Solving boundary-value problems with perturbations

Roman E. Maeder
ETH Zürich, Switzerland

ABSTRACT

The program Macsyma[1] is used to solve boundary- and initial-value problems for the differential equation $\ddot{y}=f(x) y$. The solution is expanded into a power series and then solved by integration and equating coefficients.

Project-No.:	$001-022$
Title:	Boundary-value problems
Subject:	Differential Equations, Symbolic integration
Programs:	Macsyma
References:	$002-023$ Störungsrechnung bei Differentialgleichungen
Typesetting:	mltroff[2]
Version:	01.06 .87

Acknowledgements

This project was derived from project No. 002-023 by Martin Ohsmann from the RWTH in Aachen.

1. Introduction

The method to solve the differential equation $\ddot{y}=f(x) y$ described herein gives analytical expressions for the terms of a power series. The goal is to write a procedure in Macsyma to solve equations with the method given. The coefficients of the power series are obtained by symbolic integration.

2. Description of Problem

Let there be given the following differential equation:

$$
\begin{equation*}
\ddot{y}=f(x) y \tag{2-1}
\end{equation*}
$$

(y is the dependent variable, x is the independent variable. The equation is linear) with initial values

$$
\begin{equation*}
y(0)=1, \dot{y}(0)=1 \tag{2-2}
\end{equation*}
$$

or the boundary values

$$
\begin{equation*}
y(0)=1, y(A)=1 \tag{2-3}
\end{equation*}
$$

where $A>0$.

The equation 2-1 is solved in the following four steps:

1) Introduction of a (small) parameter c into 2-1:

$$
\begin{equation*}
\ddot{y}=c f(x) y \tag{2-4}
\end{equation*}
$$

2) Power series expansion of the solution $y(x)$ of 2-4

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} c^{n} y_{n}(x) \tag{2-5}
\end{equation*}
$$

3) The functions $y_{n}(x)$ are determined by insertion of $2-5$ in 2-4 and equating coefficients of the powers of c. We get:

$$
\begin{align*}
& y_{0}(x)=a_{0} x+b_{0} \\
& y_{n}(x)=\iint f(x) y_{n-1}(x) \mathrm{d}^{2} x+a_{n} x+b_{n}, \quad n>0 \tag{2-6}
\end{align*}
$$

The coefficients a_{n}, b_{n} are determined from the conditions 2-2 or 2-3.
4) The solution of the original problem $2-1$ is obtained from $2-4$ with $c=1$.

3. Problems to solve

3.1. Basic problems

1) Determine the equations for the coefficients a_{n}, b_{n} for both problem 2-2 and 2-3.
2) Write a procedure in MACSYMA with parameters f and y_{n} to compute y_{n+1}.
3) For the function $f(x)=-e^{-x}$ and $A=6$ compute the functions y_{0}, \ldots, y_{3} and the approximations s_{N} of the original problem:

$$
\begin{equation*}
s_{N}=\sum_{m=0}^{N} y_{m}(x) \tag{3-1}
\end{equation*}
$$

for both conditions 2-2 and 2-3.
4) Solve problem 2-2 for $f(x)=-1$ up to $N=6$. Solve $2-1$ by hand and compare the results.

3.2. Optional problems

5) In what sense is 3-1 an approximation of the correct solution of 2-4 even for $c=1$?
6) Give a function $f(x)$, where this method breaks down.

4. Hints

Functions in Macsyma are defined with " $:=$ '", e.g.

$$
f(x):=-\% e^{\wedge}-x
$$

You can also define arrays of functions:

```
\(\mathrm{y}[0](\mathrm{x}):=\mathrm{x}+1\);
\(\mathrm{y}[\mathrm{i}](\mathrm{x}):=" \operatorname{proc} 2 \mathrm{a}(\mathrm{f}, \mathrm{y}[\mathrm{i}-1])\);
```

which is a recursive definition suitable for problem 3), where proc $2 a$ is your procedure written in problem 2) (the construct " forces evaluation of the expression. Function definitions are normally not evaluated).

Remember: If all else fails, read the documentation[3]!

References

1. Symbolics Inc., An Introduction to MACSYMA, Symbolics Inc., Massachusetts, 1984.
2. Roman E. Maeder, "Eqn- and ms-Macros for the Mathematical Laboratory," The Mathematical Laboratory No. 001-901, Mathematik ETH, Zurich, 1986.
3. Symbolics Inc., MACSYMA Reference Manual Version 10, I, Symbolics Inc., Massachusetts, 1984.
