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ABSTRACT
Number entry systems on medical devices are safety critical
and it is important to get them right. Interaction design teams
can be multidisciplinary, and in this work we present a process
where the requirements of the system are drawn up using a
Controlled Natural Language (CNL) that is understandable by
non-technical experts or clients. These CNL requirements can
also be directly used by the Quality Assurance (QA) team to
test the system and monitor whether or not the system runs
as it should once deployed. Since commonly, systems are too
complex to test all possible execution paths before deploy-
ment, monitoring the system at runtime is useful in order to
check that the system is running correctly. If at runtime, it is
discovered that an anomaly is detected, the relevant personnel
is notified through a report in natural language.
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INTRODUCTION
In healthcare, a significant contributory factor to unnecessary
fatalities is the administering of incorrect drug doses. Vincente
et al. [10] estimate the probability of fatal number-entry errors
on Patient Controlled Analgesia (PCA) pumps (ones control-
ling pain, typically delivering opiates) as between 1 in 33,000
to 1 in 338,800 (the large uncertainty is due to estimating
reporting rates — many errors are not reported).
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To address these worrying figures, within the field of Human-
Computer Interaction (HCI), experts carry out studies to find
out how to design software better; results [9, 1] show that
the consideration of interaction design properties positively
impacts safety critical software. However, problems might
arise when experts come up with recommendations that need
to be communicated to software developers. In particular,
since HCI experts do not always understand codethere is a
communication gap between non-technical experts and devel-
opers when it comes to discussing and agreeing on interaction
design properties that should be present within the system.

Communicating these HCI requirements does not guarantee
that they are correctly implemented. Therefore another matter
of concern is enabling non-technical experts to check that the
interaction design properties they communicated have in fact
been properly included in the final artefact.

Such challenges are not new to software development: when
a client approaches a software house with a system in mind,
this has to be properly communicated to technical personnel,
a contract is drawn up documenting the features and expected
behaviour of the system, and eventually signed. Once the
system is completed, the client has to sign it off, accepting it
as the embodiment of the originally described system.

Gherkin1 is a quasi-natural language with very little structure
that is used in the software development industry. This enables
the client to describe the behaviour of the system in mind in
a way that developers can understand. Moreover, Gherkin
allows developers to build code directly connected to the client-
written description to automatically provide assurance that the
specification has indeed been correctly followed. We note that
although we will be using Gherkin as our reference language
throughout the paper, one can use any other suitable language,
possibly one with inbuilt specialised concepts for the domain
at hand (e.g., number entry systems).

Motivated by the need for better safety for patients where risks
are As Low As Reasonably Practical, ALARP (UK Health &
Safety At Work Act (1974) and under similar legislation in
1https://github.com/cucumber/cucumber/wiki/Gherkin
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other countries), we present a way of exporting the experience
of the software development industry for added assurance in
quality of medical devices. In particular, we attempt to ad-
dress the two challenges outlined above: one being that of
facilitating the communication between non-technical experts
and software developers, and the other being that of providing
the means for non-technical experts to check that their recom-
mendations are well-implemented in the resulting artefact.

The main contribution of this paper is an approach that (i)
makes communicating interaction design principles with soft-
ware development teams easier (ii) provides a testing frame-
work to test that the interaction design principles are imple-
mented in the software as specified (iii) automatically gener-
ates runtime monitors that ensure that the software is behaving
as it should during runtime (iv) provides a feedback mecha-
nism that reports when something does not work as it should
during runtime2. To illustrate our approach, we show how it
can be applied to number entry systems, but this does not limit
the generality of the approach.

In the next section we introduce medical device number entry
systems in order to describe the case study, then we go on to
show how specification properties can be effectively communi-
cated with software developers and verified. Next, we discuss
the concepts of runtime monitoring through the case study of
medical device number entry systems and show how tests can
be converted into runtime monitors. Finally, we discuss our
conclusions and future work.

MEDICAL DEVICE NUMBER ENTRY SYSTEMS
As a case study, we will be taking the case of directional pads
that are used for number entry (drug dose entry) on medical
devices. In medical devices, number entry is safety critical
because if the input drug dose is incorrect it may have serious
consequences on the health of the patient.

Oladimeji et al. [9] described a few of the possible hardware
layouts and carried out a lab experiment to determine which
layout is best at reducing the likelihood of human error. From
Oladimeji et al.’s work [9] we see that directional pads are best
for entering numbers in medical devices since they showed
the lowest error rate in the study. A directional number entry
interface consists of a display that shows the current value
and a cursor that highlights the digit that is currently selected.
The N and H buttons change the highlighted digit and the J
and I buttons move the cursor between digits. An OK button
confirms the input number. A typical directional number entry
interface can be seen in Figure 1.

Although the hardware of directional number entry systems
is fixed, different software implementations can result in in-
stances where the same keys can be pushed on devices that
look identical but the resulting outputs can be different. Cauchi
et al. highlight this in their work [1], and identify the following
principles to minimise the magnitude of data entry errors:

2The feedback would require some additional features in the design
of the device, i.e., a means of sending violation reports back to the
developers, but we do not go into this issue in this paper.

Figure 1. A 5-Key interface with a cursor highlighting a digit. In this
system, N and H buttons manipulate the highlighted digit, J I buttons
move the cursor between digits, and the OK button confirms the number.

1. When a cursor is highlighting a digit that is at 9 and N is
pressed, then the display should work arithmetically and
add 1 to the appropriate digit, e.g., 23496 becomes 23506.

2. When a cursor is at the leftmost position and J is pressed,
the display should not change. Similarly if the cursor is at
the rightmost position and the I is pressed.

3. If a user presses a button and the display does not change
then the user should be alerted.

Given such a list of principles (with a more comprehensive one
in [2]), the following sections attempt to tackle the problem of
effectively communicating them to software developers who
in turn have to provide solid evidence that the principles have
indeed been correctly implemented.

SPECIFICATION AS A COMMUNICATION MEDIUM
In the software development industry, Controlled Natural Lan-
guages (CNLs) such as Gherkin are sometimes used to help
clients communicate with developers and draw up specifica-
tions. A Gherkin specification consists of a number of features
that are in turn made up of scenarios written in statements
(referred to as steps) that start with the keywords Given, When,
Then and And. The Given keyword is used to describe a precon-
dition, i.e., the context in which the scenario is relevant. The
When statement describes the action that can be performed
when the precondition holds, while the Then statement de-
scribes the postcondition that should hold following the action.
Finally, the And keyword is used as a joining mechanism when
the author of a scenario needs to split a precondition, action or
postcondition over multiple steps.

As an example of how Gherkin can be used to describe inter-
action design properties, we consider directional number entry
systems that are commonly used in medical devices. Taking
the example of property 2 from the previous section, an inter-
action designer and a software developer discuss the property
and draw up a Gherkin specification as follows:

1 S c e n a r i o : Going beyond l e f t boundary
2 Given c u r s o r i s on l e f t m o s t p o s i t i o n
3 When L e f t i s p r e s s e d
4 Then Cur so r p o s i t i o n s t a y s t h e same
5 And D i s p l a y e d number s t a y s t h e same
6 And User i s a l e r t e d

Similarly to the above, a Gherkin scenario can be drawn up
for all the features of the number entry system, forming a
complete specification.

VERIFYING THE SPECIFICATION
While having an easy to use specification language that dou-
bles up as a communication tool is useful, it is desirable to



have a direct way of confirming that the described features
have indeed been implemented. From the possible verification
techniques available, in this paper we concentrate on those
which can check the implementation directly, i.e., leaving
out techniques such as model checking and favouring instead
approaches such as testing.

Gherkin scripts are interpreted by a tool called Cucumber3,
which comes with Eclipse IDE support to facilitate the creation
of tests. As shown in Figure 2, a method is automatically
generated for each unique step definition (corresponding to a
line) in the Gherkin specification. Subsequently, the software
developer implements the methods in the step definitions file
to do what is required in each step. Methods for the Given
parts of scenarios, set up the system for the test by driving
the system to a point where the precondition holds. Methods
for When statements perform the actions to be tested, while
methods for Then statements evaluate assertions.

In the case of this example, the step definitions are imple-
mented as seen in Figure 3. Each method in the class StepDef-
initions is annotated with a keyword and regular expression
that is related to the Gherkin code. Through method cur-
sor_on_leftmost_position(), the number entry system satis-
fies the precondition specified by the Given keyword. In
the method left_is_pressed() that is related to the When key-
word, the current cursor position and displayed number are
logged and the left action is simulated on the system. The
next three methods cursor_position_stays_the_same(), dis-
played_number_stays_the_same() and user_is_alerted() are
used to carry out the assertions for the property being checked.

When the tests are executed, the corresponding step definition
for each line in the scenario is executed in the order they are
listed in the feature file. When run, the Gherkin plugin outputs
the number of tests that passed or failed and also outputs the
sequence in which the step definition methods were called.

Using this approach, the original specification writers, i.e., the
non-technical experts, can be shown concrete evidence that
each scenario has indeed been correctly incorporated in the
implementation. However, as with all testing techniques, with
this approach, we cannot guarantee that the system will run
according to the specification in all possible runtime execu-
tions. Software testing only checks that a specific program
path satisfies a specification but it cannot guarantee that the
specification holds along all possible execution paths.

RUNTIME MONITORING
Runtime monitoring [7] has been used in safety, business, or
mission-critical systems to ensure that they continue to behave
as expected beyond the testing phase, i.e., after deployment.
Monitoring typically depends on some form of source or byte
code manipulation to extract relevant runtime events, that are
subsequently checked against the specification. Using runtime
monitoring, the program execution path that is running is
checked to determine whether or not a specification holds.

3Cucumber has been implemented in a variety of languages but there
are similar tools such as SpecFlow which serve the same purpose.

A major hurdle for the adoption of this technique (based on
industrial experience of the authors [4, 3]), is to reformulate
the specification into a form accepted by the monitoring tool.
In this paper, we present an approach where we attempt to
automatically extract the monitoring specification from the
test specification. In this way, we get communication, spec-
ification, testing and runtime monitoring all integrated in a
single approach. If at runtime, an anomaly is detected, it is
logged and the relevant personnel are notified as necessary.

The main difference between tests and runtime monitors is that
while the former drives and checks the system, the latter listens
to — as opposed to drives — and checks the system. This con-
stitutes a major difference since defining how to reach a state
is significantly different from checking whether the state has
indeed been reached. In the case of our example, if we want to
test a property about the cursor being on the leftmost position,
in the test we assign the cursor to the leftmost position. In
the monitor’s code, the assignment statement in the test code
has to be translated to a condition which checks whether the
cursor is indeed on the leftmost position. Therefore our task is
to attempt to extract information from the test that defines the
how, and generate a monitor that defines the condition.

In what follows, we give an overview of how tests can be
converted into monitors referring back to the number entry
system example.

Translating tests to runtime monitors
Figures 4 and 5 show the resulting monitors from the translated
tests. Starting with the easy part of the translation first, we
note that the Then part remains the same across both testing
and runtime monitoring. Therefore this will be copied directly
from the step definitions.4

Next, we consider the When component of the specification.
Recall that in the monitoring context we need to listen to
the action rather than trigger it. For this purpose we employ
Aspect Oriented Programming (AOP) technology [6] which
instruments monitoring code in the system code, providing
access to the relevant events. Referring back to the running
example, consider the step definition of the When part which
calls method left. Using AOP we can intercept calls to this
method using what is known as a pointcut so that control is
transferred to the monitor upon the call to the method. AOP
provides several pointcut options such as before and after the
method call. However, since we need to check for both the
precondition and the postcondition, we opt for the around
pointcut which gives us access to both the before the start and
the end of the method. Figure 4 shows how we have copied
the code from the step definition (line 30 and 31), and called
the proceed keyword to perform the intercepted call to method
left. Subsequently, ignoring line 36, the assertions are copied
from the step definitions annotated with the Then keyword in
the feature file.

Finally, we come to translating the precondition part annotated
by the Given keyword. The step definition describes one way
4We note that this direct correspondence between testing assertions
and monitoring ones is not as straightforward in general. However,
for the case study under consideration this is the case.



Figure 2. Default step definition code generated by Cucumber

through which the state can be set up to satisfy the precondi-
tion. We note that while there can indeed be many ways in
which the precondition can be satisfied, the test only provides
one. The approach we take is that of — again using AOP —
detecting when the set up sequence occurs during the system
execution. The assumption here is that if we observe the steps
defined in the Given, then the precondition will be satisfied.
For instance, take system.setCursor(0) of the running example:
We create a pointcut (see Figure 5) which listens for setCursor
and ensures that the parameter is zero. When observing such
a call, we deduce that at that point the state of the system is
the same as when we run the Given step of the test. At this
point we set a flag true to communicate this fact to the pointcut
matching the When step. For this reason, in the When pointcut
we only gather the information (lines 30 and 31 of Figure 4)
and check the postcondition (lines 38-41) if the flag is true.

While the approach described so far works whenever a call
to left immediately follows a call to setCursor(0), we have to
ensure that no other method changes the system state from
the time we match setCursor(0) till the time we match left.
Therefore, assuming that only setCursor can change the cur-
sor position, whenever we match setCursor with a non-zero
parameter, we set the flag to false. In a more general context,
we can use static analysis to identify all the methods which
modify variables accessed or modified by setCursor and reset
the flag any time such methods are called.

Discussion
In this work we proposed using Gherkin as a communica-
tion language to communicate interaction design concepts to
software developers. Using Gherkin for testing properties
of reactive interface systems was found to be straightforward,
with the Given-When-Then structure of the language matching
the structure of the properties we were verifying.

Another concern that this work addresses is ensuring that inter-
action design properties behave as they should at runtime. We
demonstrated how Gherkin step definitions can be translated
to runtime monitors automatically in order to make the process
of integrating runtime monitoring into medical devices (and
other critical systems) seamless. The benefit of having runtime
monitors checking that systems are working as they should is
that if things go wrong, we have a way of giving both users and
developers feedback. In this work, the feedback we provide is
simply alerting when an interface does not behave according
to specification. This feedback can be more sophisticated in
that, from a user perspective, if a system does not behave as
it should, there may be mechanisms implemented to get the
attention of the user to ensure that no erroneous actions are
made. From a manufacturer’s perspective, bad states may be
logged onto the device to be addressed.

The challenge with translating Gherkin step definitions to run-
time monitors automatically lies in the pre-condition portion
of tests. While tests set a system to a state satisfying the pre-
condition, in runtime monitoring, a monitor waits for such a
state to be reached. Therefore, the pre-condition in a test takes
the form of a set of state-modifying statements, while the pre-
condition in a runtime monitor is written out as a conditional
statement. We overcome this problem by using aspect-oriented
programming to detect the occurrence of the sequence of steps
corresponding to the state-modifying statements.

In order to investigate whether runtime monitors introduced
considerable runtime overheads, we used the number entry
keystrokes of medical device logs from 19 medical infusion
pumps that were running in a hospital for four years. We
simulated the key presses on our number entry simulator and
recorded the differences between running all the number entry
inputs with and without runtime monitors. The introduction



of the runtime monitors increased the total running time of the
simulations from 2ms to 167ms on a 2.4GHz processor and
8GB RAM. While this increase is substantial, the number is
still small in absolute terms (particularly since it represents
four years of pump usage) and therefore we do not expect it to
affect the responsiveness of number-entry systems.

In practice, the instrumented code would be used on the de-
vices themselves as a safer version of the firmware. With these
overheads, we envisage no performance issues that would
hamper such an approach.

RELATED WORK
The United States Food and Drug Administration (US FDA),
the regulatory body for approving medical devices for mar-
ket in the US, have been exploring the use of model-based
approaches for evaluating properties about medical device
safety [11]. Work by Zhang et al. [11] is focused on creating
a generic model of an infusion pump (without considering
models of data entry systems) while the work we present in
this paper goes into detail on number entry systems. Through
our use of runtime verification, we also add the extra assurance
that, during everyday use, systems work as specified.

Harrison et al. [5] and Masci et al. [8] use formal methods,
namely model checking and theorem proving in order to verify
interaction design properties of infusion pumps. Both these
approaches either require the code of the infusion pump or the
deduction of the system models through reverse engineering.
Because of Intellectual Property rights, obtaining source code
of infusion pumps is not straightforward, thus making it dif-
ficult to automatically model the system and verify that safe
interaction design properties hold within it. In our approach,
it is possible for either manufacturers or regulation bodies
such as the US FDA to monitor the software’s behaviour at
runtime. Using runtime verification techniques, it is possible
for manufacturers to keep their code unexposed and provide
an API with standardized method calls in order for an external
body, such as the US FDA, to be able to monitor the infusion
pump behaviour.

CONCLUSIONS AND FUTURE WORK
It is important to get user interaction design right, especially in
safety critical domains. The field of HCI is multidisciplinary —
psychologists, designers and computer scientists work together
to develop usable and useful software systems. For such a
field, a CNL such as Gherkin may be useful for bridging
the communication gap between non-technical experts and
software developers. In this work we have shown how a CNL
can be used to describe safety critical number entry systems
design properties and we discussed how we can test these
properties and monitor them at runtime. Since it is difficult to
have complete code coverage when testing a system, runtime
monitoring is very useful for critical systems. In this case,
runtime monitors continuously check that the system works
as it should, and if at runtime the program goes through an
execution path where one of the requirements does not hold, it
is logged and the device manufacturer can be notified.

For future work, we will be exploring the design of CNLs to
make them more suitable for the domain at hand, possibly with

inbuilt specialised concepts for the domain. In this work we
have seen how this process works for a safety critical number
entry systems and in the future we will be applying this to
a more complex use case such as that of a business critical
financial transaction system.
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Figure 3. Developer or test engineers populate the generated skeleton code (as seen in Figure 2) to interact with the system during automated testing

Figure 4. Monitoring using Aspect Oriented Programming

Figure 5. Setting flags


	Introduction
	Medical Device Number Entry Systems
	Specification as a communication medium
	Verifying the specification
	Runtime Monitoring
	Translating tests to runtime monitors
	Discussion

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References 

