

Systematic Automation of Scenario-Based Testing of User
Interfaces

José C. Campos1, Camille Fayollas2, Célia Martinie2, David Navarre2, Philippe Palanque2, Miguel Pinto1

1Universidade do Minho & HASLab/INESC TEC, Braga, Portugal

jose.campos@di.uminho.pt, mcpinto98@gmail.com
2ICS-IRIT, University of Toulouse, Toulouse, France

{fayollas, martinie, palanque, navarre}@irit.fr

ABSTRACT

Ensuring the effectiveness factor of usability consists in

ensuring that the application allows users to reach their goals

and perform their tasks. One of the few means for reaching

this goal relies on task analysis and proving the compatibility

between the interactive application and its task models.

Synergistic execution enables the validation of a system

against its task model by co-executing the system and the

task model and comparing the behavior of the system against

what is prescribed in the model. This allows a tester to

explore scenarios in order to detect deviations between the

two behaviors. Manual exploration of scenarios does not

guarantee a good coverage of the analysis. To address this,

we resort to model-based testing (MBT) techniques to

automatically generate scenarios for automated synergistic

execution. To achieve this, we generate, from the task model,

scenarios to be co-executed over the task model and the

system. During this generation step we explore the

possibility of including considerations about user error in the

analysis. The automation of the execution of the scenarios

closes the process. We illustrate the approach with an

example.

Author Keywords

Interactive systems, task models, model-based testing

ACM Classification Keywords

D.2.2 [Software] Design Tools and Techniques – User

interfaces & Computer-aided software engineering (CASE).

INTRODUCTION

The adoption of interactive computing systems in safety and

mission critical domains is increasing. Airplane cockpits and

medical devices are two examples where user interfaces are

becoming increasingly computer based. The design of these

interfaces, then, must be addressed having in mind that

failures might have unacceptable costs. Tools are needed

that, as much as possible, support automated analytical

analyses of the user interfaces of systems in order to

guarantee systematic and repeatable analysis.

In what follows we are particularly interested in analysing

the effectiveness of user interfaces (c.f., the definition of

usability in the ISO 9241-11 standard [8]). We argue that,

when taking all goals of a particular user with a particular

system into account, effectiveness is a required (even if not

sufficient) condition to achieve efficiency and satisfaction,

and hence, usability. We will show how effectiveness can be

analyzed analytically.

In order to assess effectiveness, what is needed is a

description of the goals and how the user is expected to

accomplish them in the system. This information can be

captured in a task model. Then, by determining the

compatibility of the system (design) with the task model, it

becomes possible to assess effectiveness.

The approach presented in [7] enables the interactive

checking of the compatibility of a task model with an

application by performing co-execution. This approach has

the advantage that it enables the exploration of the design,

but the fact that the co-execution is performed manually

means that the analysis cannot be exhaustive, except for the

simplest cases. In order to address this, the co-execution

needs to be automated. This implies both support to replay

scenarios and the automatic generation of relevant scenarios

for co-execution.

To achieve this, in this paper we resort to model-based

testing techniques to generate the scenarios for automatic

exploration. The proposed approach uses the task models as

input to generate both scenarios that comply with the

behavior prescribed by the task model, and scenarios that

incorporate possible erroneous behavior as deviations from

the normative behavior prescribed in the model. By feeding

back the scenarios for co-execution, it becomes possible to

assess the degree of support of the interactive system to the

task model.

By combining these two approaches for the Systematic

Automation of Scenario-Based Testing of User Interfaces,

this paper presents two major contributions:

1) An approach for ensuring the effectiveness of an

interactive application through: i) the automated generation

of test campaigns based on scenarios; ii) the automated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

EICS'16, June 21-24, 2016, Brussels, Belgium

© 2016 ACM. ISBN 978-1-4503-4322-0/16/06...$15.00

DOI: http://dx.doi.org/10.1145/2933242.2933256

testing of the application consistency with these scenarios;

thus assessing if the application enables the user to achieve

its goals.

2) An approach for ensuring task-application compatibility

through: i) the automated mutation of scenarios, generating

negative test cases; ii) the automated testing of the

application consistency with these scenarios; thus assessing

if the application enables more behaviors than the one

described by the task models (e.g. allowing actions

performed due to human error).

The reminder of the paper is structured as follows. The next

section provides a quick overview of related work on task-

application compatibility and Model-Based Testing of GUIs.

The third section describes a stepwise process to ensure both

efficiency and task-application compatibility of interactive

systems. The fourth section presents the tools that support

the proposed process. The fifth section presents the

application of the approach on an illustrative example from

airplane cockpits. The two last sections conclude this paper,

making explicit its benefits and limitations and highlighting

future work.

RELATED WORK

Ensuring Task-Application Compatibility

There have been mainly three different alternatives to assess

compatibility between task models and interactive

applications (i.e., ensuring that the application enables the

performing of all the tasks describe in the task models): i)

generating the application from the task model, ii) defining a

correspondence between a model of the application and the

task model and iii) coupling task models and interactive

applications.

Generation of Application from a Task Model

Many authors (e.g., the work of Manca et al. in [10]) have

followed and refined the work of ADEPT [22], assuming that

user interface design should be task centered and that it is

possible to generate an interactive application from task

models (while adding other ingredients such as UI guidelines

for instance). The main claim is that such a generation can

be done for different platforms thus reducing the

development costs. However, the main drawbacks are that it

is difficult to integrate design and craft knowledge in such

processes ending up with stereotyped user interfaces far

away (in terms of design and interaction techniques) from

leading edge applications.

Correspondence at models level

In [16], the author promoted that it was possible to integrate

task and system models. Approaches such as the one

proposed claim a full integration of system and task models,

thus enabling the verification of compatibility between them.

However, they require a lot of work to guarantee the

consistence between task models and system models (as

presented in [14] where such compatibility was assessed

through scenarios extracted from the task models and

executed on the system model). Another drawback is the

high development costs for the construction of the

application and interaction models; along with the fact that

such approaches are very different from current processes in

interactive application development (where Rapid

Application Developments toolkits are common practice);

thus limiting usually their use to safety critical applications.

Task Model and Interactive Application Coupling

Starting from the drawbacks of the two previous aternatives

to assess the compatibility between task model and

interactive applications, the authors of [11] proposed an

approach for coupling tasks models with an existing

interactive application (avoiding the need for an application

model). This approach enables, through the instrumentation

of the existing application and the use of a synergistic

module, to co-execute the application and the task model in

order to assess their compatibility. While this approach is

resolving many drawbacks from the previous ones (e.g.

suppressing the work associated with the creation of system

models and enabling the use of such approaches for non

safety critical applications), some drawbacks are still

remaining. The main one is the fact that the co-execution of

task models and interactive applications is done manually,

thus it does not guarantee a good coverage of the analysis

and it is very time consuming. The approach presented in this

paper aims at suppressing this drawback. To this end, the

proposed approach builds on the work in [11] and aims at

bringing to it the benefits of Model-Based Testing in order

to enable the automatization of the compatibility testing

between ask models and interactive applications.

Model-Based Testing of GUIs

Model-Based Testing (MBT) [21] is a black-box testing

technique that aims to verify if a software implementation of

a system complies with its specification (or model), focusing

on automated test generation. It allows test engineers to get

involved early in the development cycle. The basic idea is to

use an abstract model representing the system under test

(SUT) to generate test cases. These tests can then be run both

on the SUT and on the model (the oracle) and their results

compared.

The MBT process starts with the construction of an abstract

model of the SUT. From this model test cases are then

generated that represent how the system should behave. To

decide when enough test cases have been generated,

coverage criteria over the model can be used. The result of

this phase will be sequences of operations expressed over the

model and guaranteeing some specified coverage of the

model. These abstract test cases need to be transformed into

concrete test cases prior to being executed in the SUT. In the

next phase the tests are run. When applying MBT to

interactive systems, this typically involves instrumentation

of the SUT, as programmatic access to the user interface

controls is needed in order to both execute the test case and

analyze the output to the user. At the end of the process, an

analysis of the results is performed, making sure that they are

consistent with the expected results and highlighting any

inconsistencies found.

Memon was among the first to apply MBT to graphical user

interfaces [13]. He developed the GUITAR GUI testing

framework. GUITAR supports the model-based testing of

Java applications’ GUIs, from the generation of event-based

models from source code, to the generation of test cases in

the form of GUI event sequences, through to the execution

of these test cases on the Java application. Since then, a

considerable number of proposals have been put forward (see

[9] for a short review).

Several different directions have been explored. One

particular direction of work has been concerned with

improving the quality of the test cases; for example, through

appropriate coverage criteria, or through the reuse of test

strategies. An example of the latter is the work by Paiva et

al. on Pattern Based GUI Testing (PBGT) [18], promoting

the reuse of test strategies to test common behaviors on Web

Applications. The PARADIGM language was developed to

ease the modeling of the GUI patterns and support the

process. Bowen and Reeves explore the generation of

abstract tests from GUI design artifacts [3].

Other authors have explored different alternatives to

modeling. In order to alleviate the cost of producing models

to be used as oracles, Silva et al. [19] proposed the use of

task models as oracles. As task models typically represent

correct behavior only, later the use of mutations on the task

models to enables tests to cover user error was also explored

[1]. Lelli et al. [9], focused not on the cost but on the

expressiveness of the models proposing a modeling approach

able to deal with advanced multi-event GUIs.

Still, other authors focus on the integration of model-based

testing in the UI design and development process. Bowen

and Reeves explore the applicability of test-first

development (an approach similar to test-based

development, but using models of the requirements as the

basis for the tests) to GUI development [5].

A SYSTEMATIC APPROACH FOR SCENARIO-BASED
TESTING OF INTERACTIVE APPLICATIONS

Bringing together the idea of test case generation from

models of how the system should behave (task models in

particular), and the idea of co-execution of task models and

actual systems against usage scenarios, we propose a semi-

automated process to analyze task-application compatibility.

As presented in Figure 1, the process assumes a model-based

approach to systems development; more specifically, one in

which task models of the proposed systems are developed.

Hence, the inputs to the process are the implemented

interactive application (the SUT) and its associated task

models (to be used as the oracle).

The proposed approach is divided in two phases (see

Figure 1): the first phase aims at ensuring the effectiveness

of the interactive system; the second phase aims at ensuring

the compatibility between the interactive application and its

corresponding task models.

Interactive
application

Task models

Automatic
testing via

co-execution

Test results

Editing of
correspondences

between tasks
models and
application

Automatic
mutation of

scenarios

Automatic
scenarios

generation

Initial list of
normative
scenarios

Automatic
testing via

co-execution

Test results

Are all scenario
executions correct?

Phase 1: ensuring effectiveness

Phase 2: ensuring task-application compatibility

Re-design and
development of
the interactive

application

Task modeling

Correspondences

Check faulty partsErroneous
application

Erroneous
tasks models

List of scenarios with
incorrect execution

No

Yes

List of
mutated
scenarios

Automatic
categorization

of scenarios

List of normative
scenarios

List of non-
normative scenarios

Go to phase 2

Are all scenario
executions correct?

List of scenarios with
incorrect execution

No

Yes

To evaluation
and

deployment

Correspondences

Start phase 2

Interactive
application

Task models

Check faulty parts
Erroneous

tasks models
Erroneous
application

Inputs from phase 1

Initial list of
normative
scenarios

Figure 1. Process for validating the effectiveness of an interactive application and its compatibility with its task model

Phase 1: Ensuring Effectiveness of an Interactive
Application

This phase starts with two steps that can be performed

concurrently: the scenario generation and the

correspondence editing between interactive tasks from the

tasks models and their corresponding event sources and

renderers in the interactive application.

Scenario generation (“Automatic scenarios generation” in

Figure 1) leads to the extraction of scenarios from the tasks

models (“Initial list of normative scenarios” artifact in

Figure 1). These scenarios capture concrete sequences of

actions to be performed as described by the task model and

will be used as test cases.

Since task models are usually employed to capture normative

behaviors – i.e., they describe how a system is supposed to

be used – the extracted scenarios represent correct user

behavior. More than that, they represent how users are

expected to use the system.

The scenarios generated from the task models are

independent from any particular implementation (they

represent abstract test cases), so they cannot be directly

executed in a particular SUT. Prior to their execution, a

mapping between actions in the task models and

controls/widgets in the SUT must be defined (“Editing of

correspondences between tasks models and application”

step in Figure 1, explained below). Using this mapping,

scenarios are made to represent concrete test cases. Once that

is done, they can be executed.

The correspondence editing step relies on the approach

proposed by [7]. In this step, the developer has to instrument

the existing application in order to be able to co-execute it

with tasks models at run time. To achieve this goal, the

developer has to identify the event sources (list of events

related to the different widgets) and renderers (graphical

representation of data within widgets) of the application and

s/he is then in charge of putting these elements in

correspondences with the ones in the tasks models:

interactive input tasks may be connected to event sources and

interactive output tasks may be connected to renderers. This

step is iterative in order to allow the detection of wrong

correspondences. This checking can be done by executing

(and monitoring the execution) of a set of scenarios

representing 100% of the tasks in the task model. This set is

usually very limited as valued objects and preconditions do

not need to be taken into account.

Once the scenarios are generated and the correspondences

edited, an automatic scenario-based testing of the application

is done (“Automatic testing via co-execution” in phase 1 in

Figure 1). This step is achieved through the scenario-driven

co-execution of the scenarios and the interactive application

where the execution of the system is controlled by a step-by-

step execution of scenarios. This step results in a list of

scenarios execution results (“Test results” artifact in phase 1

frame in Figure 1). A normative scenario execution is

considered correct if all of its tasks have been performed

successfully on the application. Failure to perform a task can

be due to several reasons, as for instance:

 An incompatibility between the value of objects in the

interactive task and the system domain value (e.g., one

wants to enter the value “3.1”, but the widget accepts only

integer values);

 An incompatibility between the interactive task and the

enabling of widgets (e.g., trying to interact with a disabled

widget);

 An incompatibility between the interactive task and the

visibility of widgets (e.g., trying to interact with a invisible

widget);

 Tasks’ preconditions not being met (i.e., the task model

defines a precondition which is not met by the application).

The co-execution results must be analysed (“Are all scenario

executions correct” in phase 1 frame in Figure 1). Test cases

(scenarios) generated from the task model represent specific

instances of the oracle. Unless the correspondence between

the model and the SUT is incorrect, any mismatch (e.g., in

the availability, state or value of an interface element)

between what is defined in the test case and the SUT can then

be considered as SUT errors. Therefore, if the execution of

one or more scenarios is not successful, an inconsistency is

detected: the application did not allow the completion of one

of the tasks specified by the task model; the effectiveness of

the application is thus not observed. In this case, the

developer has to check whether the error comes from an error

within the task model or within the application (“Check

faulty parts” in phase 1 frame in Figure 1). In the first case,

the tasks models need to be amended in order to correct the

error (loop back to the step “Task modeling” on the left-hand

side in Figure 1). In the second case, the application design

needs to be amended in order to enable the completion of this

task (loop back to the step “Re-design and development of

the interactive application” on the left-hand side in Figure 1).

When all the scenario executions are correct, the

effectiveness of the application is ensured by the fact that the

application enables the completion of all the tasks that need

to be accomplished by the user; phase 1 is then finished and

phase 2 can start (“Go to phase 2” in phase 1 frame in

Figure 1).

Phase 2: Ensuring Task-Application Compatibility

The inputs to this second phase are of two types:

 First, the same inputs than to phase 1: the tasks models and

the interactive application, both of them being corrected

by the accomplishment of phase 1 (“Tasks models” and

“Interactive application” in Figure 1);

 Second, coming from the outputs of phase 1: the scenarios

that have been generated during that first phase (“Initial

list of normative scenarios” in Figure 1) and the

correspondences between interactive tasks and event

sources and renderers (“Correspondences” in Figure 1).

Please note that in order to highlight the fact that all of these

inputs are coming from the process, we have chosen to

represent them a second time, with dotted lines, in Figure 1.

Restricting analysis to the normative scenarios that can be

obtained from the task model would weaken the analytic

power of the approach. However, considering all possible

user behaviors for co-execution would be unfeasible. Hence,

to enable the exploration of non-normative behaviors,

scenarios are subject to a number of mutations that intend to

capture possible user errors as deviations from the norm. The

first step of phase 2 consists in generating mutated scenarios

(“Automatic mutation of scenarios” step in phase 2 frame in

Figure 1).

The specific type of mutations to be used is not a prerequisite

of the proposed approach and might be influenced by, for

example, the application domain. For illustration purposes

we follow Reason’s [17] classification and consider possible

mutations that might be applied on the test cases for the three

types of user error: Slips, Lapses and Mistakes. Slips and

lapses are skill-based errors where the user’s intention is

correct but the execution of the action flawed due either to

attention (slips) or memory (lapses) failure. Slips might be

represented by mutations that change the order of action

execution, or the control that is activated. Information about

user interface layout will be useful here. To represents

lapses, we can introduce mutations that omit or repeat

actions. Mistakes are knowledge-based errors. Their impact

in the execution of the tasks is more profound as they might

imply selecting the wrong strategy (task) to achieve some

goal in a particular situation (e.g., due to mode errors). Since

in this case the scenarios capture the execution of predefined

tasks, they contain no choice steps, nor any information on

alternatives. That information is present at the task model

only. Hence, mutations to represent mistakes will range from

changing the values input by the user, to represent situations

where the user chooses the wrong input value for a particular

situation, up to replacing whole scenarios, to represent

situations where the user chooses the wrong strategy for the

goal. While these mutations are by no means exhaustive,

they provide a first approach to reason about the impact of

user error on the user interface.

Once the mutated scenarios are generated (“List of mutated

scenarios” in Figure 1), we have to take into account the fact

that some of the mutated scenarios might be normative

scenarios while the other will be non-normative ones.

Therefore, for each mutated scenario, we have to categorize

it within these two types, in order to be able to know if their

execution on the interactive application must be successful

(for the normative ones) or not (for the non-normative ones).

This categorization is accomplished through the automatic

running of all mutated scenarios on the tasks models

(“Automatic categorization of scenarios” step in Figure 1).

If a scenario can be executed on the tasks models it is

normative, otherwise, it is non-normative. This step thus

leads to two pools of scenarios: the normative ones and the

non-normative ones (“List of normative scenarios” and “List

of non-normative scenarios” in the phase 2 frame in

Figure 1).

Once the mutated scenarios have been categorized, the

automatic scenario-based testing of the application is

performed once again (“Automatic testing via co-execution”

in phase 2 frame in Figure 1); leading to a list of test cases

execution results (“Test results” in phase 2 frame in

Figure 1).

As for phase 1, the test results need to be analysed (“Are all

scenario executions correct” in phase 2 frame in Figure 1).

In this case the notion of correctness of a scenario execution

(a test case) depends on whether it is a normative or a non-

normative one. Indeed, unlike for phase 1, mismatches

between mutated test cases and the SUT do not necessarily

represent an implementation error. In many cases the goal

will be that the mutated test case not be accepted by the SUT.

To address this distinction, the concept of positive and

negative tests must be introduced. Positive tests are those that

exercise correct usages of the system. The sequence of

actions and the values input are correct and so the SUT

should behave according to what is prescribed in the task

model. They are typically generated directly from the oracle,

but can also result from mutations of the test scenarios that

produce normative (acceptable) behaviors. Negative tests

represent user errors, either intentional or not, and they

enable checking the SUT’s error handling and recovery. For

negative tests, if the SUT is unable to carry out the test (e.g.,

an error message is produced, or the execution of the next

action is not possible) the test is considered as passed. If the

SUT accepts the invalid test, then there may be an

implementation error that needs to be investigated.

Mutations of test cases can usually seen as negative tests.

Therefore, this step leads to a list of scenarios with incorrect

execution (“List of scenarios with incorrect execution” in

phase 2 frame in Figure 1), containing two types of scenarios:

 Normative scenarios that lead to a negative test (their

execution on the interactive application have not been

successful when they should have been);

 Non-normative scenarios that lead to a positive test (their

execution on the interactive application have been

successful while they should not have been).

For normative scenarios, as for phase 1, the developer has to

check whether the error comes from an error within the task

model or within the application (“Check faulty parts” in

phase 1 frame in Figure 1), leading to the amendment of the

task model in the first case or to the amendment of the

interactive application in the second case (loop back to the

step “Task modeling”, and loop back to the step “Re-design

and development of the interactive application” on the left-

hand side in Figure 1) and thus contributing to guarantying

the effectiveness of the interactive application.

For non-normative scenarios, the “Check faulty parts” step

consists in analysing the error and deciding if the faulty

behavior should be allowed by the interactive application. In

that case, the tasks models must be amended in order to

present this behavior within the user tasks (loop back to the

“Task modeling” step in top left-hand side in Figure 1).

Otherwise, the interactive application is embedding a

behavior that should not be implemented (e.g., a ATM

system allowing the user to take the cash before taking the

card, when the task model specifies the inverse order of

events). In that case, the application must be amended to

suppress this behavior (loop back to the “Re-design and

development of the interactive application” step in Figure 1).

Once all the mutated scenario executions are correct, the

task-application compatibility is ensured through the fact

that the application is not allowing more interactions than the

ones described in the tasks models.

A TOOL-SUPPORTED PROCESS

The process above can be carried out using a combination of

existing tools.

HAMSTERS Task Modeling

HAMSTERS [12] is a tool-supported graphical task

modeling notation for representing human activities in a

hierarchical and ordered manner. At the higher abstraction

level, goals can be decomposed into sub-goals, which can in

turn be decomposed into activities. The output of this

decomposition is a graphical tree of nodes. Nodes can be

tasks or temporal operators.

Figure 2. High-level Task Types in HAMSTERS

Tasks can be of several types (see Figure 2) and contain

information such as a name, information details, and

criticality level. Only the single user high-level task types are

presented here but they are further refined. For instance the

cognitive tasks can be refined in Analysis and Decision tasks

and collaborative activities can be refined in several task

types. Temporal operators (presented in Table 1) are used to

represent temporal relationships between sub-goals and

between activities. Tasks can also be tagged by temporal

properties to indicate whether or not they are iterative,

optional or both.

The HAMSTERS notation and tool provide support for task-

system integration at the tool level by structuring a large

number and complex set of tasks, introducing the mechanism

of subroutines and generic components, and describing data

that is required and manipulated in order to accomplish tasks.

Table 1. Temporal Ordering Operators in HAMSTERS
Operator type Symbol Description

Enable T1>>T2 T2 is executed after T1

Concurrent T1|||T2 T1 and T2 are executed at the same time

Choice T1[]T2 T1 is executed OR T2 is executed

Disable T1[>T2 Execution of T2 interrupts the execution of T1

Suspend-

resume
T1|>T2

Execution of T2 interrupts the execution of T1, T1

execution is resumed after T2

Order

Independent
T1|=|T2 T1 is executed then T2 OR T2 is executed then T1

Scenario Generation with TOM

For scenario generation we resort to the TOM tool. TOM’s

goal is to support a task-based model-based testing approach.

An initial version was described in [19]. That version was

restricted to CTT task models and MSWindows applications.

Since then the tool has been re-implemented as a modular

framework with the goal of making it more flexible. In this

new version, each step of the model-based-testing process is

performed by a dedicated module, with the dependencies

between modules being restricted to the input and output file

formats used by the different modules. The current version

of TOM can interface with different task modeling notations,

provided a module to translate the task model into its internal

presentation is available. It can also generate test cases in

different formats.

In this case, in order for the modules to be used, the

HAMSTERS task models must be translated to the state

machine notation used by TOM to represent oracles. This is

done by defining each state in the state machine as the set of

possible tasks in the model at a given instant. At the moment

this translation is done resorting to the simulation features of

the HAMSTERS tool.

The state machine is then traversed to generate test cases.

TOM generates both valid test cases and mutated test cases,

thus supporting both phases of the process (Effectiveness

insurance and Compatibility insurance). The mutations

currently supported by TOM include changing the order of

action execution, omitting actions, or changing the input

values to be used. Once the test cases have been produced

they need to be translated into Hamsters’ scenario notation

for co-execution.

Scenario-Based Testing of an Application with TOUCAN

For the scenario-based co-execution, we rely on the

TOUCAN tool. TOUCAN is a set of modules that extends

Netbeans IDE. TOUCAN’s architecture follows the

synergistic framework that has been presented in [11]. It

includes two HAMSTERS modules for task model editing

and simulation and modules for connecting and co-executing

task models with an interactive application.

Editing of Correspondences between Tasks and Widgets

TOUCAN enables one to define correspondences between

interactive tasks and event sources and renderers. This

support is achieved through the automatic extraction of

interactive input and output tasks in the HAMSTERS task

models and the automatic extraction of event sources and

renderers from annotated applications using Java

technology. These elements are presented in an editor that

enables the user to put them in correspondence. This editor

also presents a view of the correspondence coverage, thus

allowing one to check the completeness of the defined

correspondences. An example of the use of such editor can

be found in [7].

Scenario-based Testing

Once the correspondence between interactive tasks and event

sources and renderers is completed, the TOUCAN tool

provides three different means for the co-execution between

the interactive application and its task models:

 Task-Model driven co-execution: in this case, the

execution of the system is controlled by the task model;

when an interactive task (which has been included in the

correspondence file) is performed by the HAMSTERS

simulator, the corresponding event handler is fired within

the interactive application.

 System driven co-execution: in this case, the execution of

the system is controlled by the user; user actions are linked

to the corresponding interactive tasks from the task model

and a user action on the interactive application changes the

state of the task model simulation.

 Scenario driven co-execution: in this case, the execution

of the system is controlled by a step-by-step execution of

a scenario.

As said previously, we are interested here in scenario driven

co-execution. This feature takes as inputs one or several test

campaigns (composed of a list of HAMSTERS scenarios) and

automatically runs all of them, step by step, on the

application using the co-execution. The results of this test

campaign consist in a report about the successful execution

of all scenarios in the test campaign. A scenario execution is

considered successful if all of its tasks are completed

successfully on the application. On the contrary, a scenario

running is considered not successful if one of its tasks

execution is not successful. A task execution is not

successful in case of an incompatibility between this task and

the state of the interactive application.

ILLUSTRATIVE EXAMPLE

This section illustrates the application of the proposed

approach on an example that has been extracted from a case

study in the avionics application domain. While the example

is necessarily small, it represents a specific case of safety and

mission critical applications and its features are enough to

demonstrate the approach and its capabilities.

a) b)

Figure 3. EFIS control panel (with (b) and without (a) the

activation of the weather radar)

Presentation of the FCU Software

In interactive cockpits, the Flight Control Unit (FCU) is a

hardware panel composed of several electronic devices (such

as buttons, knobs, displays,…). It allows crew members to

interact with the Auto-Pilot and to configure flying and

navigation displays. The FCU Software is considered as a

graphical interactive application for replacing the FCU

hardware panel by graphical interfaces. It is composed of two

interactive pages:

 EFIS_CP: Electronic Flight Information System Control

Panel for configuring piloting and navigation displays.

 AFS_CP: Auto Flight System Control Panel for the setting

of the autopilot state and parameters.

For example, this application is displayed on two of the eight

cockpit LCD screens in the Airbus A380, one for the Captain

and the other for the First Officer. The crew members can

interact with the application via the Keyboard and Cursor

Control Units which gather in a single hardware component

a keyboard and a trackball.

The EFIS Control Panel is depicted in Figure 3 (with and

without the activation of the Weather Radar). The left panel

is dedicated to the configuration of the Primary Flight

Display while the right panel is dedicated to the

configuration of the Navigation Display; enabling the

display of several navigation information and allowing to

choose the display mode and scale.

Task model for the goal

In this paper, we will focus on the different activities that

have to be performed to check the weather and verify if

thunderstorms are on the flight route of the aircraft.

The HAMSTERS task model corresponding to this activity

is presented in Figure 4. This task is divided in two tasks: the

first one is to check if a thunderstorm is going to cross the

aircraft route (abstract task “Check for thunderstorm” in

Figure 4) and the second one is to change the aircraft route if

necessary (abstract task “Avoid thunderstorm” in Figure 4).

It is important to note that, to simplify the reading of this task

model, we choose to fold some of the tasks; a folded task is

indicated by a symbol (e.g. abstract task “Avoid

thunderstorm” in Figure 4).

In order to check if a thunderstorm is going to cross the

aircraft route, the pilot must, after displaying the EFIS_CP

page if this page was not the one displayed (abstract task

“Display EFIS_CP” in Figure 4), check if the weather radar

is activated (abstract task “Ensure that Weather Radar is

activated” in Figure 4). Once the Weather Radar is activated,

the pilot can analyse the weather condition in front of the

plane (abstract task “Build mental image of weather

condition in front of the plane” in Figure 4) by configuring

the Navigation Display (abstract task “Configure ND” in

Figure 4) while analysing the situation (user task “Analyse

situation” in Figure 4).

When the pilot decides that s/he has a correct image of the

weather condition (user task “Decide that mental image of

weather condition in front of the plane is built” in Figure 4),

s/he must then decide whether the aircraft route is correct or

whether it should be modified (abstract task “Avoid

thunderstorm” in Figure 4).

Scenario Generation

Following the process, a state machine representation of the

task model was first generated. This involved using the

simulator to explore the model, taking note of the sets of

available tasks at each step. Once this was done, TOM was

then used to automatically generate test cases (paths over the

state machine) and translate them to HAMSTERS executions

scenarios. The number of generated test cases depends on the

algorithms used. Applying a shortest path algorithm between

the start and end of the task generated 1176 test cases. The

export feature was added to TOM in order to support the

approach. Figure 5 presents (an excerpt of) a generated

execution scenario.

Similarly, mutated test cases could be generated and

translated into HAMSTERS scenarios. TOM has two modes

Figure 4. HAMSTERS task model for “Check for thunderstorm and avoid them if necessary” task

of operations regarding mutations. The tool can be used in

random mode, in which cases mutations are randomly

introduced in the test cases, or specific mutations can be

selected for application.

Scenario-Based Testing of the Interactive Application

Once the task model and the scenario are loaded into the tool,

execution proceeds autonomously. In this case, the scenario

from Figure 5 was completed successfully, meaning the

application supports the execution of that particular variation

of the task execution (each scenario capture a possibility of

carrying out the task).

To illustrate the situation of a failed test, we can consider that

user interface mode changes and dynamic function allocation

are two aspects that can interfere with how a user expects to

use a system. They can lead to erroneous interpretation of the

behavior of the system and/or automation surprises.

Regarding the GUI they will affect how the system responds

to user actions, but also what user actions are possible at any

given moment. For illustration purposes, we changed the

application to disable the WX button so that no interaction

could be performed anymore on this button. The new running

of the test campaign containing the scenario presented in

Figure 5 leads to the results presented in Figure 6. The figure

depicts a screenshot of the test campaign, using TOUCAN,

showing the user interface on the right and the co-execution

panel on the left. This panel is further divided in two parts.

The left part shows the list of scenario present in the test

campaign. Each scenario is associated with a green symbol

() if its running has been successful, or with a red symbol

() if its running has failed. In that case, the concerned

scenario execution (“Scenario 3”) has failed.

The right part shows the task list of the selected scenario

(here “Scenario 3”). The successful tasks are highlighted in

green. If a task is not successful, it is highlighted in red, the

co-execution then stops and the tasks that have not been

executed are highlighted in grey. It can be seen that

“Scenario 3” failed due to the fact that interactive input task

“Click on WX button” cannot be performed on the

application.

DISCUSSION

We can identify two contributions of the work reported in

this paper: a stepwise process for ensuring the effectiveness

of an application by analyzing task-application

compatibility; an instantiation of that process with a concrete

set of tools. The process assumes a model-based approach to

interactive systems development, assuming task models will

be available. Variations on this generic process can be

envisaged. For example, for approaches based on state

machines representations of the user interface (e.g., [1, 3,

19]) the generation of the test cases could be done directly

from those state machines, although the notion of normative

and non-normative behavior provided by task models would

be lost.

Figure 5. Extract of one of the generated scenarios

Figure 6. Results of the test campaign while the WX button has been disabled in the FCUS application

The proposed instantiation supports the semi-automated

analysis of Java applications against their task models,

expressed in HAMSTERS, in a manner that would be

unfeasible manually. The tool set used, however, inevitably

presents restrictions both in terms of the supported

technology, and their support to the process.

Regarding the former, the main restriction is the co-

execution component. TOUCAN currently supports Java

applications. However, the concepts remain the same with

any other technology.

Regarding the latter, at the moment, both the generation of

(mutated) scenarios, as well as the execution of test

campaigns composed of several scenarios are automated.

However, some steps still needs to be performed manually

that might represent bottlenecks. One is bridging from

HAMSTERS to TOM; i.e., the generation of the state

machine representation of the task model. A viable solution

to automate this step seems to be to automate the execution

of the simulator, so that it will automatically explore all

possible tasks, taking note of the available tasks at each step

of the process. The information thus gathered will then be

exported as a state chart model. This automation would

enable to complete the automation of the process, leading to

the ability to deal with more complex task models. Another

approach to investigate this issue could be to build upon the

work that has been done with CTT [14].

Regarding the scenario generation phase, the main manual

step is the analysis of test results. Given the high number of

test cases that can be automatically generated and tested, this

task can grow rapidly. One solution to this problem is to

improve the quality of the generated test cases. This can be

done by exploring adequate coverage criteria for non-

mutated test cases, in particular whether information from

the task model might be used to define coverage criteria, and

by improving the quality of the mutations, thus also

improving the coverage of the test cases.

One relevant aspect that needs to be addressed when

considering an approach such as the one proposed here is

how to deal with false positive and false negative results. In

this regard, the approach has two main potential sources of

problems. One is the task model itself. If the model is

incorrect, test cases will not represent the intended usage of

the system. It should be noted that the model is an input to

the process, so it is assumed the model is correct. In any case,

negative results will prompt analysis of the test cases and

SUT helping in correcting not only the SUT but also the task

model (via the test cases generated from it). False positives

are harder to identify as they represent a silent failure.

Another is the correspondence between model and SUT.

Here, failures will typically correspond to failures in the co-

execution, making them easier to identify. Additionally, tool

support further reduces the opportunity for such errors.

CONCLUSION

This article presented a stepwise process for ensuring the

effectiveness of an application by analyzing task-application

compatibility. The proposed approach builds on a synergistic

approach, enabling the coupling of task models and

interactive applications, and brings to it the benefits of MBT

in order to automate the scenario-based testing of interactive

application, thus ensuring a less expensive (and less time

consuming) test phase to check the consistency between task

models and interactive applications, guaranteeing at the same

time better test coverage. The application of a proposed

instantiation of this process on an example from aircraft

cockpits has been presented.

The proposed approach aims to be generic. The tool set used

to illustrate it, however, inevitably presents restrictions.

These relate to both the technology that might be used for

applications development, and the support given to the steps

the process. Current limitations have been discussed and

opportunities for further work identified. These range from

automating steps that are at the moment done manually, such

as the generation of states machines from task models, to

improving the generation of mutated scenarios. Currently the

mutation strategies used in TOM are rather simple. One

potential advantage of using HAMSTERS, is the fact that

task models can be enriched with information about the

objects being manipulated and the errors that might be

expectable from the users at each step in the interaction [6].

Using this information will enable a more powerful

exploration of variations on the prescribed user behavior,

thus improving the quality of the test suites being generated.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

helpful comments on the original version of this paper.

José Campos acknowledges support from project "NORTE-

01-0145-FEDER-000016", financed by the North Portugal

Regional Operational Programme (NORTE 2020), under the

PORTUGAL 2020 Partnership Agreement, and through the

European Regional Development Fund (ERDF).

REFERENCES

1. Appert, C. and Beaudouin-Lafon, M. SwingStates:

adding state machines to Java and the Swing toolkit.

Software: Practice and Experience 38, 11 (2008), 1149-

1182.

2. Barbosa, A., Paiva, A. and Campos, J.C. Test case

generation from mutated task models. Proc. ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS 2011), ACM Press (2011),

175-184.

3. Blanch, R. and Beaudouin-Lafon, M. Programming rich

interactions using the hierarchical state machine toolkit.

Proc. Working Conference on Advanced Visual

Interfaces (AVI '06). ACM Press (2006), 51-58.

4. Bowen, J. and Reeves, S. UI-design driven model-based

testing. Innovations in Systems and Software

Engineering, 9, 3 (2013), 201-215.

5. Bowen J. and Reeves S. UI-driven test-first

development of interactive systems. Proc. 3rd ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS 2011). ACM Press (2011),

165-174.

6. Fahssi, R., Martinie, C. and Palanque P. Enhanced Task

Modelling for Systematic Identification and Explicit

Representation of Human Errors. Proc. IFIP TC13

INTERACT 2015, vol. 9299 of Lecture Notes in

Computer Science, Springer (2015), 192-212.

7. Fayollas, C., Martinie, C., Navarre, D. and Palanque, P.

A Generic Approach for Assessing Compatibility

Between Task Descriptions and Interactive Systems:

Application to the Effectiveness of a Flight Control

Unit. i-com 14, 3 (2015), 170–191.

8. ISO 9241-11: Ergonomic requirements for office work

with visual display terminals (VDTs) - Part 11:

Guidance on usability (1998).

9. Lelli, V., Blouin, A., Baudry, B. and Coulon, F. On

Model-Based Testing Advanced GUIs. Proc. 2015 IEEE

8th Intl. Conf. Software Testing, Verification and

Validation Workshops (ICSTW), 11th Workshop on

Advances in Model Based Testing (A-MOST), IEEE

(2015).

10. Manca, M., Paternò, F., Santoro, C. and Spano, L. D.

Generation of multi-device adaptive multimodal web

applications. Proc. Mobile Web Information Systems

(MobiWIS 2013), vol. 8093 of Lecture Notes in

Computer Science, Springer (2013), 218-232.

11. Martinie, C., Navarre, D., Palanque, P. and Fayollas, C.

A generic tool-supported framework for coupling task

models and interactive applications. Proc. 7th ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS 2015). ACM Press (2015),

244-253.

12. Martinie, C., Palanque, P. and Winckler, M. Structuring

and Composition Mechanism to Address Scalability

Issues in Task Models. Proc. IFIP TC13 INTERACT

2011, vol. 6948 of Lecture Notes in Computer Science,

Springer (2011), 589-609.

13. Memon, A.M. A Comprehensive Framework For

Testing Graphical User Interfaces. PhD thesis,

University of Pittsburgh, 2001.

14. Mori, G., Paternò, F. and Santoro C. CTTE: Support for

Developing and Analyzing Task Models for Interactive

System Design. IEEE Trans. Software Eng. 28, 8

(2002), 797-813.

15. Navarre, D., Palanque, P., Paternò, F., Santoro, C. and

Bastide, R. A Tool Suite for Integrating Task and

System Models through Scenarios. Proc. DSV-IS 2001,

vol. 2220 of Lecture Notes in Computer Science,

Springer (2001), 88-113.

16. Palanque, P., Bastide, R. and Sengès, V. Validating

interactive system design through the verification of

formal task and system models. Proc. IFIP TC2/WG2.7

Work. Conf. on Eng. for Human-Computer Interaction

(EHCI 1995), Chapman & Hall (1995), 189-212

17. Reason, J. Human error. Cambridge University Press,

1990.

18. Rodrigo, M., Moreira, L.M. and Paiva, A. PBGT tool:

an integrated modeling and testing environment for

pattern-based GUI testing. Proc. 29th ACM/IEEE Intl.

Conf. on Automated Software Engineering (ASE '14),

ACM (2014), 863-866.

19. Rossignol, V. SCADE Display® for the Design of

Airborne and Ground-Based Radar Human-Machine

Interfaces (HMIs). Infowaves 11, 4 (2014).

20. Silva, J.L., Campos, J.C. and Paiva A. Model-based user

interface testing with Spec Explorer and

ConcurTaskTrees. Electronic Notes in Theoretical

Computer Science 208, (2008), 77-93.

21. Utting, M. and Legeard, B. Practical Model-Based

Testing: A Tools Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2007.

22. Wilson, S., Johnson, P., Kelly, C., Cunningham, J. and

Markopoulos, P. Beyond hacking: A model based

approach to user interface design, People and computers

VIII, Proc. HCI 93, Cambridge University Press, BCS

HCI (1993), 217-231.

