and V , it thus follows that Rx1

is of magnitude (B, Õ((nd)n−1τ)). Emiris and Pan [12] give a Las-Vegas algorithm to
compute Rx1 . The main idea underlying their approach is to compute the value of Rx1

at V = O(B) many distinct integer points x1 = ξ ∈ Z (each of bit size µ = O(logB)),
and then to interpolate Rx1 from these values. For computing Rx1(ξ) ∈ Z, one evaluates
the determinants of M(ξ) and S modulo p for a sufficiently large set of primes (of near-
constant bitsize) followed by a Chinese Remaindering step to recover Rx1(ξ). Exploiting
that M is quasi-Toeplitz, the determinants can be computed with O(m2) arithmetic
operations, which yields the bound Õ(m2nV D′(d+ τ)) = Õ((d+ τ)n2nd4n−3) on the
expected costs of computing Rx1 . There also exist more adaptive bounds (e.g. [11, 12]) for
the magnitude as well as for the complexity of computing the (sparse) resultant that take
into account the actual support of the coefficients of the input polynomials (e.g. the mixed
volume). So for sparse systems, the above bounds constitute significant overestimations.
When focusing on general systems, a slightly better bound (with respect to the exponent
of d) can be derived: Using an asymptotically fast Las-Vegas method [28] to compute
the determinant of an m×m matrix with integer entries of bitsize L at expected cost
Õ(mωL), we obtain the following.

Proposition 1. There is a Las-Vegas algorithm to compute detM(x1) and det(S) in
an expected number of

Õ(mω(d+ τ)B) = Õ(n(n−1)ω(d+ τ)d(ω+1)n−ω)

bit operations. If det(S) 6= 0, Resx1
d1,...,dn

(f1, . . . , fn) can be computed within the same
complexity. Otherwise, it can be computed in an expected number of bit operations bounded
by

Õ(mω+1(d+ τ)B) = Õ(n(n−1)(ω+1)(d+ τ)d(ω+2)n−ω−1).

6

Proof. We essentially keep the algorithm from [12, Corollary 6.2] as described above.
That is, we compute the value of Rx1 at O(B) many distinct integer points x1 = ξ of
bit size O(logB) using determinant computation followed by an interpolation step to
recover Rx1 . However, for the determinant computation, we use an asymptotically fast
method due to Storjohann [28]. The entries of the matrices M and S, after specializing
x1 to ξ, have bit size O(τ + d · logB). Their determinants can be computed (using
a Las Vegas algorithm) with Õ(mω(τ + d logB)) bit operations, where ω denotes the
exponent in the arithmetic complexity of matrix multiplication; recent work [22] shows
that 2 ≤ ω < 2.3729. Since we have to carry out these computations for O(B) distinct
values of x1, the claimed bound on the complexity of computing M(x1) and S follows.
If det(S) 6= 0, then Resx1

d1,...,dn
(f1, . . . , fn) = detM(x1)/det(S), and we are done. If

det(S) = 0, then we need to compute the characteristic polynomials φM(x1)(t) ∈ Z[x1][t]
and φS(t) ∈ Z[t] of M(x1) and S, respectively. For this, we may again consider an
interpolation/evaluation approach, where we reduce the computation of the polynomials
φM(x1)(t) and φS(t) to the computation of their values at m distinct interpolation points
t = ti ∈ Z of small bitsize. This yields an additional factor of size m = O((nd)n−1) in
the complexity bound. �

Once Rx1 is computed, we can use a fast univariate root finder [23, 25, 2] to compute
arbitrary small isolating disks for all complex roots of Rx1 .

Proposition 2 (Thms. 4 and 5 of [23]). Let f ∈ Z[x] be a polynomial of magnitude
(d, τ), and let ρ be an arbitrary positive integer. Then, using Õ(d3 + d2τ + dρ) bit
operations, we can compute a sorted list of isolating disks, each of radius less than 2−ρ,
for all complex roots of f .

To generalize this to projecting solutions along arbitrary directions, let l := l1 ·x1 + · · ·+
ln · xn be a linear form with integers li of bit size less than µ, and let πl : Cn → C be the
corresponding mapping. We say that S l = πl(S) is the projection (of the solutions S) along
l. Suppose that l1 = 1, then, for computing S l, we first replace x1 by x1− l2x2−· · ·− lnxn,
yielding

f∗1 (x1, . . . , xn) = · · · = f∗n(x1, . . . , xn) = 0, (7)

with f∗i := fi(x1− l2x2−· · ·− lnxn, x2, . . . , xn). Then, each fi is an integer polynomial of
magnitude (d,O(dµ+ τ)). Let Rl := Resx1(f∗1 , . . . , f∗n). Then, S l ⊂ V (Rl). This crucial
property of Rl deserves the following definition:

Definition 1. Let l be a linear form as above, then we call R ∈ Z[x] an elimination
polynomial for (1) along l if degR ≤ B and S l ⊂ V (R). We call R strong if S l = V (R).

Notice that Rl is a strong elimination polynomial for (1) along l if both conditions
from Lemma 1 are fulfilled for the transformed system (7). Lemma 2 shows that, in the
case where the linear form

l(λ) = x1 + l2(λ)x2 + · · ·+ ln(λ)xn, with
lj := aj0 + aj1 · λ ∈ Z[λ] and ak1 6= 0 for some k ∈ {2, . . . , n},

7

depends on a parameter λ, we can always choose λ such that (7) fulfills the second
requirement from Lemma 1.

Lemma 2. Let l(λ) be a linear form as above, let Λ ⊂ Z be an arbitrary set of size
|Λ| ≥ 2nd, and let µ be a bound on the bitsize of all lj and the integers contained in Λ.
There exists a Las Vegas algorithm with expected bit complexity Õ(d3(dµ + τ)(2d)n)

that computes an integer λ∗ ∈ Λ as well as the transformed polynomials f∗i = fi(x1 −
l2(λ∗)x2 − · · · − ln(λ∗)xn, x2, . . . , xn), such that each f∗i contains a term of degree di that
does not depend on x1.

Proof. We first prove that at least half of the values in Λ yield polynomials f∗i with the
desired property. Let cᾱ · xᾱ, with ᾱ = (ᾱ1, . . . , ᾱn), be any term of fi of total degree
di that maximizes the degree of x1. We aim to show that, except for at most ᾱ1 many
values of λ, the polynomial fi(x1 − l2(λ)x2 +− · · · − ln(λ)xn, x2, . . . , xn) contains a term
of total degree di that is not divisible by x1. We can write

fi =
di∑
j=0

xj1
∑

α′=(α2,...,αn):|α′|≤di−j
cα′ · xα2

2 · · ·x
αn
n

with constants cα′ . The coordinate transformation x1 7→ x1 − l2(λ)x2 − · · · − ln(λ)xn
then yields

di∑
j=0

(x1 − l2(λ)x2 − · · · − ln(λ)xn)j
∑

α′:|α′|≤di−j
cα′ · xα2

2 · · ·x
αn
n ,

and if we restrict to all terms of total degree di (in x1 to xn), we obtain

ᾱ1∑
j=0

(x1 − l2(λ)x2 − · · · − ln(λ)xn)j
∑

α′:|α′|=di−j
cα′ · xα2

2 · · ·x
αn
n . (8)

Notice that we only have to sum over all j from 1 to ᾱ1 as all other terms must be of
total degree less than di due to the definition of ᾱ1. Considering the above sum as a
polynomial in x1 to xn with polynomial coefficients in λ, we can further restrict to those
terms whose coefficient is divisible by λᾱ1 . This yields

λᾱ1 · (−a21x2 − · · · − an1xn)ᾱ1 ·
∑

α′:|α′|=di−ᾱ1

cα′ · xα2
2 · · ·x

αn
n ,

which is not identical to zero as ak1 6= 0 and cα′ 6= 0 for α′ = (ᾱ2, . . . , ᾱn). From this,
we conclude that there exists at least one term in (8) whose coefficient is a non-zero
polynomial of degree ᾱ1 in λ. Hence, there exist at most α1 values for λ such that fi
does not contain a term of degree di that is not divisible by x1. If we apply the same
argument to each polynomial fi, our first claim follows.

From the above considerations, we conclude that, by choosing a random value from Λ
yields, with probability at least 1/2, polynomials f∗i with the desired properties. Suppose

8

that, for some λ∗, the polynomials f∗i are already computed, then we can search for a
term in each f∗i of total degree di that is not divisible by x1 for the cost of reading f∗i ,
which is Õ((n+ di)n · diµ) as f∗i is a polynomial of magnitude (di, Õ(dµ+ τ)). It remains
to bound the cost for computing the polynomials f∗i . Using Kronecker substitution (see
for example [30]), we can compute the product of two n-variate integer polynomials
of magnitude (d, τ) in Õ((d+ τ)(2d)n) bit operations. Hence, can compute all powers
(x1 − l2x2 − · · · − lnxn)j , for j = 0, . . . , d, in Õ(d(dµ+ τ)(2d)n) bit operations. Thus,
computing all polynomials f∗i needs Õ(d3(dµ+ τ)(2d)n) bit operations. �

Putting everything together, we obtain the following result:

Corollary 3. Let l(λ) and Λ be defined as in Lemma 2.

(a) There is a Las-Vegas algorithm that computes Rl(λ) in an expected number of bit
operations that is bounded by Õ(Π(d, τ, n, µ)), where we define

Π(d, τ, n, µ) := n(n−1)ω(dµ+ τ)d(ω+2)n−ω−1.

(b) Suppose that Rl(λ) is given. Then, for any λ ∈ Λ and ρ ∈ N, we can compute
isolating disks of size less than 2−ρ for all roots of Rl(λ) in

Õ(nn−1d3n−1(dµ+ τ) + dnρ) (9)

bit operations.

(c) For each (x1, . . . , xn) ∈ S, we have 2−Γ < maxi |xi| < 2Γ with Γ := maxi log(1 +
‖Rxi‖∞)) = Õ((nd)n−1τ).

Proof. (a) follows from Proposition 1 and the fact that the polynomials f∗i have bit-
size Õ(dµ+ τ). For (b), we use Proposition 2 and note that Rl(λ) has magnitude
(dn, Õ((nd)n−1(dµ+ τ))). (c) follows from Cauchy’s root bound applied to Rxi . �

By flipping x1 and xi, the results from the above corollary apply to any linear form
l(λ) = xi +

∑
j 6=i lj(λ) · xj 6≡ xi with lj = aj0 + aj1 · λ.

3 Two-Dimensional Grids
Let f, g ∈ Z[x] be two (not necessarily square-free) polynomials of magnitude (d, τ), and
let X = V (f) = {x1, . . . , xd′} and Y = V (g) = {y1, . . . , yd′′} be the corresponding sets of
distinct complex roots of f and g. We further define G := X × Y ⊂ C2, which is a two-
dimensional grid of d′ ·d′′ ≤ d2 many points. For s ∈ C, let ls : C×C→ C, (x, y) 7→ x+sy.
We call ls (or simply s) separating for a set M ⊂ C if ls restricted to M is injective, and
non-separating otherwise. Our goal in this section is to show that we can compute an
integer (or even a whole sequence of integers) s of bit size O(logn) that is separating for
G at a cost that is comparable to the computation of the roots of f and g.

9

Theorem 4. Let c be a positive integer of size dO(1). There is an algorithm using
Õ(d3 + d2τ) bit operations that outputs s∗ ∈ S := {1, . . . , (d4 − 1)c} such that ls is
separating for G = X×Y for all s ∈ S∗ = {s∗, . . . , s∗+ c− 1}. Additionally, it holds that

|(x+ sy)− (x′ + sy′)| ≥ 1
4 · |y − y

′|

for any two distinct elements (x, y) ∈ G and (x′, y′) ∈ G.

In Section 3.1, we fix some definitions and recall well-known (amortized) bounds on
the separations and absolute values of the roots of an integer polynomial. Then, in
Section 3.2, we prove the above Theorem. In Section 3.3, we show that if s is separating
for G and if a subset G′ of G maps via ls one-to-one onto a subset Z of V (h), where
h ∈ Z[x] is of magnitude (d, τ), then we can recover G′ from Z using Õ(d3 + d2τ) bit
operations.

3.1 Definitions and Bounds
Let X and Y be defined as above. For i, j, k, l ∈ {1, . . . , d}, with i < j and k < l,
we define νij := |xi − xj | and δkl := |yk − yl|. Let N,∆ be the sets of all νkl, δij ,
respectively. Furthermore, let F := {νδ : ν ∈ N and δ ∈ ∆}. Notice that, for the proof of
Theorem 4, it suffices to compute a positive integer s∗ ≤ d4c− c with |s− ν

δ | ≥
1
4 for all

s ∈ {s∗, . . . , s∗ + c− 1}.
For x ∈ C and some ρ ∈ N, we say that x̃ ∈ C is an approximation of absolute (relative)

error ε = 2−ρ if |x − x̃| < ε ((1 − ε)x < x̃ < (1 + ε)x). In this case, ρ is called
the absolute (relative) approximation quality of x̃. Furthermore, for x > 0, we define
Bx := log max{1, x}+ log max{1, 1/x}.
We now recall some well-known results on the separations and the absolute values of

the roots of an integer polynomial; proofs can be found in [23, 18].

Proposition 5. Let P ∈ Z[x] be a polynomial of magnitude (d, τ) with distinct complex
roots z1 to zd′ of respective multiplicities mi := mult(zi, P). Let Mea(P) := | lcf(P)| ·∏d′
i=1 max(1, |zi|)mi be the Mahler measure of P , and let σi := sep(zi, P) := minj 6=i |zi−zj |

be the separation of zi. Then, it holds:

(a) Mea(P) ≤ ‖P‖2 ≤ (n+ 1) · 2τ .

(b)
∑
i,j:i 6=j log max(|zi − zj |, |zi − zj |−1) = Õ(d2 + dτ).

(c)
∑
imi log sep(zi, P) = Õ(d2 + dτ).

Part (b) of the above proposition implies that∑
ν∈N

Bν +
∑

δ∈∆
Bδ = Õ(d2 + dτ). (10)

10

3.2 Separating Forms
To compute an integer s∗ with the properties from Theorem 4, we do not directly work
with the set F of exact fractions but consider instead a set F̃ of corresponding sufficiently
good approximations. We start with the following Lemma:

Lemma 3. One can compute approximations of relative quality ρ of ∆ and N using
Õ(d3 + d2τ + d2ρ) bit operations.

Proof. It suffices to show the claim for N. For ν = |xi − xj | ∈ N, let s ∈ Z be such
that ν = 2−sm with 1/2 ≤ m < 1. It follows that s ≤ max{0, log 1/ν}. Thus, any
absolute approximation ν̃ of quality Bν + ρ of ν constitutes a relative approximation
of ν of quality ρ and of absolute error at most 1. From Proposition 2 (applied to the
polynomial x2−(a2 +b2) with a and b the real and imaginary part of xi−xj , respectively),
it follows that we can compute such a (dyadic) ν̃ using Õ(Bν + ρ) bit operations. By
Proposition 5,

∑
ν∈NBν = Õ(d2 + dτ), and thus the bit complexity for computing all

approximations ν̃ is bounded by Õ(d2 + dτ + d2ρ). Notice that the above computation
requires an absolute approximation of xi and xj of quality Õ(Bν) + ρ, which is always
bounded by Õ(d2 + dτ + ρ). Hence, using Proposition 2 (applied to the polynomial f),
it follows that such approximations can be computed in Õ(d3 + d2τ + dρ) bit operations.
This proves our claim. �

In the following, let Ñ and ∆̃ be the sets obtained from running the algorithm from
Lemma 3 with ρ := log(64d4 · c), where c is a fixed positive integer of size dO(1). From the
construction of Ñ, it follows that Bν̃ = Bν +O(log d). In addition, each ν̃ ∈ Ñ is a dyadic
number that can be represented by at most O(Bν + log d) many bits, where ν is the
corresponding exact value contained in N. A corresponding statement also holds for ∆.
For deriving an SLF for G, we employ a kind of binary search on the approximations of
the fractions in F . For this, we sort Ñ using a variant of merge sort. We actually need to
modify the classical merge sort algorithm as, in our model of computation, comparisons
are not of unit cost, but of cost linear in the bitsize of the operands. This poses a problem
if the list to be sorted is composed of two halves of size Ω(d2) each, say L and L′, such
that for all ` ∈ L and `′ ∈ L′, ` < `′. In this case, once L and L′ are sorted by the
respective recursive instance of the sorting procedure, the algorithm continues to compare
the largest elements of these sublists with each other. By assumption, no element in L
will ever be larger than any element in L′, leading to Ω(d2) comparisons of the elements
in L with the largest element in L′. Notice that the largest element in L′ might be of
bitsize Ω(dτ), so comparing it Ω(d2) times requires Ω(d3τ) bit operations, which would
exceed our claimed complexity bound.

Lemma 4. There is an algorithm sorting Ñ in Õ(d2 + dτ) bit operations.

Proof. In order to prove the desired bound, we alter slightly the merge stage of the
algorithm. When merging two sorted sublists L and L′, instead of successively comparing
the current largest elements ` and `′ of L and L′, respectively, and inserting them into
the merged list accordingly, we perform a binary search on the sublist containing the

11

largest element, say w.l.o.g. that `′ > l, to find the smallest `′′ ∈ L′ such that ` < `′′ < `′,
and insert the part of the list between `′′ and `′ (including those, of course) into the
merged list, followed by `, and carry on with the rest of the algorithm as usual. In this
case, we say that the binary search in L′ was conducted on behalf of `.

We claim about this procedure that it ensures for every element from Ñ to participate
in at most O(log d) many comparisons in each merge stage, and hence only in O(log2 d)
many comparisons in total. This will then directly yield the bound on the number of bit
operations as stated.
To see this, let L and L′ to be the two lists to be merged, and w.l.o.g. let x ∈ L =

(xt, . . . , x, xk, . . . , x1) be some element. Consider now some comparison of x with an
element from L′. By the definition of our algorithm, this might either be because there is
a binary search conducted in L′ on behalf of x, or because x is compared in the course of
some binary search conducted on behalf of some element of L′. In the first case, there
are only O(log d) comparisons involved, and x is inserted in the merged list thereafter,
leading to O(log d) comparisons, which is fine.
On the other hand, x may be compared at most once per binary search conducted

from some element x′ of L′. We can bound the number of binary searches such that
this happens as follows: If x1 > x′, then the binary search will compare the elements
x1, x2, . . . , x2r to x′ in this order, with r minimal with the property that x2r < x′. We
may assume that 2r < 2k as, otherwise, x would be removed in this step and inserted in
the merged list, preventing it from taking part in any more comparisons. Assume that x
is compared to some element, which implies that 2r ≥ k + 1. This means that the sought
element cannot be contained in x1, . . . , xbk/2c, and hence at least bk/2c elements will be
removed and inserted into the merged list a consequence of this binary search. Since
k < d, this bounds the number of times this can happen by log d. So, in total, every
element is compared at most O(log d) times in a single merge stage. The cost for all
comparisons is then upper bounded by O(log2(d) ·

∑
ν(Bν + log d)) = Õ(d2 + dτ), which

shows the claim. �

By definition, F is the image of N×∆ under the mapping (ν, δ) 7→ ν/δ. In a similar
vein, we will now define a set F̃ ⊂ R ∪ {+∞} as the image of Ñ × ∆̃ under a slightly
modified mapping [·], which differs from the initial mapping in the way that a pair
φ̃ = (ν̃, δ̃) is either mapped to 0 or +∞ if ν̃ � δ̃ or ν̃ � δ̃, respectively. More precisely,
let e1, e2 ∈ Z be such that 2e1 ≤ ν̃ ≤ 2e1+1 and 2e2 ≤ δ̃ ≤ 2e2+1. If e1 + 4 − e2 ≤ 0, in
which case ν̃/δ̃ ≤ 1/8, we define [φ̃] := 0. If 2e1−e2−1 ≥ 8d4c, then ν̃/δ̃ ≥ 8d4c, and we
define [φ] := +∞. If neither is the case, that is, if 1 < 2e1+4−e2 and 2e1−e2−1 < 8d4c, then
this implies that ν̃/δ̃ ∈ (1/32, 32d4c). In this case, we define [φ̃] to be the nearest integer
to ν̃/δ̃; we break ties by rounding to the smaller one. We now collect some properties of
this mapping.

Lemma 5. Let φ := (ν, δ) ∈ N×∆ and φ̃ = (ν̃, δ̃) be the corresponding approximation
in Ñ× ∆̃. Then

(a) [φ̃] can be computed using Õ(min{Bδ, Bν}+ log d) bit operations.

(b) If ν/δ ∈ {1, . . . , 2d4c}, then [φ̃] = ν/δ

12

(c) Let s ∈ N ∪ {+∞}, and let ν̃, ν̃ ′ ∈ Ñ, δ̃ ∈ ∆̃ with ν̃/δ̃ < ν̃ ′/δ̃. Then, [(ν̃, δ̃)] ≥ s
implies [(ν̃ ′, δ̃)] ≥ s.

Proof. For any m ∈ Z, computing the sign of e1 − e2 −m can be done using

Õ(min{|e1|, |e2|}+ |m|)

bit operations as we need not compute the actual values of e1−e2−m, but only compare e1
with e2 +m by counting digits until the outcome of the comparison is clear, which happens
after 2 min{|e1|, |e2|}+ |m| steps. Hence, we can already determine whether [φ̃] ∈ {0,∞}
in O(log d+ min{Bν̃ , Bδ̃}) bit operations. For the remaining case, we have ensured that
Bδ̃ and Bν̃ differ by at most O(log d), and so the division ν̃/δ̃ can be performed in time
Õ(log d+ min{Bδ̃, Bν̃}). Computing the nearest integer to this fraction is at most as
expensive. This yields the first claim.
For the second claim, notice that the relative error in Ñ and ∆̃ (compared to N and

∆) is bounded by 1/(64d4c) by the choice of ρ. Hence, ν̃/δ̃ is an approximation of ν/δ
with relative error of at most 1/(16d4c). In particular, if ν/δ ∈ [1, 4d4 · c], then ν̃/δ̃ is an
approximation with absolute error of at most 1/4. So, if ν/δ ∈ {1, . . . , 2d4c}, then the
ball of radius 1/4 with center ν̃/δ̃ will contain exactly one integer, namely ν/δ. Since
3/4 ≤ ν̃/δ̃ ≤ 2d4c+ 1/4, we have [φ̃] /∈ {±∞}, and thus [φ̃] must be equal to ν/δ. The
third claim follows directly from the definition of [·]. �

Lemma 6. For s, s′ ∈ {1, . . . , d4 · c} with s ≤ s′, the cardinality of the preimage P :=
P (s, s′) ⊂ Ñ× ∆̃ of {s, . . . , s′} under [·] can be computed using Õ(d2 + dτ) bit operations.

Proof. By Lemma 4, we may assume Ñ to be sorted. For each δ̃ ∈ ∆̃, the cardinality
of P ∩ (Ñ × {δ̃}) can be computed using Õ((log d)(Bδ + log d)) bit operations: Use
two binary searches on Ñ to find the maximal and minimal elements ν∗, ν∗ ∈ Ñ with
[(ν∗, δ̃)] < s ≤ s′ < [(ν∗, δ̃)]. The cardinality of P ∩ (Ñ × {δ̃}) is then the number
of elements strictly between ν∗ and ν∗. Lemma 5 implies correctness and a bound of
Õ((log d)(Bδ + log d)) bit operations for the binary searches. Summing over all δ̃ ∈ ∆̃
yields the bound. �

We can now prove Theorem 4: By Lemmas 3 and 4, we may already assume that
N and ∆ are approximated by corresponding sets Ñ and ∆̃, and that Ñ is sorted. As
s ∈ S = {1, . . . , d4 · c} is non-separating for G = X × Y if and only if s ∈ F , the task can
be reformulated as follows. We need to find s∗ ∈ S such that {s∗, . . . , s∗ + c} ∩ F = ∅.
So, instead of working with F directly, we may replace F with F̃ as S ∩ F ⊂ S ∩ F̃
according to part (b) of Lemma 5. Using the definition of F̃ , the goal becomes to find
s∗ ∈ S such that, for all φ̃ ∈ Ñ× ∆̃, we have [φ̃] /∈ {s∗, . . . , s∗ + c− 1}, or equivalently,
|P (s∗, s∗ + c− 1)| = 0. To do so, we use a bisection procedure, where we may assume
d4 and c to be powers of two, say 2k = d4 and 2k′ = c. Initially, let s0 := 1 and
s′0 := d4c. Inductively, choose (si+1, s

′
i+1) ∈ {(si, θi), (θi + 1, s′i)} such that |P (si+1, s

′
i+1)|

is minimized, where θi := (si + s′i − 1)/2 is the center of the set Si := {si, . . . , s′i}.
By definition, the set Si contains exactly d4c/2i elements for i = 0, . . . , k, and hence

Sk = (sk, sk + c− 1). Moreover, for i = 0, . . . , k − 1, it holds that P (si, s′i) = P (si, θi) ∪

13

P (θi + 1, s′i), which is a disjoint union. This implies that |P (si, s′i)| ≤ |P (si−1, s
′
i−1)|/2

for i = 1, . . . , k. Since |P (s0, s
′
0)| contains at most

(d2

2
)
< d4 elements, we conclude that

P (sk, . . . , sk + c− 1) is empty, and thus each s ∈ S∗ := {s∗, . . . , s∗− c+ 1}, with s∗ := sk,
is separating.
For the bit complexity, notice that there are k = O(log d) recursive steps involved in

the above approach, so the total bound follows from Lemma 6.
The claim on the distance to all fractions in F follows from the fact that [·] maps an

element φ̃ = (ν̃, δ̃) ∈ F̃ to the nearest integer to ν̃/δ̃ if 1/8 < ν̃/δ̃ < 8d4c. For these
elements, the corresponding exact fraction ν/δ differs from ν̃/δ̃ by at most 1/4, and
thus |s − ν/δ| > 1/4. For all other φ̃, we either have ν/δ ≤ 1/2 or ν/δ ≥ 2d4c as ν̃/δ̃
approximates ν/δ with relative error at most 1/4. Hence, also in this case, |s−ν/δ| > 1/4
for all s ∈ S∗.

3.3 Lifting Projections
Lemma 7. Let G = X × Y and s ∈ {1, . . . , d4c} be separating for G as given in
Theorem 4. Let h ∈ Z[x] be a polynomial of magnitude (d, τ) and let Z = {z1, . . . , zd∗} ⊂
V (h).
Suppose that, for each z ∈ Z, there exists a pair (xz, yz) ∈ X×Y such that ls(xz, yz) =

xz + syz = z. Then, we can compute approximations (x̃z, ỹz) for all pairs (xz, yz) of
absolute quality ρ using Õ(d3 + d2τ + dρ) bit operations.

Proof. Let ik, jk be such that xik + syjk = zk. By assumption, this uniquely defines ik, jk
for all k. Fix some k ∈ {1, . . . , d}, let i ≥ 0 and define Li := 2i. Then, approximating
zk ∈ Z and each yj ∈ Y with absolute quality Li +O(log d) yields approximations z(i)

k

and y(i)
j such that |z(i)

k − sy
(i)
j − (zk − syj)| < 2−Li−1. Further suppose that x(i) is an

approximation of x ∈ X to an absolute error of 2−Li−1, and define X(i)
j := {x ∈ X :

|z(i)
k +sy(i)

j −x(i)| < 2−Li}. Furthermore, letM0 := Y andMi+1 := Mi∩{yj | X(i+1)
j 6= ∅}.

We first show that X(i)
j = ∅ if Li > Byj−yjk

+ 2 and j 6= jk. Indeed, in this case,
Theorem 4 implies that |zk − syi − xi| ≥

|yj−yjk
|

4 . Thus, Li > Byj−yjk
+ 2 implies that

x /∈ X(i)
j . If j = jk, then zk − syj − xl = xlk − xl, and therefore, when Li > Bxlk

−xl
for

all l, we have that X(i)
jk

= {xlk}.
Together, this shows that for an Li that satisfies both bounds, Mi contains exactly yjk ,

and X(i)
jk

contains exactly xlk . By definition, this is the preimage of zk under ls.
This discussion suggests the following procedure: For all pairs (k, j), compute Mi and

X
(i)
j (for increasing i) until both contain exactly one element. From Proposition 5 (c),

we conclude that i = O(log d+ log τ) for any pair (j, k).
For the bit complexity of this approach, observe that the values Byj−yjk

and Bxlk
−xl

are bounded by Õ(d2 + dτ), so we can approximate X,Y, Z with absolute precision
Li using Õ(d3 + d2τ) bit operations by Proposition 2, and this will suffice for all Li
that are considered before the procedure terminates, by the bound on i. Computing

14

X
(i)
j can be done using binary search on the approximations of X, hence requiring
O(Li log d) bit operations. As we double Li in every step, Mi has the desired form after
log(d) · Õ(Byj−yjk

+Bsep(xlk
)) bit operations.

For all pairs (k, j), this yields a number of bit operations bounded by

log(d) · Õ(
∑
k

∑
j 6=jk

Byj−yjk
+
∑
k

Bsep(xlk
,f)).

By part (b) of Proposition 5, the first sum is bounded by Õ(d2 + dτ), and since
Bsep(xlk

,f) = Õ(d2 + dτ) for each k, the total sum is bounded by Õ(d3 + d2τ). Now,
approximating X and Y with precision 2−ρ using Proposition 2 yields the final claim.�

4 Polynomial Systems
4.1 Computation of a Separating Form
In what follows, we consider a polynomial system as in (1), with fi ∈ Z[x1, . . . , xn]
polynomials of magnitude (d, τ). Let S ⊂ Cn be the set of all complex solutions of this
system.

Our model of computation will be augmented with an oracle for elimination polynomials
as follows: Given a linear form l = xj + lj+1xj+1 + · · ·+ lnxn with integer coefficients,
the oracle returns an elimination polynomial El ∈ Z[x] for the system (1) along l. We
further denote Π as an upper bound on the bit complexity of calling the oracle for a
linear form of bitsize O(n log d).

In Section 2, we have already seen how to realize an oracle for elimination polynomials
by means of resultant computation, where El = Rl is the hidden variable resultant of
the polynomials f∗i obtained after the coordinate transformation xj 7→ xj −

∑
i 6=j lixi.

However, since there exist also other ways to compute elimination polynomials (e.g. using
Gröbner Basis), we decided to keep the following considerations as general as possible.
When calling our oracle for l = xi, we obtain the set Xi := V (Exi), which contains

the projections of the solutions in S on the i-th coordinate. Thus, we have S ⊆ G :=
X1 × . . . × Xn. For I = {i1, . . . , ij}, with 1 ≤ i1 < . . . < ij ≤ n and 1 ≤ j ≤ n, let
πI : Cn 7→ Cj be the projection on the coordinates I = {i1, . . . , ij}. In addition, for any
linear form l : Cj → C, we define lI := l ◦ πI . That is, if l = l1x1 + · · · + ljxj , then
lI = l1 · xi1 + · · ·+ lj · xij . In analogous manner to the two-dimensional case, we say that
a linear form l : Cj → C is separating for a set M ⊂ Cj if l restricted to M is injective.

Lemma 8. Let l1, l2 be SLFs for πI(S) and πJ(S), respectively, where I and J are
disjoint subsets of {1, . . . , n}. Let s be separating for Y1 × Y2 := V (ElI1)× V (ElJ2), with
El

I
1 and ElJ2 elimination polynomials along lI1 and lJ2 , respectively. Then, the linear form

lI1 + s · lJ2 is separating for πI∪J(S).

Proof. This follows directly from the definitions and the choice of l and s. �

15

Following a divide and conquer strategy, we can now recursively compute an SLF for
S starting with the projections of S on each of the coordinates xi. We give details: For
simplicity, suppose that n is a power of two. Write X[i, j] := π{i,...,j}(S) and consider
the complete binary tree with root X[1, n], and each node X[i, j] with |i− j| ≥ 1 having
children X[i, (i+ j − 1)/2], X[(i+ j + 1)/2, j]. We aim to compute SLFs for the set at
the respective node without actually computing this set. First, for each i = 1, . . . , n,
we compute Xi = V (Exi) ⊃ X[i] by querying the oracle for Exi , and then computing
its roots. Then, for i = 1, . . . , n/2, Theorem 4 yields an SLF x + siy, with si ≤ d4n,
for X2i−1 ×X2i, and thus also for X[2i− 1, 2i]. For the inductive step, assume we can
compute SLFs for the sets at all nodes in the levels 1 to j of the tree, and consider some
node on level j + 1, say w.l.o.g X[1, 2j] with children X[1, 2j−1] and X[2j−1 + 1, 2j]. Let
l1 =

∑2j−1
i=1 l′ixi and l2 =

∑2j−1
i=1 l′′i xi be SLFs for these sets, respectively, and suppose their

coefficients have absolute values bounded by d4n(j−1). We obtain ElI1 and ElJ2 by calling
the oracle twice, where I = {1, . . . , 2j−1} and J = {2j−1 + 1, . . . , 2j}. Again, Theorem
4 yields a separating form x + sy for V (ElI1) × V (ElJ2). By Lemma 8, the linear form
l =

∑2j−1
i=1 l′ixi + s ·

∑2j−1
i=1 l′′i x2j−1+i is separating for X[1, 2j]. Since the absolute values of

the coefficients increase by a factor of at most d4n, l has coefficients of absolute value at
most d4nj . Hence, after logn recursive steps, we obtain am SLF for S = X[1, n] with
coefficients of absolute value d4n logn or less.

Theorem 6. The above algorithm computes an SLF for S with integer coefficients
bounded by d4n logn using

Õ(n(D3 +D2L) + n ·Π),

bit operations, where (D,L) is an upper bound on the magnitude of all elimination
polynomials produced by the algorithm, and Π is an upper bound on the bit complexity of
calling the oracle for a linear form l of bitsize O(n log d). The algorithm is deterministic
if the oracle is deterministic.
If we use the Las Vegas method from Section 2 for resultant computation to realize the

oracle, then the above bound transforms into the bound (3) from the introduction.

Proof. The oracle is called 2n− 1 times, and Theorem 4 is invoked n− 1 times. For the
second claim, suppose that the oracle is realized by means of a resultant computation as
proposed in Section 2. Then, using Corollary 3 (a), we see that each computation of an
elimination polynomial El needs Π = Õ(n(n−1)(ω+1)(nd+ τ)d(ω+2)n−ω−1) bit operations
in expectation as l has bitsize O(n log d). In addition, the magnitude of each elimination
polynomial is bounded by (dn, Õ((nd)n−1(nd+ τ))), which shows the second claim. �

We can also slightly modify the above algorithm to compute a sufficiently large set of
SLFs from which we can then choose a linear form such that Rl is a strong elimination
polynomial. For this, we assume that the oracle is realized by means of resultant
computation, that is, we have El = Rl. Now, suppose that SLFs l1 =

∑n/2
i=1 l

′
ixi and

l2 =
∑n/2
i=1 l

′′
i xi for the sets X[1, n/2] andX[n/2+1, n] are computed as above. In addition,

let ElI1 and ElJ2 be the elimination polynomials along lI1 and lJ2 , with I = {1, . . . , n/2} and

16

J = {n/2 + 1, . . . , n}. By Theorem 4, we can compute a set S∗ := {s∗, . . . , s∗ + 2nd} ⊂
{1, . . . , 2nd · d4n} such that x + sy is separating for V (ElI1) × V (ElJ2) for all s ∈ S∗.
This costs at most Õ(d3n + d2n(nd)n−1(nd + τ)) bit operations, and the linear form
l(s) =

∑2j−1
i=1 l′ixi + s ·

∑2j−1
i=1 l′′i x2j−1+i is separating for S for each s ∈ S∗. We conclude:

Theorem 7. There is a Las Vegas algorithm with expected bit complexity (3) to compute
a set S∗ := {s∗, . . . , s∗ + 2nd} ⊂ {1, . . . , 2nd · d4n} and a linear form l(s) =

∑n
i=1(a0i +

a1is) · xi ∈ Z[s] of bitsize Õ(n log d), such that l(s) is separating for all s ∈ S∗.

Combining Lemma 1 and Lemma 2 directly yields the following result:

Corollary 8. Suppose that the system (1) has no solution at infinity. Then, there
is a Las Vegas algorithm with expected bit complexity (3) to compute an SLF l with
coefficients of bitsize O(n log d) and the corresponding hidden-variable resultant Rl, such
that V (Rl) = S l.

4.2 Computing the Solutions
We first consider the case where (1) has no solution at infinity. By the last subsection, we
may assume that, for j = 1, . . . , logn and k = 0, . . . , n/2j − 1, we have already computed
SLFs lj,k =

∑2j

i=1 l
(j,k)
i xi for the sets X[k ·2j + 1, (k+ 1) ·2j], respectively. We may further

assume that l = llogn,0 is separating for the solutions of our system and that Rl is a
strong elimination polynomial. Notice that l(j,k)

1 = 1 for all (j, k) and each coefficient
l
(j,k)
i is an integer of bit size Õ(n log d). Due to the construction of the lj,k’s, it holds that

lj,k(x,y) = lj−1,2k+1(x) + sj,k · lj−1,2k+2(y). (11)

with integers sj,k of bitsize Õ(n log d), x = (x1, . . . , x2j−1) and y = (y1, . . . , y2j−1). Let

φj,k : (x1, . . . , xn) 7→
∑2j

i=1
l
(j,k)
i x2j ·k+i

be the mapping induced by the linear form lj,k, that is, φj,k only operates on the variables
x2jk+1 to x2j+1 . We further define φ0,k : (x1, . . . , xn) 7→ xk+1 as the projection onto the
k + 1-th coordinate for all k, and

φj := φj,0 × · · · × φj,n/2j−1

as the cartesian product of all φj,k for a fixed j.
Now, we recursively apply Lemma 7 to compute the image Φj := φj(S) of S under φj .

Notice that G = Φ0 and V (Rl) = S l = Φlogn as Rl is a strong elimination polynomial.
Suppose that Φj is already computed for some j, in particular, we know the image Φj,k =
φj,k(S) of S under the mapping φj,k. Further notice that the mapping φ : (x, y) 7→ x+sj,ky
is injective on the product Φj−1,2k+1 ×Φj−1,2k+2, and that it maps the image of S under
φj−1,2k+1 × φj−1,2k+2 one-to-one onto Φj,k. Hence, using Lemma 7, we may compute the
inverse of each point in Φj,k under the mapping φ, which yields (φj−1,2k+1×φj−1,2k+2)(S).
Thus, after logn recursive steps, we obtain S.

17

Theorem 9. If the system (1) has no solutions at infinity, then the above algorithm
computes approximations (in terms of isolating regions) of absolute quality ρ of S using

Õ(n(n−1)(ω+1)+1(nd+ τ)d(ω+2)n−ω−1 + ndnρ)

bit operations in expectation.

Proof. There are logn levels to be considered, so we employ Lemma 7 at most n times.
The involved polynomials are elimination polynomials along the linear forms lj,k, which are
of magnitude (dn, Õ((nd)n−1(nd+ τ))). This yields the bound from (3) for reconstructing
all solutions of the given system. We can now compute absolute approximations of quality
ρ of these solutions by computing corresponding approximations of the roots of the
polynomials Rxi . Hence, the claimed bound follows directly from Corollary 3 (b). �

We now remove the condition on the input system to have no infinite solution. We can
easily check whether this condition is fulfilled. Namely, (4) has no infinite solution if and
only if Res(F̄1, . . . , F̄n) 6= 0. The following Lemma shows that this can be achieved, with
probability at least 1/2, by means of a coordinate transformation.

Lemma 9. Let λ1 to λn be a randomly chosen non-negative integers with λi ≤ 2dn for
all i. Then, with probability at least 1/2, the transformed system

F ∗1 (x1, . . . , xn+1) = · · · = F ∗n(x1, . . . , xn+1) = 0, (12)

with F ∗i (x1, . . . , xn+1) = Fi(x1, . . . , xn, xn+1 +λ1x1 +· · ·λnxn), has no solution at infinity.
There is a Las-Vegas algorithm to compute such λi’s and the polynomials F ∗i with expected
bit complexity bounded by (3).

Proof. Let (x1, . . . , xn, xn+1) ∈ Pn be an arbitrary non-trivial solution of (4).
If (0, . . . , 0, 1) is a solution of (4), then this solution is again mapped to (0, . . . , 0, 1)

via the coordinate transformation xn+1 + λ1x1 + · · ·λnxn = 0 no matter how we choose
the λi’s. Hence, we may assume that there exists a j 6= n+ 1 with xj 6= 0. Then, after
fixing λi for i 6= j, there exists at most one value for λj with xn+1 + λ1x1 + · · ·λnxn = 0.
Thus, with probability at least 1− 1/(2dn), the solution is mapped to a finite solution of
(12). Since the total number of solutions is bounded by the Bézout number B ≤ dn, the
first claim follows.

For the second claim, notice that, after choosing λi’s at random, we can first compute the
polynomials F ∗i and then compute the resultant Res(F̄ ∗1 , . . . , F̄ ∗n) in order to check whether
there is a solution at infinity. Similar as in the proof of Lemma 2, we can bound the cost
for computing the polynomials Fi by Õ(d3(d · n+ τ)(2d)n) bit operations. Each F ∗i has
magnitude (d, Õ(dn+ τ)), and thus computing the resultant needs Õ((dn)ω·(n−1)(dn+ τ))
bit operations; see also the proof of Proposition 1. �

Using this Lemma, we can first transform (1) into a system (12) without roots at infinity.
Then, we can compute all solutions of (12) and recover the solutions of (1) via the backward
transformation xn+1 7→ xn+1−

∑n
i=1 λi·xi. That is, each solution x∗ = (x∗1, . . . , x∗n, 1) ∈ S∗

18

of (12) maps to a solution x = (x1, . . . , xn, xn+1) = (x∗1, . . . , x∗n, x∗n+1 −
∑n
i=1 λix

∗
i) of

the initial system. Using only approximate computation, we cannot directly show that
xn+1 = x∗n+1−

∑n
i=1 λix

∗
i is equal to zero, and thus a solution x at infinity cannot directly

be verified as such. However, by increasing the precision, we either obtain that xn 6= 0
or we may conclude that |xi/xn| is larger than the bound from Corollary 3 (b) on the
absolute value of a solution of our system. In the first case, x is a finite solution, whereas
in the second case, x is an infinite solution. A simple analysis of this approach yields the
following result.

Theorem 10. There exists a Las-Vegas algorithm to compute isolating regions of all
solutions of (1) whose cost in expectation is bounded by (3).

Proof. By Lemma 9, we can first transform our input system into a system (12) whose
solutions are all finite, and then use Theorem 9 to compute the set S∗ of its solutions up
to an absolute error of 2−L in each coordinate for some L. Call these approximations
(x̃∗1, . . . , x̃∗n, 1).

By definition, the transformation xn+1 7→ xn+1 −
∑n
i=1 λi · xi maps each solution

(x∗1, . . . , x∗n, 1) ∈ S∗ of the transformed system to a solution

(x1, . . . , xn, xn+1) = (x∗1, . . . , x∗n, x∗n+1 −
n∑
i=1

λix
∗
i)

of the initial system. Applying this transformation to the approximations of S∗ allows
for approximating xi to an absolute error less than 2−L′ , where L′ ≤ L− logn− n log d.
If |x̃n+1| > 2−L′ , where x̃i is the corresponding approximation of xi, we may conclude
that xn+1 6= 0, and thus (x∗1/x∗n+1, . . . , x

∗
n/x

∗
n+1) is a solution of (1).

It might happen that the backward coordinate transformation sends a solution of (12)
to an infinite solution of (1). Namely, this is the case if and only if x∗n+1−

∑n
i=1 λix

∗
i = 0.

Of course, this test for equality cannot be done directly using approximate arithmetic.
However, if xn+1 = x∗n+1 −

∑n
i=1 λix

∗
i 6= 0, then (x∗1/x∗n+1, . . . , x

∗
n/x

∗
n+1) is a solution of

(1). By part (b) of Corollary 3, we either have x∗i /x∗n+1 = 0 or 2−Γ < |x∗i /x∗n+1| < 2Γ

with some Γ of size Õ((nd)n−1τ). Hence, choosing L large enough, that is, L > 2Γ +
logn + n log d = Õ((nd)n−1τ), we either have |x̃n+1| > 2−L′ , or we may conclude that
x∗n+1 −

∑n
i=1 λix

∗
i = 0.

The claim of the number of bit operations of this procedure follows directly from
Lemma 9 and Theorem 9 together with the bound on Γ. �

References
[1] M.-E. Alonso, E. Becker, M. F. Roy, and T. Wörmann. Algorithms in Algebraic

Geometry and Applications, chapter Zeros, multiplicities, and idempotents for zero-
dimensional systems, pages 1–15. Birkhäuser Basel, Basel, 1996.

[2] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee-Keng Yap. A simple
near-optimal subdivision algorithm for complex root isolation based on the pellet
test and newton iteration. CoRR, abs/1509.06231, 2015.

19

[3] Yacine Bouzidi, Sylvain Lazard, Guillaume Moroz, Marc Pouget, Fabrice Rouillier,
and Michael Sagraloff. Improved algorithms for solving bivariate systems via Rational
Univariate Representations. Research report, Inria, June 2015.

[4] J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of nonlinear polynomial
equations faster. In ISSAC, pages 121–128, 1989.

[5] John F. Canny. Generalised characteristic polynomials. J. Symb. Comput.,
9(3):241–250, 1990.

[6] Jin-San Cheng, Xiao-Shan Gao, and Leilei Guo. Root isolation of zero-dimensional
polynomial systems with linear univariate representation. J. Symb. Comput.,
47(7):843–858, 2012.

[7] D.A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Graduate Texts in
Mathematics. Springer New York, 2005.

[8] Alicia Dickenstein and Ioannis Z. Emiris. Solving Polynomial Equations: Founda-
tions, Algorithms, and Applications. Springer Publishing Company, Incorporated,
1st edition, 2010.

[9] Dimitrios I. Diochnos, Ioannis Z. Emiris, and Elias P. Tsigaridas. On the
asymptotic and practical complexity of solving bivariate systems over the reals. J.
Symb. Comput., 44(7):818–835, 2009.

[10] Pavel Emeliyanenko and Michael Sagraloff. On the complexity of solving a bivariate
polynomial system. In ISSAC, pages 154–161, 2012.

[11] Ioannis Z. Emiris, Bernard Mourrain, and Elias P. Tsigaridas. The DMM bound:
multivariate (aggregate) separation bounds. In ISSAC, pages 243–250, 2010.

[12] Ioannis Z. Emiris and Victor Y. Pan. Improved algorithms for computing determi-
nants and resultants. J. Complexity, 21(1):43–71, 2005.

[13] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-
dimensional gröbner bases by change of ordering. J. Symb. Comput., 16(4):329 –
344, 1993.

[14] I.M. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants, and
Multidimensional Determinants. Modern Birkhäuser Classics. Birkhäuser Boston,
2009.

[15] Laureano González-Vega et al. An improved upper complexity bound for the
topology computation of a real algebraic plane curve. J. Complexity, 12(4):527–544,
1996.

[16] Amir Hashemi and Daniel Lazard. Sharper complexity bounds for zero-dimensional
gröbner bases and polynomial system solving. International Journal of Algebra and
Computation, 21(05):703–713, 2011.

20

[17] Joos Heintz. Definability and fast quantifier elimination in algebraically closed fields.
Theor. Comput. Sci., 24(3):239 – 277, 1983.

[18] Alexander Kobel and Michael Sagraloff. On the complexity of computing with
planar algebraic curves. J. Complexity, 31(2):206–236, 2015.

[19] Y. N. Lakshman. Effective Methods in Algebraic Geometry, chapter A Single Expo-
nential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional
Ideals, pages 227–234. Birkhäuser Boston, Boston, MA, 1991.

[20] Daniel Lazard. Resolution des systemes d’equations algebriques. Theor. Comput.
Sci., 15(1):77 – 110, 1981.

[21] Daniel Lazard. Gröbner-bases, gaussian elimination and resolution of systems of
algebraic equations. In EUROCAL, pages 146–156, 1983.

[22] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC,
pages 296–303, New York, NY, USA, 2014. ACM.

[23] Kurt Mehlhorn, Michael Sagraloff, and Pengming Wang. From approximate factor-
ization to root isolation with application to cylindrical algebraic decomposition. J.
Symb. Comput., 66:34 – 69, 2015.

[24] Bernard Mourrain, Victor Y Pan, and Olivier Ruatta. Accelerated solution of
multivariate polynomial systems of equations. SIAM J. Comput., 32(2):435–454,
2003.

[25] Victor Y. Pan. Univariate polynomials: Nearly optimal algorithms for numerical
factorization and root-finding. J. Symb. Comput., 33(5):701–733, 2002.

[26] James Renegar. On the worst-case arithmetic complexity of approximating zeros of
systems of polynomials. SIAM J. Comput., 18(2):350–370, 1989.

[27] Fabrice Rouillier. Solving zero-dimensional systems through the rational univariate
representation. Applicable Algebra in Engineering, Comiication and Computing,
9(5):433–461.

[28] Arne Storjohann. The shifted number system for fast linear algebra on integer
matrices. J. Complexity, 21(4):609–650, 2005.

[29] Bernd Sturmfels. Solving systems of polynomial equations. Number 97. American
Mathematical Soc., 2002.

[30] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, Cambridge, UK, 3rd edition, 2013.

21

	1 Introduction
	2 Preliminaries
	3 Two-Dimensional Grids
	3.1 Definitions and Bounds
	3.2 Separating Forms
	3.3 Lifting Projections

	4 Polynomial Systems
	4.1 Computation of a Separating Form
	4.2 Computing the Solutions

