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ABSTRACT
Early prototyping of user interfaces is an established good prac-
tice in interactive system development. However, prototypes cover
only some usage scenarios, and questions dealing with number of
required steps, possible interaction paths or impact of possible user
errors can be answered only for the specific scenarios and only after
tedious manual inspection.

We present a tool (MIGTool) that transforms models of the be-
havior of a user interface into a graph, upon which usage scenarios
can be easily specified, and used by MIGTool to compute possible
interaction paths. Metrics based on possible paths, with or without
user navigation errors, can then be computed. For example, when
analyzing four mail applications, we show that Gmail has 3 times
more shortest routes, has twice more routes that include a single
user error, has routes with 13% fewer steps, but has also optimal
routes with the smallest probability to be chosen.

Without MIGTool, this kind of analysis could only be done after
building some prototype of the system, and then only for specific
scenarios by manually tracing user actions and relative changes to
the screens. With MIGTool the exploration of suitability of a de-
sign with respect to different scenarios, or comparison of different
design alternatives against a single scenario, can be done with just
a partial specification of the user interface behavior.

This is made possible by the ability to associate scenarios steps
to required user actions as defined in the model, by an efficient
strategy to identify complete execution traces that users can follow,
and by computing a range of diverse metrics on these results.

Keywords
User Interfaces; Evaluation; Statecharts: UML; Metrics; Usability.

Categories and Subject Descriptors
H.5.1 [Information interfaces and presentation (e.g., HCI)]: Mul-
timedia Information Systems.; H.5.2 [Information interfaces and
presentation (e.g., HCI)]: User Interfaces.
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1. INTRODUCTION
We present an approach that allows a designer to assess interac-

tion design qualities such as efficiency, error-proneness and recov-
ery from errors. Key importance is given to the ability to (a) un-
derstand how supportive a user interface (UI) is with respect to
user efficiency; (b) understand how prone the UI is to user navi-
gation errors; (c) understand how recoverable the UI is from those
errors; and, (d) perform objective quantitative comparisons of dif-
ferent designs to support construction and engineering of interac-
tive systems. All this can be done before developing prototypes
of the UI, similarly to what is claimed and done in [35]: “... the
analysis of solutions in the early phases of development is crucial
as their results can then be iteratively injected in the development
cycle”.

To explain our work we present a comparison of four web mail
front ends. We have chosen this domain because it is easy to un-
derstand and yet several questions cannot be easily answered. We
applied the same techniques also in other domains, such as HVAC
(Heat, Ventilation and Air Conditioning) and other embedded UIs.

Developing good UIs for web or mobile applications is a com-
plex and expensive endeavor. One reason is the combination of
devices, interaction modalities and workflows that need to be sup-
ported. Adoption of usage-centered development practices and fol-
lowing established design principles [11] is a sound way to tackle
the problem. In particular very effective techniques are prototyp-
ing, to explore part of the five-dimensional fidelity space [23, 8],
paired with usability investigations, based on user testing or heuris-
tic evaluations [32, 34].

However, prototypes are usually developed with certain tasks in
mind, and therefore are quite restricted in terms of depth, breadth,
dynamics and data. Furthermore, in addition to the possible bias
introduced by prototypes, usability results are always surrounded
by a cloud of uncertainty, due to subjectivity introduced by par-
ticipants and facilitators or by other contingency factors involved
in the analysis. Thus, although a significant effort needs to be di-
rected to develop and use prototypes, less than optimal results are
obtained.

Even worse, several questions cannot be easily answered. Given
one or more potential designs and some usage scenarios, interest-
ing questions include: “How many different routes can be followed
by the user to carry out the scenario?”, “Which are the shortest
ones?”, “If a user makes a mistake, would he or she be able to
recover?”, “How many steps would the recovery require?”. When
designing and evaluating embedded UIs (such as when dealing with
plane’s cockpits [3]), other relevant questions include “How would
the above properties change if we add a certain a widget?”, or “... if
we replace a widget with another?”. At the moment, these straight-
forward questions are quite complicated to answer. In fact, they
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require developing prototypes, inspecting them, manually tracking
which screens and widgets are used at which stage, followed by a
systematic manual analysis.

This should not be the case, however, because answers to these
questions could be automatically computed. Such a system could
provide important insights to a designer, and support assessments
of potential user flexibility, user efficiency, error proneness, ability
to recover, compactness and consistency of a design.

Our approach is based on UML state machine models of UIs
which are automatically processed to produce interaction graphs.
These graphs are then used to specify interaction scenarios and to
unfold the possible interaction paths (called execution traces) that
are compatible with the specific scenarios being considered. Traces
are processed to produce a dashboard with different results. Except
for development of models and specification of the desired scenar-
ios, which have to be done manually, the other steps are totally
automatic; models of a design (such as the ones shown below) can
be developed in a matter of a couple of hours.

Our contribution consists of (a) the idea of using a UML state
machine model to support specification of interaction scenarios,
(b) the development of a tool (MIGtool, Measuring Interaction Graphs
Tool) that, based on models, transforms scenario specifications into
interaction paths, and (c) the definition of metrics that provide con-
cise, precise and objective measures of the interaction structure en-
tailed by a user interface. The examples presented below show that
among four web mail applications, and with respect to a typical us-
age scenario, Gmail is the most efficient and flexible UI, with the
best ability to recover from user errors, but only for users that pos-
sess a certain level of proficiency. In fact, Gmail has the largest
number of shortest paths (when users are supposed to make 0 or
1 error); when users make 2 or more errors the number of paths
drops significantly, which indicates that the error-proneness of the
UI has reduced; in the best case, Gmail features also the shortest
paths, requiring 13% fewer steps than other applications; however,
the probability that a user hits an optimal path with Gmail is 10
times smaller than the best of the other applications, and the prob-
ability that a random walker hits a state that is not due to an error is
10% smaller than the best of the other applications. These values
suggest that Gmail offers more ways to accomplish tasks included
in the scenario, that comparably more of these ways do not involve
extra steps, that they require fewer steps, and that it might be more
difficult for novice users to exploit the most efficient ways. Fur-
ther inspections show that some differences are due to the slightly
different interaction structures adopted for uploading attachments.
Thus, redesigning the methods with which competing applications
deal with attachments could improve their usability. If Gmail didn’t
exist yet, by using MIGtool its designers could obtain these answers
well before developing prototypes and performing usability studies.

Other examples discussed below show what is gained when a
new feature is added to an embedded automotive system.

2. BACKGROUND
The literature on using state-transition networks for specifying or

analyzing the behavior of UIs is vast. We conducted a systematic-
style literature review, using Google Scholar and queries with com-
binations of these phrases: “user interface”, “path analysis”, “user
trace”, “interaction trace”, “navigation”, “markov chain”, “markov
model”, “state transition”, “statechart”, “metric”, “measure”. For
each query we analyzed title and abstract of the first 50 hits and
appraised their relevance based on whether the paper discusses ap-
proaches for measuring user interfaces in the context of usability
and whether it relies on a state transition model. This resulted in
78 full-text papers that were later on re-analyzed against the same

criterion, leading to several of papers mentioned below.
Usage of state-transition networks to model UI behavior in or-

der to draw usability conclusions dates back at least to [30]. In it,
Parnas claimed that several kinds of usability problems could be
avoided if the designer adopted a design framework where states
and their transitions are made explicit.

In many cases statecharts are used, a generalization of finite state
automata. Horrocks showed how statecharts can be used to model
and specify the dynamics of typical desktop UIs [18]. While pro-
viding many interesting insights on how and why one should use
statecharts to do so, this nice work does not address how such a
specification could be automatically processed. This idea was later
on expanded by Thimbleby [38]; statecharts are seen as represen-
tations that allow a designer to fully appreciate how devices be-
have. The overall stance is that “If you don’t understand the logic
conveyed by a statechart model of a user interface, then you don’t
understand the behavior of that user interface”.

WebML [10] is one of the most successful model-driven ap-
proaches to web development (UIs and backend systems), with in-
dustrial traction and a large number of publications. The language
is based on state transitions and is targeted to automatic generation
of data-intensive web applications. Many other similar approaches
involve or are based on task or activity models [25, 31, 20, 14,
24]. A recent OMG standard, called Interaction Flow Modeling
Language (IFML) [26], derives from WebML and focuses specif-
ically on user interaction. IFML is a language for specifying the
structure of a user interface and its behavior. It offers most of the
abstractions that are available in statecharts, mixed with the ability
to specify so-called “components” that are used to display and ma-
nipulate data (to display details of a item, to display or select lists
of items, to input an item). None of these approaches, however,
focus directly on measures of usability.

A different route for the problem of generating UIs is followed
in [15]. Authors assume that the UI to be generated is used to su-
pervise and to monitor an underlying machine (e.g., autopilot of
a plane) which is modeled as a statechart. After assuming that the
behavior of the UI can also be modeled as a statechart, they devised
an algorithm that checks whether the two models are compatible,
and that refines the UI model so that its states and transitions are
minimized while still allowing a correct manipulation of the under-
lying machine. Application of such a technique leads to UIs that
are correct by-construction.

Finite state representations have been used also as a conceptual
framework for writing the code of widgets so that events and event
handlers in the UI can more easily be conceived, developed and
verified (e.g., [2]). More sophisticated model-based approaches
employ statecharts to orchestrate the behavior of different compo-
nents of a user interface [41]. These models, however, are not used
to support usability analysis of any kind.

On the other hand the literature on metrics is also large. Lost-
ness [36, 28] is a metric for measuring the degree to which users
become lost in the information space, and it considers the notion
of deviation. Defined specifically for hypertext systems, lostness is
a user performance measure which is a function of the number of
visited nodes, the number of different nodes that were visited, and
the number of required nodes. This measure of efficiency is usu-
ally applied to traces of actual users, and is argued to be suitable
for hypertext systems because the predominant task is browsing in-
formation, rather than trying to achieve specific goals. It is suitable
therefore when some of the following three assumptions can be re-
laxed: that there is a task to complete, that there is a correct way
to carry it out, that the purpose of the system is to support users in
carrying out their tasks.
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The notion of deviation from optimal solution is discussed only
in the context of tools for route planning in 3D navigation. In this
paper we provide our own definition of deviation, which applies
to interaction with the UI; we provide also our notion of potential
execution traces across states of the UI, and the length of these
traces can be used as a measure of efficiency.

In [12], hierarchical task models (specified with HAMSTERS)
are used to specify how pilots are expected to interact with air-
plane cockpit interfaces in tasks such as changing value to some
flight parameter. The paper in particular discusses how these task
models can be used to specify alternative ways to achieve the same
goal, and analyses the consequences on safety and reliability of
the resulting system. Compared to MIGTool, this approach cannot
take advantage of a model of the system and instead relies only on
models of the tasks. The consequence is that analyzing alternative
ways to achieve the same goal requires developing different mod-
els; in addition, exploring suitability of a given system with respect
to certain tasks is complex because no model of the system is avail-
able. Finally, using only hierarchical tasks as a modeling language
limits the richness of the scenarios being analyzed, because it is
difficult to take advantage of contexts and rich control flows that
are available with state-transition representations, especially with
UML state diagrams.

A review of usability measuring practices [17] lists, under the
headings measures of efficiency/usage patterns, number of keystrokes,
mouse clicks, and visited objects as possible metrics. Of course
also the time needed to carry out individual interaction steps counts
and it depends on many aspects, such as the time to decide what
goal to achieve, to understand how to carry it out, to locate the ac-
tions to do it, to perform the action, to attend to the feedback. Lay-
out of the user interface, Fitt’s law considerations, cognitive state
of the user, physical and environmental aspects affect such times.
For these reasons we opted, in MIGtool, to only focus on required
steps to complete a task, not on completion time.

A usability analysis method capable to analytically predict task
completion times from a storyboard of the UI is based on using
CogTool [5]. CogTool relies on the ACT-R cognitive modeling en-
gine, and allows a designer to setup a low-fidelity prototype of the
UI. After deciding which interaction modality and which widgets
are used to implement actions, the designer gets an estimation of
how long a skilled user would spend on each step. CogTool takes
care of adding extra “mental” steps before certain patterns of pro-
vided steps, according to the cognitive theory underlying ACT-R.
As a result, users of CogTool obtain the breakdown of the times re-
quired by the task. Our method is less precise: it does not provide
expected completion times. However, with our method, a designer
can analyze a large part of the UI, get information about possi-
ble problems in some areas, and only then devolve more resources
in building storyboards and in making assumptions regarding wid-
gets so that specific execution paths previously identified can be
analyzed with CogTool. In a sense, the output obtained with our
method could be used to make informed decisions as to what to
analyze next with CogTool. Other approaches, like [37], start from
the assumption that the user interface exists already, and that it can
ripped to reverse engineer a behavior model. These assumptions
are not needed when using MIGtool.

Another approach for analyzing user actions that has a strong
cognitive background is SNIF-ACT [13]. However it has been con-
ceived and applied to information websites, where the notion of
information scent bears upon interaction. We opted for not apply-
ing such concepts to the interaction with a web application, where
most of the actions are not aimed at information finding.

Markov models, i.e. directed graphs where edges leaving a ver-

tex are associated to a probability distribution, were used in [39] as
a means to perform usability analysis as early as possible, even be-
fore building prototypes of the UI. Vertices represent states of the
UI and edges correspond to user actions (such as pressing a button).
Probabilities can be used as a model of user knowledge: equiprob-
able actions correspond to a knowledge-free user, whereas when
some actions have a very low probability it means that for that user
the action is unlikely to be executed. Simple mathematical opera-
tions on the transition matrix of the model give the probability that
after n steps from a given initial state the UI is in a given state.
With Markov models, by manipulating probabilities, the designer
can plot the number of required steps as a function of how close
the probabilities are to the designer’s “perfect” knowledge. Exam-
ples discussed in the paper cover several devices, ranging from a
simple torch (with 4 states), a microwave cooker (6 states), a mo-
bile phone (152 states). Notice that those are all push-down devices
with a fixed set of buttons. This is obviously not the case for UIs of
information systems, where buttons may change screen by screen
and there could also be an arbitrary number of links. This makes
it more difficult to specify the transition matrix. Our approach is
based on statecharts, a language that in practice is more powerful
than Markov models, making it easier to specify the UI behavior,
especially in cases where the set of buttons change over time. While
our examples do not make use of probabilities, this is very easy to
cope with (see the Discussion at the end of the paper for some of
the benefits that doing this could bring). Similarly to [39], our ap-
proach could be used when conservative results that do not rely on
psychological assumptions are sought.

A discussion of social network analysis metrics applied to in-
teraction design is provided in [40]. Once more, a UI is modeled
in terms of directed graphs (vertices are states and edges are ac-
tions), and various centrality metrics are used to draw conclusions
that bear upon usability. For example, centrality measures (such as
Sabidussi, eccentricity, betweenness) can be used to identify states
that are good places to start from to get to other states. Other met-
rics, such as edge betweenness, can be used to identify actions that
are important because most of the shortest paths go through these
actions. The paper presents compelling examples of using this tech-
nique to identify shortcomings in the design of infusion pumps. In
our work we automatically generate graphs from statechart mod-
els, and on some of them we computed these metrics. In case
studies presented below we were not able to draw sensible conclu-
sions from the values we obtained (for example from the models
presented below). One possible explanation rests on the different
types of models: in our case they reflect the variety and flexibil-
ity with which “buttons” can be used in modern web applications.
For infusion pumps the UI is more constrained in how a task can
be carried on, and this difference might reflect on the usefulness of
those metrics.

In [16] several approaches to analyze streams of user events are
discussed and compared. It is interesting to realize that this is, in
a sense, the inverse problem of the one we tackle in this paper:
we want to compute a subset of the possible streams of user events
given a specification of the UI, rather than trying to abstract general
properties from actual streams of events.

3. GENERATION OF TRACES
Traces are potential paths (i.e., sequences of connected states of

the model) that users can follow when performing a given scenario.
The generation process encompasses the following steps: (1) pro-
cessing the model and automatic flattening of the statechart model;
(2) manual definition of the interaction scenario; (3) automatic gen-
eration of execution traces; and (4) interactive analysis of results.
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3.1 Processing models
MIGtool takes as input UML statecharts, which are a general-

ization of finite state automata (FSA) specified with an expressive
language that includes hierarchical levels of abstraction, concur-
rent regions, states and pseudostates, guards, and an extended state
notion based on an arbitrary underlying computational model.

By using statecharts, the behavior of UIs can be represented by
associating states to screens and particular configurations of wid-
gets, and transitions to actions performed by users or by the system
itself [18]. In the classification reported in [16], actions belong to
the “abstract interaction events” category.

Because statechart models take advantage of abstraction features
and a rich set of connecting pseudostates, they are not suitable to
be directly processed to compute metrics. For this reason, MIGtool
first flattens the model. Flattening is a process often used when
statecharts have to be automatically processed [7], and it means to
produce a FSA that is behaviorally equivalent to the original state-
chart, with no hierarchy between states and no concurrent regions.
In most cases this leads to an exponential number of states and tran-
sitions in the FSA, but because the process is completely automatic
and there is no need to manually inspect the resulting FSA, this as-
pect is in many cases not relevant. Because MIGtool does not use
executable UML, transition guards are not given semantics and are
simply treated as part of the event label of a transition. MIGtool
produces an XML representation (graphML) of the resulting FSA,
the interaction graph. It is a directed multigraph1, potentially with
cycles and loops, with edges labeled with the name of the corre-
sponding action. In the following we will be using as synonymous
the terms state/vertex, action/edge and trace/path.

3.2 Grounding usage scenarios
Because in all but the most trivial interaction graphs there are

loops or cycles, the set of possible interaction traces is infinite. For
this reason, scenarios need to be defined and used as constraints on
the possible execution traces that can be generated. Users of MIG-
tool define interaction scenarios by specifying key steps (called
bridge sets) that users are expected to go through; we call this pro-
cess grounding usage scenarios on models. A bridge set is a sub-
set of the edges of the interaction graph; a well formed bridge set
is a non-empty set (an empty bridge set would make the scenario
unviable). In general a specification of a scenario includes an ini-
tial state and a non-empty sequence of bridge sets. For example,
to specify a scenario for replying to an email message, assuming
an initial state that corresponds to a user interface that displays all
messages in the inbox, one could select all the edges associated to
the action reply (bridge set 1), followed by edges labeled with
typeBody (bridge set 2), followed by edges labeled with send
(bridge set 3). In this way scenarios with cycles can be formulated
(e.g., reply twice to two messages). A stage of a scenario comprises
two consecutive bridge sets. To cope with multi edges, the interac-
tion graph is simplified: all edges between a pair of vertices are
merged into a single one, whose label includes the original ones.

3.3 Searching traces
Quite expressive languages can be conceived for grounding sce-

narios (e.g., regular expressions on sequences of action labels). But
such expressivity bonus needs to be balanced with computational
tractability: even models with a dozen states might correspond to

1A directed multigraph is a directed graph such that there are 2
or more edges that have the same end points. Cycles are paths
that include 2 or more occurrences of the same vertex. Loops are
edges that start and end on the same vertex. “Geodesic path” is a
synonymous term with “shortest path”.

interaction graphs with several hundred states and several thousand
edges, leading to an enormous number of possible traces to filter
even for scenarios with just a few stages.

To cope with this we implemented a trace searching algorithm
that processes each of the stages sequentially, starting from the ini-
tial state. Given a stage i and a bridge set Bi, the algorithm does a
breadth-first search of all the geodesic paths that connect each of
the ending vertices of edges in Bi with some of the starting vertices
of edges in Bi+1. If some bridge in Bi+1 cannot be reached, then
it is dropped from further searches. MIGtool creates a new graph
from the geodesic paths found for each stage, and then joins these
graphs so that geodesic paths found for stage i are joined with those
of i + 1. These global paths, connecting the initial state to reachable
bridges of the last bridge set of the scenario, are called execution
traces.

Notice that a scenario specifies only the desired occurrences of
actions, not all the necessary ones. For example, if the model pre-
scribes that in order to perform action view(message) while
reading another message one has to goBack to the inbox first,
a scenario specifying two consecutive view(message) would
lead to traces that include also the goBack action, even if that step
is not explicitly specified in the scenario. It is the task of MIGtool
to unfold paths in the graph and search all the geodesic paths that
connect the desired user actions.

3.4 Detour traces
The algorithm described so far finds (some of) the global paths

connecting the initial state to one or more bridges for each of the
specified stages. The globally shortest paths are included in the
solution, together with other viable alternatives. These traces are
called detour order 0 traces.

MIGtool is used to process a model and a scenario and to gener-
ate execution traces of detour order = 0, ..., H. For each stage, up
to a maximum detour order H, the search algorithm creates traces
with detour order k + 1 by collecting the set Dk of states with order
0 up to k, and by identifying the neighbors Nk of Dk (Nk is the set
of states not included in Dk that can be reached through an edge
from some state in Dk). Edges connecting Dk with Nk represent de-
viations that users might follow, and geodesic paths from Nk to Dk

constitute recovery paths that users might follow to complete the
scenario from states in Nk. These deviations and recovery paths are
joined and constitute the traces of order k + 1. It could happen that
for some state in Nk there is no path leading to any vertex in Dk:
in such a case the deviation is a dead end that prevents the user to
complete the scenario.

The time complexity of the search algorithm is O(KM(E + V))),
where there are K bridge sets, their mean size is M, the interaction
graph has V vertices and E edges. Therefore it scales well with the
size of the interaction graph and/or complexity of the scenarios. In
practice, for interaction graphs consisting of about 10000 edges and
a dozen of bridge sets, on a low-cost PC it takes about 20 seconds
to generate traces of order 0 to 3.

4. COMPARING APPLICATIONS
In this section we describe some examples of the results that

can be obtained with MIGtool, based on well known web mail
clients, namely Gmail, Horde, SquirrelMail and Roundcube. We
chose these examples because they are well known, and therefore
are easy to describe and understand. And yet, despite email being
a very well understood domain, the kind of questions that can be
posed and the answers that are found provide interesting insights
on some of the usability properties of these applications.
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4.1 Models and scenarios
Models of the four applications have been manually defined. In

order to support a fair comparison, all four models cover the same
set of use cases at the same level of detail: listing the content of the
inbox, reading a message or conversation, replying to a message,
composing and sending a new message.

Figure 1 shows part of the model of Gmail. At some point, a
user is viewing all the conversations of the inbox (state viewing-
Conversations); available actions include moving to the next
or previous block of conversations, refreshing the list, or open-
ing a specific conversation (transition open(conversation)).
This transition is assumed to occur when the user clicks on any
one of the visible conversations - it is as if there is a collection
of transitions, each one for a different conversation that can be
opened; the parameter conversation is conceptually bound to
any occurrence of a conversation. Such transitions lead to the state
viewingAConversation, where the behavior of the system is
defined by a more detailed state machine. By default the user is
viewing a conversation, but by performing the reply action the
UI moves to a state called replying, where the body of the reply
can be typed, the subject can be changed, or another addressee can
be added.

This behavior “happens” in one of the two concurrent regions
specified by this model (left and right side of Figure 1). In parallel
to this, the user can either be reading messages (state reading)
or may be composing a new message (state composing). In the
latter case the user can independently add recipients, attachments,
write the body or subject of the message; and send or cancel it.

The model that we show here is part of what we used in the ex-
amples reported below. The actual model that we used consists of
24 states, 12 pseudo states, 12 regions, and 61 transitions. This
model is similar to that being discussed in IFML examples men-
tioned by [26].

The flattening process, which takes a couple seconds on a low-
cost PC, produces a directed multigraph with 47 vertices and 634
edges; when simplified by collapsing multiple edges, the number
of edges drops to 312. Each vertex represents one of the possi-
ble combinations of simple states in any of the regions that can be
active at the same time.

Similar models and corresponding graphs were produced for the
other three applications.

4.2 Analysis of interaction designs
Inspection of the interaction graph is not particularly useful be-

cause even for small graphs like the one obtained from our Gmail
model no particular structure is evident that was not known from
the model. Because of the large number of cycles that exist among
states, edges in the interaction graph form an intricate web of possi-
ble action sequences. We believe this greatly reduces usefulness of
typical network analysis metrics, such as betweenness, eccentricity,
page-rank and eigenvalue centrality measures.

To be able to obtain results that bear upon usability, we process
further the graph, by specifying scenarios and computing traces.
The scenario, which assumes ViewingConversations is the
initial state, is specified with the following 11 bridge sets:

1 open ( c o n v e r s a t i o n )
2 open ( c o n v e r s a t i o n )
3 r e p l y
4 typeBody
5 send
6 compose
7 a d d R e c i p i e n t

8 open ( f i l e s )
9 wr i t eBody
10 w r i t e S u b j e c t
11 send

In plain language such a scenario means opening a conversation,
doing something and then opening a second one, replying to the
last message of the second conversation by typing the body of the
response, sending it, and then composing a new message by adding
a recipient, an attachment, typing the body and subject, and finally
sending it. Notice that because the model precludes the possibil-
ity that there are two consecutive actions called open(conver-
sation), MIGTool has to find traces such that between bridge set
1 and 2 there is at least one goBack action.

The execution traces for such a Gmail scenario, with a detour
limit of 3, consist of a graph with 474 vertices and 1753 edges.
These traces entail 12 geodesic paths with order 0, 82 with order 1,
30 with order 2 and 33 with order 3. Figure 2 shows the number of
paths obtained for the four applications, split by detour order.

One of the order 0 geodesic paths is shown below; each line
represents an action that the user is expected to perform, which
is entailed by the model. Actions marked with “*” are those not
specified in the bridge sets and found in the interaction graph.

1 open ( c o n v e r s a t i o n )
2 goBack *
3 open ( c o n v e r s a t i o n )
4 r e p l y
5 typeBody
6 send
7 compose
8 a t t a c h F i l e s *
9 a d d R e c i p i e n t [ f i r s t ]
10 open ( f i l e s )
11 wr i t eBody
12 w r i t e S u b j e c t
13 send

Figure 2: Number of geodesic paths split by detour order.

Compared to the other applications, Gmail has the highest num-

5



Figure 1: Part of the Gmail model.

ber of order 0 and 1 traces; it has the highest difference between the
number of order 0 and 1, and between order 1 and 2 traces (at least
3 times as many order 0 paths than any of the other applications,
and at least twice as many order 1 paths as the any of the other ap-
plications). In other words, Gmail offers 3 times as many error-free
alternative paths to accomplish the scenario, which indicates that
users might more easily follow one of those paths, than when using
other applications. Notice that Roundcube has the smallest number
of order 0 paths (2 of them), which means that users are not given
much flexibility and freedom in carrying out correctly the scenario.
However, Gmail provides also almost twice as many order 1 paths,
which means that users could be more easily induced into an erro-
neous path than when using another system (or, as an alternative
interpretation, users could be given more flexibility). Because the
number of order 2 or 3 paths decreases, Gmail reduces therefore
the “error proneness” of this UI, for executions that involve 2 or 3
errors.

For none of the systems a detour leads to dead-ends.
Figure 3 shows the length of paths in the best case, i.e., when

users would always choose the shortest route. Gmail offers the
shortest paths across the four detour orders (for order 0 the length
is 13 steps, saving more than 13% steps compared to other appli-
cations; for order 3 the length is 17 steps; the other applications
are remarkably similar among them). A plausible interpretation is
therefore that Gmail not only offers many more error-free paths,
but also gives the shortest ones. Users are given more flexibility
and more efficiency. Because also paths with order 1 or more are

the shortest ones among the four applications, Gmail also makes
users more efficient in recovering from errors.

To combine these two results, we can easily compute the fre-
quency of paths having different length within an application. Fig-
ure 4 shows, for each application, the frequency of order 0 paths,
the frequency of paths with length less or equal to 15 (the minimum
length across the four applications), and the frequency of optimal
paths (the shortest ones). These values show that Gmail users have
the lowest probability to hit an order 0 path (because of the rela-
tive large number of order 1 paths made available by Gmail), have
the lowest probability of hitting the shortest paths (10 times smaller
than the best of the other applications), but have the highest proba-
bility to hit a path with length 15 or less. Thus, the flexibility and
efficiency that can be exploited with Gmail are counterbalanced by
the required knowledge and capability of choosing an optimal path.
In particular, Gmail offers many detours of order 1 which increase
flexibility for some users and might decrease effectiveness for less
skilled ones.

Another probabilistic analysis can be performed using page rank,
which computes the probability that a random walk in a graph visits
a certain vertex [29]. We computed the page rank (with a damping
value of 5% - meaning that the random walker with probability 5%
jumps to an arbitrary state and probability 95% chooses one of the
actions available in the current state) for each vertex in the graph,
and then summed up page rank values for vertices with different
detour order. Figure 5 shows the resulting sums.

With Gmail the probability of visiting an order 0 state is close to
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Figure 3: Minimum length of geodesic paths split by detour order.

70%, the lowest among the four applications. But when it comes
to visiting an order 0 or 1 state, the probability increases to 87%,
which is the highest. Thus, in a comparison of Gmail against Squir-
relMail, a completely random usage of SquirrelMail has 10% more
probability of hitting an error-free state than Gmail. That advantage
is slightly reduced when considering order 0 and 1 paths, because
with SquirrelMail the probability is 85% and Gmail it is 87%. This
means that somebody with no knowledge on how to use an email
front end, when using Gmail would have 10% fewer chances of
carrying out the scenario without making any error, as opposed to
when using SquirrelMail: SquirrelMail provides more guidance.
Across the four UIs, the probability of making at most 1 error is
approximately the same2.

Manual inspection of the shortest paths indicates that one reason
for the greater potential efficiency offered by Gmail is due to the
fact that users can start composing a new message while reading
a conversation, whereas in other applications an explicit “close ac-
tion” of the reading activity has to be performed. Another reason
relies on the more streamlined process to attach a file: in Gmail
one needs to select the file(s) and they are automatically uploaded,
whereas in other applications one has to explicitly perform the up-
loading step after selecting them.

Figure 6 shows the action density of the four applications, i.e.
the average number of actions per state involved in traces (defined
by the out-degree), and average number of unique actions per state.
The former is an overall measure of the number of actions that are
made available by a UI, the latter can be used to analyze how many
new options the user is presented with in any state. For our exam-
ples, the values are all in the range between 5.9 actions/state in the
case of Gmail and 7.1 for Horde, and 1.3 unique actions for Squir-
relMail and 2 for Horde. This suggests that Gmail features a more
compact design (fewer actions to do the same things), and Squir-
relMail is even more compact when it comes to the different types
of actions; thus it could be easier to learn.

2These results are not sensitive to the value chosen for the damping
factor: differences across the four applications are stable when d
ranges in [0.05, 0.20].

Figure 4: Frequency of an optimal path.

Figure 5: Probability that a random walk visits detour 0, 1, 2 or 3
states.
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Figure 6: Action density.

4.3 Comparing scenarios
Previous examples show how MIGtool can be used to compare

different UIs against the same scenario. The same kind of analysis
can be carried out to assess how suitable a design is for different
scenarios. For example, a designer might be interested in a com-
parison of replying to a message (scenario “reply”) as opposed to
composing a new one (“compose”), given a single UI.

Let’s focus now on Horde. It turns out that “compose” entails
many more order 0 paths than “reply” (154 vs 86), and a compa-
rable number of higher order paths. The path length in the best
case is the same across the two scenarios, but in the average case
“compose” has a length of 7.75 steps compared to 8.5 for “reply”.
Probability of hitting an optimal path is 4 times higher for “com-
pose”.

This means that users will have twice as many choices between
correct paths when composing a new message rather than simply
replying to a read one. On average, when composing, users could
be 9% more efficient, and they are 4 times more likely to do the
right things. Thus, Horde is more suitable for composing new mes-
sages than it is for replying to existing ones.

4.4 Adding features
Execution traces can be used also to assess what is the effect of

adding a widget or feature to an existing UI. For example, we stud-
ied cruise control features of cars. One of the examples is system
S3, where the driver can engage the system, and once it is engaged,
set speed can be increased or decreased with small or large steps.
Of course the system can also be disengaged (by pressing the brake
pedal or by acting on a lever). System A is more elaborate, as it
includes also a memory function: when it is disengaged it remem-
bers the currently set speed, which can be recalled later on. There
are two ways to re-engage it: one by setting a new speed, and one
by recalling the previous one. In addition, if the car drives for more
than 5 minutes at a higher speed than the set one, system A auto-
matically disengages.

Thus, one possible design question is “What are the effects of
3There is no need to disclose the actual brand.

System N0 L0 N1 L1 p AD UAD
S 1 7 8 9.4 11% 1.75 1.25
A 2 4.5 7 6.8 6% 2.20 1.20

Table 1: Comparison of the two cruise control designs. Ni: num-
ber of execution traces with detour order i; Li: average length of
traces with detour order i; p: probability to hit the shortest execu-
tion trace; AD: actions/state; UAD: unique actions/state.

adding these functionalities?” in a typical driving scenario where
a speed is selected, then the system is disengaged, and later on the
same speed needs to be set.

When using a scenario for S where we assume that re-setting the
speed is done manually by the driver with 4 actions on “up” and
“down” (to approximately set the previous speed), the comparison
produces the values shown in Table 1. System A has 2 alternative
optimal paths, their length is 4.5 (36% shorter than in S); both sys-
tems have a comparable number of detour 1 traces (N1), but their
length in A (L1) is 28% shorter. The probability of hitting the op-
timal trace is however twice as large in S (p=11%), which features
also a more compact design (AD=1.75). In both cases detours are
caused by the possibility of disengaging the system at the wrong
moment.

Therefore we can conclude that: (1) system A makes users more
efficient (a saving of 36%) for the considered scenario; (2) with
A there are two possible ways to achieve the scenario, thus more
flexibility is given; (3) with A the probability of doing the right
thing is almost half of system S: it might be more difficult to do
the right thing because more possibilities are offered; (4) system S
features a more compact design, with fewer actions to be performed
at each moment.

5. DISCUSSION
An important issue underlying MIGtool is the modeling effort

that is needed upfront. Our experience, based on several case stud-
ies and some industrial examples, is that models do not need to be
complete representations of the behavior of the application under
study. By following an agile modeling approach [1], models can
be easily developed by one person in less than one day, using any
UML capable design tool. Even more complex models (in our ex-
perience up to 200 states and 450 transitions) can be developed and
verified in 3 days by one individual. Experience in using statecharts
to model behavior of UIs is needed though; useful suggestions are
given in [18, 38].

UML state diagrams provide a very expressive language, well
suited to specify behavior of UIs based on discrete events. in MIG-
tool all the UML language [27] for state machine has been used,
including sundry pseudostates. Even though there are fundamental
limits (inability to handle undo/redo’s, because this goes beyond
a finite state representation; inability to handle customizable tool-
bars, because this requires models that change at runtime; inability
to handle perceptive UIs, because they are not well suited to be de-
scribed in terms of discrete states), in many practical cases they can
be be isolated and/or ignored [6]. One particular limitation of MIG-
tool stems from the fact that it does not rely on an executable UML
metamodel; as a consequence behaviors that rely on the fact that
firing a transition broadcasts new events cannot be properly repre-
sented and analyzed. For the same reason the meaning of guards
and actions is not considered by MIGtool, and they are treated sim-
ply as parts of the labels.

Expressivity of the modeling language means that different de-
signers are likely to produce different models for the same UI. As
a consequence, it is possible that metrics computed by MIGtool
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do depend on different modeling choices. It is worth mentioning,
though, that because of the flattening process, several differences
are reduced (for example, those dealing with using a different hi-
erarchy of states, or with differently distributed concurrent regions
across states), and sensitivity is correspondingly reduced. Future
studies for addressing this issue could follow what was done in
[19].

Differently from other model-based approaches, such as those
based on IFML, MIGtool uses only a model of the behavior of the
UI. In IFML the modeler specifies behavior in terms of concepts
that are very close to statecharts (IFML adopts a dual representa-
tion of AND/OR-states, has guards, has events, has an underlying
event broadcasting mechanism) upon which components with their
data binding are defined, so that transitions can be easily bound to
data instances. On the other hand, designers using MIGtool do not
need to cope with data modeling, nor with decisions dealing with
presentation. In a sense, MIGtool uses only the controller part of
the Model-View-Controller paradigm that is adopted when devel-
oping UIs. Although in principle the same results could be obtained
from IFML models, to do so one needs to isolate the control part of
the IFML model from the data part; this is difficult to do because,
by design, IFML integrates very well the two aspects.

A designer using MIGtool is free from other concerns that in the
end affect usability, and the conclusions that are derived with MIG-
tool can be combined with other results after the analysis is per-
formed. As mentioned above, ours is an agile modeling approach
[1] that: (a) enables analysis of a UI well before it is developed;
(b) requires only a model of its behavior; (c) supports exploration of
different tasks/scenarios; (d) enables grounding of tasks/scenarios
through a platform-independent specification. As such, grounding
can be viewed as the specification of a reification relation between a
task-and-domain-concepts level to an abstract-user-interface level
(we are using terms of the CAMELEON reference model [9]). It is
possible to extend MIGtool so that also task models (specified, for
example, through CTT, UsiXML, HAMSTERS [25, 21, 22]) can be
processed and used as specification of the scenarios to be analyzed.
For example, a CTT model could be annotated by associating sub-
tasks to bridge sets and then used to generate a sequence of bridge
sets, from which MIGtool could generate traces and metrics. At
that point, MIGtool could be used as a tool to explore suitability of
tasks with respect to a behavioral model of a user interface. This
problem has been addressed in [22] through a mechanism that re-
lates task models to source code annotations of the implementation
of the user interface. In this way it is possible to simulate execu-
tion of the tasks in parallel with execution of the system and ensure
compatibility of the system with respect to tasks.

In terms of validity of conclusions obtained through MIGtool,
because they are devoid of user behavior assumptions (such as pref-
erences, skills, interpretations, ergonomic constraints) they are very
general and conservative. On the other hand, they are also generic
because they do not consider data and presentation aspects. For ex-
ample, it is unfeasible to use MIGtool to predict the time needed by
a user to complete a scenario. However, as mentioned before, MIG-
tool can be used to analyze the whole interaction design and gather
data to inform more specific analyses that could be performed, for
example, with CogTool or CogTool-Helper [37].

At the moment MIGtool does not use weighted edges in the inter-
action graph. It is easy to extend it to search paths that minimize the
total weight, and therefore in such a way to perform analyses that
are similar to the ones based on Markov chains suggested in [39].

Likewise it is possible to extend MIGtool to compute also the
lostness metric [36], based on states with different detour orders.
This would give yet another objective metric to compare different

designs. We opted for non doing it in light of the fact that lostness
was designed for exploratory activities in information websites, not
for goal oriented scenarios like the ones we considered in previous
examples.

MIGtool is implemented partly in Java (model processing) and
partly in R/iGraph [33]. Currently MIGtool reads UML models
represented as XMI files; it could be easily extended to handle also
SCXML representations of statecharts [4].

6. CONCLUSION
We presented a method that can be used to support analysis of

user interfaces even before they are built or prototyped. UML stat-
echarts representing the intended behavior of user interfaces are
processed and matched to interaction scenarios, producing a num-
ber of graph-theoretic metrics defined on possible execution traces.

We showed that with this approach one can compare different de-
signs against the same scenario, or the same design against differ-
ent scenarios. In both situations precise, quantitative and objective
measures can be generated regarding flexibility offered to users,
their potential efficiency, and error proneness of the user interface.

The method should not be used to draw final usability conclu-
sions, as it is devoid of any concerns dealing with what is presented
to users, how they could perceive, understand, and manipulate that.
But, because the approach can be applied when just a specifica-
tion of the user interface is available, it supports construction and
engineering of interactive systems and could help in iteratively im-
proving a design before building any UI prototype.
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