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Abstract

Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing.
The local nature of an MIS allows for fast solutions in a static distributed setting, which arelogarithmic
in the number of nodes or in their degrees [Luby 1986, Ghaffari 2015]. By running a (static) distributed
MIS algorithm after a topology change occurs, one can easilyobtain a solution with the same complexity
also for thedynamicdistributed model, in which edges or nodes may be inserted ordeleted.

In this paper, we take a different approach which exploits locality to the extreme, and show how
to update an MIS in a dynamic distributed setting, eithersynchronousor asynchronous, with only a
single adjustment, meaning that a single node changes its output, and in a single round, in expectation.
These strong guarantees hold for thecomplete fully dynamicsetting: we handle all cases ofinsertions
anddeletions, of edgesas well asnodes, gracefullyandabruptly. This strongly separates the static and
dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former.

We prove that for any deterministic algorithm, there is a topology change that requiresn adjustments,
thus we also strongly separate deterministic and randomized solutions.

Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating
the greedysequentialMIS algorithm with a random ordering of the nodes. As such, our algorithm
has a direct application as a3-approximation algorithm for correlation clustering. This adds to the
important toolbox of distributed graph decompositions, which are widely used as crucial building blocks
in distributed computing.

Finally, our algorithm enjoys a usefulhistory-independenceproperty, which means that the distri-
bution of the output structure depends only on the current graph, and does not depend on the history
of topology changes that constructed that graph. This meansthat the output cannot be chosen, or even
biased, by the adversary, in case its goal is to prevent us from optimizing some objective function. More-
over, history independent algorithms compose nicely, which allows us to obtain history independent
coloring and matching algorithms, using standard reductions.
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1 Introduction

Dynamic environments are very common in distributed settings, where nodes may occasionally join and
leave the network, and communication links may fail and be restored. This makes solving tasks in a dynamic
distributed setting of fundamental interest: Indeed, it isa widely studied area of research, especially in the
context of asynchronous self-stabilization [17, 18, 26, 50], and also in the context of severe graph changes,
whether arbitrary [36] or evolving randomly [3]. In this paper, we consider a dynamic distributed setting
which is synchronousand assumes topology changes with sufficient time for recovery in between, as is
typically assumed in the literature onsequential dynamic algorithms[15].

Solutions for problems from the static distributed settingtranslate nicely into our dynamic distributed
setting, by running them in response to topology changes, inorder to adjust the output [5,6,40]. This can be
quite efficient especially forlocal problems, such as finding a maximal independent set (MIS) in the network
graph. The cornerstone MIS problem admits fast distributedsolutions whose complexities are logarithmic
in the size of the graph or in the degrees of the nodes [2,25,31,43].

In this paper, we exploit locality to the extreme, and present an MIS algorithm for the dynamic dis-
tributed setting, bothsynchronousor asynchronous, which requires onlya single adjustment, where the
adjustment measure of an algorithm is the number of nodes that need to change their output in response to
the topology change, and a single round, in expectation. These strong guarantees hold for thecomplete fully
dynamicsetting, i.e., we handle all cases ofinsertionsanddeletions, of edgesas well asnodes, gracefullyand
abruptly.1 This is a strong separation between the static and dynamic distributed models, as super-constant
lower bounds exist for the static setting [37,42]. We further prove that for any deterministic algorithm, there
is a topology change that requiresn adjustments, withn being the number of nodes, thus we also strongly
separate deterministic and randomized solutions. Below, we overview our technique and the applications of
our result.

1.1 Our Contribution

Our approach is surprisingly simple: We simulate the greedysequentialalgorithm for solving MIS. The
greedy sequential algorithm orders the nodes and then inspects them by increasing order. A node is added
to the MIS if and only if it does not have a lower-order neighbor already in the MIS. We considerran-
dom greedy, the variant of greedy in which the order is chosen uniformlyat random. Consider simulating
random greedy in a dynamic environment with the following template (ignoring the model of computa-
tion/communication for the moment). Each node needs to maintain the invariant that its state depends only
on the states of its neighbors with lower order, such that it is in the MIS if and only if none of its lower
order neighbors are in the MIS. When a change occurs in the graph, nodes may need to change their output,
perhaps more than once, until they form a new MIS. Our key technical contribution is in proving:

Theorem 1 For anyarbitrary change in the graph, the expectation over all random orders,of the number
of nodes that change their output in the above random greedy template is at most 1.

The Challenge: We denote byπ the random order of nodes, we denote byv∗ the only node (if any)
for which the above invariant does not hold after the topology change, and we denote byS the set of nodes
that need to be changed in order for the invariant to hold again at all nodes. We look atS′, the set of nodes
that would have needed to be changed if the order was as inπ, except for pushingv∗ to be the first node
in that order. The definition ofS′ does not depend on the real order ofv∗ in π. Therefore, we can prove
thatS can either be equal toS′ if the order ofv∗ in π is minimal inS′, and empty otherwise. Now the

1See definitions of topology changes in Section 2.
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question is, what is the probability, givenS′, thatv∗ is indeed its minimal order node? The answer is that if
S′ were deterministic, i.e. independent ofπ, the probability would be1/|S′|. However,S′ is a random set
and having knowledge of its members restrictsπ to be non-uniform, which in turn requires a careful analysis
of the required probability. To overcome this issue, we prove that the information thatS′ gives aboutπ is
either about the order between nodes not inS′, or about the order withinS′\{v∗}, which both do not effect
the probability thatv∗ is the minimal inS′.

Distributed Implementation: This powerful statement ofE[|S|] ≤ 1 directly implies that asingle
adjustment is sufficient for maintaining an MIS in a dynamic setting. A direct distributed implementation of
our template implies that in expectation also a single roundis sufficient. This applies both to the synchronous
and asynchronous models, where the number of rounds in the asynchronous model is defined as the longest
path of communication.

Obtaining O(1) Broadcasts and Bits: In fact, in the synchronous model, it is possible to obtain an
expected number ofO(1) broadcastsandbits. Here the number of broadcasts is the total number of times,
over all nodes, that any node sends aO(log n)-bit broadcast message (to all of its neighbors)2. Moreover,
since we only need a node to know the order between itself and its neighbors, using a similar technique to
that of [45], we can obtain that in expectation, a node only needs to send a constant number of bits in each
broadcast. The above holds for edge insertions and deletions, graceful node deletion, and nodeunmuting,
while for an abrupt deletion of a nodev∗ we will needO (min{log(n), d(v∗)}) broadcasts, and for an
insertion of a nodev∗ we will needO(d(v∗)) broadcasts, in expectation.

This is done with a careful dynamic distributed implementation which guarantees that each node that
changes its output does so at mostO(1) times, as opposed to the direct distributed implementation3. Hence,
obtaining these broadcast and bit complexities comes at a cost of increasing the round complexity, but it
remains constant (albeit not 1). In what follow, we focus on this result since we find it intriguing that we can
get as little asO(1) total communication, while payingO(1) rounds instead of a single round is arguably
not a big cost.

Matching Lower Bounds: We claim that any deterministic algorithm requiresn adjustments, which
can be seen through the following example. LetA be a dynamic deterministic MIS algorithm. LetG0 be
the complete bipartite graph over two sets of nodes of sizek. We denote byL the side ofG0 that is chosen
to be the MIS byA, and we denote the other side byR. For everyi ∈ [k] let Gi be the graph obtained after
deletingi nodes fromL, and consider executingA onG0, G1, ..., Gk. For everyi, sinceGi is a complete
bipartite graph, one of the sides has to be the MIS. SinceGk contains only disconnected nodes ofR thenR
is the only MIS ofGk. This implies that after some specific change along the sequence, the side of the MIS
changes fromL toR. In this topology change,all of the nodes change their output.

This gives a strong separation between our result and deterministic algorithms. Moreover, it shows that
(1) the expected adjustment complexity of any algorithm must be at least 1, as we have a sequence ofk
topology changes that lead to at leastk adjustments, and (2) it is impossible to achieve high probability
bounds that improve upon a simple Markov bound. Specifically, this explains why we obtain our result
in expectation, rather than with high probability. This is because the example can be inserted into any
larger graph onn nodes, showing thatfor everyvalue ofk, there exists an instance for which at leastΩ(k)
adjustments are needed with probability at least1/k.

Approximate Correlation Clustering: In addition to the optimal complexity guarantees, the fact that
our algorithm simulates the random greedy sequential algorithm has a significant application to correlation

2We emphasize that the term broadcast is used here to indicatethe more restricted setting of not being able to send different
messages to different neighbors in the same round. It does not refer to a wireless setting of communication.

3This bears some similarity to the method in [53], where the number ofmovesis reduced in an MIS self-stabilizing algorithm
by adding a possiblewait state to the standardin MIS andnot in MISstates.
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clustering. Correlation clustering requires the nodes to be partitioned into clusters in a way that minimizes
the sum of the number of edges outside clusters and the numberof non neighboring pairs of nodes within
clusters (that is, missing edges within clusters). Ailon etal. [1] show that random greedy obtains a3-
approximation for correlation clustering4, by having each MIS node inducing a cluster, and each node not
in the MIS belonging to the cluster induced by the smallest random ID among its MIS neighbors. This
directly translates to our model, by having the nodes know that random ID of their neighbors. Graph
decompositions play a vital role in distributed computing (see, e.g., [47]), and hence the importance of
obtaining a3-approximation for correlation clustering.

History Independence: Finally, our algorithm has a useful property, which we callhistory indepen-
dence, which means that the structure output by the algorithm (e.g., the MIS) depends only on the current
graph, and does not depend on the history of topology changes. This means that the output cannot be chosen,
or even biased, by the adversary, in case its goal is to prevent us from optimizing some objective function.
Moreover, history independent algorithms compose nicely,which allows us to obtain history independent
coloring and matching algorithms, using standard reductions.

1.2 Related Work

Distributed MIS: Finding an MIS is a central theme in the classical distributed setting. The classic algo-
rithms [2, 31, 43] complete withinO(log n) rounds, with high probability. More recently, a beautiful line
of work reduced the round complexity to depend on∆, the maximal degree in the graph. These include
theO(∆ + log∗ n)-round algorithm of [9], theO(log∆

√
log n)-round algorithm of [10], and the very re-

centO(log∆) + 2O(
√
log logn)-round algorithm of [25]. An excellent source for additional background and

relations to coloring can be found in [8].
Distributed dynamic MIS: The problem of finding a fast dynamic distributed MIS algorithm appears

as an open problem in [21], which studies the problem of maintaining a sparse spanner in this setting.
Additional problems in this setting are also addressed in [11], and in slightly different settings in [4, 14, 32,
35]. However, we are unaware of any other work in this settingabout maintaining an MIS. One standard
approach for maintaining an MIS is running distributed algorithms that are designed for the static setting.
This can be done for any distributed algorithm, sometimes using a correspondingcompiler, e.g., when
applied to an asynchronous dynamic setting [5, 6, 40]. One important exception is the solution in [34],
which as in our algorithm, requires a constant number of rounds, but as opposed to our algorithm, makes the
strong assumptions that (1) a node gracefully departs the network, and (2) messages may have unbounded
size. An additional difference is that the number of broadcasts, as opposed to the number of rounds, may be
large.

Additional distributed dynamic algorithms: A huge amount of literature is devoted to devising dif-
ferent algorithms in a self-stabilizing setting (see, e.g., [18, 26, 50] and references therein). This setting
is inherently different from ours since it measures the timeit takes an algorithm to reach a correct output
starting fromany arbitrary configuration. The setting is asynchronous, but considers a notion of time that
is different than ours, where an asynchronous round requires that each node communicates with all of its
neighbors. This inherently implies a lot of communication (broadcasts).

An MIS-based clustering algorithm for the asynchronous model that appeared in [20] also uses a random
node order for recovering after a change. However, their self-stabilizing setting differs from ours in several
aspects, such as assuming a bounded degree graph and discussing corrupted states of multiple nodes, and
multiple topology changes. In addition, our techniques andanalysis are completely different. In particu-

4In the same paper, they also provide a2.5 approximation based on rounding a solution of a linear program. We do not elaborate
on the details of this algorithm, nor the history of the correlation clustering problem as it is outside the scope of our paper.
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lar, the clustering obtained there may not be an approximation to correlation clustering. Furthermore, the
number of rounds required by [20] isO(log(n)) as opposed to the single round algorithm (in expectation)
presented here.

Related, but not identical, notions of error confinement, fault local and fault amendable algorithms have
been studied in [7, 38, 39], where the internal memory of a node may change. Another property that self-
stabilizing algorithms should aim for is super-stabilization [19], which means that they are self-stabilizing
(eventually output the required structure) and also recover extremely fast froma singletopology change.
Super-stabilization requires also a small adjustment measure, which is the maximum number of nodes that
have to change their output. Our MIS algorithm recovers froma single topology change in a single round,
and has an adjustment measure of exactly 1, in expectation.

Simulating the sequential greedy algorithm:Simulating random greedy has been used before in order
to obtain fast solutions for sequential local computation algorithms (LCA). In this setting, the algorithm does
not have access to the entire graph, but rather an oracle access using queries about nodes or edges, and needs
to provide an approximate solution for various problems, among which are the problems considered in this
paper. We emphasize that the models are inherently different, and hence is our technical analysis. While we
bound the size of the set of nodes that may change their outputafter a topology change, studies in the local
computation literature [41, 44, 46, 54] bound the size of theset of nodes that need to be recursively queried
in order to answer arandomnode query. In some sense, these sets are opposite: We begin with a single node
v changing its state due to a topology change, and look at the set of nodes that change their statedueto the
change ofv. Local computation algorithms begin with a single nodev and look at the set of nodes whose
statesdeterminethe state ofv.

2 Dynamic Distributed Computations

The distributed setup is a standard message passing model. The network is modeled by an undirected
graphG = (V,E) where the node set isV , andE consists of the node pairs that have the ability to directly
communicate. We assume a broadcast setting where a message sent by a node is heard by all of its neighbors.
Also, we assume a synchronous communication model, where time is divided into rounds and in each round
any willing node can broadcast a message to its neighbors. Werestrict the size of each message to be
O(log(n)) bits, withn = |V | being the size of the network5. The computational task is to maintain a graph
structure, such as a maximal independent set (MIS) or a node clustering. That is, each node has an output,
such that the set of outputs defines the required structure.

Our focus is on a dynamic network, where the graph changes over time. As a result, nodes may need
to communicate in order to adjust their outputs. The system is stableis when the structure defined by the
outputs satisfies the problem requirements.

A graph topology change can be with respect to either an edge or a node. In both cases we address both
deletions and insertions, both of which are further split into two different types. For deletions we discuss both
a graceful deletionand anabrupt deletion. In the former, the deleted node (edge) may be used for passing
messages between its neighbors (endpoints), and retires completely only once the system is stable again. In
the latter, the neighbors of the deleted node simply discover that the node (edge) has retired but it cannot be
used for communication. For insertions, we distinguish between anew node insertionand anunmutingof a
previously existing node. In the former, a new node is inserted to the graph, possibly with multiple edges.
In the latter, a node that was previously invisible to its neighbors but heard their communication, becomes

5This is the standard assumption in a distributed setting. Inour dynamic setting where the size of the graph may change we
assume knowledge of some upper boundN ≥ n, with N = n

O(1), and restrict the message length toO(log(N)) = O(log(n)).
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visible and enters the graph topology6.
We assume that the changes are infrequent so that they occur in large enough time gaps, so that the

system is always stable before a change occurs. We consider the performance of an algorithm according
to three complexity measures. The first is theadjustment-complexity, measuring the number of nodes that
change their output as a result of the recent topology change. The second is theround-complexity, which is
the number of rounds required for the system to become stable. Finally, the third, more harsh, score is the
broadcast-complexity, measuring the total number of broadcasts.

Our algorithms are randomized and thus our results apply to the expected values of the above measures,
where the expectation is taken over the randomness of the nodes. We emphasize that this is the only ran-
domness discussed; specifically, the result is not for a random node in the graph nor a random sequence
of changes, but rather applies to any node and any sequence ofchanges. It holds foreverychange in the
graph, not only in amortized over all changes. For this, we make the standard assumption of anoblivious
non-adaptive adversary. This means that the topology changes do not depend on the randomness of the
algorithm. This standard assumption in dynamic settings isnatural also for our setting, as, for example, an
adaptive adversary can always choose to delete MIS nodes andthereby force worst-case behavior in terms
of the number of adjustments.

In what follows we discuss the problem of computing anMIS. Here, the outputs of the nodes define a set
M , where any two nodes inM are not connected by an edge, and any node not inM has a neighbor inM .
The second problem we discuss is that ofcorrelation clustering. Here, the objective is to find a partitioning
C of the node setV , where we favor partitions with a small number of “contradicting edges". That is, we
aim to minimize the sum

∑

C∈C
∑

u,v∈C 1[(u,v)/∈E] +
∑

C1 6=C2∈C
∑

u∈C1,v∈C2
1[(u,v)∈E].

3 A Template for Maintaining a Maximal Independent Set

In this section we describe a template for maintaining a maximal independent set (MIS). Initially, we are
given a graphG = (V,E) along with an MIS that satisfies certain properties, and after a topology change
occurs in the graph, applying the template results in an MIS that satisfies the same properties. That is, the
template describes what we do after a single topology change, and if one considers a long-lived process of
topology changes, then this would correspond to having initially an empty graph and maintaining an MIS
as it evolves. We emphasize that the template describes a process that is not in any particular model of
computation, and later in Section 4 we show how to implement it efficiently in our dynamic distributed
setting. This also means that there are only four topology changes we need to consider: edge-insertion,
edge-deletion, node-insertion and node-deletion. For example, the notions of abrupt and graceful node
deletions are defined with respect to the dynamic distributed setting because they affect communication, and
therefore the implementation of the template will have to address this distinction, but the template itself is
only concerned with a single type of node deletion, not in anyparticular computation model.

Throughout, we assume a uniformly random permutationπ on the nodesv ∈ V . We define twostates
in which each node can be:M for an MIS node, andM̄ for a non-MIS node. We abuse notations and
also denote byM andM̄ the sets of all MIS and non-MIS nodes, respectively. Our goalis to maintain the
following MIS invariant: A nodev is in M if and only if all of its neighborsu ∈ N(v) which are ordered
before it according toπ, i.e., for whichπ(u) < π(v), are not inM . It is easy to verify that whenever the
MIS invariant is satisfied, it holds that the setM is a maximal independent set inG. Furthermore, it is easy
to verify that this invariant simulates the greedy sequential algorithm, as defined in the introduction.

When any of the four topology changes occurs, there is at mosta single node for which the MIS invariant

6The distinction is only relevant for nodes insertions, as there is no knowledge associated with an edge.
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no longer holds. We denote this node byv∗ = v∗(Gold, Gnew, π), whereGold andGnew are the graphs
before and after the topology change. For an edge insertion or deletion,v∗ is the endpoint with the larger
order according toπ. For a node insertion or deletion,v∗ is the node.7 In case the topology change is
an edge change, we will need also to take into consideration its other endpoint. We denote it byv∗∗ =
v∗∗(Gold, Gnew, π), and notice that by our notation, it must be the case thatπ(v∗∗) < π(v∗). In order
to unify our proofs for all of the four possible topology changes, we talk about a nodev∗∗ also for node
changes. In this case we definev∗∗ to bev∗ itself, and we have thatπ(v∗∗) = π(v∗). Therefore, for any
topology change, it holds thatπ(v∗∗) ≤ π(v∗).

To describe our template, consider the case where a new edge is inserted and it connects two nodes
π(v∗∗) < π(v∗), where both nodes are inM . As a result,v∗ must now be deleted from the MIS and hence
we need to change its state. Notice that as a result of the change in the state ofv∗, additional nodes may
need their state to be changed, causing multiple state changes in the graph. An important observation is that
it is possible that during this process of propagating localcorrections of the MIS invariant, we change the
state of a node more than once. As a simple example, consider the case in whichv∗ has two neighbors,u1
andu2, for whichπ(v∗) < π(u1), π(u2), and thatu1 andu2 are connected by a path(u1, w1, w2, u2), with
π(u1) < π(w1) < π(w2) < π(u2). Now, when we change the state ofv∗ to M̄ , bothu1 andu2 need to be
changed toM , for the MIS invariant to hold. This implies thatw1 needs to be changed tōM andw2 needs
to be changed toM . In this case, sinceπ(w2) < π(u2), the nodeu2 needs to be changed back to stateM̄ .

The above observation leads us to define a set ofinfluencednodes, denoted byS = S(Gold, Gnew, π),
containingv∗ in the scenario where we need to change its state, and all other nodes whose state we must
subsequently change as a result of the state change ofv∗. To formally define the setS we introduce some
notations. The notations rely on the graph structure ofGnew unless the change is a node deletion in which
case the rely onGold. For each nodeu, we defineIπ(u) = {v ∈ N(u) | π(v) < π(u)}, the set of neighbors
of u that are ordered before it according toπ. These are the nodes that can potentiallyinfluencethe state of
u according to the MIS invariant. The definition ofS is recursive, according to the ordering induced byπ. If
immediately after the topology change, in the new graphG with the orderπ it holds that the MIS invariant
still holds for v∗, then we defineS = ∅. (This is motivated by the fact that no node is influenced by this
change.) Otherwise, we denoteS0 = {v∗}, and inductively define

Si = {u | u ∈M , andSi−1 ∩ Iπ(u) 6= ∅} ∪ {u | u ∈ M̄ , and everyv ∈ Iπ(u) ∩M is in ∪i−1
j=0 Sj)}. (1)

The setS is then defined asS =
⋃

i Si. Notice that a nodeu can be in more than one setSi, as is the
case foru2 in the example above, which is in bothS1 andS4. The impact of a nodeu being in more than one
Si is that in order to maintain the MIS invariant, we need to makesure that we update the state ofu after we
update that ofw, for anyw such thatw ∈ Iπ(u). Instead of updating the state ofu twice, we can simply wait
and update it only after the state of every suchw is updated. For this, we denote byiu = max{i | u ∈ Si}
the maximal indexi for whichu is in Si.

We formally describe our template in Algorithm 1. By construction, the updated states after executing
Algorithm 1 satisfy the MIS invariant. In addition, the crucial property that is satisfied by the above template
is that in expectation, the size of the setS is 1. The remainder of this section is devoted to proving the
following, which is our main technical result.

Theorem 1. For every two graphsGold andGnew that differ only by a single edge or a single node, it holds
thatEπ [|S(Gold, Gnew, π)|] ≤ 1.

7For a node deletion, we slightly abuse the definition ofv
∗ in order to facilitate the presentation, and consider it to be the deleted

node. This means that here we consider an intermediate stageof havingv∗ still belong to the graph w.r.t. the MIS invariant of all
the other nodes, but forv∗ the MIS invariant no longer holds. This is in order to unify the four cases, otherwise we would have to
consider all of the neighbors of a deleted node as nodes for which the MIS invariant no longer holds after the topology change.
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Algorithm 1 A Template for Dynamic Correlation Clustering.
Initially, G = (V,E) satisfies the MIS invariant.
On topology change at nodev∗ do:
1. Update state ofv∗ if required for MIS to hold
2. Fori← 1, until Si = ∅, do:
3. For everyu ∈ Si such thati = iu:
4. Update state ofu
5. i← i+ 1

Outline of the proof: In order to prove thatE[|S|] ≤ 1, instead of analyzing the setS directly, we analyze
the setS′ = S′(Gold, Gnew, π, v

∗), which is defined via recursion similarly toS with three modifications:
(1) It is always the case thatS′

0 = {v∗} (2) The graph according to whichS′ is defined isGold in the case of
a node deletion or an edge insertion, andGnew otherwise. (3) The permutation according toS′ is defined as
π′, that is identical toπ other than its value forv∗ that is forced to be the minimal among all otherπ values.
Notice thatS′ does not depend onπ(v∗) and in particular, having knowledge about its elements doesnot
give any information as to whetherπ(v∗) < π(v∗∗) or vice versa.

In Lemma 2, we prove that ifπ(v∗) 6= min {π(u) | u ∈ S′} thenS = ∅, and otherwiseS = S′ (in fact,
it would be enough thatS ⊆ S′). Then, in Lemma 3, we prove that for any setP ⊆ V , given the event
thatP = S′, the probability, over the random choice ofπ, thatπ(v∗) = min {π(u) | u ∈ P} is 1/|P |. This
leads to the required result of Theorem 1. Lemma 3 would be trivial if there was no correlation between
π andS′. However, the trap we must avoid here is thatS′ is defined according toπ, and therefore when
analyzing its size we cannot treatπ as auniformly random permutation. To see why, suppose we know that
insideS′ \{v∗} we have nodes with large order inπ. Then the probability that the order ofv∗ in π is smaller
than all nodes inS′ \{v∗}, is much larger than1/|S′|, and can in fact be as large as1−o(1). In other words,
S′ gives some information overπ. Nevertheless, we show that this information is either about the order
between nodes outside ofS′, or about the order between nodes withinS′ \ {v∗}. Both types of restrictions
onπ do not affect the probability thatv∗ is the minimal ofS′.

We now formally prove our result as outlined above. Throughout we use the notationu ∈M or u ∈ M̄ .
This applies only to nodesu for which we are guaranteed that their states remain the samedespite the
topology change.

Lemma 2. If π(v∗) 6= min {π(u) | u ∈ S′} thenS = ∅. Otherwise,S ⊆ S′.

Proof. First, assume thatπ(v∗) 6= min {π(u) | u ∈ S′}. We show that the MIS invariant still holds after the
topology change, and soS = ∅. Consider the nodew, for whichπ(w) = min {π(u) | u ∈ S′}. Notice that
w 6∈ S, becauseπ(w) < π(v∗). We claim thatw ∈M . Assume, towards a contradiction, thatw ∈ M̄ . This
implies thatw has a neighboru ∈ M such thatπ(u) < π(w). For this nodeu we must haveu /∈ S′ due to
the minimality ofπ(w). It follows, according to the construction ofS′ thatw cannot be an element ofS′,
leading to a contradiction.

We have thatw ∈ M and due to the minimality ofπ(w), it must be thatw ∈ S′
1, which implies thatw

is a neighbor ofv∗. But then, when consideringS, v∗ has a neighbor other thanv∗∗ which is ordered before
it according toπ which is inM . In the case of an edge insertion or deletion, this means thatv∗ remains in
M̄ despite the topology change meaning thatS = ∅. In the case of a node deletion,v∗ was not inM prior
to the change henceS = ∅. In the case of a node insertion,v∗ does not enterM hence again,S = ∅.

Next, assume thatπ(v∗) = min {π(u) | u ∈ S′}. We show that eitherS = ∅ or S = S′. If there is
no need to change the state ofv∗ as a result of the topological change thenS0 = ∅, and soS = ∅ and the
claim holds. It remains to analyze the case whereS0 = S′

0 = {v∗}. If u ∈ S′
1 thenπ(v∗) < π(u) hence

7



according to its definitionu ∈ S1. If u /∈ S′
1 thenu must have a neighborw ∈ M with π(w) < π(u)

meaning thatu /∈ S1. We have thatS1 = S′
1 and similarlySi = S′

i for all i > 1. We conclude thatS′ = S
as required.

The following lemma shows that the probability of havingS = S′ is 1/|S′|, which immediately lead to
Theorem 1 as the only other alternative isS = ∅.
Lemma 3. For any set of nodesP ⊆ V , it holds that

Pr
[

π(v∗) = min {π(u) | u ∈ P} | S′ = P andπ(v∗∗) ≤ π(v∗)
]

=
1

|P | .

To prove this lemma we focus onS′. Notice that the events we considered in the previous lemma
depend only on the ordering implied byπ and hold for any configuration of states for the nodes that satisfy
the MIS invariant. Roughly speaking, the lemma will follow from the fact the the eventS′ = P does not
give any information about the order implied byπ between nodes inP and nodes inV \P . To this end, for
every permutationτ onV , we defineS′(τ) = S′(Gold, Gnew, τ, v

∗) as the set corresponding toS′ under the
ordering induced byτ . We denote byΠP the set of all permutationsτ for which it holds thatS′(τ) = P .
We first need to establish the following about permutations in ΠP : If π andσ are two permutations onV
such thatπ|P = σ|P andπ|V \P = σ|V \P , thenσ ∈ ΠP if and only if π ∈ ΠP .

Claim 4. Let P ⊆ V be a set of nodes, and letπ andσ be two permutations such thatπ|P = σ|P and
π|V \P = σ|V \P . Assumeπ ∈ ΠP . We have thatV \P ⊆ V \ S′(σ) and everyu ∈ V \P has the same state
according toπ andσ.

Proof. Let u ∈ V \P . We prove thatu ∈ V \ S′(σ) and that its state underσ is the same as it is underπ by
induction on the order of nodes inV \P according toπ (which is equal to their order according toσ).

For the base case, assume thatu has the minimal order inV \P . We claim thatu cannot have a neighbor
in P . Assume, towards a contradiction, thatu has a neighborw ∈ P . Sincew ∈ P then it is possible that
after the aw will be in M . Since two nodes inM cannot be neighbors andu 6∈ P , thenu must be inM̄
according toπ. In this case there is a nodez ∈ Iπ(u) ∩ V \P that is inM according toπ. But this cannot
occur due to the minimality ofπ(u) in V \P . Therefore,u has no neighbors inP as required.

We have that all of the neighbors ofu are inV \P and thatu is the minimal among its neighbors
according toπ. Sinceπ|V \P = σ|V \P we have thatu has the minimal order among its neighbors according
to σ. This translates intou having a state ofM underσ and in particular,u is not an element ofS′(σ), thus
proving our base case.

For the induction step, consider a nodeu ∈ V \P , and assume the claim holds for everyw ∈ V \P ∩
Iπ(u). We consider two cases, depending on whetheru has a neighbor inP or not.

Case 1:u does not have any neighbor inP . If u ∈ M̄ , then there is a nodez ∈ Iπ(u) ∩ V \P that is
in M according toπ. By the induction hypothesis,z ∈ V \ S′(σ) andz ∈ M also according toσ. Since
π|V \P = σ|V \P , we have thatu is in M̄ according toσ too. Otherwise, ifu ∈ M , then everyw ∈ Iπ(u)
(which is alsoV \P ) is in M̄ according toπ. Any nodew ∈ Iσ(u) is also inw ∈ Iπ(u), since it is not inP
andπ|V \P = σ|V \P . The induction hypothesis onw gives that it is also inV \S′(σ) (otherwise it would be
in S′

π = P in contradiction to the assumption of case 1), and its state according toσ is M̄ . Hence,u must
be inV \ S′(σ) as well, and in stateM according toσ.

Case 2: Assume thatu has a neighborw ∈ P . Sincew ∈ P then it is possible that after the algorithm
w will be in M . Since two nodes inM cannot be neighbors andu 6∈ P , thenu must be inM̄ according
to π. In this case there is a nodez ∈ Iπ(u)\P that is inM according toπ. By the induction hypothesis,
z ∈ V \ S′(σ) andz ∈ M also according toσ. Sinceπ|V \P = σ|V \P , we have thatu is in M̄ and in
V \ S′(σ) according toσ too.

8



Claim 5. Let P ⊆ V be a set of nodes, and letπ andσ be two permutations such thatπ|P = σ|P and
π|V \P = σ|V \P . Assumeπ ∈ ΠP . We have thatP ⊆ S′(σ).

Proof. We prove that every nodeu ∈ P is also inS′(σ) by induction on the order of nodes inP according
to π (which is equal to their order according toσ), with the modification forcingv∗ to be the first among the
nodes ofP . The base case is forv∗, which is clearly in both setsS′(π) andS′(σ). Consider a nodeu ∈ P
and assume that the claim holds for every node inP which is ordered beforeu according toπ. Sinceu ∈ P
andu 6= v∗ there must be somew ∈ Iπ(u) ∩ P sinceπ|P = σ|P andu ∈ P we have according to our
induction hypothesis thatw ∈ S′(σ), meaning thatIσ(u) ∩ S′(σ) is non-empty.

Consider now an arbitraryw ∈ Iσ(u). If w ∈ P then sinceπ|P = σ|P andu ∈ P we have according
to our induction hypothesis thatw ∈ S′(σ). If w /∈ P then it must be the case thatw ∈ M̄ according toπ,
otherwiseu cannot be inP . We thus have according to Claim 4 that (1)w ∈ V \ S′(σ) and (2)w ∈ M̄
according toσ. It follows that all neighbors ofu in Iσ(u) are either inS′(σ) or in M̄ according toσ, hence
sinceIσ(u) ∩ S′(σ) 6= ∅ it must be the case thatu ∈ S′(σ).

Claims 4 and 5 combined imply that ifπ|P = σ|P andπ|V \P = σ|V \P thenσ ∈ ΠP if and only if
π ∈ ΠP . We are now ready for the proof of Lemma 3.

Proof. (of Lemma 3)Given two permutationsσ+ andσ− on P\{v∗} andV \P , respectively, we define
ρσ+,σ− asρσ+,σ− = Pr

[

∀u ∈ P, π(v∗) ≤ π(u) | π|P\{v∗} = σ+ andπ|V \P = σ−] .
First, we observe that for two pairs of permutationsσ+

1 , σ
−
1 andσ+

2 , σ
−
2 as above, it holds thatρσ+

1 ,σ−
1
=

ρσ+
2 ,σ−

2
. This is because given the condition forσ+

1 , σ
−
1 , applying the permutation(σ+

1 )
−1σ+

2 to nodes

in P\{v∗} and applying the permutation(σ−
1 )

−1σ−
2 to nodes inV \P has no affect on whether the event

∀u ∈ P, π(v∗) ≤ π(u) holds. Next, sincePr [∀u ∈ P, π(v∗) ≤ π(u)] = 1
|P | , we have that for any pair of

permutationsσ+, σ− onP\{v∗} andV \P , respectively:
1

|P | = Pr [∀u ∈ P, π(v∗) ≤ π(u)] =
∑

τ+,τ−

ρτ+,τ− Pr
[

π|P\{v∗} = τ+ andπ|V \P = τ−
]

=
∑

τ+,τ−

ρσ+,σ− Pr
[

π|P\{v∗} = τ+ andπ|V \P = τ−
]

= ρσ+,σ− .

Finally, Claims 4 and 5 imply that for every setP ⊆ V there is a set oft = tP pairs of permuta-
tions {(σ+

1 , σ
−
1 ), . . . , (σ

+
t , σ

−
t )} on P\{v∗} andV \P , respectively, such thatΠP = {π | ∃i, π|P\{v∗} =

σ+
i andπ|V \P = σ−

i }. We conclude that for a given setP ⊆ V :

Pr
π∈ΠP

[∀u ∈ P, π(v∗) ≤ π(u)] =

t
∑

i=1

ρσ+
i
,σ−

i

Pr
[

π|P\{v∗} = σ+
i andπ|V \P = σ−

i | π ∈ ΠP

]

=
1

|P |

t
∑

i=1

Pr
[

π|P\{v∗} = σ+
i andπ|V \P = σ−

i | π ∈ ΠP

]

=
1

|P | . (2)

To complete the proof, we argue that knowing thatπ(v∗∗) ≤ π(v∗) can only decrease the probability that
π(v∗) ≤ π(u) for all u ∈ P . Formally,

Pr
π∈ΠP

[∀u ∈ P, π(v∗) ≤ π(u) | π(v∗∗) ≤ π(v∗)]

= Pr
π∈ΠP

[∀u ∈ P, π(v∗) ≤ π(u) andπ(v∗∗) ≤ π(u) | π(v∗∗) ≤ π(v∗)]

=
Prπ∈ΠP

[∀u ∈ P, π(v∗) ≤ π(u) andπ(v∗∗) ≤ π(u) andπ(v∗∗) ≤ π(v∗)]
Prπ∈ΠP

[π(v∗∗) ≤ π(v∗)]

≤ Prπ∈ΠP
[∀u ∈ P, π(v∗) ≤ π(u) andπ(v∗∗) ≤ π(u)]

Prπ∈ΠP
[π(v∗∗) ≤ π(v∗)]
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To bound the above expression, we separate our discussion into three possible cases. In the firstv∗∗ 6= v∗ and
v∗∗ ∈ P . The value of the expression is clearly 0 in this case. In the second we havev∗ = v∗∗ and according
to Equation (2) we have that the quantity is bounded by1/|P |. The last case is the one wherev∗∗ /∈ P .
Here, becausev∗ ∈ P andv∗∗ /∈ P we have that the events ofπ(v∗) being the minimal in{π(u)}u∈P and
π(v∗∗) being the smaller than each of the elements of{π(u)}u∈P are independent for uniformπ ∈ ΠP .
This is due to the first event being dependent of the inner order insideP and the second being independent
of the same inside order. Hence,

Prπ∈ΠP
[∀u ∈ P, π(v∗) ≤ π(u) andπ(v∗∗) ≤ π(u)]

Prπ∈ΠP
[π(v∗∗) ≤ π(v∗)]

=
Prπ∈ΠP

[∀u ∈ P, π(v∗∗) ≤ π(u)]

Prπ∈ΠP
[π(v∗∗) ≤ π(v∗)]

· Pr
π∈ΠP

[∀u ∈ P, π(v∗) ≤ π(u)]

≤ Pr
π∈ΠP

[∀u ∈ P, π(v∗) ≤ π(u)] ≤ 1/|P |

Lemma 2 and Lemma 3 immediately lead to Theorem 1. Also, as an immediate corollary of Theorem 1
we get

Corollary 6. A direct distributed implementation of Algorithm 1 has, in expectation, both a single adjust-
ment and round, in both the synchronous and asynchronous models.

4 A Constant Broadcast Implementation

Theorem 1 promises that the expected number of nodes that need to change their output according to our
template algorithm is1. However, a direct implementation of the template in Algorithm 1 in a dynamic
distributed setting may require a much larger broadcast complexity because it may be the case that a node
needs to change its state several times until the MIS invariant holds at all nodes. This is because a node can
be in more than a single setSi, as discussed in the previous section. In such a case, despite the fact that the
expected number of nodes inS is a constant, it may be that the expected number of state changes is much
larger. Specifically, in a naive implementation, the numberof broadcasts may be as large as|S|2. Hence,
althoughE[|S|] = 1, the expected number of broadcasts may be as large asn.

We thus take a different approach for implementing the template in Algorithm 1, in thesynchronous
setting, where each node waits until it knows the maximali for which it belongs toSi, and changes it
state only once. This allows to obtain, for almost all of the possible topology changes a constant broadcast
complexity at the cost of a constant, rather than single, round complexity.

In order to implement the random permutationπ we assume each nodev ∈ V has a uniformly random
and independent IDℓv ∈ [0, 1]. We will maintain the property that each node has knowledge of its ℓ value
and those of its neighbors. We describe our algorithm in Algorithm 2. This directly applies to the following
topology changes: edge-insertion, graceful-edge-deletion, abrupt-edge-deletion, graceful-node-deletion and
node-unmuting. An extension of the analysis is provided in Subsection 4.2 for the case of an abrupt node
deletion, and a slight modification is provided in Subsection 4.1 for the case of node-insertion. The following
summarizes the guarantees of our implementation, and is proven in Lemmas 9, 10, and 13. .

Theorem 7. There is a complete fully dynamic distributed MIS algorithmwhich requires in expectation a
single adjustment andO(1) rounds for all topology changes. For edge insertions and deletions, graceful
node deletion, and node unmuting, the algorithm requiresO(1) broadcasts, for an abrupt deletion of a node
v∗ it requiresO (min{log(n), d(v∗)}) broadcasts, and for an insertion of a nodev∗ it requiresO(d(v∗))
broadcasts, in expectation.
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In the algorithm a node may be in one of four states:M for an MIS node,M̄ for a non-MIS node,C for
a node that may need to change fromM to M̄ or vice-versa, andR for a node that is ready to change. We
will sometimes abuse notation and consider a state as the setof nodes which are in that state. Our goal is to
maintain the MIS invariant.

Algorithm 2 MIS Algorithm for nodev
1: v ∈M : If someu ∈ Iπ(v) changes to stateC, change state toC.
2: v ∈ M̄ : If someu ∈ Iπ(v) changes to stateC and all otherw ∈ Iπ(v) are not inM , change state toC.
3: v ∈ C: If (1) all neighborsu with π(v) < π(u) are not in stateC and (2)v changed to stateC at least

2 rounds ago, change state toR.
4: v ∈ R: If all u ∈ Iπ(v) are in statesM̄ or M , change state toM if all u ∈ Iπ(v) are inM̄ , and change

state toM̄ otherwise.

Any change of state of a node is followed by a broadcast of the new state to all of its neighbors. We
now define our implementation as a sequence of state changes.When a topology change occurs at nodev∗,
if the MIS invariant still holds thenv∗ does not change its state and algorithm consists of doing nothing.
Otherwise,v∗ changes its state toC.

From statesM or M̄ , a node changes to stateC when it discovers it is in the setS of influenced nodes,
as defined in Equation (1). From stateC, a nodev changes to stateR when (1) none of its neighborsu for
which π(v) < π(u) are in stateC and (2)v changed its state toC at least two rounds ago. Finally, from
stateR a nodev returns to statesM or M̄ when all of its neighborsu for whichπ(u) < π(v) are in states
M or M̄ . In order to bound the complexity of the algorithm we first show that every node can change from
stateR to eitherM or M̄ at most once.

Lemma 8. In Algorithm 2, a nodeu changes its state fromR to another state at most once.

Proof. First, note that everyu /∈ S never changes its state. Consider a nodeu changing its state fromR to
eitherM or M̄ . Sinceu changes from stateR, if u 6= v∗ then it must have a neighborw ∈ Iπ(u) that was in
stateC, changed to stateR and then changed toM or M̄ . It follows thatv∗ must be the first node to change
its state fromR to M or M̄ . This event occurs only when all neighborsu of v∗ are not inC, which in turn
can happen only when all neighbors of each suchu with higherπ value have changed fromC to R at least
once. But, since no node could have changed its state fromR to another state beforev∗ has done so, we
have that whenv∗ changes its state fromR to another, allu ∈ S are in stateR.

In particular, we have that at the round of the first change of anode fromR to another state, there are
no nodes in stateC. Since a node can only change to stateC due to a neighbor at stateC we have that any
node changing its state fromR to M or M̄ will not change its state again, thus proving our claim.

Lemma 9. For edge-insertion, graceful-edge-deletion, abrupt-edge-deletion, graceful-node-deletion and
node-unmuting, Algorithm 2 requires in expectation a single adjustment,O(1) rounds, andO(1) broadcasts.

Proof. Since only nodes inS can change their outputs, the number of adjustments is bounded by|S|, and
hence is1 in expectation, by Theorem 1. According to Lemma 8, if a node changes its state then it does so
exactly three times. First it changes from eitherM or M̄ to C, then it changes toR, and finally it changes
to eitherM or M̄ again. Since only nodes inS change their states and since the round and broadcast
complexities are clearly bounded by the number of state changes plus 1 (due to the forced waiting round
before changing fromC toR), the claim follows.
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4.1 Node and Edge Insertion

Whenv∗ is inserted, or an edge(v∗, v∗∗) is inserted, we assume that all new pairs of neighbors are notified
that they are now connected, along with each other’s ID. In a setting where this is not the case, we make the
following adjustment, before applying Algorithm 2.

Whenv∗ is inserted, in the first round,v∗ broadcasts its randomℓ value and a temporary statēM to its
neighbors. In the second round, the neighbors ofv∗ broadcast their states and theirℓ values. Now, it may be
the case that the MIS invariant does not hold atv∗, but it still holds for any other node in the graph. We now
execute Algorithm 2. The expected number of adjustments hence remains1, the number of rounds increases
by two and is therefore stillO(1), and the number of broadcasts is now bounded by the degreed(v∗).

When an edge(v∗, v∗∗) is inserted, in the first round,v∗ andv∗∗ broadcast their randomℓ value and
state. Now it may be the case that the MIS invariant no longer holds atv∗, but it still holds for any other
node in the graph. We then execute Algorithm 2. The expected number of adjustments hence remains1, the
number of rounds increases by one and is therefore stillO(1), and the number of broadcasts is still bounded
by O(1).

We therefore get the following:

Lemma 10. For a node-insertion of a nodev∗, our algorithm requires in expectation a single adjustment,
O(1) rounds, andO(d(v∗)) broadcasts. For an edge-insertion of an edge(v∗, v∗∗), our algorithm requires
in expectation a single adjustment,O(1) rounds, andO(1) broadcasts.

4.2 Abrupt Node Deletion

Consider a nodev∗ that is abruptly deleted. We denote byv∗1 , v
∗
2 , . . . , v

∗
x the setS1 = S(Gold, Gnew, π, v

∗)1.
We execute Algorithm 2, where in the first round, everyv∗i , 1 ≤ i ≤ x changes its state toC (instead of
havingv∗ broadcast its change state toC). It is straightforward to verify that despite the above modification,
only nodes inS = S(Gold, Gnew, π, v

∗) can change to stateC throughout the execution. With this mod-
ification, a node may change to stateC more than once. However, we show the amount of times this can
happen is bounded by both the degree ofv∗ and bylog(n).

Lemma 11. The algorithm completes after at most3|S|+ 2 rounds.

Proof. Consider a nodev that changes to stateC in round t. If t > 1, then there is a nodeu, for
which π(u) < π(v), that changes toC in round t − 1. By induction, it follows that there exists a path
(v1, v2, . . . , vt), wherev1 = v∗i for some1 ≤ i ≤ x andvt = v, and in additionπ(vi) < π(vj+1) for all
j < t. Since the latter implies that the nodes are distinct, we have thatt ≤ |S|, meaning that after round
|S| no node changes toC. This gives that after an additional round, nodes begin to change toR. The same
argument now gives that no node changes toR after round2|S| + 1. After an additional round nodes start
changing fromR, and therefore, using the same argument again, we have that no node changed its state
from R after round3|S|+ 2. To complete the proof, we argue that indeed this procedure progresses, hence
eventually all nodes are in eitherM or M̄ , with the MIS invariant holding. This holds since two consecutive
rounds with no state changes implies that the algorithm terminated: After a round with no state change, if
there are nodes in stateC then the node with the maximalπ order among them changes toR. Otherwise,
if there are nodes in stateR then the node with the minimalπ order among them changes to eitherM or
M̄ .

Lemma 12. If v changes from eitherM or M̄ toC at roundst, it does not change to neitherM or M̄ again
before round3t + 1. Further, each change ofv to C can be associated with a different nodev∗i , for some
1 ≤ i ≤ x.
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Proof. We prove the lemma by induction ont, where the base case fort = 1 trivially holds, as a node needs
to make 3 changes. Fort > 1, as in the previous lemma, there exists a path(v1, v2, . . . , vt), wherev1 = v∗i
for some1 ≤ i ≤ x andvt = v, and in additionπ(vj) < π(vj+1) for all j < t.

Let tR ≥ t+ 2 be the first round in whichv = vt changes toR. Notice that until that round,vt−1 does
not change toR, and the same holds inductively forvj for all 1 ≤ j ≤ t − 1. Let t′R be the first round in
which v1 changes toR, and lettS be the first round in whichv1 changes to eitherM or M̄ . It follows that
t′R ≥ tR + t− 1 ≥ 2t+ 1, and hencetS ≥ 2t+ 2.

Now, lett′S be the first round in whichv = vt changes to eitherM or M̄ . In roundt′S − 1 the nodevt−1

must be in eitherM or M̄ , and inductively we have that at roundt′S − t+ 1, the nodev1 is in eitherM or
M̄ . This implies thatt′S − t+ 1 ≥ tS ≥ 2t+ 2, giving t′S ≥ 3t+ 1 as required.

Further, whenv changes its state fromR toM or M̄ , the state ofv∗i is alreadyM or M̄ . This implies that
if v change its state toC again in timet′ > t, then it is due to a change inv∗i′ , for somei′ 6= i, 1 ≤ i′ ≤ x.
(Although it is possible that the path fromv∗i′ to v goes throughv∗i again.) This means that each change of
v to C can be associated with a different nodevi, for some1 ≤ i ≤ x.

Lemma 13. For an abrupt deletion of a nodev∗, our algorithm requires in expectation a single adjustment,
O(1) rounds, andO(min{log(n), d(v∗)}) broadcasts.

Proof. Now, the adjustment complexity is bounded by|S| and thus by Theorem 1 it is1 in expectation.
By Lemma 11 the round complexity isO(|S|), and thus by Theorem 1 it isO(1) in expectation. Finally,
as a corollary from Lemma 12 we get that the sequence of roundsin which a nodev has changed toC
is t1, t2, . . . , tr with t1 ≥ 1, ti+1 ≥ 3ti + 1 and by Lemma 11 we have alsotr < 3|S| + 1. It follows
that r ≤ log3(O(|S|)). Moreover, since by Lemma 12 every change toC by a nodev can be accounted
to a different nodev∗i , we have thatr ≤ x ≤ d(v∗). This gives that the total number of broadcasts is at
mostO(|S|min{log(|S|), d(v∗)}). The claim immediately follows as sinceE[|S|] ≤ 1 (Theorem 1) and
|S| ≤ n.

5 History Independence

In this section, we define and discuss thehistory independenceproperty.

Motivation: In many well known problems, in addition to computing a feasible solution, it is sometimes
required to compute an optimal solution with respect to a given objective function. For example, one may
wish to find an MIS that has a maximal cardinality. Usually, obtaining optimal solutions, or even good
approximate solutions, is NP-hard and therefore, we cannotexpect to obtain such solutions in the distributed
model. Furthermore, typically such optimization algorithms are tailored to a specific objective function,
and hence it is required to handle each objective separately. Moreover, in a dynamic setting, it is more
cumbersome to analyze the guarantees for the value of the objective function.

Therefore, although we do not wish to consider any specific objective function in the problem descrip-
tion, we do wish that the adversary will lack the ability to choose a feasible solution as she pleases (in this
case we may assume she chooses the worst solution). In fact, we require that the adversary will even not be
able tobias the output of the algorithm towards any specific solution. Formally, we define our requirement
as follows.

Definition 14. Let A be an algorithm for maintaining a combinatorial graph structure P in a dynamic
distributed setting. We say thatA is history independentif given a graphG, the outputP of A is a random
variable whose distribution depends only onG, and does not depend on the history of topology changes that
constructedG.
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Composability: Another advantage of history independent algorithms is that they compose nicely. For
example, given a history independent algorithmA for MIS, we can simulateA on the line graphL(G) for
obtaining a history independent algorithmB for maximal matching. Alternatively, we can simulateA on a
graphG′ = f(G) in which every nodev in G corresponds to a clique of size∆ + 1 in G′, and every edge
in G corresponds to a matching between the appropriate cliques.This standard reduction by [43] is known
to give an algorithmC for (∆ + 1)-coloring inG, and sinceA is history independent then so isC. We
note that performing the above simulations is non-trivial,as the simple topological changes inG translate
into more complex changes inL(G) or G′, yet, the challenges are only technical and require no additional
insights, and hence we omit the details.

Examples: It is straightforward to see that Algorithm 2 is a history independent MIS algorithm, because
its output for any graphG is identical to the output of the greedy sequential algorithm onG, regardless of
the topology changes that resulted inG. To further exemplify what this important property gives, consider
the following examples, in which we compare executions of history independent algorithms to worst case
solutions. Although history dependent algorithms do not necessarily yield the worst solution, thenatural
history dependent algorithm indeed yields the worst solution in these examples. Here we think of the natural
algorithm as the greedy algorithm that gives every new node or edge the best value that is possible without
making any global changes. For this natural algorithm, one can easily verify that for any feasible output
there is a pattern of topology changes that can force the algorithm to produce it.

Example: MIS in a Star. Assume that an adversary controls the topology changes in the graph and
chooses them so that a graphGstar is created, whereGstar is a star onn nodes. Since our MIS algorithm
simulates random greedy, there is a probability of1/n that the center of the star has the lowest order among
all nodes, in which case it is the only node in the MIS. With theremaining probability of1−1/n, a different
node has the lowest order, which results in the MIS being all nodes except the center, which is the largest
MIS possible inGstar. The expected size of the resulting MIS is therefore linear in n, implying that it is
within a constant factor of the size of themaximumindependent set (maximal cardinality independent set).
For comparison, recall that the worst-case MIS in a star is the center alone, and its size is1.

Example 2: Maximal matching of many 3-paths. Assume an adversary constructs a graphG3paths,
which containsn/4 disjoint paths of length3 edges. Since our maximal matching algorithm simulates a
random greedy MIS algorithm on the line graphL(G3paths), we have that for every3-path independently,
with probability2/3 its matching is of size2 and with probability1/3 its matching is of size1. Therefore,
the expected size of the matching we obtain is5n/12. For comparison, notice that the worst-case maximal
matching inG3paths has sizen/4.

Example 3: Coloring. Regarding coloring algorithms, there is much more room for improvement upon
using the standard reduction with our MIS algorithm. As in our MIS algorithm, we would have liked to have
an algorithm that simulates the sequential random greedy algorithm for coloring as well, since, for example,
it would imply the following.

Assume that an adversary controls the topology changes in the graph and chooses them so that a graph
G = (V,E) is created, whereG is a bipartite graph on the set of nodesV = L∪R, for L = {u1, . . . , un/2}
andR = {v1, . . . , vn/2}. In E we have an edge between the nodesui andvj for everyi 6= j. Thus,G is a
complete bipartite graph minus a perfect matching. If we runa random greedy coloring algorithm, then the
first node, sayui gets the color1 when being inserted into the graph. If the next inserted nodeafterui is
vj , for anyj 6= i, then it gets the color2, and afterwards every node inL gets color1 and every node inR
gets color2. If the next inserted node afterui is uj , for anyj 6= i, then it gets the color1, and afterwards
every node inL gets color1 and every node inR gets color2. That is, with probability1− 1/n, we get an
optimal2-coloring. With the remaining1/n probability we might get a coloring as bad as linear in∆. This
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gives that in expectation, we get a coloring whose palette size is a constant factor away from optimal.
We can, of course, simulate the random greedy sequential coloring, but the problem is that we pay a

cost of2∆ adjustments. The way we can do this is to maintain that every color i is an MIS in the graph
G− {Cj}1≤j<i, whereCj is the set of nodes of colorj. However, a change to a node may cause each node
in S to induce2 sources of sets for the next color, which would result in a total set of2∆ adjustments. Notice
that this is much worse compared to what a naive dynamic distributed coloring algorithm would give. It is a
curious question whether we can indeed enjoy both worlds here, or whether any lower bound can be proved.

The above examples illustrate how a property of the output ofa history independent algorithm on a graph
G can be analyzed as a simple combinatorial problem. This can lead to better guarantees compared to only
being able to assume the worst case.

6 Discussion

This paper studies computing an MIS in a distributed dynamicsetting. The strength of our analysis lies in
obtaining that for an algorithm that simulates the sequential random greedy algorithm, the size of the set of
nodes that need to change their output is in expectation1. This brings the locality of the fundamental MIS
problem to its most powerful setting.

We believe our work sets the ground for much more research in this crucial setting. Below we discuss
some open problems that arise from our work.

An immediate open question is whether our analysis can be extended to cope with more than a single
failure at a time. Second, there are many additional problems that can be addressed in the dynamic dis-
tributed setting, especially in the synchronous case. We believe that our contribution can find applications
in solving many additional dynamic distributed tasks.

A major open question is whether our techniques can be adapted to sequential dynamic graph algorithms,
which constitutes a major area of research in the sequentialsetting [12, 13, 16, 22–24, 27–30, 33, 48, 49, 51,
52]. A formal definition and description of typical problemscan be found in, e.g., [15]. Notice that
our algorithms arefully dynamic, which means that they handle both insertions and deletions(of edges
and nodes). Although our template for finding an MIS can be easily implemented in a sequential dynamic
setting, it would come with a cost of at leastO(∆) for the update complexity in a direct implementation. This
is because we would have to access neighbors of the set of nodes analyzed in Theorem 1. Our distributed
implementation avoids this by having them simply not respond since they do not need to change their output,
and hence they do not contribute to the communication. Nevertheless, we believe that our approach may be
useful for designing an MIS algorithm for the dynamic sequential setting, and leave this for future research.
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