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Abstract

Finding a maximal independent set (MIS) in a graph is a catoae task in distributed computing.
The local nature of an MIS allows for fast solutions in a stdistributed setting, which afegarithmic
in the number of nodes or in their degrees [Luby 1986, Ghig#at5]. By running a (static) distributed
MIS algorithm after a topology change occurs, one can eabilgin a solution with the same complexity
also for thedynamicdistributed model, in which edges or nodes may be inserteeleted.

In this paper, we take a different approach which exploitality to the extreme, and show how
to update an MIS in a dynamic distributed setting, eitiygmchronousr asynchronouswith only a
single adjustmenimeaning that a single node changes its output, and in aesinghd, in expectation.
These strong guarantees hold for twemplete fully dynamisetting: we handle all cases iosertions
anddeletions of edgesas well amodes gracefullyandabruptly. This strongly separates the static and
dynamic distributed models, as super-constant lower beeribt for computing an MIS in the former.

We prove that for any deterministic algorithm, there is atogy change that requiresadjustments,
thus we also strongly separate deterministic and randahsiakitions.

Ourresults are obtained by a novel analysis of the surplisgimple solution of carefully simulating
the greedysequentialMIS algorithm with a random ordering of the nodes. As sucly, algorithm
has a direct application as3aapproximation algorithm for correlation clustering. $hadds to the
important toolbox of distributed graph decompositionsichtare widely used as crucial building blocks
in distributed computing.

Finally, our algorithm enjoys a usefhistory-independencgroperty, which means that the distri-
bution of the output structure depends only on the curremplgrand does not depend on the history
of topology changes that constructed that graph. This mératghe output cannot be chosen, or even
biased, by the adversary, in case its goal is to prevent nsdpiimizing some objective function. More-
over, history independent algorithms compose nicely, Wwhillows us to obtain history independent
coloring and matching algorithms, using standard reduastio
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1 Introduction

Dynamic environments are very common in distributed sg#tiwhere nodes may occasionally join and
leave the network, and communication links may fail and seored. This makes solving tasks in a dynamic
distributed setting of fundamental interest: Indeed, d isidely studied area of research, especially in the
context of asynchronous self-stabilization [[17,18| 26, 8ad also in the context of severe graph changes,
whether arbitrary[[36] or evolving randomly![3]. In this papwe consider a dynamic distributed setting
which is synchronousand assumes topology changes with sufficient time for regovebetween, as is
typically assumed in the literature sequential dynamic algorithnj35s].

Solutions for problems from the static distributed settirapslate nicely into our dynamic distributed
setting, by running them in response to topology changesder to adjust the outpuit![5)6,/40]. This can be
quite efficient especially fdocal problems, such as finding a maximal independent set (MIS)eimétwork
graph. The cornerstone MIS problem admits fast distribgtddtions whose complexities are logarithmic
in the size of the graph or in the degrees of the nodes [2, 28331

In this paper, we exploit locality to the extreme, and présenMIS algorithm for the dynamic dis-
tributed setting, bottsynchronousor asynchronouswhich requires onlya single adjustmentwhere the
adjustment measure of an algorithm is the number of nodéséeal to change their output in response to
the topology change, and a single round, in expectations@ b#ong guarantees hold for t@mplete fully
dynamicsetting, i.e., we handle all casesmdertionsanddeletions of edgesas well asnodes gracefullyand
abruptly@ This is a strong separation between the static and dynastithdited models, as super-constant
lower bounds exist for the static setting [37,42]. We furthve that for any deterministic algorithm, there
is a topology change that requiresadjustments, witm being the number of nodes, thus we also strongly
separate deterministic and randomized solutions. Bel@wgwerview our technique and the applications of
our result.

1.1 Our Contribution

Our approach is surprisingly simple: We simulate the gresstyuentialalgorithm for solving MIS. The
greedy sequential algorithm orders the nodes and thendtssffem by increasing order. A node is added
to the MIS if and only if it does not have a lower-order neighbtready in the MIS. We considean-
dom greedythe variant of greedy in which the order is chosen uniforatlyandom. Consider simulating
random greedy in a dynamic environment with the followinmpéate (ignoring the model of computa-
tion/communication for the moment). Each node needs to taiaithe invariant that its state depends only
on the states of its neighbors with lower order, such tha ibithe MIS if and only if none of its lower
order neighbors are in the MIS. When a change occurs in thEhgrendes may need to change their output,
perhaps more than once, until they form a new MIS. Our keyrtieath contribution is in proving:

Theorem[1 For anyarbitrary change in the graph, the expectation over all random ordéthe number
of nodes that change their output in the above random gresdplate is at most 1.

The Challenge: We denote byr the random order of nodes, we denotewiythe only node (if any)
for which the above invariant does not hold after the topploigange, and we denote ythe set of nodes
that need to be changed in order for the invariant to holdregall nodes. We look &’, the set of nodes
that would have needed to be changed if the order was aseéncept for pushing™ to be the first node
in that order. The definition of” does not depend on the real ordervdfin . Therefore, we can prove
that S can either be equal t§’ if the order ofv* in 7 is minimal in S/, and empty otherwise. Now the

1See definitions of topology changes in Secfibn 2.



question is, what is the probability, givefi, thatv* is indeed its minimal order node? The answer is that if
S’ were deterministic, i.e. independentmfthe probability would bd /|.S’|. However,S’ is a random set
and having knowledge of its members restrict® be non-uniform, which in turn requires a careful analysis
of the required probability. To overcome this issue, we prthat the information tha$’ gives aboutr is
either about the order between nodes nat'inor about the order withis”\ {v* }, which both do not effect
the probability thav* is the minimal inS’.

Distributed Implementation: This powerful statement dE[|S|] < 1 directly implies that asingle
adjustment is sufficient for maintaining an MIS in a dynangttiag. A direct distributed implementation of
our template implies that in expectation also a single rassdfficient. This applies both to the synchronous
and asynchronous models, where the number of rounds inyheta®nous model is defined as the longest
path of communication.

Obtaining O(1) Broadcasts and Bits: In fact, in the synchronous model, it is possible to obtain an
expected number aP(1) broadcastsandbits. Here the number of broadcasts is the total number of times,
over all nodes, that any node send® @og n)-bit broadcast message (to all of its neighlﬁrsx)floreover,
since we only need a node to know the order between itselftamiighbors, using a similar technique to
that of [45], we can obtain that in expectation, a node onldseo send a constant number of bits in each
broadcast. The above holds for edge insertions and dedetipaceful node deletion, and nodemuting
while for an abrupt deletion of a node" we will need O (min{log(n),d(v*)}) broadcasts, and for an
insertion of a node™ we will needO(d(v*)) broadcasts, in expectation.

This is done with a careful dynamic distributed implemdntatvhich guarantees that each node that
changes its output does so at mOsi ) times, as opposed to the direct distributed impIementEtiMence,
obtaining these broadcast and bit complexities comes ast@ofancreasing the round complexity, but it
remains constant (albeit not 1). In what follow, we focustun tesult since we find it intriguing that we can
get as little as)(1) total communicationwhile payingO(1) rounds instead of a single round is arguably
not a big cost.

Matching Lower Bounds: We claim that any deterministic algorithm requiresdjustments, which
can be seen through the following example. Uebe a dynamic deterministic MIS algorithm. L&% be
the complete bipartite graph over two sets of nodes of/sia#%/e denote by the side ofG that is chosen
to be the MIS byA, and we denote the other side By For every: € [k] let G; be the graph obtained after
deletingi nodes fromZ, and consider executing on Gy, G1, ..., Gi. For everyi, sinceG; is a complete
bipartite graph, one of the sides has to be the MIS. Siiceontains only disconnected nodesithen R
is the only MIS ofGG.. This implies that after some specific change along the segi¢he side of the MIS
changes froni, to R. In this topology chang&ll of the nodes change their output.

This gives a strong separation between our result and digistim algorithms. Moreover, it shows that
(1) the expected adjustment complexity of any algorithm tningsat least 1, as we have a sequencé of
topology changes that lead to at le&sadjustments, and (2) it is impossible to achieve high priibab
bounds that improve upon a simple Markov bound. Specifictiiy explains why we obtain our result
in expectation, rather than with high probability. This ischuse the example can be inserted into any
larger graph om nodes, showing thdbr everyvalue ofk, there exists an instance for which at le@st:)
adjustments are needed with probability at lda4t.

Approximate Correlation Clustering: In addition to the optimal complexity guarantees, the fhat t
our algorithm simulates the random greedy sequential digomas a significant application to correlation

2We emphasize that the term broadcast is used here to indietaore restricted setting of not being able to send differe
messages to different neighbors in the same round. It ddeefeo to a wireless setting of communication.

3This bears some similarity to the method[in[53], where theaber ofmovess reduced in an MIS self-stabilizing algorithm
by adding a possibleait state to the standaid MIS andnot in MISstates.



clustering. Correlation clustering requires the nodesetpértitioned into clusters in a way that minimizes
the sum of the number of edges outside clusters and the nwhben neighboring pairs of nodes within
clusters (that is, missing edges within clusters). Ailorakt[1l] show that random greedy obtains3a
approximation for correlation cluster,gby having each MIS node inducing a cluster, and each node not
in the MIS belonging to the cluster induced by the smallestloan ID among its MIS neighbors. This
directly translates to our model, by having the nodes knaat tandom ID of their neighbors. Graph
decompositions play a vital role in distributed computisgd, e.g.,[[47]), and hence the importance of
obtaining a3-approximation for correlation clustering.

History Independence: Finally, our algorithm has a useful property, which we dafitory indepen-
dence which means that the structure output by the algorithm. (¢hg MIS) depends only on the current
graph, and does not depend on the history of topology chaidgsmeans that the output cannot be chosen,
or even biased, by the adversary, in case its goal is to prexgefnom optimizing some objective function.
Moreover, history independent algorithms compose niaghjich allows us to obtain history independent
coloring and matching algorithms, using standard redostio

1.2 Related Work

Distributed MIS: Finding an MIS is a central theme in the classical distridigetting. The classic algo-
rithms [2]31, 43] complete withi®(log n) rounds, with high probability. More recently, a beautifune

of work reduced the round complexity to dependA&nthe maximal degree in the graph. These include
the O(A + log™ n)-round algorithm of([9], theD(log A+/log n)-round algorithm of[[10], and the very re-
centO(log A) + 20(Vleglegn)_round algorithm of[[25]. An excellent source for additibbackground and
relations to coloring can be found inl [8].

Distributed dynamic MIS: The problem of finding a fast dynamic distributed MIS aldamit appears
as an open problem in_[21], which studies the problem of raaiitig a sparse spanner in this setting.
Additional problems in this setting are also addressed 1, [@nd in slightly different settings in[4, 14,32,
35]. However, we are unaware of any other work in this setihgut maintaining an MIS. One standard
approach for maintaining an MIS is running distributed alpons that are designed for the static setting.
This can be done for any distributed algorithm, sometimesgua correspondingompiler, e.g., when
applied to an asynchronous dynamic setting [5, 6, 40]. Ormortant exception is the solution in_[34],
which as in our algorithm, requires a constant number ofdsuhut as opposed to our algorithm, makes the
strong assumptions that (1) a node gracefully departs ttveorle and (2) messages may have unbounded
size. An additional difference is that the number of broati;aas opposed to the number of rounds, may be
large.

Additional distributed dynamic algorithms: A huge amount of literature is devoted to devising dif-
ferent algorithms in a self-stabilizing setting (see, ,]88,[26/50] and references therein). This setting
is inherently different from ours since it measures the titrtakes an algorithm to reach a correct output
starting fromany arbitrary configuration. The setting is asynchronous, buisters a notion of time that
is different than ours, where an asynchronous round regjtiitat each node communicates with all of its
neighbors. This inherently implies a lot of communicatibnogdcasts).

An MIS-based clustering algorithm for the asynchronous ehttht appeared in [20] also uses a random
node order for recovering after a change. However, thelirssabilizing setting differs from ours in several
aspects, such as assuming a bounded degree graph andidgassaupted states of multiple nodes, and
multiple topology changes. In addition, our techniques analysis are completely different. In particu-

“*In the same paper, they also provid2 B approximation based on rounding a solution of a linear EnegWe do not elaborate
on the details of this algorithm, nor the history of the ctatien clustering problem as it is outside the scope of opepa



lar, the clustering obtained there may not be an approxandb correlation clustering. Furthermore, the
number of rounds required by [20](log(n)) as opposed to the single round algorithm (in expectation)
presented here.

Related, but not identical, notions of error confinementitfmcal and fault amendable algorithms have
been studied in]7, 38, 39], where the internal memory of eenody change. Another property that self-
stabilizing algorithms should aim for is super-stabiliaat[19], which means that they are self-stabilizing
(eventually output the required structure) and also recexremely fast froma singletopology change.
Super-stabilization requires also a small adjustment oreasvhich is the maximum number of nodes that
have to change their output. Our MIS algorithm recovers feogsingle topology change in a single round,
and has an adjustment measure of exactly 1, in expectation.

Simulating the sequential greedy algorithm:Simulating random greedy has been used before in order
to obtain fast solutions for sequential local computatigoathms (LCA). In this setting, the algorithm does
not have access to the entire graph, but rather an oraclssagsmg queries about nodes or edges, and needs
to provide an approximate solution for various problemspagwhich are the problems considered in this
paper. We emphasize that the models are inherently diffesiad hence is our technical analysis. While we
bound the size of the set of nodes that may change their oatigita topology change, studies in the local
computation literature [41, 44,46,54] bound the size ofdieof nodes that need to be recursively queried
in order to answer emndomnode query. In some sense, these sets are opposite: We hginsingle node
v changing its state due to a topology change, and look at tref sedes that change their stateeto the
change ofv. Local computation algorithms begin with a single nadand look at the set of nodes whose
statesdeterminethe state ofb.

2 Dynamic Distributed Computations

The distributed setup is a standard message passing motiel.ngtwork is modeled by an undirected
graphG = (V, E) where the node set I8, and E' consists of the node pairs that have the ability to directly
communicate. We assume a broadcast setting where a meesaf)g a node is heard by all of its neighbors.
Also, we assume a synchronous communication model, whaeei$i divided into rounds and in each round
any willing node can broadcast a message to its neighbors.regfact the size of each message to be
O(log(n)) bits, withn = |V| being the size of the netwoikThe computational task is to maintain a graph
structure, such as a maximal independent set (MIS) or a nodeedng. That is, each node has an output,
such that the set of outputs defines the required structure.

Our focus is on a dynamic network, where the graph changestiove. As a result, nodes may need
to communicate in order to adjust their outputs. The systestableis when the structure defined by the
outputs satisfies the problem requirements.

A graph topology change can be with respect to either an edg@ode. In both cases we address both
deletions and insertions, both of which are further sptit imo different types. For deletions we discuss both
agraceful deletiorand anabrupt deletion In the former, the deleted node (edge) may be used for massin
messages between its neighbors (endpoints), and retingsle@ly only once the system is stable again. In
the latter, the neighbors of the deleted node simply discinat the node (edge) has retired but it cannot be
used for communication. For insertions, we distinguistwieen anew node insertiomand anunmutingof a
previously existing node. In the former, a new node is irgbto the graph, possibly with multiple edges.
In the latter, a node that was previously invisible to itsghéiors but heard their communication, becomes

5This is the standard assumption in a distributed settingouindynamic setting where the size of the graph may change we
assume knowledge of some upper bowid> n, with N = n®™") | and restrict the message lengttQ¢log(N)) = O(log(n)).



visible and enters the graph topol@gy

We assume that the changes are infrequent so that they ectange enough time gaps, so that the
system is always stable before a change occurs. We conbiglgretformance of an algorithm according
to three complexity measures. The first is Htgustment-complexitymeasuring the number of nodes that
change their output as a result of the recent topology chafge second is theound-complexitywhich is
the number of rounds required for the system to become st&bally, the third, more harsh, score is the
broadcast-complexityneasuring the total number of broadcasts.

Our algorithms are randomized and thus our results applygt@xpected values of the above measures,
where the expectation is taken over the randomness of thesndife emphasize that this is the only ran-
domness discussed; specifically, the result is not for aomndode in the graph nor a random sequence
of changes, but rather applies to any node and any sequertgndes. It holds foeverychange in the
graph, not only in amortized over all changes. For this, w&enthe standard assumption of ablivious
non-adaptive adversary. This means that the topology @sadg not depend on the randomness of the
algorithm. This standard assumption in dynamic settingsitsral also for our setting, as, for example, an
adaptive adversary can always choose to delete MIS nodetharaby force worst-case behavior in terms
of the number of adjustments.

In what follows we discuss the problem of computingh\is. Here, the outputs of the nodes define a set
M, where any two nodes i are not connected by an edge, and any node ndf imas a neighbor ii/.

The second problem we discuss is thatofrelation clustering Here, the objective is to find a partitioning
C of the node set’, where we favor partitions with a small number of “contraidig edges"”. That is, we

aim to minimize the suM o >, e Liww)¢E] + 20y £0sec 2oucy veCs Li(uw)eE]-

3 A Template for Maintaining a Maximal Independent Set

In this section we describe a template for maintaining a makindependent set (MIS). Initially, we are
given a graphG = (V, E) along with an MIS that satisfies certain properties, and aft®pology change
occurs in the graph, applying the template results in an M& $atisfies the same properties. That is, the
template describes what we do after a single topology chargeif one considers a long-lived process of
topology changes, then this would correspond to havingallyitan empty graph and maintaining an MIS
as it evolves. We emphasize that the template describescagwdhat is not in any particular model of
computation, and later in Sectidh 4 we show how to implemeefficiently in our dynamic distributed
setting. This also means that there are only four topolog@nghs we need to consider: edge-insertion,
edge-deletion, node-insertion and node-deletion. Fomel&, the notions of abrupt and graceful node
deletions are defined with respect to the dynamic distribattting because they affect communication, and
therefore the implementation of the template will have tdrads this distinction, but the template itself is
only concerned with a single type of node deletion, not in gamticular computation model.

Throughout, we assume a uniformly random permutatian the node® € V. We define twostates
in which each node can bet/ for an MIS node, and\/ for a non-MIS node. We abuse notations and
also denote by// and M the sets of all MIS and non-MIS nodes, respectively. Our gl maintain the
following MIS invariant A nodew is in M if and only if all of its neighbors, € N(v) which are ordered
before it according ter, i.e., for whichw(u) < m(v), are not inM. It is easy to verify that whenever the
MIS invariant is satisfied, it holds that the gdtis a maximal independent set@ Furthermore, it is easy
to verify that this invariant simulates the greedy sequtigorithm, as defined in the introduction.

When any of the four topology changes occurs, there is at asisgle node for which the MIS invariant

5The distinction is only relevant for nodes insertions, asetis no knowledge associated with an edge.



no longer holds. We denote this node &y = v*(Golq, Gnew, 7), WhereGqq and Gy, are the graphs
before and after the topology change. For an edge insertiaieletion,v* is the endpoint with the larger
order according tor. For a node insertion or deletion; is the nodefl In case the topology change is
an edge change, we will need also to take into consideratsoatiher endpoint. We denote it hy* =
v**(Goa, Gnew, 7), and notice that by our notation, it must be the case #tfat*) < w(v*). In order
to unify our proofs for all of the four possible topology clgas, we talk about a nod€™* also for node
changes. In this case we defin€ to bev* itself, and we have that(v**) = «(v*). Therefore, for any
topology change, it holds that(v**) < m(v*).

To describe our template, consider the case where a new sdgseited and it connects two nodes
m(v**) < 7(v*), where both nodes are /. As a resultp™ must now be deleted from the MIS and hence
we need to change its state. Notice that as a result of thegeharthe state of*, additional nodes may
need their state to be changed, causing multiple state esanghe graph. An important observation is that
it is possible that during this process of propagating l@oatections of the MIS invariant, we change the
state of a node more than once. As a simple example, conbigl@ase in which* has two neighborsy,
andus, for whichw(v*) < 7(uq), 7(u2), and that; andus are connected by a path, wy, wa, uz), with
m(uy) < w(wy) < mw(we) < m(uz). Now, when we change the statewfto M, bothu; andus need to be
changed taV/, for the MIS invariant to hold. This implies that; needs to be changed id andw, needs
to be changed td/. In this case, since(ws) < 7(uz), the nodeus needs to be changed back to stafe

The above observation leads us to define a setfiafencednodes, denoted by = S(God, Grew, 7),
containingv* in the scenario where we need to change its state, and all mtloles whose state we must
subsequently change as a result of the state change @b formally define the se$ we introduce some
notations. The notations rely on the graph structuré&/gf, unless the change is a node deletion in which
case the rely o7, 1q. For each node, we definel;(u) = {v € N(u) | 7(v) < m(u)}, the set of neighbors
of u that are ordered before it accordingitoThese are the nodes that can potentimifiuencethe state of
u according to the MIS invariant. The definition §fis recursive, according to the ordering inducedrbyf
immediately after the topology change, in the new gréphith the orderr it holds that the MIS invariant
still holds forv*, then we defineS = (). (This is motivated by the fact that no node is influenced ly th
change.) Otherwise, we dendig = {v*}, and inductively define

Si={u|ue M,andS;_1 N I;(u) # 0} U{u|u € M, and everyw € I.(u) N M isin Uj.‘:%] S} (@)

The setS is then defined as = | J, S;. Notice that a node can be in more than one s8f, as is the
case fornus in the example above, which is in bath andS,. The impact of a node being in more than one
S; is that in order to maintain the MIS invariant, we need to msike that we update the statewohfter we
update that ofv, for anyw such thatv € I;(u). Instead of updating the statewfwice, we can simply wait
and update it only after the state of every sucks updated. For this, we denote hy= max{i | u € S;}
the maximal index for whichu isin S;.

We formally describe our template in AlgoritHmh 1. By constian, the updated states after executing
Algorithm[1 satisfy the MIS invariant. In addition, the cralcproperty that is satisfied by the above template
is that in expectation, the size of the seis 1. The remainder of this section is devoted to proving the
following, which is our main technical result.

Theorem 1. For every two graphsg,4 and G, that differ only by a single edge or a single node, it holds
thatIE,r [‘S(Golda GneWa 7T)H < 1.

"For a node deletion, we slightly abuse the definition’din order to facilitate the presentation, and consider itdte deleted
node. This means that here we consider an intermediate atdg&ingv™ still belong to the graph w.r.t. the MIS invariant of all
the other nodes, but far* the MIS invariant no longer holds. This is in order to unifgtfour cases, otherwise we would have to
consider all of the neighbors of a deleted node as nodes fahvihe MIS invariant no longer holds after the topology den



Algorithm 1 A Template for Dynamic Correlation Clustering.
Initially, G = (V, E) satisfies the MIS invariant.

On topology change at nodé do:

1. Update state af* if required for MIS to hold

2. Fori « 1, until S; = 0, do:

3. Foreveryu € S; such that = i,:

4, Update state of

5 i+ 1+1

Outline of the proof:  In order to prove thak[|S|] < 1, instead of analyzing the s8tdirectly, we analyze
the setS’ = S'(Gold, Guew, T, v*), Which is defined via recursion similarly 1 with three modifications:
(1) Itis always the case tha}, = {v*} (2) The graph according to whicf is defined is7,)q in the case of
a node deletion or an edge insertion, @hgd,, otherwise. (3) The permutation accordingdois defined as
7/, that is identical tor other than its value for* that is forced to be the minimal among all othevalues.

Notice thatS’ does not depend om(v*) and in particular, having knowledge about its elements das
give any information as to whethei(v*) < 7(v**) or vice versa.

In Lemmé&2, we prove that if (v*) # min {m(u) | u € S’} thenS = (), and otherwises = S’ (in fact,
it would be enough thaf C S’). Then, in Lemmal3, we prove that for any getC V, given the event
that P = ', the probability, over the random choicemfthatr(v*) = min {n(u) | u € P} is1/|P|. This
leads to the required result of Theoréin 1. Leniha 3 would b&liif there was no correlation between
m andS’. However, the trap we must avoid here is tatis defined according ta, and therefore when
analyzing its size we cannot treatas auniformlyrandom permutation. To see why, suppose we know that
insideS”\ {v*} we have nodes with large ordersin Then the probability that the order of in 7 is smaller
than all nodes irt” \ {v*}, is much larger that/|.S’|, and can in fact be as large Bs o(1). In other words,
S’ gives some information over. Nevertheless, we show that this information is either altoe order
between nodes outside §f, or about the order between nodes witliin\ {v*}. Both types of restrictions
on 7 do not affect the probability that* is the minimal ofS’.

We now formally prove our result as outlined above. Througtwe use the notation € M oru € M.
This applies only to nodes for which we are guaranteed that their states remain the shsgte the
topology change.

Lemma 2. If 7(v*) # min {7 (u) | u € S’} thenS = (. Otherwise,S C 5.

Proof. First, assume that(v*) # min {7 (u) | u € S’'}. We show that the MIS invariant still holds after the
topology change, and s® = (). Consider the node, for which7(w) = min {7 (u) | u € S’}. Notice that
w ¢ S, becauser(w) < 7(v*). We claim thatw € M. Assume, towards a contradiction, that M. This
implies thatw has a neighbot. € M such thatr(u) < 7(w). For this node: we must have: ¢ S” due to
the minimality of(w). It follows, according to the construction 6f thatw cannot be an element &f,
leading to a contradiction.

We have thatv € M and due to the minimality of (w), it must be thatv € S, which implies thatw
is a neighbor ob*. But then, when considering, v* has a neighbor other thari* which is ordered before
it according tor which is in M. In the case of an edge insertion or deletion, this meansthamains in
M despite the topology change meaning that (). In the case of a node deletiont; was not inM prior
to the change hencg = (. In the case of a node insertiost, does not enteil/ hence againS = ().

Next, assume that(v*) = min {m(u) | v € S’}. We show that eithe6 = ) or S = S’. If there is
no need to change the statewfas a result of the topological change th&én= ), and soS = () and the
claim holds. It remains to analyze the case whegye= S, = {v*}. If u € S| thenw(v*) < 7(u) hence

7



according to its definitionu € S;. If u ¢ S| thenu must have a neighbar € M with 7(w) < 7(u)
meaning that. ¢ S;. We have thatS; = S} and similarlyS; = S/ for all i > 1. We conclude that’ = S
as required. O

The following lemma shows that the probability of havifig= S’ is 1/|5’|, which immediately lead to
Theorentl as the only other alternativesis= ().

Lemma 3. For any set of node® C V, it holds that

_ L
1P|’

To prove this lemma we focus off. Notice that the events we considered in the previous lemma
depend only on the ordering implied kyand hold for any configuration of states for the nodes th&fgat
the MIS invariant. Roughly speaking, the lemma will follovoiin the fact the the ever’ = P does not
give any information about the order implied bybetween nodes i# and nodes ifV'\ P. To this end, for
every permutatiorr on'V, we defineS’ (1) = S'(Golq, Guew, 7, v*) as the set corresponding $6 under the
ordering induced by. We denote byllp the set of all permutations for which it holds thatS’(7) = P.

We first need to establish the following about permutationH #: If = ando are two permutations ol
such thatr|p = o|p andz |y p = oy p, theno € Ilp if and only if m € Tlp.

Pr [7(v*) = min {n(u) |u € P} | S' = Pandn(v**) < m(v*)]

Claim 4. Let P C V be a set of nodes, and letand o be two permutations such thatp = o|p and
mly\p = oly\p. Assumer € T1p. We have that’\P C V' \ S’(c) and everyu € V'\ P has the same state
according tor ando.

Proof. Letu € V\P. We prove that: € V' \ S’(c) and that its state underis the same as it is underby
induction on the order of nodes In\ P according tor (which is equal to their order according 9.

For the base case, assume thags the minimal order i\ P. We claim that: cannot have a neighbor
in P. Assume, towards a contradiction, thahas a neighbow € P. Sincew € P then it is possible that
after the aw will be in M. Since two nodes id/ cannot be neighbors and¢ P, thenu must be inM
according tor. In this case there is a nodec I(u) N V\P that is inM according tor. But this cannot
occur due to the minimality of (») in V'\ P. Thereforeu has no neighbors i# as required.

We have that all of the neighbors afare in V\ P and thatu is the minimal among its neighbors
according tor. Sincer|y p = oy p We have that: has the minimal order among its neighbors according
to . This translates inta having a state oM underc and in particulary is not an element of’ (o), thus
proving our base case.

For the induction step, consider a node= V'\ P, and assume the claim holds for evesyc V\ P N
I:(u). We consider two cases, depending on whethleas a neighbor i#® or not.

Case 1w does not have any neighbor in If u € M, then there is a node € I(u) N V\P that is
in M according tor. By the induction hypothesig, € V' \ S’(c) andz € M also according te. Since
mly\p = oly\p, We have that is in M according tar too. Otherwise, ifu € M, then everyw € I (u)
(which is alsoV'\ P) is in M according tor. Any nodew € I,(u) is also inw € I:(u), since it is not inP
andr|yn p = o[y p. The induction hypothesis an gives that itis also i\ S’(o) (otherwise it would be
in S, = P in contradiction to the assumption of case 1), and its staterding too is M. Hence,u must
be inV '\ S’(0) as well, and in statd/ according tar.

Case 2: Assume thathas a neighbotw € P. Sincew € P then it is possible that after the algorithm
w will be in M. Since two nodes id/ cannot be neighbors and¢ P, thenu must be inM according
to 7. In this case there is a nodec I,(u)\P that is in M according tor. By the induction hypothesis,
z € V\S(0)andz € M also according t@. Sincen|y\p = ol p, We have thaw is in M and in
V'\ S§’(o) according tos too. O



Claim 5. Let P C V be a set of nodes, and letand o be two permutations such thatp = o|p and
mly\p = oly\p. Assumer € I1p. We have thaP C S'(o).

Proof. We prove that every node € P is also inS’(o) by induction on the order of nodes ih according
to « (which is equal to their order accordingd9, with the modification forcing* to be the first among the
nodes ofP. The base case is fer*, which is clearly in both set§’(w) andS’(c). Consider a node € P
and assume that the claim holds for every nod® wuvhich is ordered before according tar. Sinceu € P
andu # v* there must be some < I.(u) N P sincen|p = o|p andu € P we have according to our
induction hypothesis that € S’(¢), meaning thaf,(u) N S’(o) is non-empty.

Consider now an arbitrary € I,(u). If w € P then sincer|p = o|p andu € P we have according
to our induction hypothesis that € S'(o). If w ¢ P then it must be the case thate M according tor,
otherwiseu cannot be inP. We thus have according to Clalm 4 that ¢¢)c V \ S’(c) and 2w € M
according tas. It follows that all neighbors of: in I,,(u) are either inS’(¢) or in M according tar, hence
sincel,(u) N S'(c) # 0 it must be the case thate S'(o). O

Claims[4 and b combined imply thatifip = o|p andn|y\p = ol p theno € Ilp if and only if
7 € IIp. We are now ready for the proof of Lemiia 3.

Proof. (of Lemm&l3)Given two permutationg™ ando~ on P\{v*} andV'\ P, respectively, we define
Pot o~ ASPyt - = Pr [Vu € Pr(v*) <m(u) | W‘P\{v*} =gt andﬂ\v\p = a‘} .

First, we observe that for two pairs of permutations o, ando; , o, as above, it holds th%j,a; =
Pot o5 This is because given the condition fof , o, applying the permutatiotic; ) ~'o5 to nodes
in P\{v*} and applying the permutatiofw; )~'o, to nodes inV’\ P has no affect on whether the event
Vu € P,m(v*) < m(u) holds. Next, sinc®r [Vu € P, 7(v*) < 7(u)] = ﬁ, we have that for any pair of
permutationsr™, o~ on P\{v*} andV'\ P, respectively:

L Pr[Vu € P,w(v*) < mw(u)] = Z Prt = Pr [T p\ ey = 77 @ndn|y\ p = 77|

Tt

1P|

= Z Pot.o- Pr [T p\(pry = 7T @NA7[y\p = 77 = ot o
Tt
Finally, Claims[4 and5 imply that for every sé&t C V there is a set of = ¢p pairs of permuta-
tions {(o1",07),..., (07,0, )} on P\{v*} andV'\ P, respectively, such thalp = {m | 3i,7|p\ (e} =
o; andrly\ p = o; }. We conclude that for a given setC V'

Pr [Vu e P,n(v*) <m(u)] = chr* o— Pr[7lp\ oy = o andx|y\p = 07 | 7 € 1Ip]
WGHP . i—1 1071
1 _ 1
= WZPI‘ [ﬂ"p\{v*}:O';_ andﬂ"v\p:O'Z- ’WGHP] :m. (2)
i=1

To complete the proof, we argue that knowing thét**) < x(v*) can only decrease the probability that
m(v*) < m(u) for all w € P. Formally,

wgﬁp Vu € Pr(v*) < m(u) | w(v*™) < w(v¥)]

(
= WEEP Vu € P,r(v*) < m(u) andmw(v™) < w(u) | w(v™) < mw(v*)]

Prrem, [Vu € P, m(v*)

Prren, [Vu € Pm(v*) < w(u) andw(v*™*) < m(u)]
- Prren, [r(v™*) < 7(v*)]

9



To bound the above expression, we separate our discusgiathiee possible cases. In the first # v* and
v** € P. The value of the expression is clearly 0 in this case. In¢oesd we have* = v** and according
to Equation [(2) we have that the quantity is bounded. pyP|. The last case is the one wher& ¢ P.
Here, because* € P andv** ¢ P we have that the events afv*) being the minimal in{7(u) },ep and
m(v**) being the smaller than each of the elementgofu)},cp are independent for uniform < Ilp.
This is due to the first event being dependent of the innerrondede P and the second being independent
of the same inside order. Hence,

Prrem, [Vu € P,7(v*) < w(u) andw(v*™*) < m(u)]

Prrem, [m(v**) < 7(v*)]
Pr, Vu € P,m(v*™*) < X
_ Preenp [Vu € Pr(v™) <m(u)] Pr [Vu € P,w(v*) < m(u)]
Prrem, [m(v**) < m(v*

< Pr NMuePrn(w") <7(u
wellp

O

Lemmd2 and Lemmnid 3 immediately lead to Theokém 1. Also, asarediate corollary of Theorehi 1
we get

Corollary 6. A direct distributed implementation of Algoritimh 1 has, kpectation, both a single adjust-
ment and round, in both the synchronous and asynchronouglsod

4 A Constant Broadcast Implementation

Theorent ]l promises that the expected number of nodes thdttaedange their output according to our
template algorithm id. However, a direct implementation of the template in Algon[d in a dynamic
distributed setting may require a much larger broadcasipt®xity because it may be the case that a node
needs to change its state several times until the MIS invahialds at all nodes. This is because a node can
be in more than a single s#f, as discussed in the previous section. In such a case, edspitact that the
expected number of nodes this a constant, it may be that the expected number of stategelas much
larger. Specifically, in a naive implementation, the numifelbroadcasts may be as large|8$>. Hence,
althoughE]|S|] = 1, the expected number of broadcasts may be as large as

We thus take a different approach for implementing the tetepin Algorithm[l, in thesynchronous
setting, where each node waits until it knows the maximgdr which it belongs toS;, and changes it
state only once. This allows to obtain, for almost all of tlsgible topology changes a constant broadcast
complexity at the cost of a constant, rather than singlendaromplexity.

In order to implement the random permutationve assume each nodec V' has a uniformly random
and independent ID, € [0, 1]. We will maintain the property that each node has knowledges @ value
and those of its neighbors. We describe our algorithm in Allgm[2. This directly applies to the following
topology changes: edge-insertion, graceful-edge-agletibrupt-edge-deletion, graceful-node-deletion and
node-unmuting. An extension of the analysis is providedubs®ctiori 4.2 for the case of an abrupt node
deletion, and a slight modification is provided in Subsed#idl for the case of node-insertion. The following
summarizes the guarantees of our implementation, and vepria Lemmasid, 10, and13. .

Theorem 7. There is a complete fully dynamic distributed MIS algorittvimich requires in expectation a
single adjustment an@(1) rounds for all topology changes. For edge insertions ancttilehs, graceful
node deletion, and node unmuting, the algorithm requirés) broadcasts, for an abrupt deletion of a node
v* it requires O (min{log(n), d(v*)}) broadcasts, and for an insertion of a nodg it requires O(d(v*))
broadcasts, in expectation.
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In the algorithm a node may be in one of four stat&sfor an MIS node M for a non-MIS node( for
a node that may need to change framto M or vice-versa, andk for a node that is ready to change. We
will sometimes abuse notation and consider a state as tloé seties which are in that state. Our goal is to
maintain the MIS invariant.

Algorithm 2 MIS Algorithm for nodev

1: v € M: If someu € I.(v) changes to stat€, change state t6'.

2: v € M: If someu € I;(v) changes to stat€ and all otherw € I;(v) are not inM, change state t6'.

3: v € C: If (1) all neighborsu with 7w(v) < 7(u) are not in state€”’ and (2)v changed to staté' at least
2 rounds ago, change statefo

4. v € R:Ifall u € I.(v) are in states\/ or M, change state td/ if all u € I.(v) are inM, and change
state toM otherwise.

Any change of state of a node is followed by a broadcast of éve state to all of its neighbors. We
now define our implementation as a sequence of state chawie=s a topology change occurs at nade
if the MIS invariant still holds then* does not change its state and algorithm consists of doingngpt
Otherwisep* changes its state 0.

From states\/ or M, a node changes to stafewhen it discovers it is in the sét of influenced nodes,
as defined in Equatiof](1). From st&fe a nodev changes to stat® when (1) none of its neighbors for
which 7(v) < 7(u) are in state” and (2)v changed its state t6' at least two rounds ago. Finally, from
stateR a nodev returns to stated/ or M when all of its neighbors, for which 7(u) < 7(v) are in states
M or M. In order to bound the complexity of the algorithm we firstwttbat every node can change from
stateR to either)M or M at most once.

Lemma 8. In Algorithm[2, a node: changes its state fromR to another state at most once.

Proof. First, note that every. ¢ S never changes its state. Consider a nea@danging its state fron® to
either M or M. Sinceu changes from stat®, if u # v* then it must have a neighbar € I, (u) that was in
stateC, changed to stat® and then changed t&/ or M. It follows thatv* must be the first node to change
its state fromR to M or M. This event occurs only when all neighbar®f v* are not inC,, which in turn
can happen only when all neighbors of each suetith highern value have changed frodi to R at least
once. But, since no node could have changed its state fidmanother state beforg has done so, we
have that when™* changes its state fromR to another, all: € S are in stateR.

In particular, we have that at the round of the first change md@de fromR to another state, there are
no nodes in staté€’. Since a node can only change to statdue to a neighbor at stateé we have that any
node changing its state frof to M or M will not change its state again, thus proving our claim. [

Lemma 9. For edge-insertion, graceful-edge-deletion, abruptedgletion, graceful-node-deletion and
node-unmuting, Algorithid 2 requires in expectation a gragljustment) (1) rounds, and)(1) broadcasts.

Proof. Since only nodes i$ can change their outputs, the number of adjustments is leolbg|.S|, and
hence isl in expectation, by Theorelm 1. According to Lemimha 8, if a ndanges its state then it does so
exactly three times. First it changes from eitiddror M to C, then it changes té&, and finally it changes

to either M or M again. Since only nodes i change their states and since the round and broadcast
complexities are clearly bounded by the number of stategdmplus 1 (due to the forced waiting round
before changing frond’ to R), the claim follows. O
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4.1 Node and Edge Insertion

Whenv* is inserted, or an edge™*, v**) is inserted, we assume that all new pairs of neighbors argeubt
that they are now connected, along with each other’s ID. ketting) where this is not the case, we make the
following adjustment, before applying Algorithinh 2.

Whenv* is inserted, in the first round;* broadcasts its rando#hvalue and a temporary staié to its
neighbors. In the second round, the neighbors*diroadcast their states and théiralues. Now, it may be
the case that the MIS invariant does not hold*atbut it still holds for any other node in the graph. We now
execute Algorithni 2. The expected number of adjustmentsehemaind,, the number of rounds increases
by two and is therefore stitD(1), and the number of broadcasts is now bounded by the degvég

When an edgév*, v**) is inserted, in the first round;* andv** broadcast their randorfivalue and
state. Now it may be the case that the MIS invariant no longéashatv*, but it still holds for any other
node in the graph. We then execute Algorithm 2. The expeatetber of adjustments hence remainshe
number of rounds increases by one and is therefore’#til), and the number of broadcasts is still bounded
by O(1).

We therefore get the following:

Lemma 10. For a node-insertion of a node*, our algorithm requires in expectation a single adjustment
O(1) rounds, andD(d(v*)) broadcasts. For an edge-insertion of an edgé, v**), our algorithm requires
in expectation a single adjustmei}(1) rounds, and)(1) broadcasts.

4.2 Abrupt Node Deletion

Consider a node* that is abruptly deleted. We denotedsy v3, . .., v} the setS; = S(Gold, Gnew, T, v*)1.

We execute Algorithml]2, where in the first round, evefy 1 < i < z changes its state t0' (instead of
havingv* broadcast its change state(@). It is straightforward to verify that despite the above iificdtion,

only nodes inS = S(Goid, Gnew, T, v*) €an change to stat€ throughout the execution. With this mod-
ification, a node may change to statemore than once. However, we show the amount of times this can
happen is bounded by both the degreeoénd bylog(n).

Lemma 11. The algorithm completes after at ma@$6| + 2 rounds.

Proof. Consider a nodes that changes to stat€' in round¢. If ¢ > 1, then there is a node, for
which 7(u) < w(v), that changes t@¢" in roundt — 1. By induction, it follows that there exists a path
(vi,v2,...,v), wherev; = vy for somel < i < x andv; = v, and in additionr(v;) < 7(vj4) for all

j < t. Since the latter implies that the nodes are distinct, we lthatt < |S|, meaning that after round
|S| no node changes ©. This gives that after an additional round, nodes begin &mgh toR. The same
argument now gives that no node change®tafter round2|S| + 1. After an additional round nodes start
changing fromR, and therefore, using the same argument again, we havedhadde changed its state
from R after round3|S| + 2. To complete the proof, we argue that indeed this procedwgresses, hence
eventually all nodes are in eithaf or M, with the MIS invariant holding. This holds since two consiae
rounds with no state changes implies that the algorithmiteated: After a round with no state change, if
there are nodes in stafe then the node with the maximal order among them changes & Otherwise,

if there are nodes in stat® then the node with the minimal order among them changes to eittidror
M. O

Lemma 12. If v changes from eithek/ or M to C at roundst, it does not change to neithéd or M again
before round3t + 1. Further, each change af to C' can be associated with a different nodg for some
1< <z,
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Proof. We prove the lemma by induction enwhere the base case ot 1 trivially holds, as a node needs
to make 3 changes. For> 1, as in the previous lemma, there exists a fathvs, . .., v;), wherev; = v}
for somel < i < z andv; = v, and in additionr(v;) < m(vj41) forall j < ¢.

Lettr > t + 2 be the first round in whiclh = v; changes td?. Notice that until that round;;_; does
not change ta, and the same holds inductively foy forall 1 < j < ¢ — 1. Let t’R be the first round in
which v; changes tar, and lettg be the first round in which; changes to eithed/ or M. It follows that
th > tr+t—1>2t+1,and hencegs > 2t + 2.

Now, letts be the first round in whiclh = v; changes to eithe¥/ or M. In roundt’; — 1 the nodev;;
must be in eithedV/ or M, and inductively we have that at round — ¢ + 1, the nodev; is in eitherM or
M. This implies that'y — ¢t +1 > tg > 2t + 2, giving t'y > 3t + 1 as required.

Further, whern changes its state frof to M or M, the state ob; is already) or M. This implies that
if v change its state t6' again in timet’ > ¢, then it is due to a change irj,, for somei’ # 4,1 <4’ < x.
(Although it is possible that the path fromj to v goes throughy; again.) This means that each change of
v to C can be associated with a different nagefor somel < i < z. O

Lemma 13. For an abrupt deletion of a node", our algorithm requires in expectation a single adjustment
O(1) rounds, and)(min{log(n),d(v*)}) broadcasts.

Proof. Now, the adjustment complexity is bounded [I$}f and thus by Theorei 1 it is in expectation.

By Lemmal1l the round complexity 3(|S|), and thus by Theorefd 1 it i9(1) in expectation. Finally,

as a corollary from Lemmia_12 we get that the sequence of roimdich a nodev has changed t¢’

iS t1,tg, ...t With &7 > 1, t;11 > 3t; + 1 and by Lemma&~I1 we have algp < 3|S| + 1. It follows
thatr < logs(O(|S])). Moreover, since by Lemniall2 every change“tdy a nodev can be accounted
to a different node;, we have thai < = < d(v*). This gives that the total number of broadcasts is at
mostO(|.S| min{log(|S|),d(v*)}). The claim immediately follows as sind@|S|] < 1 (TheorenilL) and
|S| < n. O

5 History Independence

In this section, we define and discuss kth&tory independenceroperty.

Motivation: In many well known problems, in addition to computing a fesisolution, it is sometimes
required to compute an optimal solution with respect to @mjigbjective function. For example, one may
wish to find an MIS that has a maximal cardinality. Usuallytading optimal solutions, or even good
approximate solutions, is NP-hard and therefore, we cagxqEct to obtain such solutions in the distributed
model. Furthermore, typically such optimization algarith are tailored to a specific objective function,
and hence it is required to handle each objective separakébreover, in a dynamic setting, it is more
cumbersome to analyze the guarantees for the value of thetig function.

Therefore, although we do not wish to consider any specifieative function in the problem descrip-
tion, we do wish that the adversary will lack the ability taolse a feasible solution as she pleases (in this
case we may assume she chooses the worst solution). In factquire that the adversary will even not be
able tobiasthe output of the algorithm towards any specific solutiontnfraly, we define our requirement
as follows.

Definition 14. Let A be an algorithm for maintaining a combinatorial graph sttue P in a dynamic
distributed setting. We say thatis history independerif given a graphG, the outputP of A is a random
variable whose distribution depends only@nand does not depend on the history of topology changes that
constructed=.
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Composability: Another advantage of history independent algorithms is ity compose nicely. For
example, given a history independent algoritdnfior MIS, we can simulated on the line graph.(G) for
obtaining a history independent algorithBhfor maximal matching. Alternatively, we can simulateon a
graphG’ = f(G) in which every node in G corresponds to a clique of size+ 1 in G/, and every edge
in G corresponds to a matching between the appropriate cligues.standard reduction by [43] is known
to give an algorithmC' for (A + 1)-coloring in G, and sinceA is history independent then so@s We
note that performing the above simulations is non-trivéal the simple topological changesGhtranslate
into more complex changes i(G) or G, yet, the challenges are only technical and require no iaddit
insights, and hence we omit the details.

Examples: It is straightforward to see that Algorithim 2 is a history épéndent MIS algorithm, because
its output for any grapld- is identical to the output of the greedy sequential algorittn GG, regardless of
the topology changes that resulted(n To further exemplify what this important property givesnsider
the following examples, in which we compare executions sfdny independent algorithms to worst case
solutions. Although history dependent algorithms do natesearily yield the worst solution, thetural
history dependent algorithm indeed yields the worst sofuith these examples. Here we think of the natural
algorithm as the greedy algorithm that gives every new naodalge the best value that is possible without
making any global changes. For this natural algorithm, areeasily verify that for any feasible output
there is a pattern of topology changes that can force theitidgoto produce it.

Example: MIS in a Star. Assume that an adversary controls the topology changesigrdph and
chooses them so that a gra@h,,. is created, wheré ;. is a star om nodes. Since our MIS algorithm
simulates random greedy, there is a probability of that the center of the star has the lowest order among
all nodes, in which case it is the only node in the MIS. Withré@aining probability of — 1/n, a different
node has the lowest order, which results in the MIS beingadies except the center, which is the largest
MIS possible inG,,-. The expected size of the resulting MIS is therefore lineat,iimplying that it is
within a constant factor of the size of theaximumindependent set (maximal cardinality independent set).
For comparison, recall that the worst-case MIS in a staractnter alone, and its sizelis

Example 2: Maximal matching of many 3-paths. Assume an adversary constructs a grép¢ns,
which containsn /4 disjoint paths of lengtt3 edges. Since our maximal matching algorithm simulates a
random greedy MIS algorithm on the line grapliGs,..ns), we have that for everg-path independently,
with probability 2/3 its matching is of siz& and with probabilityl /3 its matching is of sizé. Therefore,
the expected size of the matching we obtaifirig12. For comparison, notice that the worst-case maximal
matching inGspqns has sizen/4.

Example 3: Coloring. Regarding coloring algorithms, there is much more roomrgsrovement upon
using the standard reduction with our MIS algorithm. As in BUS algorithm, we would have liked to have
an algorithm that simulates the sequential random greembyittim for coloring as well, since, for example,
it would imply the following.

Assume that an adversary controls the topology change®igrdph and chooses them so that a graph
G = (V, E) is created, wheré is a bipartite graph on the set of nodés= LU R, for L = {u1, ..., uy/s}
andR = {v1,...,v,/2}. In £ we have an edge between the nodgandv; for everyi # j. Thus,G is a
complete bipartite graph minus a perfect matching. If weauandom greedy coloring algorithm, then the
first node, say; gets the coloi when being inserted into the graph. If the next inserted radthe u; is
vj, for anyj # i, then it gets the colo, and afterwards every node Ingets colorl and every node i
gets color2. If the next inserted node aftes is u;, for anyj # 4, then it gets the colot, and afterwards
every node in_ gets colorl and every node iR gets color2. That is, with probabilityl — 1/n, we get an
optimal 2-coloring. With the remaining /n probability we might get a coloring as bad as lineaNinThis
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gives that in expectation, we get a coloring whose paletiisia constant factor away from optimal.

We can, of course, simulate the random greedy sequentiating] but the problem is that we pay a
cost of22 adjustments. The way we can do this is to maintain that evelyr ¢ is an MIS in the graph
G — {Cj}1<j<i, whereC; is the set of nodes of colgt However, a change to a node may cause each node
in S to induce2 sources of sets for the next color, which would result in alteét of22 adjustments. Notice
that this is much worse compared to what a naive dynamidlaliséd coloring algorithm would give. Itis a
curious question whether we can indeed enjoy both worlds, leerwhether any lower bound can be proved.

The above examples illustrate how a property of the outpuat luiEtory independent algorithm on a graph
G can be analyzed as a simple combinatorial problem. Thisezhtb better guarantees compared to only
being able to assume the worst case.

6 Discussion

This paper studies computing an MIS in a distributed dynaseiting. The strength of our analysis lies in
obtaining that for an algorithm that simulates the seqaéngindom greedy algorithm, the size of the set of
nodes that need to change their output is in expectatiorhis brings the locality of the fundamental MIS
problem to its most powerful setting.

We believe our work sets the ground for much more researdhisrctucial setting. Below we discuss
some open problems that arise from our work.

An immediate open question is whether our analysis can ndgt to cope with more than a single
failure at a time. Second, there are many additional probltérat can be addressed in the dynamic dis-
tributed setting, especially in the synchronous case. Weweethat our contribution can find applications
in solving many additional dynamic distributed tasks.

A major open question is whether our techniques can be atipsequential dynamic graph algorithms,
which constitutes a major area of research in the sequesatitshg [12], 13, 16, 22—24, P7-530,33/48,49, 51,
52]. A formal definition and description of typical problernan be found in, e.g.,[ [15]. Notice that
our algorithms ardully dynami¢ which means that they handle both insertions and deletiohedges
and nodes). Although our template for finding an MIS can bdyeasplemented in a sequential dynamic
setting, it would come with a cost of at le@3tA ) for the update complexity in a direct implementation. This
is because we would have to access neighbors of the set of modéyzed in Theorefd 1. Our distributed
implementation avoids this by having them simply not resbsince they do not need to change their output,
and hence they do not contribute to the communication. Nesiess, we believe that our approach may be
useful for designing an MIS algorithm for the dynamic sediasetting, and leave this for future research.
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