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ABSTRACT
Real-time analytics of anomalous phenomena on streaming data
typically relies on processing a large variety of continuous outlier
detection requests, each configured with different parameter set-
tings. The processing of such complex outlier analytics workloads
is resource consuming due to the algorithmic complexity of the out-
lier mining process. In this work we propose a sharing-aware multi-
query execution strategy for outlier detection on data streams called
SOP. The key insight of SOP is to transform the problem of han-
dling a multi-query outlier analytics workload into a single-query
skyline computation problem. SOP achieves minimal utilization of
both computational and memory resources for the processing of
these complex outlier analytics workload.
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1. INTRODUCTION
Motivation. Nowadays, data-intensive stream monitoring appli-

cations ranging from credit card fraud detection, network intrusion
prevention, stock investment tactical planning to telephone fraud
detection necessitate the extraction of outliers from huge volumes
of stream data in a near real-time fashion.

In recent years distance-based outlier methods [7, 10, 2, 4] have
been widely adopted for the detection of outliers in high volume
stream data due to their simplicity and insensitivity to concept drift.
In the distance-based outlier model initially proposed in [7] an ob-
ject O is considered as an outlier if it has fewer than k neighbors in
the dataset D, where a neighbor is defined to be any other object in
D that is within a distance range r from object O.

To discover abnormal phenomena from streaming data using this
model of distance-based outliers, a set of input parameters have to
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be specified by the analyst. For example, when monitoring the po-
tential credit fraud in bank transaction streams, analysts may look
for unusual transactions whose values in recent days significantly
differ from those of the majority of transactions made by peers at
similar income levels. To detect such outliers utilizing the distance-
based outlier technique, several parameter values have to be appro-
priately set. These include the r parameter that defines the notion of
significance in transaction value dissimilarity and the k parameter
that determines the majority of the peer transactions. In addition
sliding window semantics [3] need to be applied to ensure that the
outliers are continuously detected based on the most recent portion
of the input stream only. Out-of-date information is typically no
longer relevant for the interpretation of the recent outlier detection
results. Thus it should be purged from the active stream window.
Therefore the sliding window specific parameters, such as the win-
dow and slide sizes, also have to be specified by the analyst.

A stream outlier detection system may need to handle a large
number of such parameterized queries for a variety of reasons.
First, multiple analysts monitoring the same input stream may sub-
mit their outlier search requests with different parameter settings.
Even a single data analyst may submit multiple queries with distinct
parameter settings, because determining apriori the most effective
input parameters is difficult � if not impossible � especially when
faced with an unknown or widely fluctuating input stream. Further-
more, each analyst may provide their own personalized understand-
ing of what the “most recent” portion of the data means. Hence
they may submit multiple outlier detection requests with different
window related parameter settings.

Thus, a stream processing system must be able to accommodate
a large outlier analytics workload, and thus striving to capture the
most valuable outliers in the stream.

Limitations of the State-of-the-Art. Although efforts have been
made in developing efficient algorithms for distance-based outlier
detection on data streams [6, 8, 1], these algorithms focus on han-
dling one single outlier request with a fixed parameter setting. The
simultaneous execution of multiple requests with varying pattern
and window specific parameters remains largely unexplored.

Our Proposed SOP Approach. In this work we propose an
innovative approach, called SOP, that efficiently handles an outlier
analytics workload composed of a large number of outlier detection
requests with arbitrary parameter settings, while still guaranteeing
that each data point is processed only once.

Our contributions include: 1) Our SOP framework is the first to
tackle the problem of shared execution of multiple outlier requests
with arbitrary pattern and window specific parameters in the stream
context. 2) The key innovation of SOP is to transform the multi-
query outlier problem into a single-query skyband problem. The
output of the skyband query is proven to be minimal yet sufficient
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for determining the outlier status of each point for any parameter
setting on the workload. 3) Our customized skyband algorithm is
tuned to process outlier requests with diverse parameter settings.
K-SKY is proven to be optimal in the number of points being eval-
uated. 4) Leveraging the commonality and dominance among the
data populations, we are able to utilize one specific skyband query
to support multiple queries with varying window specific parame-
ters. By this full sharing is achieved across the query windows.

2. PROBLEM DEFINITION
We use qi(ri , ki) to denote the outlier detection query qi with ri

and ki the distance range and neighbor count thresholds.
We focus on periodic sliding window semantics as proposed by

CQL [3]. Each query qi has a window size qi .win and a slide size
qi .slide . Each window Wc of qi has a starting time Wc .Tstart

and an ending time Wc .Tend = Wc .Tstart + Q .win . Periodically
the current window Wc slides, causing Wc .Tstart and Wc .Tend

to increase by qi .slide . The arrival time of point p is denoted as
p.time . If Wc .Tstart  p.time < Wc .Tend , p falls into Wc.

Outliers will be generated based on the points that fall into the
current window Wc, also called the population of Wc. A point p
in Wc might have a different outlier status (outlier or inlier) in the
next window Wc+1, since each window has a different population.

Definition 1. Distance-Based Outlier Detection In Sliding Win-
dows. Given a stream S, a streaming distance-based outlier detec-
tion query qi(ri , ki ,wini , slidei), qi continuously detects and out-
puts the outliers in the current window Wc after the window slides
from the previous to the current window Wc.

Multiple Outlier Detection Optimization. Outlier detection re-
quests on the same input stream can have arbitrary settings on all
four parameters r, k, win, and slide. The set of outlier requests qi

that must be concurrently processed is denoted as query group Q.
Each query qi in Q is called a member query of Q. Our goal is to
minimize both the processing time and the memory space needed
to answer all queries in a large outlier analytics workload.

3. VARYING THE DISTANCE-BASED OUT-
LIER PARAMETERS

In this section we first introduce our transformation of processing
a workload composed of queries with varying r but fixed k param-
eters into a skyband query. Then we present our K-SKY algorithm
that supports such skyband query with optimality. Next we extend
K-SKY to handle outlier detection queries with arbitrary k and r
parameters. In this section we assume all queries share the same
sliding window parameters win and slide.

3.1 From Multi-Query Outlier Workloads to
Single Query Skyband Processing

Given a query group Q with varying r but fixed k parameters, the
goal is to design an approach that supports all member queries in
Q with each point p of data stream S processed only once in each
current window Wc. The key insight here is that given such a query
group Q and one data point p in current window Wc of stream S,
the output of one single customized K -skyband query is sufficient
yet necessary to determine the outlier status of p with respect to all
queries in Q.

K -skyband query is a generalization of the well known skyline
concept. As defined in [9] a K -skyband query reports all points
that are dominated by no more than K points. The case K = 0
corresponds to a conventional skyline.

To map our problem of determining the outlier status of a given
point p to the K -skyband problem, we have to similarly define
the domination relationship between any pair of data points in the
dataset DWc , i.e., the population of the current window Wc. The
key observation here is that given any two points pi and pj , two
key factors, namely their relative arrival time and the distance to
the point p under evaluation, determine whether pi is more impor-
tant than pj in terms of evaluating the outlier status of p.

Let us introduce a query group Q used in the remainder of this
section. Assume we have a query group Q: {q1(r1),q2(r2),...,
qm(rm), qm+1(rm+1), ..., qn(rn)}, where rm represents the r pa-
rameter of query qm . The r parameter of q1, q2,...,qn monotonically
increases, that is, r1 < r2 < ... < rm < rm+1 < ... < rn.

Distance Dimension. In distance-based outlier definition, points
in a dataset D are classified either as outliers or inliers. Thus, the
process of identifying outliers in D is equivalent to the process of
finding and eliminating inliers from it. p is guaranteed to be an
inlier once k neighbors are acquired in D. Given two points pi and
pj , assume dist(pi , p) < rm < dist(pj , p) < rm+1. Then pi is
the neighbor of p with respect to query subset Qi = {qm, ...,qn},
while pj is the neighbor of p only with respect to query subset Qj

= {qm+1, ...,qn}. Qi �Qj . In other words pi satisfies the neighbor
requirement of more queries than pj . For the evaluation of p, pi

is more important than pj , because pi makes the outlier status of p
closer to be determined with respect to all queries in Q than pj . In
this perspective pi dominates pj .

On the other hand, assume rm < dist(pi , p) < dist(pj , p) <
rm+1. Then pi and pj are both neighbors of p for the same set of
queries {qm+1, ..., qn}. In this scenario pi and pj equally affect
the outlier status of p although dist(pi , p) 6= dist(pj , p). Based on
this observation we now are ready to re-define the distance function
dist(p, pi) so to normalize the distance between data points. The
original distance function is denoted as disto(p, pi) instead.

Definition 2. Given a query group Q: {q1 (r1 ), q2 (r2 ), ...,
qm(rm), qm+1 (rm+1 ), ..., qn(rn)} with r1 < r2 < ... < rm <
rm+1 < ... < rn , dist(p, pi) = m + 1 if rm < disto(p, pi) 
rm+1 for 0  m  n with r0 defined as -1 and rn+1 as1.

This new normalized distance calculated using Def. 2 now ac-
curately represents the importance of each data point to p.

Time Dimension. In the streaming context the presence of the
time dimension further complicates matters. In particular we can-
not simply claim that one data point pi closer to p impacts the status
of p more than the other points. Instead the arrival time of the data
points also has to be taken into consideration. A point pi that ar-
rived later in the window may have a more decisive impact on the
outlier examination process compared to an earlier arriving pj even
if pi is not closer to p than pj . This is so because the younger a data
point pi is, the longer its neighbor relationships (if any) with p will
persist into the future.

Domination Relationship. We now define the domination rela-
tionship between the pair of points in dataset DWc that takes both
the distance and time dimensions into consideration.

Definition 3. Domination Relationship. Given a query group
Q: {q1 (r1 ), q2 (r2 ), ..., qm(rm), qm+1 (rm+1 ), ..., qn(rn)} with
r1 < r2 < ... < rm < rm+1 < ... < rn , point pi dominates pj

with respect to point p if: (1) pi .time > pj .time; (2) dist(p, pi)
dist(p, pj ) (pi , pj 2DWc � p) and p2DWc ; (3) dist(p, pi)  n ,
with dist() the normalized distance of Q defined in Def. 2.

In other words, given a data point pi, pi dominates another point
pj only if pi expires later than pj from window Wc (Condition 1)
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and it is not further away from p than pj (Condition 2). The third
condition in the domination rule filters out any data point pi that is
not a neighbor of p for any query in Q, as otherwise this pi would
never be influencing the outlier status of p.

Based on the domination relationship defined in Def. 3, the out-
lier status of p with respect to all queries in Q can now be cor-
rectly answered based on the skyband points delivered by one sin-
gle (k � 1 )-skyband query denoted as Qs , namely the K -skyband
query with K specified as k-1.

Lemma 1. Given a query group Q, for any data point p, the
output of the skyband query Qs corresponding to Q, denoted as Sp,
is sufficient and necessary to continuously determine the outlier
status of p with respect to all queries in Q.

3.2 The K-SKY Algorithm
Although the traditional K-skyband algorithms could be applied

to support our Qs query [9, 11], we now design a customized al-
gorithm called K-SKY that more efficiently supports the multiple
outlier detection queries. K-SKY encompasses two optimization
principles, namely time-aware prioritization and least examination.
K-SKY is proven to be optimal in minimizing the number of data
points to be evaluated in the skyband point discovery process.

Time-Aware Prioritization Principle. In sliding window streams
the data points are naturally ordered by their arrival time. In other
words, all data points can effectively been considered to be sorted
on their arrival time attribute upon arrival. By the definition of the
domination relationship, later arrivals will never be dominated by
the earlier arrivals. Leveraging this property we prioritize the or-
der in which the K-SKY algorithm processes the data points. More
specifically K-SKY always conducts the search with a later arriving
data points first order. By this if one data point is not dominated by
more than k points in the distance attribute and thus considered to
be a skyband point, then it is not necessary to evaluate it again. This
is so, because it will be guaranteed to never be dominated by other
points evaluated later. Thus all skyband points can be discovered
in one pass over the data set.

Better yet, given a data point pi with dist(pi , p) no larger than
the smallest r value r1 in Q, if pi has already been dominated by
k points when evaluated, K-SKY can be terminated immediately.
This is so because all remaining (unevaluated) points would be
dominated by at least these k points that dominate pi. Therefore
K-SKY can safely terminate without even examining all points.

Least Examination Principle. In the sliding window context,
an existing point p in the previous window Wc�1 needs K-SKY
to update its skyband points when the stream slides to the current
window Wc. The key observation here is that given the skyband
points of the window Wc�1, to acquire the skyband points of a
new window Wc, only a small fraction of points in Wc need to
be evaluated, namely the new arrivals and the unexpired skyband
points of Wc�1.

This is so because any existing data point pi in Wc could not
possibly be a skyband point in window Wc if pi is not also a sky-
band point in Wc�1. If pi is not listed in the skybandPoints set of
Wc�1, pi must be dominated by at least k data points pj in skyband-
Points. By the domination rule defined in Def. 3, if pj dominates
pi, pj .time > pi .time . This indicates pj would not expire earlier
than pi. If pi is still valid in window Wc, pj would also remain
valid. Therefore in Wc, pi could not possibly be a skyband point,
since it is still dominated by at least k data points.

Leveraging the time-aware prioritization and least examination
optimization principles, K-SKY is able to discover all skyband points
by scanning the data set at most once. Furthermore, it may termi-
nate without even seeing all data points.

Wc.end

q1.Wc.start

q2.Wc.start

q3.Wc.start

qmax.Wc.start ! !!!!

outlier
inlier

!

Succeeding neighbor

common points

Figure 1: Queries with varying window sides
K-SKY is shown to be optimal in minimizing the number of

points being evaluated in the execution process. Due to space con-
strain, the proof is omitted here.

3.3 Sharing-Aware Multi-Skyband Solution
We now relax our problem to consider varying both k and r pa-

rameters. One simple approach to handle such scenario would be
to divide this workload into groups, each of which contains queries
with the identical k parameter value. This then would simplify our
problem into a multi-skyband query problem with only the k pa-
rameter varying. Intuitively our problem then could be handled by
directly applying K-SKY on each group of queries. However this
solution requires the independent identification and maintenance of
the skyband points for each group of queries. This inevitably leads
to significant wastage of CPU and memory resources.

We thus propose a sharing-aware solution that efficiently solves
this multi-skyband query problem. The key observation here is that
a large number of skyband points are likely to be shared across
these skyband queries. By maintaining the skyband points in one
integrated data structure, given a point pi, only one single skyband
point evaluation operation is required to correctly answer all sky-
band queries. This way we assure that multiple skyband queries are
supported by K-SKY, while still guaranteeing that each data point
is evaluated exactly only once. Due to the space constrain, the de-
tails of this solution is omitted here.

4. VARYING SLIDING WINDOW PARAM-
ETERS

4.1 Varying the Window Parameter - Win
Here we first examine the scenario when the window sizes vary,

while the slide size remains stable. Therefore all queries slide to a
new window at the same time. In other words, they are synchro-
nized. All queries require output at exactly the same moment, i.e.,
at time Wc.end in Fig. 1. This observation leads to an impor-
tant characteristic. Given a query group Q with member queries
having the same slide size but arbitrary window sizes, Q can be
supported with one skyband query with respect to qmax denoted
as qs

max , namely the member query with largest window in Q as
in Fig. 1. Intuitively this is so because the largest window covers
all smaller windows. Therefore skyband points discovered in the
largest window can be utilized to answer all queries in the group.

Therefore by employing the K-SKY algorithm and collecting the
skyband points for this special skyband query qs

max , this outlier
query group Q can be correctly answered with each point p in the
data stream S evaluated only once in each window that contains p.

As shown in Sec. 3.2, K-SKY gives more preference to the
points arriving later than the points arriving earlier. That is, K-
SKY always processes the later arrivals first. On the other hand the
later arrivals in the stream happen to be the common points among
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the data populations covered by the current windows of different
queries (Fig. 1). Therefore K-SKY naturally leverages the data
commonality among the windows of distinct queries. Redundant
computations are eliminated.

4.2 Varying the Slide Parameter
Next, we consider the case where all queries have the same win-

dow size, while their slide sizes vary. Unlike the previous varying
window size case, these queries are not synchronized. That is, their
windows move at a different pace. Therefore no stable relationship
holds across the data populations covered by the active windows
with respect to different queries. In other words there is no such
query whose active window continuously contains the windows of
other queries. Therefore the above strategy supporting queries with
various window sizes does not handle this case.

To solve this problem, given a query group Q, we build a single
swift query qsft that correctly answers all member queries of Q.
Qsft has the same window size as all member queries in Q , while
its slide size is set as the greatest common divisor on the slide sizes
of all the queries in Q.

Intuitively by definition of the greatest common divisor, 8qi 2
Q, we have qi .slide mod qsft = 0. Therefore at any time tj when
qi 2 Q produces an outlier result qi .outlier , qsft would also be
producing result qsft .outlier . Furthermore, since qi .win = qsft .win ,
the points covered by the window of qi and qsft would be identical
at tj . Therefore at any tj qi .outlier = qsft .outlier . Hence Qsft is
sufficient to represent all queries in Q.

Therefore a query group Q with varying slide sides can be sup-
ported by one skyband query with respect to this special outlier
query qsft. It is straightforward to determine at runtime when to
output the outlier detection results for each query by tracking for
each query the time at which the window slides.

4.3 Varying Both Win and Slide Parameters
We now describe our solution for the case when both window

parameters, namely win and slide, vary. This solution is a straight-
forward combination of the techniques introduced in the last two
sections. In particular, we simply build one single swift query that
has the largest window size among all member queries and its slide
size as the greatest common divisor of the slide sizes of all member
queries. A specific skyband query with respect to this single swift
query will then be employed to collect skyband points, namely the
evidence to prove the outlier status of a given point p.

5. RELATED WORK
Distance-based Outliers on Streaming Data. With the emer-

gence of digital devices generating data streams, outliers on stream-
ing data are one type of anomalies recently studied [6, 8, 1]. Ex-
isting work [6, 8, 1] focuses primarily on processing a single out-
lier detection request. In particular [1] leverages the observation
that the neighbors pi of a point p that arrived after p do not expire
before p expires. They make a distinction between the preceding
neighbors of p, Pp, i.e., those that will expire before p, and the suc-
ceeding neighbors of p, Sp, those that will persist during the entire
lifetime of p. They first introduce the idea of a “safe inlier” as a
point p with � k succeeding neighbors.

[8] further improves on [1] by leveraging the safe inlier con-
cept of [1]. That is, it organizes the points into a queue based on
the number of their succeeding neighbors, so that it can efficiently
schedule the necessary checks that have to be made when the win-
dow slides. However it still relies on range query searches to pro-
cess the newly arriving points. Therefore it cannot provide real
time responsiveness when applied to high velocity streaming data.

[8] also touches on supporting multiple outlier detection queries for
the case of varying pattern-specific parameters. Given a data point
p they first utilize a range query to find all points that satisfy the
neighbor condition of all queries in the query group. Then a post-
processing step is applied to filter the unnecessary points from this
large neighbor set to reduce the maintenance costs. In our work
by directly transforming the multi-query outlier problem into the
single query skyband problem, we only collect the necessary evi-
dence that is sufficient to answer multiple outlier queries, therefore
significantly outperforming this method.

By leveraging the temporal relationships among stream data, [6]
overcomes the limitation of prior methods [1, 8] of undertaking
full range query searches by discovering as early as possible safe
inliers in the scan process. However multiple detection requests are
not supported in [6].

6. CONCLUSION
In this work, we present the first solution, called SOP, for effi-

cient shared processing of a large number of distance-based outlier
detection requests over sliding window streams. SOP requires only
one single pass over the data points to support a huge workload
composed of a large number of outlier detection requests with arbi-
trary input settings for all pattern and window specific parameters.
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