
Order-Invariance of Two-Variable Logic is

Decidable

Thomas Zeume
TU Dortmund University

thomas.zeume@cs.tu-dortmund.de

Frederik Harwath
Goethe Universitt Frankfurt am Main

harwath@cs.uni-frankfurt.de

Wednesday 2nd March, 2022

Abstract

It is shown that order-invariance of two-variable first-logic is decidable
in the finite. This is an immediate consequence of a decision procedure
obtained for the finite satisfiability problem for existential second-order
logic with two first-order variables (ESO2) on structures with two linear
orders and one induced successor. We also show that finite satisfiability is
decidable on structures with two successors and one induced linear order.
In both cases, so far only decidability for monadic ESO2 has been known.
In addition, the finite satisfiability problem for ESO2 on structures with
one linear order and its induced successor relation is shown to be decidable
in non-deterministic exponential time.

1 Introduction

Order-invariance plays a crucial role in several areas of finite model theory. In
descriptive complexity theory, for example, various well-known results establish
that a logic captures a complexity class on structures that are equipped with a
linear order. Usually, in such results, the particular order on a given structure
is not important. That is, the formulas constructed in the proofs are order-
invariant, i.e. they do not distinguish different linear orders on a given structure
(see Section 6 for a precise definition).

First-order logic (FO) is a logic of great importance in model theory and,
consequently, order-invariant FO-sentences have been studied in the literature
before, see e.g. [11, 1, 5], and the survey [23].

It is well-known that the question whether an FO-sentence is order-invariant
is undecidable. Two possible remedies are to restrict either the class of structures
or the logic. For the former case, it is known that order-invariance remains
undecidable for colored directed paths [1] and colored star graphs [5].

In this article we study the decidability of invariance for the two-variable
fragment of first-order logic (two-variable logic or FO2 for short). This fragment
is reasonably expressive and yet its satisfiability and finite satisfiability problems

1

ar
X

iv
:1

60
4.

05
84

3v
1

 [
cs

.L
O

]
 2

0
A

pr
 2

01
6

are decidable [26, 20]. As a query language, it has a strong connection to the
XML query language XPATH on trees [19]. Furthermore, many modal logics
can be translated to FO2 and inherit its good algorithmic properties. Those
applications as well as the inability of FO2 to express transitivity of a relation
has led to an exhaustive study of the complexity of the (finite) satisfiability
problem of the logic where some relation symbols are interpreted by transitive
relations, equivalence relations, linear orders, successor relations and preorders
(see e.g. [21, 15, 17, 2, 14, 25, 18, 27, 13]).

We establish the decidability of order-invariance for two-variable logic.

Main Result. Order-invariance of FO2 is decidable.

The key to our main result is a simple observation which relates the problem
to a satisfiability problem on ordered structures. A FO2-sentence ϕ is not order-
invariant if and only if there are a structure and two linear orders on its domain
which are distinguished by ϕ. More precisely, ϕ is not order-invariant if and
only if there are two linear orders <1 and <2 on a finite set D and a tuple of
relations R̄ on D that interprets all relation symbols in ϕ except for < such
that (D, R̄,<1) |= ϕ and (D, R̄,<2) 6|= ϕ. The latter statement can be seen as a
satisfiability question for a sentence of the two-variable fragment of existential
second-order logic (ESO2) on finite ordered (<1, <2)-structures. Here, a (<1, <2)-
structure is ordered if <1, <2 are interpreted by linear orders. Thus, if the finite
satisfiability problem for ESO2 is decidable on ordered (<1, <2)-structures, then
so is order-invariance.

We take a slightly more comprehensive approach and study the finite satisfi-
ability problem for ESO2 on structures that are equipped with linear orders and
successor relations; henceforth called ordered structures.

Some prior work on decidability of ESO2 and its monadic fragment EMSO2

(where only quantification of unary relations is allowed) on ordered structures has
been done under the guise of the finite satisfiability problem for FO2. An almost
complete characterization of the classes of finite ordered structures for which
EMSO2 is decidable was obtained in a sequence of articles [17, 24, 12, 25, 18].
Only the case of finite ordered structures with at least three successor relations
remains open. For ESO2 it is only known that it is decidable on the class of
finite ordered (<,S)-structures [10, 21, 4] and NExpTime-complete for (S1, S2)-
structures [3]. We note that the latter result combined with the observation from
above establishes the decidability of successor-invariance. Here and in general, if
both a symbol < (or <i) and S (or Si) occur in the signature of a structure, we
assume that S (or Si) is interpreted by the induced successor of < (or <i).

Our main technical contribution implies the decidability of order-invariance
for FO2.

Main Technical Result. The satisfiability problem for ESO2 is decidable on
the class of finite ordered (S1, <1, <2)-structures and on the class of finite ordered
(S1, S2, <2)-structures.

The first part in particular closes the gap between the decidability of ESO2

on ordered <-structures [21] and the undecidability of EMSO2 on ordered
(<1, <2, <3)-structures [12]. More precisely we show that the decision problem
can be solved in 2-NExpTime on (S1, <1, <2)-structures and as fast as the
emptiness problem for multicounter automata on (S1, S2, <2)-structures. We

2

Class of ordered struc-
tures

EMSO2 ESO2

One linear order/successor

S-structures NExpTime-complete [7] NExpTime-complete F
<-structures NExpTime-complete [7] NExpTime-complete [21]

(S,<)-structures NExpTime-complete [7] NExpTime-complete F
Two linear orders/successors

(S1, S2)-structures NExpTime-complete [3] NExpTime-complete [3]

(<1, <2)-structures in ExpSpace [24] in 2-NExpTime F
(S1, S2, <2)-structures in Multicounter-Emptiness [18] in Multicounter-Emptiness F
(S1, <1, <2)-structures in ExpSpace [25] in 2-NExpTime F
(S1, <1, S2, <2)-structures Undecidable [17] Undecidable [17]

Many linear orders/successors

(<1, <2, <3)-structures Undecidable [12] Undecidable [12]

(S1, S2, S3)-structures ? ?

(S1, S2, S3, . . .)-structures ? ?

Figure 1: Summary of results on satisfiability of ESO2 and EMSO2 on finite
ordered structures. Results contained in this article are marked by F.

conjecture that there is an ExpSpace-algorithm for the former problem. For
proving our results we generalize techniques used in [17], [24] and [18]. In
the course of this, a technique developed by Otto [21] for ESO2 on ordered
<-structures turns out to be very valuable also for the more general structures
considered here. We emphasize that while the basic techniques used for proving
the results in this article are inspired by previous work, they are employed in a
technically more demanding context.

As an introduction to the methods used for proving the technical main result,
we show that ESO2 is NExpTime-complete on finite (<,S)-structures. This is
also of some independent interest. Previously, only the satisfiability problem for
EMSO2 was known to be NExpTime-complete on this class of structures. The
extension of ESO2 with counting quantifiers was recently shown to be decidable
on such structures, but only with very high complexity [4].

Discussion

Our results on satisfiability of ESO2 on finite ordered structures also help to
make known results more robust, and therefore less vulnerable for confusion.

In work on two-variable first-logic originating from applications in verification
and database theory often only unary relation symbols are allowed in formulas
besides the linear orders and successors (see e.g. [7, 2]). In most articles this
restriction is stated clearly, or, at least the intended meaning is clear from the
context. Yet abbreviations like FO2(<) do not reflect this restriction. The arising
ambiguity can lead to confusions for non-experts and readers only skimming an
article. We definitely have been confused a couple of times, and we seem not be
alone.

The second-order perspective taken in this article resolves this confusion.
Furthermore, our results obviate the necessity to distinguish the two variants in
the context of decidability of the finite satisfiability problem to some extent.

3

Outline

We introduce our notation and basic tool set in Section 2. In Section 3 we
present two different ideas for deciding ESO2 on finite (<,S)-structures. These
ideas are generalized to finite ordered (S1, <1, <2)-structures and finite ordered
(S1, S2, <2)-structures in Sections 4 and 5. We discuss order-invariance in
Section 6. We conclude in Section 7.

2 Preliminaries

In this section we introduce ordered structures and two-variable logic.

2.1 Ordered Structures

In this article we consider logical formulas that are interpreted over ordered
structures, i.e. relational structures where some relation symbols are interpreted
by linear orders and their corresponding successor relations. We assume that all
structures are finite structures with a non-empty domain.

A linear order < is a transitive, total and antisymmetric relation, that is,
a < b and b < c implies a < c ; a < b or b < a holds; and not both a < b and
b < a are satisfied at the same time for all elements a, b and c. The induced
successor relation S of a linear order < contains a tuple (a, b) if a < b and there
is no element c such that a < c < b.

Let O ⊆ {<1, <2, . . . , } ∪ {S1, S2, . . . , } where the <i and Si are binary
relation symbols. An O-structure A is ordered if each relation <A

i is a linear
order and each relation SA

i is the induced successor relation of a linear order.
Furthermore, if Si ∈ O and <i∈ O, then SA

i is the induced successor relation
of <A

i . For convenience we often identify relation symbols with their respective
interpretations. We use the symbols S and < if an ordered structure only has
one linear order.

We say that two distinct elements a and b of A are <i-close if Si(a, b) or
Si(b, a). Otherwise, a and b are <i-remote. We say that a and b are close if they
are <i-close for some Si ∈ O. Otherwise, a and b are remote. If the signature O
contains Si but not <i we also say Si-close and so on.

For an ordered structure A with two underlying linear orders <1 and <2 it
will often be convenient to think of A as a point set in the two-dimensional plane
where <1 orders points along the x-axis and <2 orders points along the y-axis
(see Figure 2). Following this conception, we say that an element a is to the left
or right of an element b if a <1 b or b <1 a, respectively, and that it is below or
above b if a <2 b or b <2 a. Accordingly, we will speak of leftmost and rightmost
elements.

2.2 Two-Variable Logic

The two-variable fragment of first-order logic (short: FO2) is the restriction of
first-order logic where only two variables can be used, though those two variables
can be quantified multiple times. The two-variable fragment of existential second-
order logic (short: ESO2) consists of all formulas of the form ∃R̄ϕ where R̄ is a
tuple of relation variables and ϕ is a FO2-sentence. Since each FO2-atom can
contain at most two variables we assume, in the entire article and without loss

4

of generality, that all relation symbols are of arity at most two; see [8, page 5]
for a justification.

Two ESO2-sentences ψ and ψ′ are K-equivalent for a class of structures K,
if A |= ψ if and only if A |= ψ′ for all structures A ∈ K. An ESO2-sentence is
satisfiable on a class of structures K if it has a model A ∈ K. We will also say
that a sentence is K-satisfiable.

Every ESO2-formula can be translated into a formula of a very simple shape
which is K-equivalent (see e.g. [26] and [9, page 17]). In this article K will always
be a class of ordered O-structures.

Lemma 2.1 (Scott Normal Form). For every ESO2-formula ϕ = ∃R̄ ξ there is
a K-equivalent ESO2-formula ϕ′ = ∃R̄′ ξ′ such that the formula ξ′ is of the form

∀x∀yψ(x, y) ∧
∧
i

∀x∃yψi(x, y)

where ψ and all ψi are quantifier-free formulas. Moreover, ϕ′ can be computed
in polynomial time.

Note that this lemma is slightly stronger than the usual Scott normal form
lemma because interpretations for some relation symbols are restricted by K.
The usual proof carries over since interpretations of symbols that occur in ϕ are
preserved while going from a model of ϕ to a model of ϕ′ and vice versa.

In this work it will be convenient to use an even stronger normal form. Our
plan is to rephrase the satisfiability problem for ESO2 into the satisfiability of a
set of existential and universal constraints. This is a simple generalization of the
approach taken in [25].

We need the following notions. Let T be a signature. A unary T -type is a
maximally consistent conjunction of unary T -literals using variable x only. A
(strictly) binary T -type is a maximally consistent conjunction of binary T -literals
using variables x and y, where the conjunction includes the conjunct x 6= y.
Each element of a structure has a unique unary T -type and each pair of elements
has a unique binary T -type. If γ is the binary type of (a, b), then we denote the
type of (b, a) by γ̄. The set of unary and binary T -types are denoted by ΣT and
ΓT .

A constraint problem over T is a tuple C = (C∃, C∀) where C∃ is a set of
existential constraints and C∀ is a set of universal constraints. An existential
constraint c∃ is a tuple (σ,E) where σ ∈ ΣT and E ⊆ ΓT × ΣT . A structure
with domain D satisfies c∃ if for every element a ∈ D of unary type σ there is a
(γ, τ) ∈ E and an element b ∈ D of unary type τ such that (a, b) has binary type
γ. A universal constraint c∀ is a tuple (σ, γ, τ) where σ, τ ∈ ΣT and γ ∈ ΓT . A
structure with domain D satisfies c∀ if no tuple (a, b) ∈ D2 has binary type γ if
a and b have unary types σ and τ . A structure is a solution of C if it satisfies all
constraints in C∃ and C∀. The problem C is solvable if it has a finite solution.
The size |C| of C is |ΣT |+ |ΓT |+ |C∀|+ |C∃|. We emphasize that C∃ specifies
required patterns whereas C∀ specifies forbidden patterns.

Let K be class of structures over a signature T ′ ⊆ T . The problem C is
solvable on the class of structures K if it has a solution A such that the restriction
of A to T ′ belongs to K. Such a solution will also be called K-solution.

The following lemma shows that ESO2-sentences can be translated into
existential second-order constraint problems preserving satisfiability.

5

Lemma 2.2. For every ESO2-sentence ϕ there is a constraint problem C such
that ϕ is K-satisfiable if and only if C has a K-solution. The constraint problem
C can be computed in exponential time in |ϕ|.

Proof. Let ϕ be an ESO2-sentence. Without loss of generality we can assume, by
Lemma 2.1, that ϕ = ∃R̄ ξ where ξ is of the form ∀x∀yψ(x, y) ∧

∧
i ∀x∃yψi(x, y)

with quantifier-free ψ and ψi. Let T be the signature of the FO2-formula ξ.
Further let Σ and Γ be the sets of unary and binary T -types.

A K-satisfiability equivalent constraint problem for ϕ is now constructed
by translating ∀x∀yψ(x, y) and ∀x∃yψi(x, y) into universal and existential con-
straints, respectively.

Observe that, for a quantifier-free formula in disjunctive normal form
∨
i ψi, an

equivalent quantifier-free formula in disjunctive normal form can be constructed,
where (1) each disjunct is of the form σ(x) ∧ τ(y) ∧ γ(x, y) where σ and τ are
unary types and γ is a conjunction of binary literals that use variables x and y,
and (2) for all unary types σ and τ there is such a disjunct.

Thus the first conjunct of ξ is equivalent to a formula

χ = ∀x∀y
∨

σ,τ∈Σ

(
σ(x) ∧ τ(y) ∧ γσ,τ (x, y)

)
The formula χ is equivalent to the following formula:

µ = ∀x∀y
∧

σ,τ∈Σ

(
σ(x) ∧ τ(y)→ γσ,τ (x, y)

)
To see this, let us consider a model A of χ. For all elements a, b of A of types
σ, τ , respectively, one of the disjuncts has to be satisfied. Since each element
satisfies exactly one unary type, the disjunct σ(x) ∧ τ(y) ∧ γσ,τ (x, y) is satisfied
and therefore also µ is satisfied.

Now, consider a model A of µ. Then for all elements a, b of A the conjunction
is satisfied. In particular the conjunct σ(x)∧ τ(y)→ γσ,τ (x, y) is satisfied, where
σ and τ are the types of a and b, respectively. Therefore also σ(x)∧τ(y)∧γσ,τ (x, y)
and hence χ are satisfied.

The formula µ can be easily translated into a set of universal constraints
C∀. For all unary types σ and τ , the set C∀ contains a constraint (σ, γ, τ) for
each binary type γ that is not consistent with γσ,τ (x, y). Next we show how to
translate the second part of ξ into existential constraints. As before, we translate
ψi into the disjunctive normal form

∨
σ,τ∈Σ

(
σ(x) ∧ τ(y) ∧ γσ,τ (x, y)

)
. Sorting

by σ and moving the existential quantifier inwards as far as possible yields that
every conjunct of the second part of ψ can be written as follows:

χi = ∀x
∨
σ∈Σ

(
σ(x) ∧ ∃y

∨
τ∈Σ

(
τ(y) ∧ γσ,τ (x, y)

))
Using a similar argument as above one can show that each χi is equivalent to a
formula:

µi = ∀x
∧
σ∈Σ

(
σ(x)→ ∃y

∨
τ∈Σ

(
τ(y) ∧ γσ,τ (x, y)

))
The formulas µi can be easily translated into a set of existential constraints C∃.
For all i and all σ, the set C∃ contains an existential constraint (σ,E) where E

6

contains all tuples (γ, τ) that are consistent with γσ,τ where τ is a unary type
and γ is a binary type.

Observe that the sets C∃ and C∀ can be computed in exponential time (where
the exponential blow-up comes from using the types).

The following notion will be used frequently. If an element has a unary type
σ we also say that it is σ-labeled. Consider a constraint problem C over T , a
T -structure A, a σ-labeled element a and an existential constraint (σ,E). An
element b is a (σ,E)-witness of a if there is a (γ, τ) ∈ E, the element b has
unary type τ and (a, b) has T -type γ. A witness of a is an element that is a
(σ,E)-witness for some existential constraint.

The following notations will be convenient for studying finite satisfiability
of ESO2 on ordered structures. A constraint problem has a (finite) (<1, <2)-
solution if it is solvable on the class of finite ordered (<1, <2)-structures. We
use similar definitions for ESO2(S1, S2) and so on.

For a constraint problem over O ∪ T where O is a subset of the symbols
<,<1, <2, . . . and S, S1, S2, . . . we will denote existential and universal constraints
in a slightly different fashion. To this end observe that all unary O-types are
trivial (e.g. x < x ∧ ¬S(x, x)) and can, without loss of generality, be omitted.
Each binary T ∪O-type is a conjunction of a binary O-type and binary T -type.
Therefore we can write existential constraints of constraint problems over T ∪O
as tuples (σ,E) where σ ∈ ΣT and E is a set of tuples (d, γ, τ) with d ∈ ΓO,
γ ∈ ΓT and τ ∈ ΣT . Similarly universal constraints are written as tuples
(σ, d, γ, τ) where σ, τ ∈ ΣT , γ ∈ ΓT and d ∈ ΓO.

3 Warm-Up: One Linear Order and One Succes-
sor

Before proving the main results we study the complexity of the ESO2-satisfiability
problem on ordered (S,<)-structures. Decidability has been established in [10].
Combining Lemma 2.4 in [10] and a construction from [6, Corollary 9.2] yields
at best a non-deterministic double-exponential upper bound. In this section we
obtain an optimal non-deterministic exponential upper bound.

Theorem 3.1. ESO2-satisfiability on finite ordered (S,<)-structures is NExpTime-
complete.

This result should be compared with the known results that deciding EMSO2

on ordered (S,<)-structure and deciding ESO2 on ordered <-structures are
NExpTime-complete [7, 21].

We present two different approaches for proving Theorem 3.1; a small model
property based approach and an automata-based approach. Only the former
approach leads to a non-deterministic exponential time algorithm. Later both
approaches will be generalized in different directions to obtain decidability
for larger fragments. The small model approach, combined with a technique
from [24, 25], is used to obtain a decision algorithm for ESO2 on (S1, <1, <2)-
structures in Section 4. The automata-based approach is used to solve the
ESO2-satisfiability problem on (S1, S2, <2)-structures in Section 5.

To decide whether an ESO2-sentence ϕ has a model which is a finite (S,<)-
structure, ϕ is converted into a satisfiability equivalent constraint problem

7

C whose size is exponential in the size of ϕ using Lemma 2.2. We show, in
Lemma 3.3, that if C has a finite (S,<)-solution then it has a (S,<)-solution of
size at most N where N is polynomial in the size of C. Hence, a non-deterministic
exponential time algorithm can guess a structure of size at most N and verify
that it is indeed a solution of C. This proves Theorem 3.1. In the automata-
based approach the satisfiability of C is checked by a finite state automaton, see
Lemma 3.4.

The following notion will be useful in both approaches. Let w be a word. A
position a of w is called (σ, τ, k)-rich if there are at least k σ-labeled positions
(strictly) before a and at least k τ -labeled positions (strictly) after a. A position
a of w is (σ, τ, k)-poor if there are at most k σ-labeled positions (strictly) before
a and at most k τ labeled positions (strictly) after a. We stress that if a position
is not (σ, τ, k)-rich than it is not necessarily (σ, τ, k)-poor, and vice versa.

Lemma 3.2. If a word has no (σ, τ, k)-rich position then it has a (σ, τ, k+1)-poor
position.

Proof. Let w be a word with no (σ, τ, k)-rich position. Towards a contradiction
assume that w has no (σ, τ, k + 1)-poor position. Then, by definition, for each
position i of w there are at least k + 1 σ-labeled positions strictly left of i or at
least k + 1 τ -labeled positions strictly right of i.

In particular there are at least (k + 1) σ-labeled positions to the left of the
last position of w. Let i be the (k+1)th σ-labeled position of w. Since i has only
k σ-labeled positions to its left, it must have at least k + 1 τ -labeled positions
to is right. Hence, i is (σ, τ, k)-rich; a contradiction.

As outlined above, the proof of Theorem 3.1 follows immediately from the
following small model property and Lemma 2.2. The proof of the small model
property is in the same spirit as the proof of Lemma 2.3 in [10].

Lemma 3.3. If a constraint problem C has a finite (S,<)-solution then it has
such a solution of size polynomial in |C|.

Proof. Assume that C
def
= (C∃, C∀) is a constraint problem over a signature

T ∪ {S,<}. Let Σ
def
= ΣT and Γ

def
= ΓT . Let k

def
= 3|Γ|.

We show that if C has a finite (S,<)-solution A with at least N elements
then it also has a (S,<)-solution B with |B| < N . The number N is polynomial
in |C| and will be specified later.

For each element a of A denote by W (a) a set containing witnesses for a for
each existential constraint. An element b ∈ W (a) is a local witness if S(a, b),
a = b, or S(b, a). Otherwise it is a non-local witness.

We first construct, from A, a solution A′ of C whose domain and unary
types coincide with the domain and unary types of A but whose set of non-local
witnesses is small. Afterwards we argue that a smaller solution B can be obtained
from A′ by removing some elements.

Towards constructing A′ let Z1 be the set that contains, for every σ ∈ Σ,
the first k + 1 σ-positions and the last k + 1 σ-positions of A (if these exist).
Further let Z2 be a set that contains a witness for each position in Z1 and each
existential constraint, and let Z

def
= Z1 ∪ Z2. Observe that Z1 and Z2 are of size

polynomial in |Σ||Γ|.
We reassign some of the binary T -types of A in order to obtain A′. The goal

is that every element a in A′ has a set W ′(a) of witnesses for C∃ such that (1)

8

W (a) and W ′(a) coincide with respect to local witnesses, and (2) all non-local
witnesses in W ′(a) are from Z. To this end let σ, τ ∈ Σ and d

def
= x < y∧¬S(x, y).

Denote d̄
def
= y < x ∧ ¬S(y, x).

If there is a (σ, τ, k)-rich position u in A then we reassign the binary types
of all σ- and τ -positions a and b satisfying d by using a technique employed
by Otto for constructing small models for satisfiable FO2(<)-sentences [21].
For completeness we recall the construction. Let A = A1 ∪ A2 ∪ A3 with
disjoint Ai and |Ai| = |Γ| contain the first k σ-labeled elements. Similarly let
B = B1 ∪B2 ∪B3 with disjoint Bi and |Bi| = |Γ| contain the last k τ -labeled
elements. Assume that Γ

def
= {γ1, . . . , γm}. Then:

(A1) Witnesses for elements in A ∪B are assigned as follows:

(a) If a ∈ Ai is a σ-labeled element that has a (d, γ`, τ)-witness b ∈W (a)
in A then the binary T -type of (a, b′) is set to γ` where b′ is the `th
element of Bi. The element b′ is the intended (d, γ`, τ)-witness of a
in A′.

(b) If b ∈ Bi is a τ -labeled element that has a (d̄, γ`, σ)-witness a ∈W (b)
in A then the binary T -type of (b, a′) is set to γ` where a′ is the `th
element of Ai+1 (where i+ 1 is calculated modulo 3). The element a′

is the intended (d̄, γ`, τ)-witness of b in A′.

(A2) Witnesses for all other tuples of σ- and τ -labeled elements are assigned as
follows:

(a) If a /∈ A is a σ-labeled element that has a (d, γ`, τ)-witness b ∈W (a)
in A then the binary T -type of (a, b′) in A′ is γ` where b′ is the `th
element of B1. The element b′ is the (d, γ`, τ)-witness of a in A′.

(b) If b /∈ B is a τ -labeled element that has a (d̄, γ`, σ)-witness a ∈W (b)
in A then the binary T -type of (b, a′) in A′ is γ` where a′ is the `th
element of A1. The element a′ is the (d, γ`, τ)-witness of b in A′.

(A3) If a tuple (a, b) with σ-labeled a, τ -labeled b and satisfying d has not been
assigned a binary T -type in A′ so far, then it inherits its type from A.

Observe that no conflicts arise from (A1) and (A2). Furthermore, for all σ-
and τ -labeled elements a there is a set W ′(a) satisfying (1) and (2). Moreover,
no conflicts with universal constraints arise since no new types have been created.
This concludes the case when there is a (σ, τ, k)-rich position in A.

If there is no (σ, τ, k)-rich position u in A then Conditions (1) and (2)
are already satisfied for all σ- and τ -labeled positions a and b satisfying d =
x < y ∧ S(x, y). To see this we argue as follows. By Lemma 3.2 there is a
(σ, τ, k + 1)-poor position v. Now let a be a σ-labeled position. If a ≤ v then all
(d, γ, τ)-witnesses b ∈ W (a) are contained in Z by construction (as a is one of
the k + 1 leftmost σ-labeled positions). If a > v then all (d, γ, τ)-witnesses of a
are among the last k + 1 τ -labeled positions which are also contained in Z. The
argument for τ -labeled positions is symmetric.

The structure A′ thus constructed satisfies (1) and (2).
It remains to construct B. If |A′| > N for N ≥ c(|Σ||Γ|)4 for an appropriate

constant c then there are positions a1, a2 /∈ Z with successors b1 and b2 such
that (i) there is no position z ∈ Z with a1 < z < a2, (ii) a1 and a2 have the

9

same unary T -type, and (iii) (a1, b1) and (a2, b2) have the same binary T -type.
The solution B is obtained from A′ by removing all elements between a1 and a2

(including a2), and assigning to (a1, b2) the binary type of (a1, b1) in A′. Then
B satisfies all universal constraints of C since no new types have been created.
Further B satisfies all existential constraints of C since elements inherit their
local and non-local witnesses from A′, and A′ only uses elements from Z as
non-local witnesses.

Now we present the automata-based approach. As discussed above, this
approach only yields an exponential space algorithm, yet it will later be used as
the basis for a decision algorithm for a larger fragment.

Lemma 3.4. For every constraint problem C there is a non-deterministic finite
state automaton A such that C has a finite (S,<)-solution if and only if L(A)
is non-empty.

Here L(A) denotes the language recognized by A.

Proof. Assume that C
def
= (C∃, C∀) is a constraint problem over a signature

T ∪ {S,<}. Let Σ
def
= ΣT and Γ

def
= ΓT .

Without loss of generality we assume that the witnesses requested by the
existential constraints of C do not contradict universal constraints. More precisely,
for an existential constraint (σ,E) and every (d, γ, τ) ∈ E we assume that there
is no universal constraint (σ, d, γ, τ).

We construct a finite state automaton A such that A accepts a word over Σ
if and only if C has a solution. Intuitively the automaton A interprets words as
(S,<)-structures with no binary relations from T . In order to accept a word w,
it has to verify that binary types can be assigned to all pairs of positions in a
way consistent with C.

The main difficulty in verifying the existence of an assignment of binary
types is to ensure that the types of tuples (a, b) and (b, a) are consistent. More
precisely, if (a, b) has to be typed γ ∈ Γ due to some existential constraint and
if (b, a) has to be typed γ′ ∈ Γ due to some other existential constraint, then γ
and γ′ have to be compatible, that is γ′ = γ̄.

In the following we describe the construction of A, afterwards we argue that
the construction is correct. For an easier exposition of the automaton A, we
often assume that positions are labeled with some extra information. It can
be easily verified that those labels could also be guessed by the automaton (or,
alternatively, they could be contained in an extended alphabet).

(E) We assume that for every existential constraint (σ,E), all σ-labeled po-
sitions a are labeled with a fresh label (σ, d, γ, τ) such that (d, γ, τ) ∈ E.
The intention is that the (σ,E)-witness of a satisfies (d, γ, τ).

The automaton has to verify that binary T -types can be assigned such that
the witnesses declared in (E) exist and all pairs of positions satisfy the universal
constraints. To this end the automaton handles positions that are <-close to
each other and positions that are <-remote from each other in a different way.

Dealing with positions that are close to each other is simple. Each position a
has at most two positions that are <-close to it: there might be a position b1
with S(a, b1) and a position b2 with S(b2, a). The positions b1 and b2 might not
exist (if a is the first or last position with respect to <). For all a the automaton
can guess and verify the binary types for (a, b1) and (a, b2).

10

(L1) (Local types) We assume that each position a is labeled by up to two labels
γ1, γ2 ∈ Γ. The intention is that γ1 is the binary T -type of (a, b1) (if the
position b1 exists), and likewise for γ2.

(L2) (Consistency of local types) The automaton verifies that the labels are
consistent, that is, e.g., if a and b are positions with S(a, b) then the label
γ1 of a (i.e. the type guessed for (a, b)) is compatible with the type γ2 of b
(i.e. the type guessed for (b, a)).

(L3) (Local witnesses) For every σ-labeled position a that is labeled by (σ, d, γ, τ)
due to (E), the automaton verifies that if d = S(x, y) then the label γ1 of
a is γ and that its successor is labeled with τ . Likewise for d = S(y, x).

(L4) (Local universal constraints) For all σ- and τ -labeled positions a and b
with S(a, b) the automaton verifies that if a is labeled γ1 then there is no
universal constraint (σ, S(x, y), γ1, τ). Likewise for S(b, a).

Verifying the existence of a type assignment for positions that are remote
from each other is more intricate. The automaton A has to check that there is
at least one binary T -type consistent with the universal constraints that can be
assigned to every pair of far-away positions and that witnesses for the existential
constraints can be assigned consistently according to (E).

The former condition can be verified easily (and analogously to (L4)):

(U) For all σ- and τ -labeled positions a and b satisfying d = x < y ∧ ¬S(x, y)
the automaton verifies that there is a γ such that there is no universal
constraint (σ, d, γ, τ). Similarly for d̄.

Testing that existential witnesses can be assigned to remote positions is more
involved. We discuss how A verifies that binary types for all σ- and τ -labeled
positions a and b satisfying d

def
= x < y ∧ ¬S(x, y) can be assigned; the other

case is symmetric. Let d̄
def
= d(y, x). To verify that binary types can be assigned

to such σ- and τ -labeled positions, the automaton A guesses whether there is a
(σ, τ, k)-rich position u with k

def
= 3(|Γ|+ 3).

If such a position u exists then the automaton tests that every σ-labeled
position has as many τ -labeled positions to its right as is required by (E), and
that every τ -labeled position has sufficiently many σ-labeled positions to its
left. If this is the case then binary types can be assigned using an assignment
technique similar to Otto’s technique [21] for reducing the size of models for
FO2(<) sentences (see the correctness proof below).

If there is no (σ, τ, k)-rich position u then, by Lemma 3.2 there is a (σ, τ, k+1)-
poor position v. The automaton exploits this structure to guess and verify the
binary types in this case.

More precisely, for all σ and τ the automaton does the following:

(E1) It guesses whether there is a (σ, τ, k)-rich position u. The correctness of
the guess can be easily verified by A.

(E2) If there is such a position u then A verifies the following:

(a) If a σ-labeled position a is labeled by (σ, d, γ1, τ), . . . , (σ, d, γm, τ) in
(E) then there are m τ -labeled positions to the right of a.

11

(b) Symmetrically, if a τ -labeled position a is labeled by (τ, d̄, γ1, σ), . . .,
(τ, d, γm, σ) in (E) then there are m σ-labeled positions to the right
of a.

(E3) If there is no (σ, τ, k)-rich position then A guesses a (σ, τ, k + 1)-poor
position v. Then:

(a) We assume that positions are labeled by the following extra informa-
tion (using fresh labels depending on σ and τ):

• The ith σ-labeled position a to the left of v is labeled by σi. The
ith τ -labeled position a to the right of v is labeled by τi. (As v
is (σ, τ, k + 1)-poor, there are at most k + 1 such σi and τi.)

• The intended witnesses for σi- and τi-labeled positions are labeled
as follows:

– If the σi-labeled position a is labeled by (σ, γ, d, τ) in (E),
then there is a τ -labeled position b which is also labeled with
(σi, γ, d, τ) such that (a, b) satisfies d.

– Likewise, if the τi-labeled position a is labeled by (τ, γ, d̄, σ) in
(E), then there is a σ-labeled position b which is also labeled
with (τi, γ, d̄, σ) such that (a, b) satisfies d̄.

• Positions with intended witnesses from σi- and τi-labeled positions
are labeled as follows:

– Each position a to the left of v that is labeled by (τ, γ, d̄, σ)
in (E) is also labeled with (τ, γ, d̄, σi) for some i such that
the tuple (a, b) satisfies d̄ where b is the σi-labeled position b
.

– Likewise, each (σ, γ, d, τ)-labeled position a to the right of
v is labeled with (σ, γ, d, τi) for some i such that the tuple
(a, b) satisfies d where b is the σi-labeled position b.

(b) The automaton verifies that the labels are consistent, that is:

• No τ -labeled position to the left of v is labeled with (σi, γ, d, τ)
and with (τ, γ′, d̄, σi) where γ and γ′ are not reverse types.

• Likewise, no σ-labeled position to the right of v is labeled with
(τi, γ̄

′, d, σ) and with (σ, γ, d, τi) where γ and γ′ are not reverse
types.

We emphasize again that all labels assigned in (E3) can also be guessed by A.
We argue that the construction of A is correct. Clearly, if the set C of

constraints is satisfiable by a (S,<)-structure then the corresponding word is
accepted by A (the labels in (E), (L1), (E2) and (E3a) are assigned according to
the solution of C).

Now, assume that A accepts a word w and let ρ be an accepting run. We
argue that a (S,<)-structure A that satisfies C can be obtained from w. The
elements of A are the positions of w ordered as in w and the unary type of an
element v is its label in w.

We describe how to assign binary types. To this end we first assign, for every
position a, types witnessing the existential constraints. Afterwards all so far
non-typed pairs are typed by some type admissible by the universal constraints.

12

For each pair (a, b) of nodes with S(a, b), the edge (a, b) in T is typed with
the type guessed in (L1). No binary type conflicts arise from this due to (L2).

For non-local pairs of nodes, binary types of witnesses are assigned simulta-
neously for all σ- and τ -labeled nodes. In the following assume that a and b are
σ- and τ -labeled nodes and that (a, b) satisfies d

def
= x < y ∧ ¬S(x, y),

If there is a position u as in (E1) then the witnesses can be assigned as in
[21]. For the sake of completeness we recall the assignment strategy. Let A be
the first k σ-labeled nodes and assume that A = A1 ∪A2 ∪A3 with disjoint Ai
and |Ai| = |Γ|. Likewise let B = B1 ∪ B2 ∪ B3 be the last k τ -labeled nodes
with disjoint Bi and |Bi| = |Γ|. Further assume that Γ

def
= {γ1, . . . , γm}.

Then the witness types are assigned as follows:

(A1) The witnesses for elements A and B are assigned as follows:

(a) If a position a ∈ Ai is labeled by (σ, d, γ`, τ) in ρ then its γ`-witness is
the `th element b of Bi \N(a) where N(a) contains a and all elements
that are close to a.

(b) If a position b ∈ Bi is labeled by (τ, d, γ`, σ) in ρ then its γ`-witness
is the `th element of Ai+1 \N(b) where i+ 1 is calculated modulo 3.

(A2) The witnesses for elements not in A and B are assigned as follows:

(a) If a σ-labeled element a /∈ A is also labeled with (σ, d, γ`, τ) then its
γ`-witness is the `-last element of B \N(a) (which is to the right of a
due to (E2)).

(b) If a τ -labeled element a /∈ B is also labeled with (τ, d, γ`, σ) then its
γ`-witness is the `th element in A \N(a).

The type assignments from (A1) ensure that all elements in A and B have
their witnesses. The type assignments from (A2) ensure that all other elements
have their witnesses. Observe that for a 6= b at most one of the pairs (a, b) and
(b, a) is assigned a type in (A1) and (A2); this determines the type of the other
pair.

If there is no position u as in (E1) then the automaton guessed a position
v in run ρ. The witness types are assigned according to the labels assumed in
(E3a), that is:

(A’1) The witnesses for the at most k + 1 σ-labeled elements to the left of v
and the at most k + 1 τ -labeled elements to the right of v are assigned as
follows:

• If a is a σ-labeled position to the left of v that is labeled with (σ, d, γ, τ)
and σi in ρ and if b is the position labeled with (σi, d, γ, τ) in ρ then
(a, b) is labeled γ.

• Likewise, if a is a τ -labeled position to the right of v that is also
labeled with (τ, d̄, γ, σ) and τi in ρ and if b is the position labeled
with (τi, d, γ̄, τ) in ρ then (a, b) is labeled γ̄.

(A’2) The witnesses for the other elements are assigned as follows:

• If a is a τ -labeled position to the left of v that is labeled with (τ, d̄, γ, σi)
in ρ then (a, b) is labeled with γ where b is the position labeled with
σi in ρ.

13

• Likewise, if a is a σ-labeled position to the right of v that is labeled
with (σ, d̄, γ, τi) in ρ then (x, y) is labeled with γ̄ where b is the
position labeled with τi in ρ.

Note that the assignments are consistent due to (E3c).
Thus, so far types have been assigned such that all elements have witnesses,

ensuring that the existential constraints are satisfied. All remaining so far non-
typed edges are typed by some type admissible by the universal constraints.
Such types exist due to condition (U).

4 Two Linear Orders and One Successor

In this section we will show that ESO2-satisfiability problem on finite (S1, <1, <2)-
structures is decidable. It is known that ESO2 is decidable on <-structures [21]
and that EMSO2 is decidable on finite (<1, <2)-structures. We combine the
approaches used for those two results as well as the technique introduced in
Lemma 3.3 to obtain a nondeterministic double-exponential upper bound. We
conjecture that this bound can be improved to exponential space by generalizing
the methods from [25].

Theorem 4.1. ESO2-Satisfiability on finite ordered (S1, <1, <2)-structures is
in 2-NExpTime.

The result immediately follows from the following small solution property
and Lemma 2.2.

Lemma 4.2. If a constraint problem C has a finite (S1, <1, <2)-solution then
it has such a solution of size exponential in |C|.

Proof. We follow the proof outline employed for EMSO2 in [24]; yet for dealing
with binary relations the individual steps have to be generalized. For consistency
with the proofs in [24] we prove the statement of the lemma for (<1, S2, <2)-
constraint problems. For the description below, recall that structures with two
linear orders can be viewed as point sets in the plane (cf. Section 2.1).

In order to establish the exponential solution property for (<1, S2, <2)-
constraint problems, we show that smaller solutions can be constructed from
large solutions. To this end we assign a profile Pro(c) to each element c of a
solution A in such a way that if the profiles Pro(c1) and Pro(c2) of two elements
c1 and c2 of A with c1 <

A
2 c2 coincide then a solution B with fewer elements

can be constructed from A by deleting all elements a with c1 <
A
2 a ≤A

2 c2 and
shifting the elements b with c2 <

A
2 b along the <A

1 -dimension. Deleting elements
might, of course, also eliminate some witnesses of remaining elements. The
profiles of elements will be defined such that new witnesses can be assigned.

We make this more precise now. Assume that C is a (<1, S2, <2)-constraint
problem with signature T ∪ {<1, S2, <2} and let Σ

def
= ΣT and Γ

def
= ΓT . Let

k
def
= 3|Γ|. Further let A be a solution of C with domain D. For every element a

of A, we also fix a set W (a) of elements witnessing that the existential constraints
of C are satisfied for a.

We extend the notion of profiles introduced in [24] to structures with arbitrary
binary relations. The profile of an element c shall capture all relevant information
about elements below c that have witnesses above c, and vice versa. Storing

14

information for all such witnesses in the profiles is not possible, yet it turns out
that less information is sufficient for being able to construct smaller solutions.

For defining the profile of c, we first specify a set P (c) of elements that
are important for c. Then, roughly speaking, the profile will be defined as the
substructure of A induced by P (c). The set P (c) contains c, its <A

2 -successor, a
set of special elements A(c) as well as some of the witnesses AW (c) of elements
in A(c). The last two sets will be defined next. The set A(c) is the union of the
sets Aσ,min,↓(c), Aσ,max,↓(c), Aσ,min,↑(c), and Aσ,max,↑(c), for all σ ∈ Σ, defined
as follows:

1. The set Aσ,min,↓(c) contains the k + 1 leftmost σ-labeled points that are
below c (if they exist).

2. The set Aσ,min,↑(c) contains the k + 1 leftmost σ-labeled points that are
above c (if they exist), but excluding the <A

2 -successor of c.

3. The set Aσ,max,↓(c) contains the k + 1 rightmost σ-labeled points that are
below c (if they exist).

4. The set Aσ,max,↑(c) contains the k + 1 rightmost σ-labeled points that are
above c (if they exist), but excluding the <A

2 -successor of c.

Intuitively AW (c) contains the relevant witnesses of elements in A(c). It is
the union of the sets W τ

σ,min,↓(c), W
τ
σ,min,↑(c), W

τ
σ,max,↓(c), and W τ

σ,max,↑(c), for
all unary types σ, τ ∈ Σ, defined as follows:

1. The set W τ
σ,min,↓(c) contains, for all a ∈ Aσ,min,↓(c), all witnesses b ∈W (a)

that are to the right of a and above c.

2. The set W τ
σ,min,↑(c) contains, for all a ∈ Aσ,min,↑(c), all witnesses b ∈W (a)

that are to the right of a and below c.

3. The set W τ
σ,max,↓(c) contains, for all a ∈ Aσ,min,↓(c), all witnesses b ∈W (a)

that are to the left of a and above c.

4. The set W τ
σ,max,↑(c) contains, for all a ∈ Aσ,min,↑(c), all witnesses b ∈W (a)

that are to the left of a and below c.

The set of important points for c is P (c)
def
= {c, s(c)} ∪A(c) ∪AW (c) where

s(c) is the unique element satisfying SA
2 (c, s(c)). The profile Pro(c) of c is the

structure (P(c), c) where P(c) is the substructure of A induced by P (c). Observe

that relation S
P(c)
2 is not necessarily a successor relation. Now we show that

if two profiles Pro(c1) and Pro(c2) of elements c1 6= c2 are isomorphic then a
solution B with fewer elements can be constructed from A. The domain of B is
the set D′ ⊆ D which contains all elements a with a ≤A

2 c1 or c2 <
A
2 a (assuming

without loss of generality that c1 <
A
2 c2). We now describe how the relations <B

1 ,
<B

2 and SB
2 as well as the interpretations of symbols from T are constructed for

B.
Towards defining <B

1 , <B
2 and SB

2 in B, we fix an embedding θ that maps
every element u of A to a point θ(u) ∈ Q×Q such that θ(u1).x < θ(u2).x if and
only if u1 <

A
1 u2, and θ(u1).y < θ(u2).y if and only if u1 <

A
2 u2. Here < is the

usual linear order on the rational numbers, and p.x and p.y denote the x- and
y-component of a point p ∈ Q×Q.

15

From θ we define an embedding θ′ of the elements of B into Q×Q which
will be used to obtain the order relations on B. Intuitively θ′ keeps the positions
of elements below c1 but shifts elements above c2 along the x-direction in order
to make those points consistent with the profile of c1. The embedding is defined
as follows:

(P1) For all elements u ∈ D′ with u ≤A
2 c1, define θ′(u)

def
= θ(u).

(P2) For all elements u ∈ D′ with c2 <
A
2 u the embedding θ′(u) is defined as

follows. Assume that c11, . . . , c
n
1 are the elements of P (c1) ordered by <A

1

and c12, . . . , c
n
2 are the elements of P (c2) ordered by <A

1 . Observe that
c12 ≤ u ≤ cn2 by the definition of P (c2). Assume that θ(ci2).x ≤ θ(u).x ≤
θ(ci+1

2).x. Then the position of u in the new orders is obtained by shifting
the element u such that its x-coordinate is between the x-coordinates of
the elements ci1 and ci+1

1 . More precisely θ′(u).y
def
= θ(u).y and θ′(u).x is

defined as follows. If u = ci2 for some i then θ′(u).x = θ(ci1).x. Otherwise,

θ(ci1).x +
θ(u).x− θ(ci2).x

θ(ci+1
2).x− θ(ci2).x)

(θ(ci+1
1).x− θ(ci1).x)

It might happen, that the embedding θ′ maps an element u to a point in
Q×Q whose x-coordinate is already used by another element v. This can be
dealt with in the same way as in [24, Lemma 8]. The x-coordinates are assigned
sequentially: first the ones for (P1), then the remaining elements of c12, . . . , c

n
2 ,

and finally all remaining elements for (P2). No conflicts can arise for the first
two cases. If the designated x-coordinate of an element u assigned in the third
case is already used by an element v then the x-coordinate of u is shifted by
a very small distance. Namely, if w is the element whose x-coordinate is the
largest with θ′(w).x < θ′(v).x assigned so far then the new x-coordinate of u is
shifted in between θ′(w).x and θ′(v).x. Note that such a w always exists due to
the first two cases.

In B, the symbol <1 is interpreted by the linear order <B
1 such that a <B

1 b
if and only if θ′(a).x < θ′(b).x. The interpretation of SB

1 is induced by <B
1 . The

interpretations of <2 and S2 are defined accordingly, but with respect to the
y-coordinates. Observe that <B

2 is induced by <A
2 and that for all tuples (a, b)

with either a ≤A
2 c1 and b ≤A

2 c1, or c1 <
A
2 a and c1 <

A
2 b, the relative order of

the elements in B is the same.
The unary type of an element a in B is the same as in A. It remains to

assign binary T -types for tuples of elements of B. The binary type of tuples
(a, b) with either a ≤B

2 c1 and b ≤B
2 c1 or c1 <

B
2 a and c1 <

B
2 b is inherited from

A. The tuple (c1, b) with (c1, b) ∈ SB
2 inherits the type of the tuple (c1, u) with

(c1, u) ∈ SA
2 in A.

We now explain how the binary types of all tuples (a, b) with a ≤B
2 c1 <

B
2 b

and (a, b) /∈ SB
2 are assigned. Our focus is on the case when a <B

1 b; the case
b <B

1 a is symmetric. In the following let d
def
= x <1 y ∧ x <2 y ∧ ¬S2(x, y). We

simultaneously assign all binary T -types to all σ-labeled a and τ -labeled b such
that (a, b) satisfies d.

Depending on the structure of the points in A(c1) we distinguish two cases.
To this end let a1, . . . , an be the elements of A(c1) ordered by <A

1 . Denote by
w(c1) the sequence (σ1, d1), . . . , (σn, dn) where σi is the unary type of ai and
di =↑ if c1 <

A
2 ai, di = S if S(c1, ai), di = · if c1 = ai and di =↓ if ai <

A
2 c1.

16

If there is a ((σ, ↓), (τ, ↑), k)-rich position u in w(c1) then we assign the binary
T -types of all tuples (a, b) satisfying d in B using the technique employed by
Otto and also used in Lemma 3.3. Let A = A1 ∪A2 ∪A3 with disjoint Ai and
|Ai| = |Γ| be the set that contains the first k elements of Aσ,min,↓(c1) in B.
Similarly let B = B1 ∪ B2 ∪ B3 with disjoint Bi and |Bi| = |Γ| contain the
last k elements of Aτ,max,↑(c2) in B. Then the binary types are assigned as in
Lemma 3.3:

(A1) Witnesses for elements in A ∪B are assigned as follows:

(a) If, in A, an element a ∈ Ai is σ-labeled and has a (d, γ`, τ)-witness
b ∈ W (a) then the binary T -type of (a, b) in B is γ` where b is the
`th element of Bi. The element b is the (d, γ`, τ)-witness of a in B.

(b) If, in A, an element b ∈ Bi is τ -labeled and has (d̄, γ`, σ)-witness
a ∈ W (b) then the binary T -type of (b, a) in B is γ` where a is the
`th element of Ai+1 (where i+1 is calculated modulo 3). The element
a is the (d, γ`, τ)-witness of b in B.

(A2) Witnesses for all other tuples of σ- and τ -labeled elements are assigned as
follows:

(a) If, in A, an element b /∈ B is σ-labeled and has a (d, γ`, τ)-witness
b ∈ W (a) then the binary T -type of (a, b) in B is γ` where b is the
`th element of B1. The element b is the (d, γ`, τ)-witness of a in B.

(b) If, in A, an element b /∈ B is a τ -labeled and has a (d̄, γ`, σ)-witness
a ∈W (b) then the binary type of (b, a) in B is γ` where a is the `th
element of A1. The element a is the (d, γ`, τ)-witness of b in B.

(A3) If a tuple (a, b) ∈ D′ ×D′ such that, in A, the element a is σ-labeled, b is
τ -labeled and (a, b) satisfies d, and if (a, b) has not been assigned a binary
T -type so far, then a type is assigned as follows. Since Pro(c1) ∼= Pro(c2),
there is a τ -labeled element b′ ∈ D such that (a, b′) satisfies d in A. The
tuple (a, b) inherits its binary type from (a, b′) in B.

This concludes the binary type assignments in the case when there is a
((σ, ↓), (τ, ↑), k)-rich position u in w(c). Note that this case is settled without
using the fact that the profiles contain the elements added by AW .

If there is no ((σ, ↓), (τ, ↑), k)-rich position u in w(c1) then we assign the
binary T -types to σ-labeled a and τ -labeled b satisfying d as explained below.

We observe that in A the (d, ·, τ)-witnesses for all σ-labeled elements a <A
2 c1

are in W τ
σ,min,↓(c1) ∪ Aτ,max,↑(c1). To see this we argue as in Lemma 3.3. By

Lemma 3.2 there is a ((σ, ↓), (τ, ↑), k + 1)-poor position in w(c1). Let v be the
minimal such position. Now let a <A

2 c1 be a σ-labeled position. If a ≤A
1 v then

all (d, ·, τ)-witnesses b ∈W (a) are contained in W τ
σ,min,↓(c1) by construction (as

a is one of the k+ 1 <A
1 -smallest σ-labeled elements below c1). If a >A

1 v then all
(d, ·, τ)-witnesses of a are among the elements Aτ,max,↑(c1) (as there are only at
most k+1 τ -labeled elements above c1 and to the right of a). Similarly all (d̄, ·, σ)-
witnesses for all τ -labeled elements b >A

2 c2 are in Aσ,min,↓(c2) ∪Wτ,max,↑(c2).
Let π be an isomorphism of (P(c1), c1) and (P(c2), c2). We use the above

observation to assign binary T -types as follows:

17

(B1) Witnesses for σ-labeled a with a <B
2 c1 are assigned as follows. If b ∈W (a)

is a (d, γ, τ)-witness of a in A then π(b) is the (d, γ, τ)-witness of a in B.
That is, the binary type of (a, π(b)) in B is γ.

(B2) Witnesses for τ -labeled b with b >B
2 c2 are assigned as follows. If a ∈W (b)

is a (d̄, γ, σ)-witness of b in A then π(a) is the (d, γ, τ)-witness of b in B.
That is, the binary type of (b, π(a)) in B is γ.

(B3) If (a, b) ∈ D′ ×D′ has not been assigned a binary T -type so far, then a
type is assigned as follows. Since Pro(c1) ∼= Pro(c2), there is a τ -labeled
element b′ ∈ D such that (a, b′) satisfies d in A. The tuple (a, b) inherits
its binary type in B from (a, b).

This concludes the binary type assignments in the case when there is no
((σ, ↓), (τ, ↑), k)-rich position u in w(c).

We shortly argue why the construction is correct. The assignments in (A1)
and (A2) as well as (B1) and (B2) ensure that no conflicting types are assigned to
(a, b) and (b, a). No conflicts with universal constraints arise by the assignments
from (A1)-(A3) and (B1)-(B3), as no new types are introduced due to the choice
of θ′. Finally, after the assignments (A1)-(A2) and (B1)-(B2), each element
a has a (d, γ, τ)-witness in B if it has a (d, γ, τ)-witness in A. Similarly for
(d̄, γ, σ)-witnesses.

5 Two Successors and One Linear Order

In this section we show that ESO2 is decidable on finite (S1, S2, <2)-structures.
This has only been known for EMSO2 so far [18].

Theorem 5.1. ESO2-satisfiability on finite ordered (S1, S2, <2)-structures is
decidable.

More precisely it is decidable as fast as emptiness for multicounter automata.
The theorem is proved using the automata-based approach along the same

lines as in Lemma 3.4. To this end we first define linearly ordered data automata
(short: LODA), a restriction of ordered data automata which were introduced
in [18]. Then we show that each constraint problem can be translated into a
LODA such that the constraint problem has a finite (S1, S2, <2)-solution if and
only if the automaton accepts some linearly ordered data word. Theorem 5.1
then follows from Lemma 2.2 and the decidability of the emptiness problem for
LODA (see Theorem 5.3).

Ordered data automata have been introduced for studying EMSO2 on
(S1, S2,≺2)-structures where ≺2 is a preorder relation. For convenience we
simplify the automaton model in order to study ESO2 on plain (S1, S2, <2)-
structures.

A linearly ordered data word is a word w = (σ1, d1) . . . (σn, dn) with (σi, di)
from Σ × N such that {d1, . . . , dn} is a contiguous interval in N and di 6= dj
for all i 6= j. Each linearly ordered data word represents a (S1, <1, S2, <2)-
structures extended by unary relations interpreting symbols from a signature T
in a canonical way. The linear order <1 and its successor are represented by the
positional order, while <2 and S2 are encoded by the order of the data values

18

S1, <1

S2, <2

τ
δ

σ

δ

τ

τ

δ

Figure 2: A (S1, <1, S2, <2)-structure represented as a point set in
the two-dimensional plane. Here all other binary relations are disre-
garded. A linearly ordered data word corresponding to the structure is
((τ, 5), (δ, 6), (σ, 3), (δ, 7), (τ, 1), (τ, 4), (δ, 2)).

d1, . . . , dn. The unary symbols are encoded by the unary types Σ over T . See
Figure 2 for an illustration.

The resorting of w is the string σi1 . . . σin such that the data values di1 , . . . , din
are sorted in ascending order. The string projection of w is the string σ1 . . . σn.
The marked string projection of w is its string projection annotated by infor-
mation about the relationship of data values of adjacent positions. We make
this more precise. The marking mi = (m,m′) of position i is a tuple from
ΣM = {−∞,−1,+1,∞,−}2 and is defined as follows. If i = 1 (or i = n) then
m = − (or m′ = −), otherwise:

m =

−∞ if di−1 < di − 1

−1 if di−1 = di − 1

+1 if di−1 = di + 1

∞ if di−1 > di + 1

Similarly m′ is defined using di+1 instead of di−1. The marked string pro-
jection of w is the string (σ1,m1) . . . (σn,mn) over the alphabet Σ× ΣM .The
string projection of the linearly ordered data word (τ, 5) (δ, 6) (σ, 3) (δ, 7) (τ, 1)
(τ, 4) (δ, 2) from Figure 2 is τδσδττδ. Its marked string projection is (τ, (−,+1))
(δ, (−1,−∞)) (σ, (+∞,+∞)) (δ, (−∞,−∞)) (τ, (+∞,+∞)) (τ, (−∞,−∞))
(δ, (+∞,−)), and its resorting is τδσττδδ.

A linearly ordered data automaton (short: LODA) A over alphabet Σ is a
tuple (B, C) where B is a (non-deterministic) finite state string transducer with
input alphabet Σ × ΣM (where ΣM is the set of markings) and some output
alphabet Σ′; and C is a finite state automaton over Σ′.

A LODA A = (B, C) works as follows. First, for a given linearly ordered data
word w, the transducer B reads the marked string projection of w. A run ρB
of the transducer defines a unique new labeling of each position. Let w′ be the
linearly ordered data word thus obtained from w. The finite state automaton
C runs over the resorting of w′ yielding a run ρC . The run ρA = (ρB , ρC) of
A is accepting, if both ρB and ρC are accepting. The automaton A accepts w
if there is an accepting run of A on w. The set of linearly ordered data words
accepted by A is denoted by L(A). We refer to [18] for more details.

19

Example 5.2. Consider the data language L over Σ = {σ, τ, ρ} that contains
all linearly ordered data words with a unique σ-position x with a τ -position y
to its right such that the data value of y is the successor of the data value of
x (see Figure 2 for a linearly ordered data word in L). A LODA A = (B, C)
can recognize L as follows. For a linearly ordered data word, the automaton B
checks that there is a unique σ-position x, guesses the τ -position y to the right
of x and colors this position y with a fresh label τ ′ (using the transduction). The
automaton C checks that the τ ′-position is the data successor of the σ-position.

The following theorem follows from Theorem 7 and Corollary 11 in [18].

Theorem 5.3. Emptiness of LODA is decidable.

More precisely it is decidable as fast as emptiness for multicounter automata.
Next we show that the satisfiability problem for ESO2 on finite (S1, S2, <2)-

structures reduces to the non-emptiness problem for LODAs.

Lemma 5.4. For every constraint problem C there is a LODA A such that C
has a finite (S1, S2, <2)-solution if and only if L(A) is non-empty.

Proof sketch. Assume that C
def
= (C∃, C∀) is a constraint problem over a

signature T ∪ {S1, S2, <2} and let Σ
def
= ΣT and Γ

def
= ΓT . As in the proof

of Lemma 3.3 we assume that non of the possible witnesses requested by an
existential constraint contradicts a universal constraint.

We construct a LODA A = (B, C) such that A accepts an ordered data
word over Σ if and only if C has a finite (S1, S2, <2)-solution. Intuitively the
automaton A interprets linearly ordered data words as extensions of ordered
(S1, S2, <2)-structures by unary relations but with no binary relations. In order
to accept a word, it has to verify that binary T -types can be assigned to all pairs
of positions in a way consistent with C.

The LODA A is very similar to the finite state automaton constructed in
Lemma 3.4. Like the automaton in Lemma 3.4, the LODA A assumes that every
position is labeled with its required witnesses (E).

(E) We assume that for every existential constraint (σ,E), all σ-labeled po-
sitions a are labeled with a fresh label (σ, d, γ, τ) such that (d, γ, τ) ∈ E.
The intention is that the (σ,E)-witness of a satisfies (d, γ, τ).

Dealing with positions that are close to each other can be done in a similar
same way as in Lemma 3.4, except that now close means either close with respect
to S1 or close with respect to S2 (or both). The existence of an assignment of
binary T -types for positions that are close with respect to S1 is verified by B,
and it is verified by C for positions close with respect to S2.

More precisely, the automaton guesses the types of pairs of elements that are
S1- or S2-close to each other. Each element a has at most four elements that
are close to it: there might be an element b1 with S1(a, b1), an element b2 with
S1(b2, a) and similarly elements b3 with S2(a, b3) and b4 with S2(b4, a). Some of
those elements might not exist (if a is the first or last element with respect to <1

or <2) or might coincide (e.g. b1 might coincide with either b3 or b4). For each
of the elements b1, . . . , b4 the automaton can guess and verify the binary T -type.

(L1) (Local types) We assume that each element a is labeled by up to four
labels γ1, . . . , γ4 ∈ Γ. The intention is that γi is the binary type of (a, bi)
(if the element bi exists).

20

S1

S2, <2

a

b

S1

S2, <2

a

b

Figure 3: Illustration of remote elements in Lemma 5.4. On the left, the
element a and all potential elements b in the highlighted area satisfy d(x, y)

def
=

¬S1(x, y)∧¬S1(y, x)∧x <2 y∧¬S2(x, y). On the right, the symmetric constraint
¬S1(x, y) ∧ ¬S1(y, x) ∧ y <2 x ∧ ¬S2(y, x) is illustrated.

(L2) (Consistency of local types) The automaton verifies that the labels are
consistent, that is, e.g., that if a and b are elements with S1(a, b) then the
label γ1 of a (i.e. the type guessed for (a, b)) is compatible with the label
γ2 of b (i.e. the type guessed for (b, a)) and that if S1(a, b) and S2(a, b)
then γ1 = γ3.

(L3) (Local witnesses) For every σ-labeled element a that is labeled by (σ, d, γ, τ)
due to (E), the automaton verifies that if d = S1(x, y) then the label γ1 of a
is γ and that its successor is labeled with τ . Likewise for S1(y, x), S2(x, y),
and S2(y, x)).

(L4) (Local universal constraints) For all σ- and τ -labeled positions a and b
with S1(a, b) the automaton verifies that if a is labeled γ1 then there is no
universal constraint (σ, S(x, y), γ1, τ). Likewise for S1(b, a), S2(a, b), and
S2(b, a).

For verifying the existence of an assignment of binary types for positions that
are remote from each other, the LODA A has to do slightly more than the finite
state automaton from Lemma 3.4. There is, essentially, only one (S1, S2, <2)-type
of remote positions which we will denote by d

def
= ¬S1(x, y) ∧ ¬S1(y, x) ∧ x <2

y ∧ ¬S2(x, y) (see Figure 3).
Checking that for all positions a and b at least one binary T -type is consistent

with the universal constraints can be done as follows:

(U1) Assume that each position a is labeled by a set L<2
(a) containing all τ ∈ Σ

such that there is a τ -labeled position b1 such that (a, b1) satisfies d and
by a set L>2(a) containing all τ ∈ Σ such that there is a τ -labeled position
b2 such that (b2, a) satisfies d. Those labels can be easily verified by B
and C. (E.g. if τ ∈ L<2

(a) for a position a and there are i ∈ {0, 1, 2} many
τ -labeled S1-close elements b such that (a, b) satisfies x <2 y ∧ ¬S2(x, y)
then C verifies that there are i+ 1 τ -labeled elements b′ such that (a, b′)
satisfies x <2 y ∧ ¬S2(x, y). Then (a, b′) satisfies d for one of those b′.
Similarly for τ /∈ L<2(a) and L>2(a).)

(U2) For all σ-labeled a the automaton verifies that for every τ ∈ L<2
(a) there

21

is a γ such that there is no universal constraint (σ, d, γ, τ) in C. Similarly
for L>2

(a).

Testing that existential witnesses can be assigned to far-away positions is
analogous to Lemma 3.4. The intuition is that pairs (a, b) of elements satisfying
d behave like pairs (a′, b′) satisfying x < y ∧ ¬S(x, y) in Lemma 3.4. A little
care is needed for ensuring that elements are indeed remote from each other.

We shortly discuss some details of how A verifies that binary T -types for all
σ- and τ -labeled elements a and b satisfying d can be assigned. To this end, the
automaton A guesses whether there is an element u such that σ occurs more
than k

def
= 3(|Γ| + 5) times above u and τ occurs more than k times below u.

(Recall that a position a is above u if a >2 u.)
If such a position u exists then the automaton tests that every σ-labeled

element a has as many τ -labeled elements b such that (a, b) satisfies d as is
required by (E), and that every τ -labeled element a′ has sufficiently many σ-
labeled positions b′ such that (a′, b′) satisfies d̄. If this is the case then binary
types can be assigned as in Lemma 3.4 using Otto’s assignment technique.

For testing that there are, say m many, τ -labeled elements b such that (a, b)
satisfies d the automaton B labels a with the number i ∈ {0, 1, 2} of τ -labeled
positions that are S1-close to a and S2-remote from a. The automaton C then
tests that there are at least m + i many τ -labeled elements b such that (a, b)
satisfies x <2 y ∧ S2(x, y).

If there is no such position u then there is a position v such that there are at
most k + 1 σ-labeled positions below v and at most k + 1 τ -labeled positions
above v by Lemma 3.2. The automaton A exploits this structure exactly as in
Lemma 3.4 by labeling those up to k + 1 many positions distinctly and guessing
and verifying their witnesses.

For completeness we describe A in more detail, even though it is very similar
to the automaton in Lemma 3.4. The automaton A does the following:

(E1) It guesses whether there is such a position u. The correctness of the guess
can be easily verified by C.

(E2) If there is such a position u then A verifies the following for all σ, τ ∈ Σ:

(a) If a σ-labeled position a is labeled by (σ, d, γ1, τ), . . . , (σ, d, γm, τ)
then there are m τ -labeled positions above a that are neither S1- nor
S2-close to a.

(b) Symmetrically, if a τ -labeled position a is labeled by (τ, d̄, γ1, σ), . . .,
(τ, d, γm, σ) then there are m σ-labeled positions below a that are
neither S1- nor S2-close to a.

(E3) If there is no such position u then A guesses the position v. The correctness
of the guess can be easily verified by C. Then:

(a) We assume that positions are labeled by the following extra informa-
tion (using fresh labels depending on σ and τ):

• The ith σ-labeled position a below v is labeled by σi. The ith
τ -labeled position a above v is labeled by τi. (By the choice of v
there are at most k + 1 such σi and τi.)

• The intended witnesses for σi- and τi-labeled positions are labeled
as follows:

22

– If the σi-labeled position a is labeled by (σ, γ, d, τ) in (E),
then there is a τ -labeled position b labeled with (σi, γ, d, τ)
such that (a, b) satisfies d.

– Likewise, if the τi-labeled position a is labeled by (τ, γ, d̄, σ)
in (E), then there is a σ-labeled position b that is labeled
with (τi, γ, d̄, σ) such that (a, b) satisfies d̄ .

• Positions with intended witnesses from σi- and τi-labeled positions
are labeled as follows:

– Each position a below v that is labeled by (τ, γ, d̄, σ) in (E)
is also labeled with (τ, γ, d̄, σi) for some i such that (a, b)
satisfies d̄(x, y) where b is the σi-labeled position.

– Likewise, each (σ, γ, d, τ)-labeled position a above u is labeled
with (σ, γ, d, τi) for some i such that (a, b) satisfies d where b
is the σi-labeled position.

(b) The automaton verifies that the labels are consistent, that is:

• No τ -labeled position below v is labeled with (σi, γ, d, τ) and with
(τ, γ′, d̄, σi) where γ and γ′ are not reverse types.

• Likewise, no σ-labeled position above v is labeled with (τi, γ̄
′, d, σ)

and with (σ, γ, d, τi) where γ and γ′ are not reverse types.

The correctness is proved completely analogous to Lemma 3.4.

6 Order- and Successor-invariance

In this Section we discuss order-invariance for two-variable formulas. A first-order
sentence ϕ over a signature T ∪ {<} is order-invariant (<-invariant for short) if
for each T -structure A and all linear orders <1 and <2 on the domain of A,

(A, <1) |= ϕ ⇐⇒ (A, <2) |= ϕ.

A class of finite T -structures A is <-invariantly first-order definable if there is
an <-invariant T ∪ {<}-sentence ϕ such that, for each finite T -structure A,

A ∈ C if and only (A, <) |= ϕ

for each linear order < on the domain of A.
It is not immediately obvious that allowing this restricted use of an order

extends the expressive power of FO. A well-known example due to Gurevich (cf.
eg. [16]) shows that there is indeed a <-invariantly definable class of structures
which is not FO-definable without an order. The example of Gurevich indicates
that order-invariance is, at least potentially, useful in formulating queries. For
using invariance in this context, it is essential to be able to verify that an
FO-sentence is indeed invariant. Unfortunately, a simple reduction of the finite
satisfiability problem shows that <-invariance of FO-sentences is undecidable.

The results from the previous sections as well as the discussion in the
introduction imply that <-invariance of FO2-sentences is decidable.

Theorem 6.1. Order-invariance of FO2 is in 2-NExpTime.

23

Successor-invariance (S-invariance, for short) is defined analogously to order-
invariance where instead of the linear order the formulas may use a successor
relation (see e.g. [22]). By combining the approach discussed in the introduction
with Theorem 2 of [3], one obtains the following result.

Theorem 6.2. Successor-invariance of FO2 is in NExpTime.

Our approach for deciding <-invariance and S-invariance does not immedi-
ately transfer to (S,<)-invariance where both the order and its induced suc-
cessor can be used in formulas, since even EMSO2 is undecidable on finite
(S1, <1, S2, <2)-structures [17] However, in the proof of Theorem 6.1, it would
suffice to prove decidability for formulas of the form ϕ(S1, <1) ∧ ¬ϕ(S2, <2).
This seems conceivable, but so far we were unable to obtain a proof using our
techniques.

The following example shows that invariance is useful even for two-variable
logic.

Example 6.3. FO2 is often extended by counting quantifiers of the shape ∃≥k,
where ∃≥kxϕ states that there are at least k satisfying assignments to x. We
define monadic counting quantifiers which are defined in the same way but ϕ is
restricted to use at most one free variable x. We observe that these quantifiers
are <-invariantly definable by two-variable formulas, since

∃≥0xϕ(x) ≡ x = x,

∃≥k+1xϕ(x) ≡ ∃xϕ(x) ∧ ∃≥ky y < x ∧ ϕ(y).

It is easy to see using a pebble game argument that the monadic counting
quantifier ∃≤k is not two-variable definable for each k ≥ 3.

7 Conclusion and Future Work

We have shown that <-invariance and S-invariance of FO2-sentences is decidable
by establishing decidability of ESO2-satisfiability on finite (S1, <1, <2)- and
(S1, S2, <2)-structures. Several interesting questions remain open:

1. Is ESO2 decidable on (S1, S2, S3)-structures?

2. Where is the border of decidability of ESO2 on general, not necessarily
finite, ordered structures?

3. Is (S,<)-invariance of FO2 decidable?

4. Is every <-invariantly FO2-definable property also FO-definable without
the use of a linear order?

For the second question preliminary results have been obtained for certain order
types.

Acknowledgements

We thank Thomas Schwentick for stimulating discussions and many very help-
ful suggestions for improving upon a draft of this article. The first author
acknowledges the financial support by DFG grant SCHW 678/6-1.

24

References

[1] Michael A. Benedikt and Luc Segoufin. Towards a characterization of
order-invariant queries over tame graphs. J. Symbolic Logic, 74(1):168–186,
03 2009.

[2] Mikolaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and
Luc Segoufin. Two-variable logic on data words. ACM Trans. Comput.
Logic, 12(4):27:1–27:26, July 2011.

[3] Witold Charatonik and Piotr Witkowski. Two-variable logic with counting
and trees. In LICS’13, pages 73–82, 2013.

[4] Witold Charatonik and Piotr Witkowski. Two-variable logic with counting
and a linear order. In CSL 2015, volume 41 of LIPIcs, pages 631–647, 2015.

[5] Kord Eickmeyer, Michael Elberfeld, and Frederik Harwath. Expressivity
and succinctness of order-invariant logics on depth-bounded structures. In
MFCS 2014, pages 256–266. Springer, 2014.

[6] Thomas Eiter, Yuri Gurevich, and Georg Gottlob. Existential second-order
logic over strings. J. ACM, 47(1):77–131, 2000.

[7] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic
with two variables and unary temporal logic. Inf. Comput., 179(2):279–295,
2002.

[8] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision
problem for two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–
69, 1997.

[9] Erich Grädel and Martin Otto. On logics with two variables. Theor. Comput.
Sci., 224(1-2):73–113, 1999.

[10] Erich Grädel and Eric Rosen. Two-variable descriptions of regularity. In
LICS ’99, pages 14–23, 1999.

[11] Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order
formulas. ACM Trans. Comput. Log., 1(1):112–130, 2000.

[12] Emanuel Kieronski. Decidability issues for two-variable logics with several
linear orders. In CSL 2011, volume 12 of LIPIcs, pages 337–351, 2011.

[13] Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia
Tendera. Two-variable first-order logic with equivalence closure. SIAM J.
Comput., 43(3):1012–1063, 2014.

[14] Emanuel Kieronski and Martin Otto. Small substructures and decidability
issues for first-order logic with two variables. J. Symb. Log., 77(3):729–765,
2012.

[15] Emanuel Kieronski and Lidia Tendera. On finite satisfiability of two-variable
first-order logic with equivalence relations. In LICS 2009, pages 123–132.
IEEE Computer Society, 2009.

25

[16] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[17] Amaldev Manuel. Two variables and two successors. In MFCS 2010, volume
6281, pages 513–524. Springer, 2010.

[18] Amaldev Manuel and Thomas Zeume. Two-variable logic on 2-dimensional
structures. In CSL 2013, volume 23 of LIPIcs, pages 484–499, 2013.

[19] Maarten Marx. First order paths in ordered trees. In ICDT 2005, volume
3363, pages 114–128. Springer, 2005.

[20] Michael Mortimer. On languages with two variables. Zeitschr. f. math.
Logik u. Grundlagen d. Math., 21:135–140, 1975.

[21] Martin Otto. Two variable first-order logic over ordered domains. J. Symb.
Log., 66(2):685–702, 2001.

[22] Benjamin Rossman. Successor-invariance in the finite. In LICS 2003, pages
148–157. IEEE Computer Society, 2003.

[23] Nicole Schweikardt. A short tutorial on order-invariant first-order logic. In
CSR 2013, volume 7913, pages 112–126. Springer, 2013.

[24] Thomas Schwentick and Thomas Zeume. Two-variable logic with two order
relations. In CSL 2015, volume 6247, pages 499–513, 2010.

[25] Thomas Schwentick and Thomas Zeume. Two-variable logic with two order
relations. Logical Methods in Computer Science, 8(1), 2012.

[26] Dana Scott. A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27(377):74, 1962.

[27] Wieslaw Szwast and Lidia Tendera. FO2 with one transitive relation is
decidable. In STACS 2013, volume 20 of LIPIcs, pages 317–328, 2013.

26

	1 Introduction
	2 Preliminaries
	2.1 Ordered Structures
	2.2 Two-Variable Logic

	3 Warm-Up: One Linear Order and One Successor
	4 Two Linear Orders and One Successor
	5 Two Successors and One Linear Order
	6 Order- and Successor-invariance
	7 Conclusion and Future Work

