

Solving boundary-value problems with perturbations

Roman E. Maeder

ETH Zürich, Switzerland

ABSTRACT

The program Macsyma[1] is used to solve boundary- and initial-value problems for the differential equation $\ddot{y} = f(x)y$. The solution is expanded into a power series and then solved by integration and equating coefficients.

Project-No.:	001-022
Title:	Boundary-value problems
Subject:	Differential Equations, Symbolic integration
Programs:	Macsyma
References:	002-023 Störungsrechnung bei Differentialgleichungen
Typesetting:	mltroff[2]
Version:	01.06.87

.

Acknowledgements

This project was derived from project No. 002-023 by Martin Ohsmann from the RWTH in Aachen.

1. Introduction

The method to solve the differential equation $\ddot{y} = f(x)y$ described herein gives analytical expressions for the terms of a power series. The goal is to write a procedure in *Macsyma* to solve equations with the method given. The coefficients of the power series are obtained by symbolic integration.

2. Description of Problem

Let there be given the following differential equation:

$$\ddot{y} = f(x)y \tag{2-1}$$

(y is the dependent variable, x is the independent variable. The equation is linear) with initial values

$$y(0) = 1, \dot{y}(0) = 1$$
 (2-2)

or the boundary values

$$y(0) = 1, y(A) = 1$$
 (2-3)

where A>0.

The equation 2-1 is solved in the following four steps:

1) Introduction of a (small) parameter c into 2-1:

$$\ddot{y} = cf(x)y \tag{2-4}$$

2) Power series expansion of the solution y(x) of 2-4

$$y(x) = \sum_{n=0}^{\infty} c^n y_n(x)$$
 (2-5)

3) The functions $y_n(x)$ are determined by insertion of 2-5 in 2-4 and equating coefficients of the powers of c. We get:

$$y_0(x) = a_0 x + b_0$$

$$y_n(x) = \iint f(x) y_{n-1}(x) d^2 x + a_n x + b_n, \quad n > 0$$
(2-6)

The coefficients a_n , b_n are determined from the conditions 2-2 or 2-3.

4) The solution of the original problem 2-1 is obtained from 2-4 with c = 1.

3. Problems to solve

3.1. Basic problems

- 1) Determine the equations for the coefficients a_n , b_n for both problem 2-2 and 2-3.
- 2) Write a procedure in MACSYMA with parameters f and y_n to compute y_{n+1} .
- 3) For the function $f(x) = -e^{-x}$ and A = 6 compute the functions y_0, \ldots, y_3 and the approximations s_N of the original problem:

$$s_N = \sum_{m=0}^{N} y_m(x)$$
 (3-1)

for both conditions 2-2 and 2-3.

. –

4) Solve problem 2-2 for f(x) = -1 up to N=6. Solve 2-1 by hand and compare the results.

3.2. Optional problems

- 5) In what sense is 3-1 an approximation of the correct solution of 2-4 even for c = 1?
- 6) Give a function f(x), where this method breaks down.

4. Hints

Functions in Macsyma are defined with ":=", e.g.

 $f(x) := -\%e^{-x};$

You can also define arrays of functions:

y[0](x) := x+1;y[i](x) := ''proc2a(f, y[i-1]);

which is a recursive definition suitable for problem 3), where proc2a is your procedure written in problem 2) (the construct "forces evaluation of the expression. Function definitions are normally not evaluated).

Remember: If all else fails, read the documentation[3]!

References

- 1. Symbolics Inc., An Introduction to MACSYMA, Symbolics Inc., Massachusetts, 1984.
- 2. Roman E. Maeder, "Eqn- and ms-Macros for the Mathematical Laboratory," The Mathematical Laboratory No. 001-901, Mathematik ETH, Zurich, 1986.
- 3. Symbolics Inc., MACSYMA Reference Manual Version 10, I, Symbolics Inc., Massachusetts, 1984.