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Abstract

Recently Beyersdorff, Bonacina, and Chew [10] introduced a nat-
ural class of Frege systems for quantified Boolean formulas (QBF)
and showed strong lower bounds for restricted versions of these
systems. Here we provide a comprehensive analysis of the new ex-
tended Frege system from [10], denoted EF+ ∀red, which is a nat-
ural extension of classical extended Frege EF.

Our main results are the following: Firstly, we prove that the
standard Gentzen-style system G∗

1 p-simulates EF+ ∀red and that
G∗

1 is strictly stronger under standard complexity-theoretic hard-
ness assumptions.

Secondly, we show a correspondence of EF+ ∀red to bounded
arithmetic: EF+ ∀red can be seen as the non-uniform propositional
version of intuitionistic S

1
2 . Specifically, intuitionistic S

1
2 proofs

of arbitrary statements in prenex form translate to polynomial-size
EF+ ∀red proofs, and EF+ ∀red is in a sense the weakest system
with this property.

Finally, we show that unconditional lower bounds for EF+ ∀red
would imply either a major breakthrough in circuit complexity or
in classical proof complexity, and in fact the converse implications
hold as well. Therefore, the system EF+ ∀red naturally unites the
central problems from circuit and proof complexity.

Technically, our results rest on a formalised strategy extraction
theorem for EF+ ∀red akin to witnessing in intuitionistic S

1
2 and a

normal form for EF+ ∀red proofs.

Categories and Subject Descriptors F.2.2 [Analysis of algo-
rithms and problem complexity]: Nonnumerical Algorithms and
Problems—Complexity of proof procedures

General Terms Proof complexity, bounded arithmetic, quantified
Boolean formulas

Keywords QBF proof systems, sequent calculus, Frege systems,
intuitionistic logic, strategy extraction, lower bounds, simulations

1. Introduction

Proof complexity addresses the main question of how hard it is to
prove theorems in a given calculus, in particular: what is the length
of the shortest proof of a given theorem in a fixed formal system,
typically comprised of axioms and rules. This research bears tight
and fruitful connections to computational complexity (separating
complexity classes in an approach known as Cook’s programme
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[20]), to first-order logic (theories of bounded arithmetic [19, 31]),
as well as to practical SAT- and QBF-solving [15].

While the bulk of activity in proof complexity concerns proposi-
tional proofs, there has been intense research during the last decade
employing proof-complexity methods to further logics, most no-
tably non-classical logics (cf. [7]) and proof complexity of quanti-
fied Boolean formulas (QBF).

Recent research in QBF proof complexity has been largely trig-
gered by exciting advances in QBF solving—powerful algorithms
that solve large classes of formulas from industrial applications.
Compared to SAT solving, due to the PSPACE completeness of
QBF the success of QBF solvers even extends to further fields
such as planning [24, 36] and formal verification [5]. To model
the strengths of modern QBF solvers, a number of resolution-based
proof systems have been recently suggested and analysed from a
proof complexity perspective (cf. [3, 8, 9, 11]).

While we have a relatively good understanding of these weak
resolution-type systems, much less is known for strong proof sys-
tems, and this judgement applies to both propositional and QBF
proof complexity. There are two main approaches for designing
strong calculi: via sequent-style systems (Gentzen’s LK [25]) and
axiom-rule based systems known as Frege or Hilbert-type calculi
[20]. In propositional logic, both Gentzen and Frege systems are
equivalent from a proof complexity point of view [20, 31].

The situation is more intricate for QBF; and indeed the main
aim of the present paper is to shed light on this topic.

Gentzen systems for QBF were already introduced in the late
80’s by Krajı́ček and Pudlák [32], of which we use slightly modi-
fied versions Gi and G∗

i due to Cook and Morioka [18]. These sys-
tems are known to be strictly more powerful than QBF resolution
[23], but lower bounds are out of reach with current techniques.

As for strong propositional systems, the main source of infor-
mation on QBF Gentzen systems stems from their correspondence
to Buss’ theories of bounded arithmetic [13, 18, 32]. This corre-
spondence allows to translate first-order formulas into sequences
of QBFs, and indeed first-order proofs in S

i
2 or T i

2 to polynomial-
size G∗

i or Gi proofs, respectively [18, 32], thus providing the main
tool to construct short propositional proofs.

On the other hand, QBF Frege systems were only developed
very recently [10]. Their definition is very elegant, adding to classi-
cal Frege just one single ∀red rule for managing quantifiers, lead-
ing to the QBF system Frege+ ∀red. Alternatively, they can be seen
as substitution Frege systems with substitutions allowed just for
universally quantified variables.

As for classical Frege, the strength of Frege+ ∀red can be cal-
ibrated by allowing different classes of formulas (or more directly
Boolean circuits [28]) as their underlying objects. With a novel
technique [8, 10], uncovering a new and direct relation between
circuit complexity and proof complexity, very strong lower bounds
have been obtained for QBF Frege, the strongest of which yields
an exponential lower bound for AC0[p]-Frege+ ∀red. In sharp con-
trast, the strongest lower bound in the propositional world holds for



Frege+ ∀red

G∗
0 EF+ ∀red

G0

G∗
1

G1

p-simulation

‘relaxed’ p-simulation

(Theorem 5.2)

Figure 1. The simulation order of QBF Gentzen and Frege systems

AC0-Frege [1, 33, 35], while lower bounds for the stronger AC0[p]-
Frege constitute a major problem, open for more than twenty years.

This exciting development prompts us to target at a better un-
derstanding of the new QBF Frege systems. What is their relation
to the well-studied QBF Gentzen calculi? Does QBF Frege also
admit a correspondence to bounded arithmetic? Can we push lower
bounds even beyond the current state-of-the-art bound for AC0[p]-
Frege+ ∀red from [10]?

In this paper we give answers to all of these three questions.

1.1 Our contributions

Below we summarise our main contributions of this paper, sketch-
ing the main results and techniques.

A. Gentzen vs. Frege in QBF: simulations and separations.
In classical proof complexity Frege and Gentzen’s sequent system
LK are p-equivalent, i.e., proofs can be efficiently translated be-
tween the systems [20]. In contrast, our findings show a more com-
plex picture for QBF. We concentrate on the most important stan-
dard Gentzen-style systems G∗

0 and G∗
1 as well as the QBF Frege

systems Frege+ ∀red and EF+ ∀red, forming QBF analogues of
the classical Frege and extended Frege system EF from [20].

For these four systems the following picture emerges (cf. Fig-
ure 1): We prove that G∗

1 p-simulates EF+ ∀red (Theorem 5.1) and
likewise G∗

0 p-simulates Frege+ ∀red (although the latter under a
slightly more relaxed notion of p-simulation, Theorem 5.2). On the
other hand, the converse simulations are unlikely to hold. Under a
variety of standard complexity-theoretic assumptions we show that
EF+ ∀red is incomparable to both G∗

0 and G0 (Theorems 3.1, 3.4,
3.3, 3.5). Hence, unlike in the propositional framework, Gentzen
appears to be stronger than Frege in QBF.

While all these separations make use of complexity-theoretic
assumptions, it will be very hard to improve these results to un-
conditional lower bounds (see C. below). However, since we use a
number of unrelated and indeed partly incomparable assumptions,
our separations seem very plausible.

B. QBF Frege corresponds to intuitionistic logic. The strongest
tool for an understanding of classical Frege as well as proposi-
tional and QBF Gentzen systems comes from their correspondence
to bounded arithmetic [19, 31]. Here we show such a correspon-
dence between EF+ ∀red and first-order intuitionistic logic IS

1
2,

introduced in [14, 22]. For this first-order arithmetic formulas are
translated into sequences of QBFs [32].

Our main result on the correspondence states that translations
of arbitrarily complex prenex theorems in IS

1
2 admit polynomial-

size EF+ ∀red proofs (Theorem 7.1). Informally, this says that
all IS1

2 consequences can be efficiently derived in EF+ ∀red, and
moreover, EF+ ∀red is the weakest system with this property.

The second facet of the correspondence is that IS1
2 can prove

the correctness of EF+ ∀red in a suitable encoding (Theorem 7.2),

and in a certain sense EF+ ∀red is the strongest proof system that
is provably sound in the theory IS

1
2.

Technically, the correspondence as well as the simulation re-
sults mentioned under A. above rest on a formalisation of the
Strategy Extraction Theorem for QBF Frege systems from [10].
This strategy extraction result states that for formulas provable in
EF+ ∀red one can compute witnesses for all existential quanti-
fiers with Boolean circuits that can be efficiently extracted from
the EF+ ∀red proof.

We provide two formalisations for this result: one in first-order
logic, where we formalise strategy extraction in S

1
2 (Theorem 4.1),

and a second more direct one, where we construct Frege proofs for
the witnessing properties (Theorem 4.3). While the second formal-
isation applies to more systems and gives the simulation structure
detailed in A., the first formalisation is stronger and enables the
correspondence to IS

1
2.

Although intuitionistic bounded arithmetic was already devel-
oped by Buss in the mid 80’s [14], no propositional counterpart
of this theory was found so far—in sharp contrast to most other
arithmetic theories [19]. As we show here, the missing piece in the
puzzle is the recent QBF Frege system EF+ ∀red.

Indeed, the appealing link between IS
1
2 and EF+ ∀red comes

via their witnessing properties: similarly as EF+ ∀red has strategy
extraction for arbitrarily complex QBFs [10], the theory IS

1
2 admits

a witnessing theorem for arbitrary first-order formulas [22].

C. Characterising lower bounds for QBF Frege. The main
question left open by the recent advances in strong QBF lower
bounds [10] is whether unconditional lower bounds can be obtained
for Frege+ ∀red or even EF+ ∀red. We show here that such a result
would imply either a major breakthrough in circuit complexity (a
lower bound for non-uniform NC1 or even P/poly) or a major
breakthrough in propositional proof complexity (lower bounds for
classical Frege or even EF); and in fact the opposite implications
hold as well (Theorem 8.1).

This means that the problem of lower bounds for QBF Frege
very naturally unites the hardest problem in circuit complexity with
the hardest problem in proof complexity. Indeed, by our simula-
tions shown in A. this also means that a lower bound for any of the
QBF Gentzen systems Gi or G∗

i for i ≥ 1 would imply either a
circuit lower bound or a lower bound for propositional Frege.

This is conceptually very interesting as a direct connection be-
tween progress in circuit complexity and proof complexity has
been often postulated (cf. [4]). Our results show that this con-
nection directly manifests in Frege+ ∀red, thus highlighting that
Frege+ ∀red is indeed a natural and important system.

Technically, this result uses a normal form that we achieve
for Frege+ ∀red proofs: these can be decomposed into a classical
Frege proof followed by a number of ∀red steps (Theorem 6.1).
We further show that even ∀red steps suffice that only substitute
constants (Theorem 6.3).

Conceptually, our work draws on the close interplay of ideas and
techniques from proof complexity, computational complexity, and
bounded arithmetic; and it is really the interaction of these areas
and techniques that form the technical basis of our results (which
enforces us also to include rather extensive preliminaries).

1.2 Organization

In Section 2 we provide background on proof complexity, bounded
arithmetic, and QBF Gentzen and Frege systems. We prove the con-
ditional separations and the simulations in Sections 3 and 5, re-
spectively. Section 4 formalizes strategy extraction in QBF Frege
in S

1
2 and Frege, and Section 6 derives from this a normalisation

of EF+ ∀red proofs. This enables us to show the correspondence
between the theory IS

1
2 and EF+ ∀red in Section 7. Finally, in Sec-



tion 8 we give the characterization of Frege+ ∀red and EF+ ∀red
lower bounds in terms of lower bounds for Boolean circuits or
propositional Frege.

2. Preliminaries

2.1 Notions from computational complexity

We use standard notation and concepts from computational com-
plexity (cf. [2]). In particular, we use the circuit class P/poly of
functions computed by polynomial-size Boolean circuits and the
class NC1 of functions computed by polynomial-size circuits of
logarithmic depth (cf. [37]). We say that a function is hard for
P/poly if it is not computable by a sequence of polynomial-size
circuits.

By FPΣ
p
i [O(log n)] we denote the set of functions computed

by a polynomial-time Turing machine making at most O(log n)

queries to a Σ
p
i -oracle. FPΣ

p
i is defined analogously but without the

restriction on the number of queries.

2.2 Notions from proof complexity

Proof systems. According to [20] a proof system for a language L
is a polynomial-time onto function P : {0, 1}∗ → L. Each string
φ ∈ L is a theorem and if P (π) = φ, π is a proof of φ in P . Given
a polynomial-time function P : {0, 1}∗ → {0, 1}∗ the fact that
P ({0, 1}∗) ⊆ L is the soundness property for L and the fact that
P ({0, 1}∗) ⊇ L is the completeness property for L.

Proof systems for the language TAUT of propositional tautolo-
gies are called propositional proof systems and proof systems for
the language TQBF of true QBF formulas are called QBF proof
systems. Equivalently, propositional proof systems and QBF proof
systems can be defined respectively for the languages UNSAT of
unsatisfiable propositional formulas and FQBF of false QBF for-
mulas, in this second case we call them refutational.

Given two proof systems P and Q for the same language L, P
p-simulates Q (denoted Q ≤p P ) if there exists a polynomial-time
function t such that for each π ∈ {0, 1}∗, P (t(π)) = Q(π). Two
systems are called p-equivalent if they p-simulate each other.

A proof system P for L is called polynomially bounded if there
exists a polynomial p such that every x ∈ L has a P -proof of size
≤ p(|x|).

Frege systems. Frege proof systems are the common ‘textbook’
proof systems for propositional logic based on axioms and rules
[20]. The lines in a Frege proof are propositional formulas built
from propositional variables xi and Boolean connectives ¬, ∧,
and ∨. A Frege system comprises a finite set of axiom schemes
and rules, e.g., φ ∨ ¬φ is a possible axiom scheme. A Frege
proof is a sequence of formulas where each formula is either a
substitution instance of an axiom, or can be inferred from previous
formulas by a valid inference rule. Frege systems are required to be
sound and implicationally complete. The exact choice of the axiom
schemes and rules does not matter as any two Frege systems are p-
equivalent, even when changing the basis of Boolean connectives
[20] and [31, Theorem 4.4.13]. Therefore we can assume w.l.o.g.
that modus ponens is the only rule of inference.

Usually Frege systems are defined as proof systems where the
last formula is the proven formula. Equivalently, we can view them
as refutation Frege systems where we start with the negation of the
formula that we want to prove and derive a contradiction, and we
switch between the two different formulations when convenient.

A number of subsystems and extensions of Frege have been
considered in the literature (cf. [4]). An elegant framework for these
systems was introduced by Jeřábek [28], where C-Frege directly
operates with circuits from the set C using a finite set of derivation
Frege rules. For example, if there are no restrictions on C then C-
Frege is p-equivalent to the extended Frege system EF, cf. [28].

If C is restricted to formulas, i.e., C = NC1, then C-Frege is just
Frege. Throughout the paper, whenever we speak of EF we indeed
mean P/poly-Frege and Frege stands for NC1-Frege.

Sequent calculus. Gentzen’s sequent calculus [25] is another
classical proof system, both for first-order and propositional logic
(cf. [31]). Propositional sequent calculus LK operates with sequents
Γ −→ ∆ with the semantic meaning

∧

φ∈Γ φ |=
∨

ψ∈∆ ψ. An

important rule in LK is the cut rule

Γ −→ ∆, A A,Γ −→ ∆
(cut rule)

Γ −→ ∆

where A is called the cut formula.
LK is well known to be p-equivalent to Frege (cf. [31]).

2.3 Quantified Boolean formulas

Quantified Boolean formulas (QBF) extend propositional formulas
by propositional quantifiers ∀x. φ(x) with the semantic meaning
φ(0) ∧ φ(1), and ∃x. φ(x) meaning φ(0) ∨ φ(1).

The quantifier complexity of QBFs is captured by sets Σqi and
Πqi , which are defined inductively. Σq0 = Πq0 is the set of quantifier-
free propositional formulas, Σqi+1 is the closure of Πqi under exis-
tential quantification, and Πqi+1 is the closure of Σqi under universal
quantifiers.

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as
a game between the universal and the existential player. In the
i-th step of the game, the player Qi assigns values to all the
variables Xi. The existential player wins the game iff the matrix φ
evaluates to 1 under the assignment constructed in the game. The
universal player wins iff the matrix φ evaluates to 0. Given a
universal variable u with index i, a strategy for u is a function from
all variables of index < i to {0, 1}. A QBF is false iff there exists a
winning strategy for the universal player, i.e. if the universal player
has a strategy for all universal variables that wins any possible
game [27], [2, Sec. 4.2.2].

2.4 Sequent calculi for QBF

Quantified propositional calculus G, as defined by Cook and
Morioka [18], extends Gentzen’s classical propositional sequent
calculus LK, cf. [31, Chapter 4.3], by allowing quantified propo-
sitional formulas in sequents and by adopting the following extra
quantification rules for ∀-introduction

φ(x/ψ),Γ−→ ∆
(∀-l)

∀x. φ,Γ−→ ∆

Γ−→ ∆, φ(x/p)
(∀-r)

Γ−→ ∆, ∀x. φ

and ∃-introduction

φ(x/p),Γ−→ ∆
(∃-l)

∃x. φ,Γ−→ ∆

Γ−→ ∆, φ(x/ψ)
(∃-r).

Γ−→ ∆, ∃x. φ

For the rules ∀-l and ∃-r, φ(x/ψ) is the result of substituting ψ
for all free occurrences of x in φ. The formula ψ may be any
quantifier-free formula (i.e., without bounded variables) that is free
for substitution for x in φ (i.e., no free occurrence of x in φ is within
the scope of a quantifier Qy such that y occurs in ψ). The variable
p in the rules ∀-r and ∃-l must not occur free in the bottom sequent.

For i ≥ 0, Gi is a subsystem of G with cuts restricted to prenex
Σqi ∪ Πqi -formulas. G∗

i denotes the subsystem of Gi allowing only
tree-like proofs.

The systems G and Gi were originally introduced slightly differ-
ently, cf. [30–32], not restricting the formulas ψ in ∀-l and ∃-r to be
quantifier-free, and defining Gi as the system G allowing only Σqi -
formulas in sequents. Hence, Gi’s could not prove all true QBFs.
We will, however, use the redefinition of these systems by Cook
and Morioka [18].



Notably, (for Cook and Morioka’s definition) Jeřábek and
Nguyen [29] showed that the system Gi with cuts restricted to
prenex Σqi -formulas is p-equivalent to Gi with cuts restricted to
prenex Πqi -formulas and p-equivalent to Gi with cuts restricted to
(not necessarily prenex) Σqi ∪Πqi -formulas. Moreover these equiv-
alences hold as well for the tree-like versions of these systems.

Cook and Morioka [18] also proved that their definition of Gi
is p-equivalent to Gi from [32] for i ≥ 0 and prenex Σqi ∪ Πqi -
formulas (so by [29] also for non-prenex ones).

On propositional formulas G0 is p-equivalent to Frege and G1

is p-equivalent to the Extended Frege system EF, cf. [31].
Finally, the systems Gi and G∗

i have quite constructive witness-
ing properties. Whenever there are polynomial-size G∗

1 proofs of
formulas ∃y.An(x, y) for An(x, y) ∈ Σq1, there exist polynomial-
size circuits Cn witnessing the existential quantifiers, i.e., the for-
mula An(x,Cn(x)) holds, cf. [18, Theorem 7]. In case of G0 the
circuits witnessing Σq1-formulas are from NC1, cf. [18, Theorem 9].
The witnessing theorems can be generalized to systems G∗

i and Gi
for i ≥ 1 w.r.t. Σqi -formulas and witnessing functions correspond-
ing to higher levels of the polynomial hierarchy.

2.5 Frege systems for QBF

An alternative way how to define reasoning with QBFs was given in
[10] by using systems denoted as C-Frege+ ∀red. C-Frege+ ∀red
is a refutational proof system augmenting the classical C-Frege
system by a ∀red rule. Formally, a C-Frege+ ∀red refutation of a
QBF Q.φ is a sequence of circuits L1, . . . , Ll ∈ C where L1 = φ,
Ll = ∅, and each Li is derived from previous Lj’s using the
inference rules of C-Frege or using the following ∀red rule

Lj(u)
(∀red)

Lj(u/B)

where u is a universal variable that is the innermost (wrt. the
quantifier prefix Q) among the variables of Lj , and B ∈ C is
a circuit that contains only variables left of u. In particular, C-
Frege+ ∀red does not manipulate the prefix of the given QBF, so it
proves only QBFs in prenex form.

In principle, variables not quantified in the prefix of a QBF
might appear in its C-Frege+ ∀red refutation as consequences of
C-Frege rules. However, all such variables can be substituted by
arbitrary constants without changing the proven QBF. Therefore,
we assume that there are no such ‘redundant’ variables.

If there are no restrictions on C, we denote C-Frege+ ∀red as
EF+ ∀red. If C is restricted to formulas, we speak of Frege+ ∀red.

Note that C-Frege+ ∀red is essentially a refutational substitu-
tion Frege system SF, cf. [31], with substitutions allowed only for
rightmost universally quantified variables.

In Section 6.1 we will show that in fact restricting the substitut-
ing circuitB to constants 0, 1 results in a p-equivalent proof system
denoted C-Frege+ ∀red0,1.

A characteristic property of the C-Frege+ ∀red systems is the
so called Strategy Extraction Theorem. The theorem obtained in
[10] says that whenever there is a C-Frege+ ∀red refutation π of a
QBF ∃x1∀y1, . . . , ∃xk∀yk. φ(x1, . . . , xk, y1, . . . , yk), then there
are O(|π|)-size witnessing circuits C1, . . . , Ck ∈ C satisfying

n
∧

i=1

(y′i ↔ Ci(x1, . . . , xi, y
′
1, . . . , y

′
i−1, π))

→ ¬φ(x1, . . . , xn, y
′
1, . . . , y

′
n).

2.6 Bounded arithmetic

In first-order logic we will work with the languageL = { 0, S,+, ·,≤
,
⌊

x
2

⌋

, |x|,# } where the function |x| is intended to mean ‘the

length of the binary representation of x’ and x#y = 2|x|·|y|.

A quantifier is bounded if it has the form ∃x. x ≤ t or ∀x. x ≤ t
for x not occurring in the term t. A bounded quantifier is sharply
bounded if t has the form |s| for some term s. By Σb0 (=Πb0 =
∆b

0) we denote the set of all formulas in the language L with all
quantifiers sharply bounded. For i ≥ 0, the sets Σbi+1 and Πbi+1

are defined inductively. Σbi+1 is the closure of Πbi under bounded

existential and sharply bounded quantifiers, and Πbi+1 is the closure

of Σbi under bounded universal and sharply bounded quantifiers.
That is, the complexity of bounded formulas in the language L
(formulas with all quantifiers bounded) is defined by counting the
number of alternations of bounded quantifiers, ignoring the sharply
bounded ones. For i > 0, ∆b

i denotes Σbi ∩Πbi .
Bounded formulas capture the polynomial hierarchy: for any

i > 0 the i-th level Σ
p
i of the polynomial hierarchy coincides with

the sets of natural numbers definable by Σbi -formulas. Dually for
Π

p
i and Πbi .

Buss [13] introduced theories of bounded arithmetic S
i
2, T i

2 for
i ≥ 1 in the language L. The axioms of S

i
2 consist of a set of

basic axioms defining properties of symbols from L, cf. [31], and
length induction Σbi -LIND, which is the following scheme for Σbi -
formulas A (or equivalently, for A ∈ Πbi , in which case we speak
of Πbi -LIND):

A(0) ∧ ∀x. (A(x) → A(x+ 1)) → ∀x.A(|x|).

Theories T i
2 are defined similarly, but here the induction scheme is

A(0) ∧ ∀x. (A(x) → A(x+ 1)) → ∀x.A(x)

for A ∈ Σbi .

T
i
2 proves the totality of FPΣ

p
i functions, cf. [31, Theorem

6.1.2]. More precisely, for any f ∈ FPΣ
p
i there is a Σbi+1-formula

f(x) = y such that T i
2 ⊢ ∀x∃y. f(x) = y. In the same way,

S
i
2 proves the totality of functions in FPΣ

p
i [O(log n)], cf. [31,

Theorem 6.2.2]. By Parikh’s theorem, T i
2 ⊢ ∃y. f(x) = y implies

T
i
2 ⊢ ∃y. |y| ≤ p(|x|) ∧ f(x) = y for some polynomial p, and the

same is true for S i2 (cf. [13, 34]).
S
i
2 can be seen as a first-order non-uniform version of G∗

i , i ≥ 1.
Firstly, for j ≥ 1 any Σbj-formula φ(x) can be translated into a
sequence ‖φ(x)‖n of Σqj -formulas, where n denotes the size of the
input x in binary (cf. [31, Definition 9.2.1]). Then, for i, j ≥ 1
whenever S i2 ⊢ A for A ∈ Σbj , there is a polynomial p such that

formulas ‖A‖n have G∗
i -proofs of size p(n). This also holds for T i

2

in place of S i2 if G∗
i is replaced by Gi. The ability to use arbitrary

j is due to Cook and Morioka [18, Theorem 3] who generalized a
standard result, cf. [31, Theorem 9.2.6], which worked for j = i.

If A ∈ Πb1, we abuse notation and also denote by ‖A‖n the
propositional formulas obtained as in ‖A‖n, but leaving the uni-

versally quantified variables free. S1
2 ⊢ A for A ∈ Πb1 implies that

S
1
2 proves the existence of polynomial-size G∗

1-proofs of proposi-
tional formulas ‖A‖n, cf. [31, Theorems 9.2.6 and 9.2.7].

3. Separating Gentzen and Frege for QBF

We start with proving a number of conditional separations between
Gentzen and Frege systems for QBF. As we will show later in
Section 8, improving these separations to unconditional results
tightly corresponds to major open problems in circuit complexity
and proof complexity.

3.1 Formulas easy in Gentzen, but hard in Frege

We first provide three different properties that are easy for QBF
Gentzen systems, but hard for EF+ ∀red. Our first conditional
result shows that there are Σq2-formulas with polynomial-size G∗

1

proofs but no polynomial-size EF+ ∀red proofs, and this result
generalises to stronger systems.



Theorem 3.1. Let i ≥ 1. Assume f ∈ FPΣ
p
i is hard for P/poly.

Then formulas ‖∃y. |y| ≤ p(|x|) ∧ f(x) = y‖n, where p is

a polynomial and f(x) = y is expressed by a Σbi+1-formula,
have polynomial-size Gi proofs and require super-polynomial-size

EF+ ∀red proofs. If f ∈ FPΣ
p
i [O(log n)] then Gi can be replaced

by G∗
i .

Proof. As T i
2 proves the totality of FPΣ

p
i functions [13], it proves

the totality of f and the proof can be transformed into a sequence
of polynomial-size Gi proofs [18, 32]. If the totality of f can
be shown by polynomial-size proofs in EF+ ∀red, then, by the
Strategy Extraction Theorem [10], f is in P/poly.

Similarly, S i2 proves the totality of FPΣ
p
i [O(log n)] functions

and such proofs translate into sequences of polynomial-size G∗
i

proofs [13, 18, 32].

It seems that the separation above of G∗
1 and EF+ ∀red by

Σq2-formulas cannot be improved to Σq1-formulas as it is tight in
the following sense. If we had Σq1-formulas ∃y.An(x, y) with
polynomial-size G∗

1 proofs but without polynomial-size EF+ ∀red
proofs, this would imply that EF is not polynomially bounded: by
the witnessing theorem for G∗

1, cf. [18, Theorem 7], there would be
polynomial-size circuits Cn such that formulas An(x,Cn(x)) are
true, and so ¬An(x,Cn(x)) would be hard to refute in EF.

G∗
1 and EF+ ∀red can be conditionally separated also on the

bounded collection scheme.

Definition 3.2. The bounded collection scheme BB(φ) is the for-
mula

∃i < |a|, ∃w < t(a), ∀u < a, ∀j < |a|. (φ(i, u) → φ(j, [w]j))

where φ(i, u) is a formula which can have other free variables,
[w]j is the j-th element of the sequence coded by w, and t(a)
is a concrete L-term depending on the choice of the encoding of
sequences.

Roughly, BB(φ) says that u’s witnessing φ(i, u) can be col-
lected in a sequence w:

∀i < |a|, ∃u < a, φ(i, u) → ∃w < t(a), ∀j < |a|, φ(j, [w]j).

Theorem 3.3. G∗
1 has polynomial-size proofs of ‖BB(φ)‖n for

all φ ∈ Σb1. In contrast, there exists φ ∈ Σb1 such that formulas
‖BB(φ)‖n are hard for EF+ ∀red unless each polynomial-time
permutation with n inputs can be inverted by polynomial-size cir-
cuits with probability ≥ 1− 1/n.

Proof. The upper bound follows from the S1
2 -provability of BB(φ)

for φ ∈ Σb1, cf.[13, Theorem 14], and its transformation to G∗
1

proofs [18, 32].
For the lower bound we will use a result by Cook and Thapen

[21] showing that Cook’s theory PV does not prove BB(φ) for all

φ ∈ Σb0 unless factoring is in probabilistic polynomial time.
Let a = 2n and φ(i, u) be the formula f(u) = [y]i for a

polynomial-time permutation f (defined by a Σb1 formula), and y
encoding a sequence of n strings of length n.

Assume that EF+ ∀red has polynomial-size proofs of ‖BB(φ)‖n.
By the Strategy Extraction Theorem [10] there are polynomial-size
circuits B, C such that

∃u < 2n. f(u) = [y]C(y) → ∀j < n. f([B(y)]j) = [y]j .

To invert f we proceed as follows. Given z ∈ {0, 1}n, pick ran-
domly n strings si ∈ {0, 1}n and let i0 be a position such that
Pry∈{0,1}d [C(y) = i0] ≤ 1/n where d is the number of inputs in

C. Define yz,s to be the sequence of elements z, f(s1), . . . , f(sn−1)
ordered so that [yz,s]i0 = z and let xz,s be the sequence of
z, s1, . . . , sn−1 ordered so that f([xz,s]i) = [yz,s]i for i 6= i0.

Then Prz,s1,...,sn∈{0,1}d [C(yz,s) = i0] ≤ 1/n. Therefore, with

probability ≥ 1 − 1/n, f([xz,s]C(yz,s)) = [yz,s]C(yz,s) and
f([B(yz,s)]i0) = z.

While the previous two results exhibited formulas easy for G∗
1

and hard for EF+ ∀red, we now show that even G∗
0 can prove Σq2-

formulas hard for EF+ ∀red (modulo hardness of factoring).
For this we use a result by Bonet, Pitassi, and Raz [12], who

showed that Frege systems do not admit the so called feasible
interpolation property unless factoring of Blum integers is solvable
by polynomial-size circuits. (A Blum integer is the product of two
distinct primes, which are both congruent 3 modulo 4.)

Theorem 3.4. There are Σq2-formulas with polynomial-size G∗
0

proofs. However, assuming factoring of Blum integers is not
computable by polynomial-size circuits, these formulas require
EF+ ∀red proofs of super-polynomial size.

Proof. In [12] it is shown that there are propositional formulas
A0(x, y), A1(x, z) with common variables x such that A0(x, y)∨
A1(x, z) have polynomial-size Frege proofs but, unless factor-
ing of Blum integers is computable by polynomial-size circuits,
there are no polynomial-size circuits C(x) recognizing which of
A0(x, y) or A1(x, z) holds for a given x.

Frege is p-equivalent to G∗
0 on propositional formulas [31] and

so it is possible to derive in G∗
0 the sequents in Figure 2.

Therefore, the Σq2-formulas

∃b ∀y, u. ((A0(x, y) ∧ b) ∨ (A1(x, u) ∧ ¬b))

have polynomial-size G∗
0 proofs.

If these formulas had polynomial-size EF+ ∀red proofs, then,
by the Strategy Extraction Theorem [10], there would be polynomial-
size circuits computing b from x and thus recognizing which of
A0(x, y), A1(x, u) holds.

We remark that the assumptions of Theorems 3.3 and 3.4 are
stronger than the assumption of Theorem 3.1. However, while fac-
toring forms a good candidate for a one-way function, it is not
known if the existence of one-way functions implies the existence
of one-way permutations.

3.2 Formulas hard in Gentzen, but easy in Frege

We now give the opposite separation, exhibiting formulas (condi-
tionally) hard for G0, but easy for EF+ ∀red. Thus G∗

0 and G0 ap-
pear to be incomparable to EF+ ∀red.

Theorem 3.5. If P/poly 6= NC1 then there are Σq1-formulas with
polynomial-size EF+ ∀red proofs but without polynomial-size G0

proofs.

Proof. Let f be a function in P/poly. Then EF+ ∀red has simple
polynomial-size proofs of Σq1 formulas ∃y, ∃z. f(x) = y express-
ing the totality of f with auxiliary variables z representing nodes
of a polynomial-size circuit computing f . The EF+ ∀red proof re-
futes the propositional formula f(x) 6= y by gradually replacing
each variable from z, y by the circuit it represents.

If the totality of f had polynomial-size G0 proofs, by the Σq1
witnessing property, cf. [18, Theorem 9], f would be in NC1.

Notably, in Section 6 we show that Frege+ ∀red and EF+ ∀red
are p-equivalent to their tree-like versions. This is open for G0 and
G1, thus providing some further evidence for the incomparability
of Gentzen and Frege in QBF.



−→ A0(x, y), A1(x, z)

−→ (A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0), (A0(x, v) ∧ ¬1) ∨ (A1(x, z) ∧ 1)

−→ ∀y, u. ((A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0)), (A0(x, v) ∧ ¬1) ∨ (A1(x, z) ∧ 1)

−→ ∀y, u. ((A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0)), ∀y, u. ((A0(x, y) ∧ ¬1) ∨ (A1(x, u) ∧ 1))

−→ ∃b∀y, u. ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b)), ∃b∀y, u. ((A0(x, v) ∧ ¬b) ∨ (A1(x, z) ∧ b))

−→ ∃b∀y, u. ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b))

Figure 2. The G∗
0 derivation in the proof of Theorem 3.4

4. Formalized strategy extraction

In order to prove that G∗
1 p-simulates EF+ ∀red we first formalize

the Strategy Extraction Theorem from [10]. We provide two differ-
ent formalizations, one in S

1
2 and another one directly in EF. Both

are sufficient for the simulation result. These formalizations guar-
antee that the extracted strategy is not just correct, but EF (resp.
C-Frege) provably correct.

Theorem 4.1 (Formalized Strategy Extraction). There is a linear-

time algorithm A such that S1
2 proves the following. Assume that π

is an EF+ ∀red refutation of a QBF ψ of the form

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq0. Then A(π) outputs circuits C1(x1, π), . . . ,
Cn(x1, . . . , xn, y1, . . . , yn−1, π) defining a winning strategy for
the universal player on formula ψ; that is,

∀x1, . . . , xn, y1, . . . , yn.
[

n
∧

i=1

(yi ↔

Ci(x1, . . . , xi, y1, . . . , yi−1, π)) → ¬φ(x1, . . . , xn, y1, . . . , yn)
]

.

Proof. We will inspect the original proof of the Strategy Extraction
Theorem from [10], and point out that it essentially uses a Πb1-
induction on the number of steps in the proof π, i.e., Πb1-LIND
available in S

1
2 .

Let π = (L1, . . . , Ls) be an EF+ ∀red refutation of the QBF
Q.φ given as in Theorem 4.1 and put

πs := ∅, πi := (Li+1, . . . , Ls) for i < s

φ0 := φ, φi := φ ∧ L1 ∧ · · · ∧ Li for i > 0.

We will show by downward induction on i, that from πi it is
possible to construct in linear time a winning strategy

σi = {Ci1(x1, πi), . . . , C
i
n(x1, . . . , xn, y1, . . . , yn−1, πi)}

for the universal player for the QBF Q.φi. The statement of the
Formalized Strategy Extraction Theorem corresponds to the case
i = 0.

In the base case, φs contains a contradiction and the winning
strategy can be defined as the set of trivial circuits {0, . . . , 0}.

Assume now that σi is a winning strategy for Q.φi.
If Li is derived by an EF rule, then we set σi−1 := σi.
Assume now that Li = Lj [u/B] is the result of an application

of a ∀red rule on Lj where u is the rightmost variable in Lj . We
define Ci−1

l := Cil if u 6= yl, otherwise we set

Ci−1
l (z) :=

{

B(z) if Lj [u/B](z) = 0

Cil (z) if Lj [u/B](z) = 1.

This constructs circuits Cil from πi by a standard O(|πi|)-time
algorithm.

To show that the strategies σi are winning for any 0 ≤ i ≤ |π|,
we need to analyze the inductive step.

Assume that σi is the winning strategy for the universal player
on Q.φi. If Li is derived by an EF rule, the winning strategy for
Q.φi works also for Q.φi−1 because a falsification of Li by a
given assignment implies a falsification of one of its predecessors.
If Li is the result of an application of ∀red, Ci−1

l (z) is redefined
only if Lj [u/B](z) = 0. For z such that Lj [u/B](z) = 1, the
strategy σi has to work also for Q.φi−1. Therefore, σi−1 is a
winning strategy for the universal player on Q.φi−1.

The statement that a strategy σ is winning for the universal
player on Q.ψ is a coNP predicate (given π) expressible as a well-
behaved Πb1-formula. The induction we used is on the number of
steps in π. Hence, the presented proof is an S

1
2 -proof.

The statement provable in S
1
2 in Theorem 4.1 is a coNP predi-

cate expressible by a Πb1-formula. Consequently, translating the S1
2

proof to EF, the extracted strategy is even EF-provably correct:

Corollary 4.2. Given an EF+ ∀red refutation π of a QBF

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq0, we can construct in time |π|O(1) an EF proof of

n
∧

i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

¬φ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci.

We will now show the same result as in the last corollary for
Frege+ ∀red (and in fact provide an alternative direct proof without
making use of bounded arithmetic for EF+ ∀red as well).

Theorem 4.3. Let C be the circuit class NC1 or P/poly.1 Given a
C-Frege+ ∀red refutation π of a QBF

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq0, we can construct in time |π|O(1) a C-Frege proof of

n
∧

i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

¬φ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci ∈ C.

Proof. Again, we will inspect the original proof of the Strategy
Extraction Theorem.

Let π = (L1, . . . , Ls) be a C-Frege+ ∀red refutation of a QBF
Q.φ given as in Theorem 4.3 and put

πs := ∅, πi := (Li+1, . . . , Ls) for i < s

φ0 := φ, φi := φ ∧ L1 ∧ · · · ∧ Li for i > 0.

1 Indeed, the result can be generalised to further ‘natural’ circuit classes C
such as AC0 or TC0, but we will focus here on the two most interesting
cases NC1 and P/poly leading to Frege and EF systems, respectively.



We will show by downward induction on i, that from πi it is
possible to construct in linear time a winning strategy

σi = {Ci1(x1, πi), . . . , C
i
n(x1, . . . , xn, y1, . . . , yn−1, πi)}

for the universal player for the QBF Q.φi. Moreover, formula

n
∧

l=1

(yl ↔ Cil (x1, . . . , xl, y1, . . . , yl−1, πi)) →

¬φi(x1, . . . , xn, y1, . . . , yn)

denoted σi(φi) will have a C-Frege proof of size K|πi|
K for a

constant K depending only on the choice of the C-Frege system.
The statement of the theorem corresponds to the case i = 0.

In the base case, φs contains a contradiction so the winning
strategy can be defined as the set of trivial circuits {0, . . . , 0} and
it is trivially provably correct.

Assume now that σi(φi) has a C-Frege proof of sizeK(s+1−
i)|πi|

K .
If Li is derived by a C-Frege rule, then σi−1 := σi.
Let now Li = Lj [u/B] be the result of an application of a ∀red

rule on Lj where u is the rightmost variable in Lj . Then define
Ci−1
l := Cil if u 6= yl, otherwise set

Ci−1
l (z) :=

{

B(z) if Lj [u/B](z) = 0

Cil (z) if Lj [u/B](z) = 1.

This constructs strategies σi from π by a D|πi|-time algorithm
for a constant D. W.l.o.g. D < K. In fact, circuits Cil are in C.

We want to show that σi−1(φi−1) has a C-Frege proof of size

K(s+ 1− (i− 1))|πi−1|
K .

If Li is derived by a C-Frege rule, then σi also witnesses ¬φi−1

because

¬Li → ¬(L′
1 ∧ · · · ∧ L′

t)

for some conjuncts L′
1, . . . , L

′
t in φi−1. Note that Ci−1

l ’s are then

Cil ’s. The implications

¬φi → ¬φi−1

σi(φi) ∧ (¬φi → ¬φi−1) → σi−1(φi−1)
(1)

can be derived by a fixed sequence of C-Frege rules depending
only on the choice of C-Frege. Thus, the common size of C-Frege
proofs of both these implications is ≤ K0|πi−1|

K0 where w.l.o.g.
K0 < K. Therefore σi−1(φi−1) has a C-Frege proof of size

≤ K(s+1−i)|πi|
K+K1|πi−1|

K1 ≤ K(s+1−(i−1))|πi−1|
K

where K1 > K0 depends again on a fixed sequence of C-Frege
rules needed to derive σi−1(φi−1) from (1) and σi(φi), so w.l.o.g.
K1 < K.

Assume Li = Lj [u/B] is the result of an application of ∀red
where u = yl. Then there is a fixed sequence of C-Frege rules
deriving implications

σi(φi) ∧ ¬Lj [u/B] → Ci−1
l = B ∧ σi−1(φi−1)

σi(φi) ∧ Lj [u/B] → Ci−1
l = Cil ∧ σ

i−1(φi−1).

The total size of both C-Frege derivations is K0|πi−1|
K0 where

K0 depends on the choice of C-Frege and the size of Ci−1
l ’s. The

size of all Ci−1
l ’s is bounded by K|πi−1|

K . Hence we can assume

K0 < K. It follows that σi−1(φi−1) has a C-Frege proof of size

≤ K(s+1−i)|πi|
K+K1|πi−1|

K1 ≤ K(s+1−(i−1))|πi−1|
K

where as before K1 depends on a fixed sequence of C-Frege rules
needed to simulate a fixed set of ‘cut’ rules, i.e., w.l.o.g. K1 <
K.

5. Gentzen simulates Frege for QBF

We now apply the formalised Strategy Extraction Theorem from
the last section to show that Gentzen systems simulate Frege sys-
tems in the QBF context. Frege and Gentzen are well known to
be equivalent in the classical propositional case [31]. However, in
QBF the opposite simulations (Gentzen by Frege) are very likely
false as shown by the conditional separations in Section 3.

Theorem 5.1. G∗
1 p-simulates EF+ ∀red.

Proof. By Corollary 4.2, any EF+ ∀red refutation π of a QBF ψ
(given as in Corollary 4.2) can be transformed in time |π|O(1) into
an EF proof of

n
∧

i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

¬φ(x1, . . . , xn, y1, . . . , yn)

for certain circuits Ci.

Claim 1. There is a |π|O(1)-size G∗
1 proof of the following sequent

{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}
n
i=1 −→

¬φ(x1, . . . , xn, y1, . . . , yn)

where the encoding of circuits Ci might use some auxiliary vari-
ables.

Proof of claim. To see that the claim holds note first that by p-
equivalence of EF and G∗

1 (cf. [31]), the EF proof obtained above

can be turned into a |π|O(1)-size G∗
1-proof of the formula

¬

(

n
∧

i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1)

)

∨ ¬φ.

This proof can be easily modified so that the ∨ connective is not

introduced, leading to a |π|O(1)-size G∗
1-proof of the sequent

−→ ¬

(

n
∧

i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1)

)

,¬φ.

Moving ¬
(
∧n

i=1 yi = Ci(x1, . . . , xi, y1, . . . , yi−1)
)

from the
succedent to the antecedent we obtain

n
∧

i=1

(yi = Ci(x1, . . . , xi, y1, . . . , yi−1)) −→ ¬φ.

Finally, G∗
1 derives the sequent we want by ‘not introducing’ ∧ in

the antecedent. This proves the claim.

Applying ∃-r and ∃-l introductions, G∗
1 then derives

Γ, ∃yn. yn = Cn(x1, . . . , xn, y1, . . . , yn−1) −→

∃yn.¬φ(x1, . . . , xn, y1, . . . , yn)

where Γ = {yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}
n−1
i=1 .

As G∗
1 proves efficiently −→ ∃y. y = C(x) for any circuit C,

we can cut ∃yn. yn = Cn(x1, . . . , xn, y1, . . . , yn−1) out of the
antecedent and derive

{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}
n−1
i=1 −→ ∃yn.¬φ.

Now, we use ∀-r introduction to obtain

{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}
n−1
i=1 −→ ∀xn∃yn.¬φ.

In this way we can gradually cut out all formulas from the an-
tecedent, quantify all variables and derive ¬ψ in G∗

1 by a proof

of size |π|O(1).



To introduce the quantifyer prefix of ψ in the previous proof we
needed to cut Σq1-formulas. We would like to use a similar proof to
simulate Frege+ ∀red by G∗

0. However, G∗
0 is allowed to cut only

Σq0-formulas. Therefore we obtain just a simulation of Frege+ ∀red
by G∗

0 where the proven sequent in G∗
0 contains a nonempty (easily

derivable) antecedent.

Theorem 5.2. There is a polynomial-time function t such that
given any Frege+ ∀red refutation of a QBF ψ of the form

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq0, t(π) is a G∗
0 proof of the sequent

∀x1∃y2 . . . ∀xn∃yn.
n
∧

i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ¬ψ

for some formulas Ci. Note that the antecedent has a G∗
0 proof of

size |π|O(1).

Proof. By Theorem 4.3, any Frege+ ∀red refutation π of a QBF ψ
can be transformed in time |π|O(1) into a Frege proof of

n
∧

i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

¬φ(x1, . . . , xn, y1, . . . , yn)

for certain formulas Ci.
Analogously as in the proof of Theorem 5.1, we efficiently

obtain a |π|O(1)-size G∗
0 proof of

n
∧

i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ¬φ.

Applying rules ∃-r, ∃-l, ∀-l, ∀-r (in this order) we derive

∀xn∃yn.
n
∧

i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ∀xn∃yn.¬φ.

In this way we efficiently introduce all quantifiers and derive the
required sequent in G∗

0.

6. Normal forms for QBF Frege proofs

In this section we apply results from Section 4 to obtain two normal
forms for Frege+ ∀red and EF+ ∀red proofs. Firstly, we show
that any EF+ ∀red refutation can be efficiently rewritten as an EF
derivation followed essentially just by ∀red rules, and the same
normalisation applies to Frege+ ∀red. Secondly, we show that in
the ∀red rule it is sufficient to only substitute constants.

Theorem 6.1. Let C be the circuit class NC1 or P/poly. For any
C-Frege+ ∀red refutation π of a QBF ψ of the form

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq0, there is a |π|O(1)-size C-Frege+ ∀red refutation of
ψ starting with a C-Frege derivation of

n
∨

i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)) (2)

for some circuits Ci, followed by n applications of the ∀red rule,
gradually replacing the rightmost yi byCi(x1, . . . , xi, y1, . . . , yi−1)
and cutting yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1) out of the disjunc-
tion (2).

Proof. Given a C-Frege+ ∀red refutation π of ψ, by Theorem 4.3,

there is a |π|O(1)-size C-Frege proof of

n
∧

i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

¬φ(x1, . . . , xn, y1, . . . , yn).

Having ψ freely available in the refutation, C-Frege can derive (2)
by applying the cut rule (derivable in C-Frege).

The refutation then continues by n applications of the ∀red
rule, which one by one replaces the rightmost variable yi by
Ci(x1, . . . , xi, y1, . . . , yi−1) and eliminates

yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)

from the disjunction
∨

i
yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1).

As the Frege (resp. EF) derivation can be efficiently replaced
by a tree-like Frege (resp. EF) proof, cf. [31], and the rest of the
C-Frege+ ∀red refutation given above is tree-like we obtain the
following.

Corollary 6.2. Frege+ ∀red is p-equivalent to tree-like Frege+ ∀red.
Likewise, EF+ ∀red is p-equivalent to tree-like EF+ ∀red.

6.1 Substituting constants in ∀red is sufficient

Frege+ ∀red and EF+ ∀red proofs can be further simplified so that
every ∀red rule substitutes only constants instead of general cir-
cuits. This shows that the systems are indeed very robustly defined.

Theorem 6.3. Frege+ ∀red is p-equivalent to Frege+ ∀red0,1.
Likewise, EF+ ∀red is p-equivalent to EF+ ∀red0,1.

Proof. Let C be either NC1 or P/poly. It is enough to show that
any C-Frege+ ∀red refutation can be transformed efficiently into
a refutation where the ∀red rule substitutes only constants. By
Theorem 6.1, for any C-Frege+ ∀red refutation π of Q.φ there is

a |π|O(1)-size C-Frege derivation of

n
∨

i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1))

from φ(x1, . . . , xn, y1, . . . , yn). Applying ∀red0,1 on yn we can
then derive

Cn(x1, . . . , xn, y1, . . . , yn−1) 6= c∨
n−1
∨

i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1))

for both constants c = 0, 1. However, there is a polynomial-size
C-Frege proof of

Cn(x1, . . . , xn, y1, . . . , yn−1) = 1∨

Cn(x1, . . . , xn, y1, . . . , yn−1) = 0,

so we can derive
∨

i<n
(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)). In

this way we can efficiently cut all disjuncts and derive a contradic-
tion in C-Frege+ ∀red0,1.

7. Intuitionistic logic corresponds to EF+ ∀red

The main information on strong propositional and QBF systems
stems from their correspondence to first-order theories of bounded
arithmetic (cf. [6, 19, 31]). In this sense, G∗

1 corresponds to S
1
2 and

G1 to T
1
2 (cf. Section 2.6). Here we will establish such a correspon-

dence between first-order intuitionistic logic and EF+ ∀red.
In [14] Buss developed an intuitionistic version of S1

2 , denoted
IS

1
2, and showed that for any formula A, IS

1
2 ⊢ ∃y.A(x, y)



implies the existence of a polynomial-time function f such that
A(x, f(x)) holds. This witnessing property resembles the Strategy
Extraction Theorem for EF+ ∀red. Using the formalized Strategy
Extraction Theorem we can make the correspondence between
these systems formal.2

First, we recall the definition of IS
1
2 by Cook and Urquhart

[22]. It is equivalent to Buss’ original definition, cf. [14]. IS1
2 is

a theory in the language L (like S
1
2 ), with underlying intuitionistic

predicate logic, cf. [22], a set of basic axioms defining properties of
symbols from L, cf. [22], and a polynomial induction scheme for
Σb+1 -formulas A:

A(0) ∧ ∀x.
(

A(
⌊x

2

⌋

) → A(x)
)

→ ∀x.A(x).

Here, Σb+1 -formulas are Σb1-formulas without negation and impli-
cation signs.

S
1
2 is Σb0-conservative over IS1

2, cf. [22, Corollary 1.7].
We will also use Cook and Urquhart’s conservative extension

of IS1
2 denoted IPV , cf. [22, Chapter 4 and Theorem 4.12]. IPV

is defined by adding intuitionistic predicate logic to Cook’s the-
ory PV , cf. [17]. The language of IPV consist of symbols for
all polynomial-time functions. The hierarchy of formulas Πbi (PV )
is defined analogously as Πbi but in the language of IPV . Also,
propositional translations ‖A‖n for Πb1(PV )-formulas A are de-

fined analogously as in the case of A ∈ Πb1. Consequently, IPV ⊢
A forA ∈ Πb1(PV ) implies that propositional formulas ‖A‖n have
polynomial-size EF proofs, cf. [31, Theorem 9.2.7].

Cook and Urquhart [22, Corollary 8.18] generalized Buss’
witnessing theorem: whenever IPV ⊢ ∀x∃y.A(x, y) for an ar-
bitrarily complex formula A, then there is a polynomial-time
function f (with an IPV function symbol f ) such that IPV ⊢
∀x.A(x, f(x)).

We are now ready to derive the correspondence between IS
1
2

and EF+ ∀red. The correspondence consists of two parts (cf. [6]).
For the first part we translate first-order formulas φ into sequences
of QBFs [32] and show that translations of provable IS

1
2 formulas

have short EF+ ∀red proofs.

Theorem 7.1. If IS1
2 proves a statement T in prenex form, then

there exist polynomial-size EF+ ∀red refutations of ‖¬T‖n.

Proof. By Cook and Urquhart’s improvements of Buss’ witnessing
theorem, if IS1

2 proves T of the form

∀x1∃y1 . . . ∀xn∃yn. T
′(x1, . . . , xn, y1, . . . , yn)

for T ′ ∈ Σb0, there is an IPV -function f1(x1) such that IPV ⊢
∀x1, x2, ∃y2, . . . , ∀xn∃yn. T

′(x1, . . . , xn, f1(x1), y2, . . . , yn).
Iterating this argument all existential quantifiers of T can be wit-
nessed provably in IPV by polynomial-time functions f1, . . . , fn.
Therefore, IPV proves the Πb1(PV ) formula

n
∧

i=1

(yi ↔ fi(x1, . . . , xi, y1, . . . , yi−1)) →

T ′(x1, . . . , xn, y1, . . . , yn) (3)

and the formulas ‖(3)‖n have polynomial-size EF proofs. EF+ ∀red
can now refute ‖¬T‖n in polynomial size by deriving

∨

i
(yi 6=

2 It could be tempting to expect that an adequate counterpart to IS
1
2 would

be intuitionistic propositional logic. However, intuitionistic propositional

logic admits the feasible interpolation property, cf. [16], while IS
1
2 can

(constructively) prove ∀x, z. [A(x, y)∨B(x, z)], in principle, without the

existence of an efficient interpolant. It is also known, cf. [26], that IS1
2 ⊢

∀y.A(x, y)∨∀z.B(x, z) implies the existence of an efficient interpolating
circuit, but moving the universal quantifiers inside the disjunction is a priori
not allowed in intuitionistic logic.

fi(x1, . . . , xi, y1, . . . , yi−1)) and cutting all the disjuncts as in the
proof of Theorem 6.1.

The second part of the correspondence consists in proving the
soundness of the proof systems in the first-order theory. For this
we need to express the correctness of EF+ ∀red by QBFs. This
is typically done by the reflection principle of a proof system P ,
stating that whenever φ has a P -proof (resp. a P -refutation), then
φ is true (resp. false).

Here, the Formalized Strategy Extraction Theorem allows us
to express the reflection principle of EF+ ∀red by a Πb1-formula
Ref(EF+ ∀red). More precisely, we define Ref(EF+ ∀red) as the

Πb1-formula expressing that if π is a proof of a QBF, then circuits
Ci(x1, . . . , xi, y1, . . . , yi−1, π) obtained as in the Strategy Extrac-
tion Theorem witness the existential quantifiers in the QBF as in
the statement of Theorem 4.1.

Theorem 7.2. IS
1
2 proves Ref(EF+ ∀red).

Proof. The claim follows from Theorem 4.1 together with the Σb0-
conservativity of S1

2 over IS1
2 [22].

Theorem 7.2 implies that EF+ ∀red is the weakest proof system
that allows short proofs of all IS1

2 theorems, i.e., whenever Theo-
rem 7.1 holds for a ‘decent’ proof system P in place of EF+ ∀red,
then P p-simulates EF+ ∀red on QBFs: If Theorem 7.1 holds for
a proof system P , then by Theorem 7.2, there are polynomial-size
P -proofs of ‖Ref(EF+ ∀red)‖n. Hence, if π is an EF+ ∀red proof

of a QBF ψ, then P has |π|O(1)-size proofs of ψ with the existen-
tial quantifiers witnessed by some circuits. By P being decent we
mean that P can introduce efficiently the existential quantifiers in
place of the witnessing circuits and this way prove ψ efficiently in
the size of π.

On the other hand, EF+ ∀red is intuitively the strongest proof
system for which IS

1
2 proves the reflection principle. Technically,

this only holds for proof systems that admit the Strategy Extraction
Theorem as for other systems we would need to define the reflec-
tion principle as a more complex statement.

8. Characterising QBF Frege lower bounds

We finally address the question of lower bounds for Frege+ ∀red
or even EF+ ∀red. Our next result states that achieving such lower
bounds unconditionally will either imply a major breakthrough
in circuit complexity or a major breakthrough in classical proof
complexity.

Theorem 8.1.

1. EF+ ∀red is not polynomially bounded if and only if EF is not
polynomially bounded or PSPACE 6⊆ P/poly.

2. Frege+ ∀red is not polynomially bounded if and only if Frege
is not polynomially bounded or PSPACE 6⊆ NC1.3

Proof. If PSPACE 6⊆ P/poly then EF+ ∀red is not polynomially
bounded by [10, Theorem 5.13]. Clearly, also if EF is not polyno-
mially bounded then EF+ ∀red is not polynomially bounded.

In the opposite direction, assume that EF+ ∀red is not polyno-
mially bounded. Then there is a sequence of true QBFsQ.ψn such
that ¬Q.ψn do not have polynomial-size refutations in EF+ ∀red.
Let Q.ψn have the form

∀x1∃y1, . . . , ∀xn∃yn. ψn(x1, . . . , xn, y1, . . . , yn).

3 By NC1 we mean non-uniform NC1. Note that by the space hierarchy
theorem it is known that PSPACE 6⊆ uniformNC1, but this does not
suffice for Frege+ ∀red lower bounds.



If PSPACE 6⊆ P/poly, we are done. Otherwise, there are polynomial-
size circuitsCi witnessing the existential quantifiers inQ.ψn. That
is, for any x1, . . . , xn, y1, . . . , yn

n
∧

i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1)) →

ψn(x1, . . . , xn, y1, . . . , yn). (4)

We claim that (4) is a sequence of tautologies without polynomial-
size EF proofs. Otherwise, having ¬ψn, EF can derive

∨

i
yi 6=

Ci(x1, . . . , xi, y1, . . . , yi−1) by a polynomial-size proof, and so
as in Theorem 6.1, EF+ ∀red can efficiently refute ¬Q.ψn.

The analogous argument works for item 2 of the theorem.

This result also essentially answers the main question left open
in [10], whether a lower bound for Frege+ ∀red can be shown
by a different technique than the strategy extraction technique es-
tablished in that paper. By Theorem 8.1, any such technique for
Frege+ ∀red would immediately transfer to classical Frege, thus
solving the main problem in propositional proof complexity.

9. Conclusion

In this paper we have undertaken a comprehensive analysis of
QBF Frege systems, clarifying their relationships to bounded arith-
metic and to Gentzen systems. While the emerging picture clearly
shows that Gentzen systems are strictly stronger than Frege in QBF,
one question left open by our results is whether the simulation of
Frege+ ∀red by G∗

0 in Theorem 5.2 can be made to work in the
standard way, i.e., whether G∗

0 p-simulates Frege+ ∀red.
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