
Trace semantics for polymorphic references ∗

Guilhem Jaber
Université Paris Diderot

Nikos Tzevelekos
Queen Mary University of London

Abstract
We introduce a trace semantics for a call-by-value language with
full polymorphism and higher-order references. This is an oper-
ational game semantics model based on a nominal interpretation
of parametricity whereby polymorphic values are abstracted with
special kinds of names. The use of polymorphic references leads
to violations of parametricity which we counter by closely recod-
ing the disclosure of typing information in the semantics. We prove
the model sound for the full language and strengthen our result to
full abstraction for a large fragment where polymorphic references
obey specific inhabitation conditions.

1. Introduction
Polymorphism is a prevalent feature of modern programming lan-
guages, allowing one to use generic data structures and powerful
code abstractions. Reasoning with polymorphism is both challeng-
ing and rewarding: polymorphic code is bound to have uniform be-
haviour under different instantiations, a property known as Stra-
chey parametricity [27] and formalized by Reynolds as relational
parametricity[26], which in turn provides “theorems for free” [29].

Understanding the formal semantics of polymorphism amounts
to capturing the parametric behaviour of code under different in-
stantiations. This has traditionally been hard, effectively due to the
requirement for a model where instantiations from within the same
model are possible. As far as the full abstraction problem is con-
cerned, the construction of fully abstract models has so far had suc-
cesses in the game semantics framework. The problem has been ad-
dressed by use of hypergames by Hughes [9], whereby game arenas
can be seen as moves which can be opened inside enclosing arenas
during a play. The model of Abramsky and Jagadeesan [1] followed
a different approach, namely that of fixing a universe of moves with
holes, the latter representing type variables awaiting instantiation,
and constructing arenas from that given pool of moves, which is ef-
fectively closed under instantiation. While these models addressed
purely functional languages, in recent years a remarkable research
programme by Laird [19, 18] has extended the reach of polymor-
phic games to languages with higher-order state.

∗Research supported by the Engineering and Physical Sciences Research
Council (EP/L022478/1) and the Royal Academy of Engineering. We thank
T. Cuvillier, J. Rathke and the reviewers for comments and suggestions.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

LICS ’16, July 05 - 08, 2016, New York, NY, USA
Copyright © 2016 ACM 978-1-4503-4391-6/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2933575.2934509

An important aspect of previous models [9, 1, 19, 18], and of the
modelled languages, is the uniformity of polymorphic behaviour.
However, when we move to languages with mutable references that
can extrude their scope, this property can be easily broken as we
see below. Thus, the modelling of languages with ML- or Java-like
references presents additional complications and, as far as we are
aware, is still open. Our paper addresses precisely this problem.

The language we analyse, System ReF, includes a typed lambda
calculus with products, references and polymorphism. For instance,
we can examine the following type.

∀α. (ref α × ref Int) → α

One may be tempted to think that any term inhabiting this type is
bound to return, given input (x, y), the value stored in x. Of course,
this is not necessarily the case if, for example, α is instantiated
with Int and x and y happen to represent the same location. The
following term would take advantage of such a coincidence,

Λα.λ⟨x, y⟩ref α×ref Int. y ∶= 42; !x

and in that case return 42 regardless of what the initial value stored
in x was. Thus, in this example, the given coincidence leads to an
accidental interference with the returned result. More interestingly,
we can instrument our example in a way that it can discover such
coincidences and effectively deduce that α = Int. Let us write y++
below for y ∶= !y + 1.

Λα.λ⟨x, y⟩ref α×ref Int. let x′ = ref !x, y′ = ref !y in

y++; x ∶= x′;
if !y′= !y then (y ∶= 42; !x) else !x

The term above increases the value of y and then restores x to its
initial value x′. It then compares the value of y with its initial one
y′. If these are not the same, then x and y are different locations,
so the value of x is returned. If, however, the value of y has not
changed then the term has successfully discovered that x and y
refer to the same location, whence 42 is returned.

The above example demonstrates that uniform polymorphic be-
haviour can be violated through references, as differently typed
variables can be instantiated with a common reference. More than
that, references can disclose type instantiation information which
can then be taken advantage of by a polymorphic function. In our
example above the result of this disclosure was a non-parametric re-
turn value of 42, but we can imagine scenarios where a term records
the references x and y that allowed it to escape uniform behaviour,
and uses them as a general-use “bridge” between values of type α
and Int. In fact, such devices, called casting functions, shall play
a central role in our semantics. More generally, our modelling ap-
proach is crafted around carefully keeping track of the type infor-
mation that has been leaked from the program to its environment,
and viceversa, and allowing moves to be played in accordance with
that information assuming that the context (the Opponent) has the
epistemic power to exploit all such leaked information.

Related work Operational techniques have been designed to
study languages with both polymorphism and references. Real-
izability models [2, 4, 5], later refined into Kripke logical rela-
tions [3, 6], use a notion of “world as heap-invariant” to model
references. Environmental bisimulations have also been designed
to deal with equivalence of programs in such languages [28]. While
complete, these approaches partially rely on context quantifications
and in particular do not directly account for the interaction between
polymorphism and references, and the kind of type disclosure that
the latter brings in.

Our approach follows the line of research on trace semantics
for higher-order languages [14, 15, 17, 8], which in turn can be
seen as an operational reformulation of game semantics [23, 11], on
one hand; and of open bisimulation techniques [20, 13, 21], on the
other. In this area, Jeffrey and Rathke proposed a fully abstract trace
semantics for a polymorphic variant of the pi-calculus [16], which
refined a previous sound model of Pierce and Sangiorgi [25]. That
work is related to ours in spirit, and it already raises the intricacies
involved in combining polymorphism with name equality testing.
However, the apparatus of loc. cit. does not lend itself to ML-like
languages like System ReF, as in the latter we need stronger se-
mantic abstractions to cater for the less expressive syntactic con-
texts. Overall, there seems to be a greater picture behind this work
and [16, 21] which remains to be exposed.

Future directions In this work we addressed Church-style poly-
morphism. It would be interesting to examine whether our ideas
could be adapted to deal with Curry style. In doing so, we would
give a semantic reading of the value restriction, which ensures type
safety by enforcing terms of polymorphic types to be values. This,
along with the study of ML-specific restrictions like rank-1 poly-
morphism, would bring us closer to modelling a large fragment of
ML, which can be seen as a broader goal behind this work.

Moreover, our current model sets the foundation for a sound,
and complete for a large collection of types, proof methods for pro-
gram equivalence. Similarly to our previous work on monomorphic
languages [12, 24], we aim to explore such methods and accompany
them with automated, or semi-automated, equivalence checkers.

2. System ReF
We introduce System ReF, a polymorphic call-by-value λ-calculus
with higher-order references. The types of System ReF are:

θ, θ′ ∶∶= α ∣ Unit ∣ Int ∣ ref θ ∣ θ × θ′ ∣ θ → θ′ ∣ ∀α.θ ∣ ∃α.θ
where α ∈ TVar, and TVar a countably infinite set of type vari-
ables. As usual, a type is closed if all its type variables α are bound.
We shall call arrow and universal types function types. The syntax
of values v, terms M and evaluation contexts E is given in Fig-
ure 1. We assume a countably infinite set Loc of locations and some
standard collection of binary integer operators, which we generally
denote by ⊕. We use the following macros: let x = N inM stand
for (λx.M)N ; and N ;M means (λx.M)N with x fresh in M .

The typing rules for System ReF include standard rules for func-
tions and projections, rules for integers, and rules for polymor-
phism and references given in Figure 2. Typing judgments are of
the form ∆; Σ; Γ ⊢M ∶ θ, where Σ is a location context, i.e. a finite
partial function from locations to closed types; Γ a variable context;
and ∆ a set of type variables containing all free type variables of Γ.
Given a closed evaluation context E, we write ∆; Σ ⊢ E ∶ θ ↝ θ′

when ∆; Σ;x ∶ θ ⊢ E[x] ∶ θ′. Compared to the ML type-system,
we work with Church-style polymorphism, where type abstractions
and applications are explicit. This explains why we do not need the
so-called value restriction [30] to accommodate references.

We next proceed with the operational semantics. Closed terms
are reduced using stores containing their locations. More precisely,
a store is a finite partial map S ∶ Loc ⇀ Val from locations to

v, u ∶∶= () ∣ n ∣ x ∣ l ∣ λxθ.M ∣ Λα.M ∣ pack⟨θ, v⟩ ∣ ⟨v, u⟩

M,N ∶∶= v ∣MN ∣Mθ ∣M ⊕N ∣ if M1 M2 M3 ∣ ⟨M,N⟩
∣ π1(M) ∣ π2(M) ∣ Ωθ ∣ refM ∣ !M ∣M ∶= N
∣M = N ∣ pack⟨θ,M⟩ ∣ unpackM as ⟨α,x⟩ inN

E ∶∶= ● ∣ EM ∣ Eθ ∣ vE ∣ E opM ∣ v opE ∣ if E M M ′

∣ refE ∣ !E ∣ ⟨E,M⟩ ∣ ⟨v,E⟩ ∣ π1(E) ∣ π2(E)
∣ pack⟨θ,E⟩ ∣ unpackE as ⟨α,x⟩ inM

Figure 1. System ReF (n ∈ Z, l ∈ Loc and op ∈ {⊕,=, ∶=}).

values. We define the following notation for stores, which we shall
also be using for general partial maps:
● The empty store is written ε. Adding a new element (l, v) to a

store S is written S ⋅ [l ↦ v], and is defined only if l ∉ dom(S).
● We also define S[l ↦ v], for l ∈ dom(S), as the partial function
S′ which satisfies S′(l′) = S(l′) when l′ ≠ l, and S′(l) = v.

● The restriction of a store S to a set of locations L is written S∣L.
We write S ∶ Σ just if ⋅; Σ; ⋅ ⊢ S(l) ∶ θ for all l ∈ dom(S).

Given a set L of locations and a store S, we define the image of
L by S, written S∗(L), as S∗(L) = ⋃j∈ω Sj(L) with Sj+1(L) =
Sj(L) ∪ {l ∈ Loc ∣ l contained in S(Sj(L))} and S0(L) = L. S
is called closed just if dom(S) = S∗(dom(S)).

Definition 1. The operational semantics of System ReF involves
pairs (M,S) consisting of a closed term ∆; Σ; ⋅ ⊢ M ∶ θ and a
closed store S ∶ Σ. Its small-step rules are given in Figure 2. We
write (M,S) ⇓ when (M,S) →∗ (v,S′) for some value v.

Remark 2. We have equipped our language with a construct per-
forming reference equality tests. This is in accordance with, and has
the same operational semantics as, reference equality tests in ML,
albeit extended to arbitrary reference types. Depending on type and
type inhabitation, such tests can be encoded in ML via appropri-
ately crafted sequences of writes and reads in examined references.

We finally introduce the notion of term equivalence we examine.

Definition 3. Let Σ be closed. Two terms ∆; Σ; Γ ⊢ M1,M2 ∶ θ
are contextually equivalent, written ∆; Σ; Γ ⊢ M1 ≃ M2 ∶ θ, if
for all contexts C, all Σ′ ⊇ Σ and all closed S ∶ Σ′ such that
⋅; Σ′; ⋅ ⊢ C[Mi] ∶ Unit, we have (C[M1], S) ⇓ iff (C[M2], S) ⇓.

3. The Semantic Model
Our trace model is constructed within nominal sets, that is, a uni-
verse embedded with atomic objects for representing locations,
type variables, functions and polymorphic values. We introduce the
semantic universe next and then proceed to the operational rules
defining the semantics.

3.1 Semantic Universe
We define the set of names to be:

A = Loc ⊎TVar ⊎⊎θ∈FT
Funθ ⊎⊎α∈TVar

Polα

where θ ranges over function types and each of the components
in this countable union is itself a countable set. We let Fun =
⊎θ∈FT Funθ and Pol = ⊎α∈TVar Polα. We range over elements
of Loc by l and variants; over TVar by α, etc; over Fun by f, g,
etc; and over Pol by p, etc.

Semantic objects feature elements of A as atomic entities which,
moreover, can be acted upon by finite permutations of A. A nom-
inal set [7] is a pair (X,∗) of a set X along with an action (∗)
from the set of finite component-preserving computations of A on
the setX .1 Given some x ∈X , the set of names featuring in x form

1 A finite permutation π ∶ A → A is component-preserving simply if it
preserves the partition of A, e.g. if d ∈ Loc then π(d) ∈ Loc.

(l ∶ θ) ∈ Σ

∆; Σ; Γ ⊢ l ∶ ref θ

∆; Σ; Γ ⊢M ∶ ref θ

∆; Σ; Γ ⊢!M ∶ θ
∆; Σ; Γ ⊢M ∶ ref θ ∆; Σ; Γ ⊢ N ∶ θ

∆; Σ; Γ ⊢M ∶= N ∶ Unit

∆; Σ; Γ ⊢M ∶ ref θ ∆; Σ; Γ ⊢ N ∶ ref θ′

∆; Σ; Γ ⊢M = N ∶ Int

∆, α; Σ; Γ ⊢M ∶ θ
∆; Σ; Γ ⊢ Λα.M ∶ ∀α.θ

∆; Σ; Γ ⊢M ∶ ∀α.θ
∆; Σ; Γ ⊢Mθ′ ∶ θ{θ′/α}

∆; Σ; Γ ⊢M ∶ θ{θ′/α}
∆; Σ; Γ ⊢ pack⟨θ′,M⟩ ∶ ∃α.θ

∆; Σ; Γ ⊢M ∶ ∃α.θ ∆, α; Σ; Γ, x ∶ θ ⊢ N ∶ θ′

∆; Σ; Γ ⊢ unpackM as ⟨α,x⟩ inN ∶ θ′

(E[(λx.M)v], S) → (E[M{v/x}], S) (E[Ω], S) → (E[Ω], S) (E[l = l], S) → (E[1], S)
(E[(Λα.M)θ], S) → (E[M{θ/α}], S) (E[πi⟨v1, v2⟩], S) → (E[vi], S) (E[l = l′], S) → (E[0], S)

(E[if n M1 M2], S) → (E[Mi], S) (E[ref v], S) → (E[l], S ⋅ [l ↦ v]) (E[!l], S) → (E[S(l)], S)
(E[l ∶= v], S) → (E[()], S[l ↦ v]) E[unpack (pack⟨θ, v⟩) as ⟨α,x⟩ inM] → E[M{θ/α}{v/x}]

Figure 2. UP: Typing rules of System ReF (excerpt). DOWN: Operational semantics (for if: i = 2 if n = 0, otherwise i = 1).

its support, written ν(x), which we stipulate to be finite. Formally,
ν(x) is the smallest subset of A such that all permutations which
elementwise fix ν(x) also fix x. We shall sometimes write νC(x),
for C ∈ {L,T,F,P} in order to select a specific kind of names
from the support of x. For instance, νL(x) = ν(x) ∩ Loc. Using
the same notation, we also write νT(θ) for the free type variables
of θ. We usually write (X,∗) simply as X , for economy.

We next introduce our basic semantic objects, which constitute
the semantic representations of syntactic values.

Definition 4. We define abstract values as:

AValues ∋ v, u ∶∶= () ∣ i ∣ l ∣ f ∣ p ∣ α ∣ ⟨u, v⟩
where i ∈ Z, l ∈ Loc, f ∈ Fun, p ∈ Pol and α ∈ TVar. Note
we still range over abstract values by u, v (and hope no confusion
arises). We similarly set abstract stores to be finite partial maps
Loc⇀ AValues.

Thus, ground values (integers, () and locations) are represented
by their concrete values, and for all other types but products we
employ name abstractions. This abstraction is in order either be-
cause of polymorphism in the values, or simply because function
code can only be examined by querying the given function. Func-
tions are represented by functional names, and polymorphic values
by polymorphic names.

The semantics of a type θ, written JθK, consists of pairs (v, φ) of
an abstract value v along with a function φ ∶ νL(v) → P(Types),
and is given as:

JUnitK = {((), ε)}
JIntK = {(n, ε) ∣ n ∈ Z}
Jref θK = {(l,{(l, θ)}) ∣ l ∈ Loc}
JαK = {(p, ε) ∣ p ∈ Polα}
Jθ → θ′K = {(f, ε) ∣ f ∈ Funθ→θ′}
J∀α.θK = {(f, ε) ∣ f ∈ Fun∀α.θ}
J∃α.θK = {(⟨α′, v⟩, φ) ∣ (v, φ) ∈ Jθ{α′/α}K}
Jθ1 × θ2K = {(⟨v1, v2⟩, φ1 ∪ φ2) ∣ (vi, φi) ∈ JθiK}

The role of φ is to assign types to all the locations of an abstract
value. As discussed in the Introduction, though, the same location
can appear with several types in the execution of a given term
phrase. Hence, φ assigns sets of types to each location instead
of a unique type. More generally, a typing function is a finite
map φ ∶ Loc ⇀ P(Types). The type translation is extended to
typing environments by mapping each ∆ = {α1,⋯, αk}, Σ = {l1 ∶
θ1,⋯, ln ∶ θn} and Γ = {x1 ∶ θ′1,⋯, xk ∶ θ′k} to:

J∆,Σ,ΓK = { ((α⃗, l⃗, v⃗),
n

⋃
i=1

[li ↦ θi] ∪
k

⋃
j=1

φj) ∣ (vj , φj) ∈
q
θ′j

y
}.

Extending the syntax for Fun ∪ Pol While functional and poly-
morphic names are not part of the syntax of System ReF, their in-
volvement in its semantics makes it useful to introduce them as
syntax as well. We hence extend the set of values of System ReF to
include Fun ∪Pol, dealing with them as typed constants.

3.2 Interaction Reduction
Traces will consist of sequences of moves enriched with abstract
stores and value disclosures. Moves represent the interaction be-
tween the modelled program and its enclosing context and consist
of function calls and returns. Each move comes with a polarity: P
for Player (i.e. the program produces the move), and O for Oppo-
nent (the context/environment). There are four kinds of moves:

PQ. Player Questions are moves of the form f̄⟨u⟩, representing a
call to a functional name f ∈ Fun with argument u ∈ AValues.

OQ. Opponent Questions are of the form f⟨u⟩, with f ∈ Fun and
u ∈ AValues; moreover, there are initial opponent questions of
the form ?⟨u⟩ (u ∈ AValues).

PA. Player Answers are moves of the form ⟨ū⟩, with u ∈ AValues.

OA. Opponent Answers, which are of the form ⟨u⟩ (u ∈ AValues).

On the other hand, value disclosures are partial functions ρ repre-
senting the values of polymorphic names revealed in a move. Their
role will be explained in the next section.

Definition 5. A full move is a triple (m,S, ρ) of a move m, a
closed abstract store S and a finite map ρ ∶ Pol ⇀ AValues. A
sequence of full moves is called a trace.

The trace semantics is produced via a reduction relation for
open terms which only reveals the steps in the computation where
there is interaction: a call or return between the term and its con-
text. More precisely, this relation is a bipartite labelled transition
system between Player and Opponent configurations, where labels
are full moves, and whose main components are evaluation stacks
E , defined as either:
● passive, which are related to Opponent configurations and are of

the shape (En, θn ↝ θ′n) ∶∶ ⋯ ∶∶ (E1, θ1 ↝ θ′1), where each Ei

is an evaluation context of type θi ↝ θ′i;
● or active, which are related to Player configurations and are of

the form (M,θ) ∶∶ E ′, i.e. they consist of a term M of type θ and
a passive stack E ′.

The empty stack is written ◊.

Definition 6. A configuration is a tuple ⟨E , γ, φ, S, λ⟩ with:
● an evaluation stack E , a typing function φ for locations, and a

closed store S,
● an environment γ mapping names to values,
● an ownership function λ ∈ (A×{O,P})∗ ordering played names

and mapping them to the party who has introduced them;
and which satisfies the following conditions:
● the relation {(a,X) ∣ λ = λ1 ⋅ (a,X) ⋅ λ2} is a partial function

and λ has no repetition of names
● dom(γ) = {a ∈ Pol ∪ Fun ∪TVar ∣ λ(a) = P}
● dom(φ) = {l ∈ Loc ∩ dom(λ)} ⊆ dom(S)
● for all a ∈ ν(E , cod(S), cod(γ))/Loc, λ(a) = O
where, because of the first condition above, we write λ(a) = X if
λ = λ1 ⋅ (a,X) ⋅ λ2 for some λ1, λ2.

In addition, we include special configurations of the form
⟨∆; Σ; Γ ⊢M ∶ θ⟩, one for each typed term ∆; Σ; Γ ⊢M ∶ θ.

Thus, a configuration registers syntactic and semantic informa-
tion on the execution of a term necessary to produce its traces. E
and S are syntactic objects directly connected to the operational se-
mantics. The other components either are of semantic nature (φ,λ)
or bridge the semantics and the syntax (γ). In γ we record the actual
values that correspond to the functional and polymorphic names
and type variables that the term (i.e. P) has produced. On the other
hand, λ is a name-polarity function which also keeps track of the
order in which names were introduced. The last condition on λ in
the above definition is especially important: it stipulates that, ex-
cept for location names, all the free names that appear in the term,
either directly or indirectly via γ or S, must belong to O. In other
words, P cannot see the abstract values that he has provided to O
during the interaction.

When the evaluation of a term E[M] reaches, for example,
some E[fv] where f is a function name provided by the context,
a move asking the context to evaluate f(v) will be produced.
However, since v is a syntactic value and in moves we only allow
semantic entities, we need a way to pass from syntactic values
to abstract ones. This is achieved as follows. To each value u of
type θ, we associate the set AVal(u, θ) of triples (v, γ, φ), where
each of them represents: ● a corresponding abstract value v; ● an
environment γ instructing the related mapping of names to values;
● and a typing function φ recording the types used for each location
in the translation. It is defined as:

AVal(u, ι) = {(u, ε,∅)} for ι = Unit or Int and u ∈ JιK
AVal(l, ref θ) = {(l, ε,{(l, ref θ)} ∣ l ∈ Loc}
AVal(u,α) = {(p, [p↦ u],∅) ∣ p ∈ Polα}∪{(u, ε,∅) ∣ u ∈ Polα}
AVal(u, θ) = {(f, [f ↦ u],∅) ∣ f ∈ Funθ} for θ functional
AVal(⟨u1, u2⟩, θ1 × θ2)

= {(⟨v1, v2⟩, γ1 ⋅ γ2, φ1 ∪ φ2) ∣ (vi, γi, φi) ∈ AVal(ui, θi)}
AVal(⟨θ′, u⟩,∃α.θ)

= {(⟨α′, v⟩, γ ⋅ [α′ ↦ θ′], φ) ∣ (v, γ, φ) ∈ AVal(u, θ{α′/α})}
For uniformity, it makes sense to view types as values of special
“universe” type U and set AVal(θ,U) = {(α, [α ↦ θ],∅) ∣ α ∈
TVar}. By abuse of notation, we shall use u and variants to range
over values, abstract values and types when utilising the notation
presented next. Given a functional type θ and some u, we let the
argument and return type of θ be:

arg(θ′ → θ) = θ′ arg(∀α.θ) = U
retu(θ′ → θ) = θ retu(∀α.θ) = θ{u/α}

with the last expression above being well-defined only if u is a type.
Finally, in a similar fashion that AVal allows us to move from

concrete values to abstract ones, the operator AStore takes us from
stores to abstractions thereof. That is, for each store S and typing
function φ, the set AStore(S,φ,) consists of triples of the form
(S′, γ′, φ′) where: ● S′ is an abstraction of S according to the type
information in φ; ● γ′ is the mapping of the fresh abstract names
of S′ to their concrete values; ● and φ′ is the type information for
any locations in the codomain of S′. The formal definition in the
case where φ is single-valued is given as follows. We postpone the
definition for general φ to Section 4.

AStore(S,φ) = ⊙
l∈dom(S)

{([l ↦ v], γ′, φ′) ∣ (v, γ′, φ′) ∈ AVal(S(l), φ(l))}

Here ⊙ is the pointwise concatenation of sets of triples (S, γ, φ),
defined as X1 ⊙X2 = {(S1 ⋅ S2, γ1 ⋅ γ2, φ2 ∪ φ2) ∣ (Si, γi, φi) ∈
Xi, i ∈ {1,2}}, and ⊙i∈∅Xi = {(ε, ε,∅)}. A similar notion is
used for producing abstract stores where only typing information

(and no concrete store) is defined as follows.

SJφK = ⊙
l∈dom(φ)

{([l ↦ v], φ′) ∣ (v, φ′) ∈ Jφ(l)K}

This is used for determining what stores can O play.
We now give the definition of our trace semantics. Note that, for

syntactic objects Z and (e.g. type) environments δ, we write Z{δ}
for the result of recursively applying δ in Z as a substitution.

Definition 7 (Trace Semantics). We call Interaction Reduction the
system generated by the rules in Figure 3. Given a configuration C,
we let Tr(C) be the set of all traces produced from C. Terms are
translated by setting

J∆; Σ; Γ ⊢M ∶ θK = comp(Tr⟨∆; Σ; Γ ⊢M ∶ θ⟩)
for each typed term ∆; Σ; Γ ⊢ M ∶ θ, where comp selects the
complete traces, that is those traces where the number of answers
is greater or equal to the number of questions.

In the rest of this section we explain the reduction rules and
their conditions, apart from conditions P* and O* which concern
type disclosure and are relegated to the next section. For the same
reason, we also assume that typing functions φ are always single-
valued and disregard any indexing with κ used in the rules (κ’s are
cast functions).

Internal (INT) This rule dictates that the interaction reduction
includes the operational semantics of System ReF as long as inter-
nal computation steps are concerned, i.e. ones that do not involve
external functions.

P-Question (PQ) This rule describes the move occurring when
an external function call is reached. Thus, in order for P to provide
the value (say) u and store S, he first needs to abstract it to v by
hiding away all private code under fresh names. These will be the
names put in λ′, along with any new location names revealed in
the store S′ to be played. Since this is a P-move then, all names in
λ′ are owned by P (P1). In turn, S′ is the restriction of S to public
locations, again elevated to its abstraction. These abstractions result
in new γ′ = γ ⋅ γv ⋅ γS and φ′ = φ ∪ φv ∪ φS (P1). Note that
the λ component of a configuration enlists the public names of a
trace, i.e. those explicitly played in moves. Hence, P3 stipulates
that the locations included in the store S′ are precisely the ones
reachable in S from the names in λ and any names in v (put
otherwise, name privacy is imposed). Finally, P2 dictates that any
functional or type variable names played in the move must be fresh
(as they represent abstractions of concrete values). Similarly, every
polymorphic name played of type α, with α of own polarity, must
be fresh. If, on the other hand, α belongs to O, then P can only play
old polymorphic names of that type (P4).

P-Answer (PA) In this case, a final value is reached and returns,
with similar conditions applied.

O-Question (OQ) When it is the context’s turn to play, one
option is for O to call one of the functions provided by P. The
rule looks very similar to the P-Question, yet it differs in one
important point: while O plays v and S′, what is fed instead to
the configuration is v where all its P polymorphic and functional
names have been replaced by their actual values (i.e. v{γ})2 and the
same goes for the abstract store S′. This is enforced by the use of ṽ
instead of v and is due to the fact that P knows the actual values of
these names, and therefore they should not remain abstract to him.
Another difference is the freedom to build S′, which nonetheless
stipulates that O cannot guess any locations from S unless the
latter were already public. Finally, observe in O1 the single-played
restriction on fresh polymorphic, type or function names: as each

2 we also substitute via ρ, but this we discuss in the next section.

(INT) ⟨(M,θ) ∶∶ E , γ, φ, S, λ⟩ ÐÐÐ→ ⟨(M ′, θ) ∶∶ E , γ, φ, S′, λ⟩, given (M,S) → (M ′, S′).

(PA) ⟨(u, θ) ∶∶ E , γ, φ, S, λ⟩
⟨v̄⟩,S′, ρ
ÐÐÐÐ→ ⟨E , γ ⋅ γ′, φ ∪ φ′, S, λ ⋅ λ′⟩, given (v, γv, φv) ∈ AVal(u, θ)κ.

(PQ) ⟨(E[f u], θ) ∶∶ E , γ, φ, S, λ⟩
f̄⟨v⟩,S′, ρ
ÐÐÐÐ→ ⟨(E, θ′ ↝ θ) ∶∶ E , γ ⋅ γ′, φ ∪ φ′, S, λ ⋅ λ′⟩,

given f ∈ Funθf with λ(f) = O and (v, γv, φv) ∈ AVal(u, arg(θf))κ, θ′ = retv(θf).

(OA) ⟨(E, θ′↝ θ) ∶∶ E , γ, φ, S, λ⟩
⟨v⟩,S′, ρ
ÐÐÐÐ→ ⟨(Ẽ[ṽ], θ) ∶∶ Ẽ , γ̃, φ ∪ φ′, S̃[S̃′], λ ⋅ λ′⟩, given (v, φv) ∈ Jθ′Kκ.

(OQ) ⟨E , γ, φ, S, λ⟩
f⟨v⟩,S′, ρ
ÐÐÐÐ→ ⟨(ũ ṽ, θ) ∶∶ Ẽ , γ̃, φ ∪ φ′, S̃[S̃′], λ ⋅ λ′⟩

given f ∈ Funθ′ with λ(f) = P and (v, φv) ∈ Jarg(θ′)Kκ, θ = retv(θ′) and γ(f) = u.

(INI) ⟨∆; Σ; Γ ⊢M ∶ θ⟩
?⟨v⟩,S′, ρ
ÐÐÐÐ→ ⟨(M

ÐÐÐ→
{ũ/x}, θ), ε, φ′, S̃′, λ′⟩, given dom(Γ) = {x1,⋯, xn}, (v, φv) ∈ J∆,Σ,ΓK and v = (α⃗, l⃗, u⃗).

Z̃ Above, Z̃ = Z{ρ}{γ}, if Z a term, context or stack, and Z̃ = {(z, Z̃(z)) ∣ z ∈ dom(Z)} if Z a map into terms.
P1 λ′ = {(a,P) ∣ a ∈ ν(v,S′, ρ) ∧ a ∉ ν(λ)}, φ′ = φv ∪ φS ∪ φρ and γ′ = γv ⋅ γS ⋅ γρ
P2 for all f ∈ νF(S′, v, ρ), f ∉ ν(λ) and, for all α ∈ νT(S′, v, ρ), α ∉ ν(λ)
P3 νL(λ′) = S∗(νL(v, ρ, λ)) and (S′, γS , φS) ∈ AStore(S∣νL(λ′), φ)
P4 for all p ∈ νP(S′, v, ρ) with p ∈ Polα, λ(α) = P iff p ∉ ν(λ)
P* (ρ, γρ, φρ) ∈ AEnv((γ ⋅ γv ⋅ γs)∣Pol)κ,κ′ where κ = Cast(φ) and κ′ = Cast(φ ∪ φ′), with φ ∪ φ′ valid.

O1 λ′ = {(a,O) ∣ a ∈ ν(v,S′, ρ) ∧ a ∉ ν(λ)} φ′ = φv ∪ φS ∪ φρ and each a ∈ ν(λ′)/Loc is single-played in (v,S′, ρ)
O2 for all f ∈ νF(S′, v, ρ), f ∉ ν(λ) and for all α ∈ νT(S′, v, ρ), α ∉ ν(λ)
O3 S′ closed, νL(v, ρ) ⊆ dom(S′) = S′∗(νL(v, ρ, λ)), dom(S′) ∩ dom(S) = νL(λ) and (S′, φS) ∈ SJφ′K
O4 for all p ∈ νP(S′, v, ρ) with p ∈ Polα, λ(α) = O iff p ∉ νP(λ)
O* (ρ,φρ) ∈ EJξKκ,κ′ where ξ = {p ∈ Polα ∣ λ⋅λ′(p) = O}, κ = Cast(φ) and κ′ = Cast(φ ∪ φ′) with φ ∪ φ′ valid.

Figure 3. Interaction Reduction. Rules (PQ),(PA) satisfy conditions P1-P4 and P*, while (OQ),(OA) satisfy O1-O4 and O*. Rule (INI)
satisfies O1, O3 and O* (taking S = ε, φ = ∅ and λ = ε).

such introduced name has the purpose of abstracting some concrete
value or type played, every such name should be distinct (and
fresh).3 This condition is implicitly imposed in P1 as well, via the
domain disjointness requirements in the definition of γ′.

O-Answer (OA) On the other hand, a context can also return
with a value, with similar conditions applied.

Initial move (INI) Initial moves are special O-Questions. In or-
der for the interaction to commence, O needs to provide the context,
that is, the values corresponding to the typing environment ∆,Σ,Γ.

Let us look at a couple of examples.

Example 8. Consider the term v ≡ Λα.λx ∶ α × α. π1(x) of type
θ = ∀α.α×α → α. A characteristic trace of v is ?⟨⟩ ⋅ ⟨ḡ⟩ ⋅ g⟨α′⟩ ⋅
⟨f̄⟩ ⋅ f⟨p1, p2⟩ ⋅ ⟨p̄1⟩, produced as follows (we omit empty stores
and ρ’s).

⟨⋅; ⋅; ⋅ ⊢ v ∶ θ⟩ ?⟨⟩ÐÐ→ ⟨(v, θ), ε,∅, ε, ε⟩ (θ = ∀α.α×α→ α)
⟨ḡ⟩ÐÐ→ ⟨◊, γ1,∅, ε, λ1⟩ (γ1 = [g ↦ v], λ1 = (g,P))
g⟨α′⟩ÐÐÐ→ ⟨(v α′, θ′), γ1,∅, ε, λ2⟩ (θ′ = α′×α′→α′, λ2= λ1 ⋅(α′,O))
→ ⟨(v′, θ′), γ1,∅, ε, λ2⟩ (v′≡ λx ∶α′×α′. π1(x))
⟨f̄⟩ÐÐ→ ⟨◊, γ2,∅, ε, λ3⟩ (γ2 = γ1 ⋅[f ↦ v′], λ3 = λ2 ⋅(f,P))
f⟨p1,p2⟩ÐÐÐÐÐ→ ⟨(v′⟨p1, p2⟩, α′), γ2,∅, ε, λ4⟩ (λ4= λ3 ⋅(p1,O)(p2,O))
→∗ ⟨(p1, α

′), γ2,∅, ε, λ4⟩ ⟨p̄1⟩ÐÐ→ ⟨◊, γ2,∅, ε, λ4⟩
Informally, after the initial move is played, the term is already
evaluated to a function of type ∀α.α×α → α and so P plays the
move ⟨ḡ⟩ with g ∈ Fun∀α.α×α→α. At that point, the environment
(O) may wish to interrogate g, supplying a type variable α′ which
is an abstraction of any type instantiation the environment may
have chosen. Such a question would be of the form g⟨α′⟩. To the
latter, P replies with a functional name f , via the move ⟨f̄⟩, of type

3 Formally, a move (m,S, ρ) is said to single-play a name a ∈ A/Loc if m
is equal to f̄⟨v⟩, f⟨v⟩, ⟨v̄⟩ or ⟨v⟩ (for some f) with a ∈ ν(v,S, cod(ρ))
and there is only one occurrence of a in (v,S, ρ).

(α′ ×α′) → α′. Next, O decides to also interrogate f , say on input
⟨4,2⟩. This translates to the move f⟨p1, p2⟩, where now p1 ↦ 4
and p2 ↦ 2 for O. The trace concludes with P replying ⟨p̄1⟩, which
is the return value of the first projection on ⟨p1, p2⟩.
Example 9. Let us take v ≡ λx ∶ (∀α.α→α). x Int 3 + x Int 5
of type θ = (∀α.α→α) → Int. A characteristic trace of v is
?⟨⟩⟨f̄⟩⋅f⟨g⟩⋅ ḡ⟨α1⟩⋅⟨g1⟩⋅ ḡ1⟨p1⟩⋅⟨p1⟩⋅ ḡ⟨α2⟩⋅⟨g2⟩⋅ ḡ2⟨p2⟩⋅⟨p2⟩⋅⟨8̄⟩
and can be produced by the following interaction.

⟨⋅; ⋅; ⋅ ⊢ v ∶ θ⟩ ?⟨⟩ÐÐ→ ⟨(v, θ), ε,∅, ε, ε⟩
⟨f̄⟩ÐÐ→ ⟨◊, γ1,∅, ε, λ1⟩ (γ1= [f ↦ v], λ1= (f,P))
f⟨g⟩ÐÐ→ ⟨(vg, Int), γ1,∅, ε, λ2⟩ (λ2= λ1 ⋅(g,O))
→ ⟨(g Int 3 + g Int 5, Int), γ1,∅, ε, λ2⟩ (γ2 = γ1 ⋅[α1 ↦ Int])
ḡ⟨α1⟩ÐÐÐ→ ⟨(●3 + g Int 5, α1→α1 ↝ Int), γ2,∅, ε, λ3⟩ (λ3= λ2 ⋅(α1, P))
⟨g1⟩ÐÐ→ ⟨(g1 3 + g Int 5, Int), γ2,∅, ε, λ4⟩ (λ4= λ3 ⋅(g1,O))
ḡ1⟨p1⟩ÐÐÐÐ→ ⟨(● + g Int 5, α1 ↝ Int), γ3,∅, ε, λ5⟩ (λ5= λ4 ⋅(p1, P))
⟨p1⟩ÐÐ→ ⟨(3 + g Int 5, Int), γ3,∅, ε, λ5⟩ (γ3= γ2 ⋅[p1 ↦ 3])
ḡ⟨α2⟩ÐÐÐ→ ⟨(3 + ●5, α2→α2 ↝ Int), γ4,∅, ε, λ6⟩ (λ6= λ5 ⋅(α2, P))
⟨g2⟩ÐÐ→ ⟨(3 + g2 5, Int), γ4,∅, ε, λ7⟩ (γ4 = γ3 ⋅[α2 ↦ Int])
ḡ2⟨p2⟩ÐÐÐÐ→ ⟨(3 + ●, α2 ↝ Int), γ5,∅, ε, λ8⟩ (λ7= λ6 ⋅(g2,O))
⟨p2⟩ÐÐ→ ⟨(3 + 5, Int), γ5,∅, ε, λ8⟩ (γ5= γ4 ⋅[p2 ↦ 5], λ8= λ7 ⋅(p2, P))
→ ⟨(8, Int), γ5,∅, ε, λ8⟩ ⟨8̄⟩ÐÐ→ ⟨◊, γ5,∅, ε, λ8⟩

Notice that p1, p2 are of different type, respectively α1 and α2. As
an exercise, we invite the reader to verify that the term v′ ≡ λx ∶
(∀α.α→α). let h = x Int in h3+ h5 of the same type θ produces
the trace ?⟨⟩⟨f̄⟩ ⋅ f⟨g⟩ ⋅ ḡ⟨α′⟩ ⋅ ⟨g′⟩ ⋅ ḡ′⟨p1⟩ ⋅ ⟨p1⟩ ⋅ ḡ′⟨p2⟩ ⋅ ⟨p1⟩ ⋅ ⟨6̄⟩.
The latter behaviour can be triggered by a context which uses local
state to record polymorphic values of older calls:

C ≡ ● (Λα. let y = ref (λ_.Ωα) in let z = ref 0 in

λx ∶ α. if (!z) (!y()) (z ∶= !z + 1; y ∶= (λ_.x);x))

4. Type Disclosure, Casts and *-Conditions
As already discussed in the Introduction, the existence of references
can be used to the advantage of a program in order to break para-
metricity. This is done by discovering variables of different refer-
ence types which, upon execution, end up with the same concrete
location. Once such an aliased pair has been identified, of type say
ref θ1, ref θ2, then a casting function between θ1 and θ2 is readily
available. For instance, if the two variables are xi ∶ ref θi, here is a
casting function from θ1 to θ2:

cast1 ≡ λz1 ∶ θ1. x1 ∶= z1; !x2 ∶ θ1 → θ2

Clearly, if the same location l flows in x1 and x2 then we obtain
cast1{l/x1, l/x2} which casts indeed as designed. The reader may
wonder under what circumstances can the same location be passed
to variables of different types. This can be achieved, for instance,
by a context:

C ≡ let x = ref 0 in (Λα.λy1 ∶ ref α.λy2 ∶ ref Int. ●) Intxx

whereby θ1 = α and θ2 = Int.
These considerations bring about type disclosure, which we

examine next in detail. We conclude the prelude to this section with
some interesting equivalence examples/non-examples, left as a quiz
for the reader.

Example 10. Suppose f ∶ (ref Int × ref Int) → Unit, g ∶ ∀α.
ref α→ref α and h ∶∀α,α′.(ref (α′→α)×ref (α′→ Int)×α) → α.

1. letx, y = ref 0 in f(x, y); letu = g Intx in if (u = y) 1 2
≅? letx, y = ref 0 in f(x, y); letu = g Intx in if (u = y) 3 2

2. letx = ref (λy.1) in letu = h Int Int (x,x,0) in if u 1 2
≅? letx = ref (λy.1) in letu = h Int Int (x,x,0) in if u 3 2

4.1 Type disclosure and casts
Type disclosure is the result of the same location appearing in
several positions in the code, each expecting some different type.
In such cases, we need to associate in our semantics a set of types
to each location, employing the non-unicity of typing functions φ.
In order to restrict the behaviour of O in the interaction to plausible
computations, we shall impose some validity conditions to φ: after
all, not all types can be instantiations of the same type variable (for
instance, φ(l) = {ref Int, ref Unit} is not allowed).

Validity is also dependent on precedence of type variables in the
trace: a recent type variable cannot be instantiating one which has
appeared before it in the trace. We define a partial relation ≤Φ on
types, indexed by an ordered set Φ of type variables, as:

θ ≤Φ θ

θ1 ≤Φ θ2 ≤Φ θ3

θ1 ≤Φ θ3

νT(θ) <Φ α

θ ≤Φ α

θ ≤Φ θ
′

ref θ ≤Φ ref θ′

θ1 ≤Φ θ
′
1 θ2 ≤Φ θ

′
2

θ1 × θ2 ≤Φ θ′1 × θ′2
θ ≤Φ θ

′ α ∉ Φ

Qα.θ ≤Φ Qα.θ′
θ1 ≤Φ θ

′
1 θ2 ≤Φ θ

′
2

θ1 → θ2 ≤Φ θ′1 → θ′2

for Q = ∃,∀ and with νT(θ) <Φ α meaning that all α′ ∈ νT(θ) are
before α in Φ. Let us fix some Φ for the next definition.

Definition 11. A typing function φ is said to be valid if for all
l ∈ dom(φ) there exists a type θ0 such that θ0 ≤Φ θ for all θ ∈ φ(l).

In the sequel we will be using a very specific set Φ, which we
shall be leaving implicit. For any configuration C with components
λ and φ, we say that φ is valid if it is so with respect to the ordered
set Φλ of type variables obtained from λ: Φλ = π1(λ) ↾ TVar.

As type instantiations are noticed during an interaction, the two
parties can start forming cast functions to move between types. We
introduce the notion of cast relations κ, which are simply relations
over types. The fact that (θ, θ′) ∈ κ means that we can cast values
of type θ to θ′.

Casts yield other casts. For example, a cast from θ1×θ2 to θ′1×θ′2
yields subcasts from θ1 to θ′1, and from θ2 to θ′2.4 We formalise this
as follows. Given a cast relation κ, we define its closureκ by:

(θ, θ′) ∈ κ
(θ, θ′) ∈κ (θ, θ) ∈κ

(θ, θ′′) ∈κ (θ′′, θ′) ∈κ
(θ, θ′) ∈κ

(ref θ, ref θ′) ∈κ
(θ, θ′) ∈κ

(θ1, θ
′
1) ∈κ (θ2, θ

′
2) ∈κ

(θ1 × θ2, θ
′
1 × θ′2) ∈κ

(θ1 × θ2, θ
′
1 × θ′2) ∈κ

(θ1, θ
′
1) ∈κ

(θ1 × θ2, θ
′
1 × θ′2) ∈κ

(θ2, θ
′
2) ∈κ

(θ′1, θ1) ∈κ (θ2, θ
′
2) ∈κ

(θ1→ θ2, θ
′
1→ θ′2) ∈κ

(θ′1→ θ2, θ1→ θ′2) ∈κ
(θ1, θ

′
1) ∈κ

(θ1→ θ2, θ
′
1→ θ′2) ∈κ

(θ2, θ
′
2) ∈κ

(θ, θ′) ∈κ α ∉ ν(κ)
(Qα.θ,Qα.θ′) ∈κ

(Qα.θ,Qα.θ′) ∈κ χ(α, θ, θ′)
(θ{θ0/α}, θ′{θ0/α}) ∈κ

(∗)

forQ = ∃,∀, where χ(α, θ, θ′) means that α does not appear in the
scope of a ref constructor in θ, θ′. Notice that all the rules are going
in both directions, but the one on ref types. Indeed, being able to
cast from θ to θ′ does not imply we can cast from ref θ to ref θ′.
This observation allows us to see that the terms of Example 10 (1)
are equivalent despite the type disclosure (cf. Section 4.3).

We can now define the cast relation Cast(φ) related to a typing
function φ. We can show that, for any valid typing function φ,
Cast(φ) is a valid cast relation.

Definition 12. Given a typing function φ, its associated cast rela-
tion Cast(φ) is the closure of {(θ, θ′) ∣ ∃l. θ, θ′ ∈ φ(l)}.

Given a cast relation κ and a type θ, we let

min(κ(θ)) = {θ′ ∈ κ(θ) ∣ ∀θ′′ ∈ κ(θ). θ′′ ≤ θ′ Ô⇒ θ′′ = θ′}
be the set of minimal types of κ(θ). Because the closure rules
above are not reversible on ref types, this set is not in general a
singleton (e.g. min(X)=X forX = {ref (α×Int), ref (Int×α′)}).
This means that a type θ can have several minimal types in its
cast class, and each of them needs to be taken in to account when
computing abstract values to be played in a move. Hence, minimal
types are central to the (full) definitions of AVal, AStore, etc.

4.2 The starred conditions
We next look at the use of environments ρ and the conditions O*
and P* which govern type disclosure in the interaction reduction.

Each move (m,S, ρ) played in an interaction has the potential
to reveal type information. Looking at the reduction rules, in partic-
ular, we see that such a move can enlarge the current typing func-
tion φ to a (valid) superset φ∪φ′: this is due to the fact that locations
l which up until now had types φ(l) are put in positions which ex-
pect types θ ∉ φ(l) (e.g. in return position of some f ∈ Funθ′→θ).
This leads to a corresponding increase in the cast capabilities to
κ′ = Cast(φ∪φ′). Cast capabilities, though, may reveal the values
behind polymorphic names: for instance, if we are able to form a
cast from α to Int, we can go back to an old p ∈ Aα, cast it as an
integer and read its value. This decoding capability is the reason
behind the presence of ρ in the move: ρ contains all those polymor-
phic names p whose value is being revealed (indirectly, via casts)
through the current move, along with the revealed values.

The way polymorphic values are revealed is governed by con-
ditions P* and O*. The former stipulates that, given the old cast
relation κ, the new casting κ′ is the one we obtain via the updated
typing function φ∪φ′. Moreover, as explained above, each concrete
value γ(p) of a polymorphic name p needs to be partially revealed.
The degree to which the codomain of γ∣Pol will be revealed is deter-
mined by the function AEnv. That is, AEnv(γ∣Pol)κ,κ′ comprises a
new abstract environment (ρ, γρ, φρ) for these newly revealed val-
ues, that is moreover unique up to permutation of fresh names. The

4 Assuming θ1 and θ2 are inhabited types.

first component (ρ) is the map from polymorphic names to their re-
vealed values. The other two components record the locations types
(φρ) and value abstraction (γρ) occurring via this disclosure. In the
case of O*, a similar disclosure occurs, only that this time there is
no γ to guide the revealed values; rather, O supplies the disclosure
in a non-deterministic fashion.

The definition of AEnv and its O-counterpart are given below,

AEnv(γ)κ,κ′ = ⊙
p∈dom(γ)

s.t.Xp≠∅

{([p↦ v], γv, φv) ∣ φv = ⋃θ∈Xp
φθ

∧ ∀θ ∈Xp. (v, γv, φθ) ∈ AVal(γ(p), θ)}

EJξKκ,κ′ = ⊙
p∈ξ s.t.Xp≠∅

{([p↦ v], φv) ∣ φv =⋃θ∈Xp
φθ

∧ ∀θ ∈Xp. (v, φθ) ∈ JθK}
with dom(γ), ξ ⊆ Pol and Xp = minκ′(α)/minκ(α) for p ∈
Polα. Thus, for each p ∈ Polα in the domain of γ such that,
going from κ to κ′, there is a new type disclosure on the type of
p (i.e. such that Xp /= ∅), to compute the disclosure happening
on γ(p) we look at all the newly disclosed types θ ∈ Xp and for
each of them select an abstract environment from AVal(γ(p), θ).
If we can pick these environments so that they all agree in their
value component v, we can reveal that p maps to v. Note that
Xp determines how much of γ(p) is revealed: for instance, Xp =
{α′} with α′ another type variable, then v will simply be another
polymorphic name p′. On the other hand, EJξKκ,κ′ is more liberal
in choosing the common revealed value p, as it scans through each
JθK instead of AVal(γ(p), θ). In a similar vein, we get:

AVal(u, θ)κ = {(v, γ, φ) ∣ φ =⋃θ′∈Xφθ′
∧∀θ′ ∈X. (v, γ, φθ′) ∈ AVal(u, θ′)}

AStore(S,φ) = ⊙
l∈dom(S)

{([l ↦ v], γv, φv) ∣ φv = ⋃θ∈Xl φθ
∧∀θ ∈Xl. (v, γv, φθ) ∈ AVal(S(l), θ)}

JvKκ = {(v, φ) ∣ φ =⋃θ′∈Xφθ′ ∧ ∀θ′ ∈X. (v, φθ′) ∈ Jθ′K}

SJφK = ⊙
l∈dom(φ)

{([l ↦ v], φv) ∣ φv = ⋃
θ∈Xl

φθ ∧ ∀θ ∈Xl. (v, φθ) ∈ JθK}

with X = min(κ(θ)) and Xl = ⋃θ∈φ(l)min(Cast(φ)(θ)).
While there is some circularity between the different new com-

ponents in condition P*, we can always pick them in a nominally
deterministic way. We conclude this section with a couple of exam-
ples demonstrating type disclosure.

4.3 Examples
We first look at a term that uses type disclosure to cast between
two of its inputs, similarly to the initial examples of the paper. Let
us set θ = ref α × ref Int × α and v ≡ Λα.λ⟨x, y, z⟩θ.M with
M ≡ if x= y then (y ∶= 42; !x) else z. A characteristic trace of
v is the following (e.g. for S=[l ↦ 9], ρ = [p↦ 7]),
⟨⋅; ⋅; ⋅ ⊢ v ∶ θ⟩ ?⟨⟩ÐÐ→ ⟨(v, θ), ε,∅, ε, ε⟩
⟨f̄⟩ÐÐ→ ⟨◊, γ1,∅, ε, λ1⟩ (γ1= [f ↦ v], λ1= (f,P))
f⟨α⟩ÐÐÐ→ ⟨(vα, θ → α), γ1,∅, ε, λ2⟩ (λ2= λ1 ⋅(α,O))
⟨ḡ⟩ÐÐ→ ⟨◇, γ2,∅, ε, λ2⟩ (γ2= γ1 ⋅[g ↦ λ⟨x, y, z⟩θ.M])
g⟨l,l,p⟩,S,ρÐÐÐÐÐÐ→ ⟨(M ′, α), γ2, φ1, S, λ3⟩ (φ1= (l, Int),(l, α))
⟨4̄2⟩,SÐÐÐÐ→ ⟨◊, γ2, φ1, S, λ3⟩ (λ3= λ2 ⋅(l,O)⋅(p,O))

whereM ′ ≡M{l/x, y}{p/z}{ρ} ≡ if l= l then (l ∶= 42; !l) else 7.
Now, going back to Example 10, let f ∶ (ref Int×ref Int)→Unit,

g ∶ ∀α. ref α → ref α and M ≡ letx, y = ref 0 in f⟨x, y⟩; letu =
g Intx in if (u = y) 1 2 and N ≡ if (u = l′) 1 2. Then, taking
γ= [α↦ Int], M can produce characteristic traces of two kinds:

⟨⋅; ⋅; Γ ⊢M ∶ Int⟩ ?⟨f,g⟩ÐÐÐ→ ⟨(M, Int), ε,∅, ε, λ1⟩ (λ1= (f,O) ⋅ (g,O))
→∗ ⟨(f(l, l′); letu = g Int l inN, Int), ε,∅, S1, λ1⟩ (S1= [l ↦ 0, l′ ↦ 0])
f̄⟨l,l′⟩,S1ÐÐÐÐÐ→ ⟨●; letu = g Int l inN,ε, φ1, S1, λ2⟩ (λ2= λ1 ⋅(l, P)⋅(l′, P))

⟨()⟩,S2ÐÐÐÐ→ ⟨((); letu = g Int l inN, Int), ε, φ1, S2, λ2⟩ (φ1= (l, Int),(l′, Int))
→ ḡ⟨α⟩,S2ÐÐÐÐ→ ⟨(letu = ● l inN, Int), γ, φ1, S2, λ3⟩ (λ3= λ2 ⋅(α,P))
⟨h⟩,S3ÐÐÐÐ→ ⟨(letu = h l inN, Int), γ, φ1, S3, λ4⟩ (λ4= λ3 ⋅(h,O))
h̄⟨l⟩,S3ÐÐÐÐ→ ⟨(letu = ● inN, Int), γ, φ2, S3, λ4⟩ (φ2= φ1,(l, α))
[1] ⟨l⟩,S4ÐÐÐ→ ⟨(letu = l inN, Int), γ, φ2, S4, λ4⟩ →∗

⟨2̄⟩,S4ÐÐÐÐ→ ⟨◊, γ, φ2, S4, λ4⟩
[2] ⟨l

′′
⟩,S4ÐÐÐÐ→ ⟨(letu = l′′ inN, Int), γ, φ3, S4, λ5⟩ →∗

⟨2̄⟩,S4ÐÐÐÐ→ ⟨◊, γ, φ3, S4, λ5⟩

according to choices [1] and [2] for O’s last move. In particular, O
can either return the l ∶ ref α he received, or create a new l′′ ∶ ref α
and return it. Due to φ2, O can cast from Int to α and put arbitrary
values in l, l′′. However, as Cast(φ2)(ref α) = {ref α}, he has no
cast from ref Int to ref α and hence cannot return l′.

5. Soundness
We show that our model is sound, i.e. equality of term denotations
implies contextual equivalence. In fact, we prove a stronger result
(Theorem 24), whereby equality is replaced by a larger equivalence
relation which rules out some over-distinguishing O behaviours.

5.1 Valid configurations
To reason on the interaction reduction, we prove it preserves some
invariants which we collect in the notion of valid configuration.

An obvious invariant we want to preserve is that elements of
the evaluation stack are well-typed. However, due to the fact that
locations do not always have a unique type, and the ensuing casting
capabilities that arise, we cannot use the standard typing system
defined in Section 2. We thus need to generalise it by allowing
location contexts to be multi-valued, i.e. use valid typing functions
φ (instead of Σ), together with the new typing rule:

∆;φ; Γ ⊢e M ∶ θ (θ, θ′) ∈ Cast(φ)
∆;φ; Γ ⊢e M ∶ θ′

We write S ∶eφ if ∀l ∈ dom(S).∃θ ∈ φ(l). νT(φ);φ; ⋅ ⊢e S(l) ∶ θ.
The extended type system still satisfies a safety property, on

which rely in order to show our model sound.

Lemma 13. Given ∆;φ; ⋅ ⊢e M ∶ θ and S ∶e φ such that for
all p ∈ ν(M,S) ∩ Polα,min (Cast(φ)(α)) = {α} either (M,S)
diverges or there exists (M ′, S′) irreducible such that:
● (M,S) →∗ (M ′, S′),
● M ′ is either equal to a value v or to a callback E[f v],
● there exists φ′ disjoint from φ such that ∆;φ ∪ φ′; ⋅ ⊢e M ′ ∶ θ

and S′ ∶e φ ∪ φ′.
Using this extended system, we can type evaluation stacks of

configurations. A passive evaluation stack (En, θn ↝ θ′n) ∶∶ . . . ∶∶
(E1, θ1 ↝ θ′1) is said to be well-typed w.r.t. a typing function φ
and a type environment δ ∶ TVar ⇀ Types if, for all 1 ≤ i ≤ n,
∆;φ ⊢e Ei ∶ θi{δ} ↝ θ′i{δ}. An active evaluation stack (M,θ,Φ) ∶∶
E is well-typed for φ, δ if ∆;φ; ⋅ ⊢e M ∶ θ{δ} and E is well-typed
for φ, δ. We can now specify which configurations are valid.

Definition 14. We call ⟨E , γ, φ, S, λ⟩ a valid configuration if:
● dom(γ) = {a ∈ Pol ∪ Fun ∪TVar ∣ λ(a) = P},
● dom(φ) = dom(λ) ∩ Loc ⊆ dom(S),
● for all a ∈ ν(E , cod(S), cod(γ))/Loc, λ(a) = O,
● there exists φ′ disjoint of φ s.t. S ∶e φ ∪ φ′,
● E is well-typed for φ ∪ φ′, γ∣TVar

● for all p ∈ ν(E , S, cod(γ)) ∩Polα, min (Cast(φ)(α)) = {α}.

We write C
m,S,ρ
ÔÔ⇒ C′ when C Ð→∗C′′ m,S,ρÐÐÐ→ C′ for some con-

figuration C′′. Validity of configurations is preserved as follows.

Lemma 15. If C
m,S,ρ
ÔÔ⇒ C′ and C is valid then so is C′.

5.2 Composite reduction
The main ingredient in the soundness argument is a refinement of
the LTS introduced previously which will eventually allow us to
compose term denotations, in a way akin to composition in game
semantics: each term in the composition becomes the Opponent
for the other term. More concretely, in the composite LTS the be-
haviour of Opponent is fully specified by expanding the configura-
tions with an extra evaluation stack, environment and store.

The new LTS is called composite interaction reduction.It works
on composite configurations ⟨EP ,EO, γP , γO, φ, SP , SO⟩, where:

• EP ,EO are evaluation stacks (one passive and one active);
γP , γO are environments; and SP , SO are stores;

• φ is a common typing function for locations.
The rules of the composite reduction are in effect the P-rules of the
ordinary interaction reduction, plus dual forms thereof fleshing out
the O-rules.

A trace t is said to be generated by a composite configuration
C if it can be written as a sequence (m1, S1, ρ1)⋯(mn, Sn, ρn) of

full moves such that C
m1,S1,ρ1ÔÔÔÔ⇒ C1

m2,S2,ρ2ÔÔÔÔ⇒ . . .
mn,Sn,ρnÔÔÔÔ⇒ Cn,

in which case we write C
tÔ⇒ Cn. We say that a composite config-

uration C terminates with the trace t, written C ⇓t, if there exists a

store S such that C
t⋅(⟨()⟩,S,ε)
ÔÔÔÔ⇒ ⟨◊,◊, γ′P , γ′O, φ′P , S′P , S′O⟩.

We now define how to merge configurations CP ,CO into a
composite one. For each X ∈ {O,P} we write X� for its dual
({X,X�} = {O,P}), and extend this to λ� = (_�) ○ λ.

Definition 16. Given a pair of environments (γP , γO) from A/Loc
to values, we say these are compatible when:
● dom(γP) ∩ dom(γO) = ∅,
● for all a ∈ dom(γX) (X ∈{P,O}), ν(γX(a))/Loc ⊆ dom(γX�),
● setting γ0 = γP ⋅ γO , and γi = {(a, v{γ}) ∣ (a, v) ∈ γi−1}

(i > 0), there is an integer n such that ν(cod(γn))/Loc = ∅;
and write (γP ⋅ γO)∗ for the environment from A/Loc to Val
defined as γn, for the least n satisfying the latter condition above.

A pair of valid configurations (CP ,CO) are called compatible
if, given CX = ⟨EX , γX , φX , SX , λX⟩ (for X ∈ {P,O}):
● φP = φO and λP = λ�O ,
● (γP , γO) are compatible and dom(γP ⋅ γO) = dom(λP)/Loc,
● dom(SP) ∩ dom(SO) = dom(λP) ∩ Loc,
● the merge ⟨EP ,EO, γP , γO, φP , SP , SO⟩ of CP and CO is valid.
We write CP ⩕CO for ⟨EP ,EO, γP , γO, φP , SP , SO⟩.

We can merge the (well-typed) evaluation stacks (EP ,EO) of
compatible configurations by the following operation:

◊∣∣(E, θ ↝ θ′) = E ((M,θ) ∶∶ EP) ∣∣EO = (EP ∣∣EO) [M]
((E, θ ↝ θ′) ∶∶ EP) ∣∣ ((M,θ) ∶∶ EO) = (EP ∣∣EO) [E[M]]

((E, θ ↝ θ′) ∶∶ EP) ∣∣ ((E′, θ′ ↝ θ′′) ∶∶ EO) = (EP ∣∣EO) [E′[E]]
and obtain a correspondence with the operational semantics.

Lemma 17. Given C = ⟨EP ,EO, γP , γO, φ, SP , SO⟩ a valid com-
posite configuration and γ = γP ⋅γO , there exists a complete trace t
such thatC ⇓t iff (EP ∣∣EO{γ∗}, SP {γ∗}) →∗((), S′) for some S′.

On the other hand, there is a semantic way to compare Player
and Opponent configurations, by checking that the traces they gen-
erate are compatible. Given a trace t, let us write t� for its dual ob-
tained by switching the polarity of each move in t (e.g. each f̄⟨v⟩
is changed to f⟨v⟩, and so on).

Definition 18. Let CP and CO be two configurations. We write
CP ∣CO ↓t when there exists a complete trace t and a store S such
that t ∈ JCP K and t� ⋅ (⟨()⟩, S, ε) ∈ JCOK.

We therefore have the following correspondence between se-
mantic and syntactic composition.

Theorem 19. For all pairs of compatible configurations CP and
CO , CP ∣CO ↓T iff CP ⩕CO ⇓T .

5.3 Soundness result
We need two final pieces of machinery for soundness. The first
one is so-called ciu-equivalence, which allows one to characterise
contextual equivalence by restricting focus to evaluation contexts.

Definition 20. Let Σ be a location context. Two terms ∆; Σ; Γ ⊢
M1,M2 ∶ θ are ciu-equivalent, written ∆; Σ; Γ ⊢M1 ≃ciu M2 ∶ θ,
when for all typing substitutions ⋅; ⋅; ⋅ ⊢ δ ∶ ∆, location contexts
Σ′ ⊒ Σ, closed stores S ∶ Σ′, value substitutions ⋅; Σ′; ⋅ ⊢ γ ∶
Γ{δ} and evaluation contexts ⋅; Σ′ ⊢ E ∶ θ{δ} ↝ θ′, we have
(E[M1{γ}{δ}], S) ⇓ iff (E[M2{γ}{δ}], S) ⇓.

Theorem 21. ∆; Σ; Γ⊢M1 ≃M2 ∶ θ iff ∆; Σ; Γ⊢M1 ≃ciuM2 ∶ θ.

As mentioned at the beginning of this section, we introduce
an equivalence on term denotations which includes equality. The
motivation for this is so as to prune out some distinctions that the
model makes between behaviours that are in fact indistinguishable.
More precisely, our model abstracts away any actual values pro-
vided by Opponent for polymorphic inputs by names in Pol. More-
over, when P plays back one of those names, O is in position to
determine precisely which actual value is P returning in reality (as
all polymorphic names introduced by O must be distinct). This dis-
cipline is based on the assumption that O can always instrument
the values he provides to P so that he can later distinguish between
them. It is a valid assumption, apart from the case when later in the
trace there is some value disclosure for those polymorphic names
which forbids O to implement such instrumentations.

To remove this extra intensionality from the model, we intro-
duce an equivalence of traces which blurs out such distinctions:
● we first substitute in every P-move all the O polymorphic names

whose value have been disclosed by their disclosed value;
● we then enforce the freshness of P polymorphic names played in

P moves, which may be broken because of these substitutions.
The latter step is implemented via a name-refreshing procedure,
defined as follows. Given traces t, t′, we say that t′ is a P-refreshing
of t, written t ↝ t′, if t = t1 ⋅ (m,S, ρ) ⋅ t2, t′ = t1 ⋅ t′2, with m a
P-move, and there are polymorphic names p, p′ such that:
● p ∈ ν(t1) ∩ ν(m,S, cod(ρ)) is introduced in a P-move of t1,
● p′ ∉ ν(t) and t′2 is (m,S, ρ) ⋅ t2 where we first replace a single

occurrence of p in (m,S, cod(ρ)) by p′, and then replace any
[p↦ v] in the resulting subtrace by [p↦ v] ⋅ [p′ ↦ v].

P-refreshing is bound to terminate in the traces we examine. We
write F(t) for the set of all t′ such that t↝∗ t′ and t′ /↝.

Definition 22. Two traces t1, t2 are said to be equivalent, written
t1 ∼ t2, if F(t1

ε) = F(t2
ε), where t

ρ1⋯ρn is defined as:

t ⋅ (m,S, ρ)
ρ1⋯ρn= {t

ρ1⋯ρn⋅ ((m,S, ρ){ρ1}⋯{ρn}) if m a P-move
t
ρ1⋯ρnρ⋅ (m,S, ρ) otherwise

We extend equivalence to sets of traces in an elementwise fashion.

Lemma 23. Let t1 be a trace such that t�1 ∈ Tr(C) with C a valid
configuration. Then for all t2 ∼ t1 we have t�2 ∈ Tr(C).

We can now prove the main theorem of this section.

Theorem 24 (Soundness). For all terms ∆; Σ; Γ ⊢ M1,M2 ∶ θ,
JM1K ∼ JM2K implies M1 ≅M2.

Proof. Suppose JM1K ∼ JM2K. Using Theorem 21, we prove that
M1 ≃ciu M2. Let us take δ,Σ′ ⊇ Σ, S, γ and E as in Definition 20,
and suppose that (E[M1{γ}{δ}], S) ⇓.
Take (α⃗, l⃗, u⃗) ∈ J∆,Σ,ΓK and write CP,1 for the P-configuration

⟨(M1

ÐÐÐ→
{ũ/x},θ), ε, φ, S, λ⟩, so ⟨∆; Σ; Γ ⊢M1 ∶ θ⟩

?⟨α⃗,l⃗,u⃗)⟩,S′, ρ
ÐÐÐÐÐÐ→ CP,1.

LetCO = ⟨(E, θ ↝ θ′), γ′⋅δ, φ,S, λ�⟩ where γ′ = {(ui, vi) ∣ γ(xi) =
vi}. From Lemma 17, there exists a complete trace t such that
CP,1 ⩕ CO ⇓t. Then, from Theorem 19, CP,1∣CO ↓t, so that
t ∈ Tr(CP,1) and t� ∈ Tr(CO). WritingCP,2 for the Player config-
uration ⟨(M2

ÐÐÐ→
{ũ/x}, θ), ε, φ, S, λ⟩, from the hypothesis of the the-

orem, there exists a complete trace t′ ∼ t such that t′ ∈ Tr(CP,2).
From Proposition 23, t′� ∈ Tr(CO), so that CP,2∣CO ↓′t, and using
Theorem 19 (in the other direction), we get that CP,2 ⩕ CO ⇓′t.
Finally, using Lemma 17, we get that (E[M2{γ}{δ}], S) ⇓.

6. Completeness
While sound, our model fails to be fully abstract as it overestimates
the power of O: the way cast relations (Cast) are computed over-
approximates the casts that can be implemented by the context in
practice, as inhabitation constraints are not taken into account. For
instance, a cast from θ → θ1 to θ → θ2 does not yield one from θ1

to θ2 unless a value of type θ is available. In this section we restrict
our attention to a fragment of System ReF, called System ReF*,
carved in such a way that the above problem cannot be manifested.
We then prove our model fully abstract for terms in System ReF*.

System ReF* is defined by means of restricting the types al-
lowed at the type interface of a term. In particular, we pose the
following restrictions affecting the types which can appear under a
ref constructor. First, we do not allow any binders ∀,∃ to appear in
the scope of a ref and, moreover, any type variable α inside a ref θ
must be reachably inhabited: in order for a value of type ref θ to be
played in a trace, a value of type α must have been played before.

Both these restrictions are captured by the following type predi-
cate goodΥ(θ), which determines whether a type θ is in the defined
fragment, assuming that the type variables in Υ are inhabited.

goodΥ(ref θ) = goodΥ(θ) ∧ νT(θ) ⊆ Υ ∧ θ is quantifier-free
goodΥ(θ → θ′) = goodΥ(θ) ∧ goodΥ∪gtv(θ)(θ

′)
goodΥ(∀α.θ) = goodΥ(θ)
goodΥ(θ × θ′) = goodΥ(θ) ∧ goodΥ(θ′)
goodΥ(∃α.θ) = goodΥ∪{α}(θ)
goodΥ(θ) = true otherwise

Above, gtv(θ) returns the type variables at the ground level of θ:

gtv(α) = {α} gtv(θ × θ′) = gtv(θ) ∪ gtv(θ′)
gtv(∃α.θ) = gtv(θ)/{α} gtv(ref θ) = gtv(θ)

and gtv(θ) = ∅ otherwise. We extend goodness to type interfaces
by setting, given Σ = {l1 ∶ θ1,⋯, ln ∶ θn}, Γ = {x1 ∶θ′1,⋯, xm ∶θ′m}:

good(∆; Σ; Γ ⊢ θ) = good∅((ref θ1×⋯×ref θn×θ′1×⋯×θ′m) → θ)

Definition 25. We let System ReF* contain all terms ∆; Σ; Γ ⊢
M ∶ θ such that good(∆; Σ; Γ ⊢ θ) holds.

Example 26. The terms form Example 10 (2) are not in System
ReF*, as α′ is not inhabited. The two terms are then equivalent,
because Opponent cannot cast α to Int, lacking a value of type α′

to do so. Our model, however, does not capture this equivalence.

Moreover, we call an initial configuration ⟨∆; Σ; Γ ⊢ M ∶ θ⟩
good just if its interface is, while a valid configuration ⟨E , γ, φ, S, λ⟩
is good just if, taking Xλ = {α ∣ ν(λ) ∩ Polα /= ∅}, νT(φ) ⊆ Xλ
and goodXλ(θ) hold, for all θ ∈ cod(φ) ∪ {θ ∣ ν(λ) ∩Funθ /= ∅}.
We can then check that goodness is preserved under reduction.

Working in this restricted fragment, we can always implement
all possible casts anticipated from the cast closure construction
of Section 4. More specifically, a cast-term from θ to θ′ based
on aliased pairs (θ1, θ

′
1), . . . , (θn, θ′n) and inhabited variables

α1,⋯, αm is a term castθ→θ′ such that:

● ∆; ;
ÐÐÐÐÐ→
xi ∶ ref θi,

ÐÐÐÐÐ→
yi ∶ ref θ′i,

ÐÐÐ→zj ∶ αj ⊢ castθ→θ′ ∶θ→θ′

● for any Σ = {
ÐÐ→
li ∶ θi}, pj ∈ Polαj , S ∶ Σ and ∆; Σ′;⊢ v ∶ θ,

((castθ→θ′
ÐÐÐÐÐÐ→
{li/xi, yi}

ÐÐÐÐ→
{pj/zj})v,S) →∗ (v′, S ⋅ S′) with v ≅ v′,

with S′ disjoint of S. Recall now Cast(φ) from Definition 12 and
define its restriction Cast○(φ), the closure of {(θ, θ′) ∣ ∃l. ref θ, ref θ′ ∈
φ(l)} using all cast closure rules from Section 4 apart from (∗).

Lemma 27. Let φ be a valid typing function with α⃗ all free type
variables in φ. Then, for all (θ, θ′) ∈ Cast○(φ) there is a cast-term
castθ→θ′ based on pairs {(θ′′, θ′′′) ∣ ∃l. θ′′, θ′′′ ∈ φ(l)} and α⃗.

The (∗) rule, though useful for soundness, has no clear way
to be implemented with cast-terms, hence the reason for aiming
at its exclusion. The restriction we pose on System ReF* in that
quantifiers cannot appear under a ref constructor renders the rule
indeed redundant. Each φ produced in the model contains no types
with quantifiers, so that the (∗) rule can be eliminated.

The proof of full abstraction is based on a definability result: we
show that every complete trace produced by a good P-configuration
CP can be accepted by an appropriately designed O-configuration
CO . In addition, the given trace is all CO can accept up to nominal
and trace equivalence. The technique follows e.g. [17], albeit ex-
panded to the polymorphic setting. Note that the absence of generic
types [22] in our language, because of type disclosure, rules out the
option of reducing the problem to that for the monomorphic setting.

Theorem 28 (Definability). Let CP be a good configuration and t
a complete trace in Tr(CP) with final store S. There exists a valid
configuration CO compatible with CP such that Tr(CO) = {π ⋆
t′ ∣ (∀a∈ν(t)/ν(CO). π(a)=a) ∧ ∃t′′∼ t ⋅ (⟨(̄)⟩, S,∅). t′ ⊑ t′′�}.

We present the main ingredients of the definability argu-
ment. We argue by induction on the length of t. Suppose CP =
⟨EP , γP , φP , SP , λ⟩, let A0 be the set of all the names that appear
in t and CP . To determine the types behind the O-type-variables
in A0, we define a mapping δ by collecting all type constraints we
can derive from the trace t about O-type-variables, mapping to Int
when no such constraints exist . We number P-moves in t in de-
creasing order, that is, the head move of t has index ∥t∥ = (t+1)/2,
and let Θ∥t∥ recursively include all function, reference and variable
types that appear in φP {δ} and λ{δ}. At the i-th P-move of t, this
set is updated to Θi = {θi1, θi2,⋯, θits(i)} by including all the types
disclosed in intermediate moves.

We use a counter cnt to determine the position we are in t
and inductively construct CO = ⟨EO, γO, φO, SO, λ�⟩ with the
additional assumptions that:
− EO = (En, ηn ↝ η′n,Φn) ∶∶ ⋯ ∶∶ (E1, η1 ↝ η′1,Φ1), n is

determined from t and Ei ≡ (λz. !ri(!cnt)z)● , for each i;
− γO obeys δ (i.e. γO ∣TVar ⊆ δ) and, moreover, assigns values to

each function or pointer name belonging to O by referring to
purpose-specific private references in SO:
◻ for each f of arrow type, γO(f) = λz. !qf(!cnt)z
◻ for each g of universal type, γO(g) = Λα. !q′g(!cnt)α
◻ for each pointer name p of type β,
● if γO(β) an arrow type, γO(p) = λz. !qp(!cnt)z
● if γO(β) a universal type, γO(p) = Λα. !q′p(!cnt)α
● if γO(β) an existential type, γO(p) = ⟨α′, v⟩ and v recur-

sively follows the same discipline
● if γO(β) a product type, γO(p) = ⟨v1, v2⟩ and v1, v2

recursively follow the same discipline
● if γO(β) = Int/ref θ and the value of p gets disclosed in t,
γO(p) is the revealed value; otherwise, γO(p) is a unique
integer/location representing p

● if γO(β) = α′, γO(p) is some polymorphic name respect-
ing the type disclosures in t;

− dom(SO) containsQF ⊎Q′
F ⊎QP ⊎Q′

P ⊎{r1,⋯, rn, l1,⋯, lk}⊎
{cnt} ⊎ {`1,⋯, `ts(∥t∥)} ⊎ {getvali ∣ i ∈ [1, ∥t∥]};

where QF contains a unique location qf for each function name f
in dom(γO), Q′

F contains the q′g’s, QP the qp’s, and Q′
P the q′p’s.

The main engine behind the construction is the use of references
to record values played, continuations, functions, and generally all
history of t so that O can refer to it in order to: decide to accept each
expected move by P, and play the corresponding expected move
themselves. Looking at the domain of SO , the li’s are the shared
locations between CP and CO , while cnt is an integer counter
that counts the remaining P-moves in t. We set SO(cnt) = ∥t∥.
L = {`1,⋯, `ts(∥t∥)} is a set of private auxiliary locations which we
shall use in order to cast between known types and types obtained
by opening existential packages.

The role of the getval’s is to us to store all names that appear in
the trace. For each i, getvali is a location of type:
∃α⃗. ((Int→ θi1) × ⋯ × (Int→ θits(i)))

× ((Unit→ ref θi1) × ⋯ × (Unit→ ref θits(i)))
where α⃗ is the sequence of all free type variables in Θi. Thus, the
value of getvali is an existential package whose first component
contains enumerations of all values of type θij , for each i, j. These
is enough to represent all the available values at each point in the
trace. The second component inside the package stored in getvali
contains a single reference for each type and we shall assign to it a
special role, namely of holding a private reference from the set L.

To see how the above work, let t = (m1, S1, ρ1)⋅(m2, S2, ρ2)⋅t′
and supposem1 is a question f̄⟨v⟩, introducing fresh type variables
β1,⋯, βι (via values of existential type). We encode acceptance of
these first two moves in qf , by setting SO(qf)(∥t∥) to be:

unpack !getval∥t∥ as ⟨α⃗
′, ⟨z′, h⟩⟩ in

let z = castPk⟨z′, h⟩ in
λx0.unpackN1 as ⟨β1, x1⟩ in⋯ unpackNι as ⟨βι, xι⟩ in

let val = ref ⟨z, λ_.Ω,⋯ , λ_.Ω⟩ in
cnt−−;Fshvals; Chkvals; Newvals; Setstor; Play (∗)

Since the type of !getval∥t∥ is fully existentially quantified, when
we (statically) unpack !getval∥t∥ and get α⃗′, z′, the α⃗′ are distinct
from the type variables α⃗ in Θ∥t∥ and, consequently, each compo-
nent z′i ∶ Int → θ′i of z′ is not of the expected type Int → θi. How-
ever, when the unpack will actually happen this mismatch will be
resolved. For visible types (in the game-theoretic view sense [10]),
we need this mismatch to also be resolved statically, as we would
like to be able to relate the values in z′ with x0, any open variables,
or the return value of !qf . Hence, we employ the castPk function
which casts values of type θ′i to θi in z′, using the locations in L
(each of type θi) and their representations in h.

Each term Ni is selected in such a way so that, using val and
x0, x1,⋯, xi−1, it captures the precise position within (m1, S1, ρ1)
which introduces the type variable βi. Note that, here and below, in
order to access the values of ρ1 we make use of the cast terms of
Lemma 27. We then create the location val to contain the old value
stores (z), extended with an empty store for each βi (λ_.Ω). Also:

◻ Fshvals detects the positions inside (m1, S1, ρ1) that intro-
duce fresh names and updates val by adding them as new values in
their corresponding types. This yields an updated store S′O .

◻ Chkvals checks that x0, the public part of S′O and the val-
ues revealed by type disclosure are the ones expected, that is, v,
S1 and ρ1 respectively. For these comparisons to be implemented,
it suffices to focus on variable types only: the rest are either in-
tegers/references (can always be checked), or units/functions (no
need to check them). Variable types belonging to P cannot be
checked (P always plays fresh names for them), so we skip them.
Values of variable types α belonging to O will appear e.g. in x0

with their instantiated types δ(α). In this case, we are in position to
distinguish between function names: these are functions provided

by O as polymorphic values so O can pre-instrument so that when
calling them they each produce a unique observable effect.

◻ Newvals creates all the fresh locations of (m2, S2) and
stores them in the corresponding index of val. Moreover, for each
name f ′ of arrow type in (m2, S2), Newvals includes a code por-
tion creating a reference qf ′ to store a function which takes as an
argument the value of the counter specifying the current move, and
returns a function following the expected behaviour (and that stipu-
lated by the store obtained for t′ by the inductive hypothesis). Sim-
ilarly for names of universal types. Finally, for each polymorphic
O-name p in (m2, S2) of type α, Newvals includes code creating
qp and adding a function in val according to the type γO(α) (e.g. if
an arrow type then we add λz. !qp(!cnt)z, where qp encapsulates
an effect which allows its recognition in the future).

◻ Setstor updates the store in such a way that all the values of
S2 are set, while Play is defined by case analysis on m2.

Using Definability, we can now prove the main theorem.

Theorem 29 (Completeness). Given System ReF* terms ∆; Σ; Γ ⊢
M1,M2 ∶ θ, if M1 ≅M2 then JM1K ∼ JM2K.

References
[1] S. Abramsky and R. Jagadeesan. A game semantics for generic

polymorphism. APAL, 133(1-3), 2005.
[2] A. Ahmed. Semantics of types for mutable state. PhD thesis, Princeton

University, Princeton, NJ, USA, 2004.
[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In POPL, 2009.
[4] A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. A very modal

model of a modern, major, general type system. In POPL, 2007.
[5] L. Birkedal, K. Støvring, and J. Thamsborg. Realisability semantics

of parametric polymorphism, general references and recursive types.
MSCS, 20(04), 2010.

[6] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. JFP, 22, 2012.

[7] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal aspects of computing, 13(3-5), 2002.

[8] D. R. Ghica and N. Tzevelekos. A system-level game semantics.
ENTCS, 286, 2012.

[9] D. J. D. Hughes. Hypergame semantics: full completeness for System
F. PhD thesis, University of Oxford, 2000.

[10] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I, II,
and III. Inf. Comput., 163(2), 2000.

[11] G. Jaber. Operational nominal game semantics. In FOSSACS, 2015.
[12] G. Jaber and N. Tabareau. Kripke open bisimulation - a marriage of

game semantics and operational techniques. In APLAS, 2015.
[13] R. Jagadeesan, C. Pitcher and J. Riely. Open bisimulation for aspects.

In AOSD, 2007.
[14] A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local

names. In LICS, 1999.
[15] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a

core java language. In ESOP, 2005.
[16] A. Jeffrey and J. Rathke. Full abstraction for polymorphic pi-calculus.

TCS, 390(2-3), 2008.
[17] J. Laird. A fully abstract trace semantics for general references. In

ICALP, 2007.
[18] J. Laird. Game semantics for call-by-value polymorphism. In ICALP,

2010.
[19] J. Laird. Game semantics for a polymorphic programming language.

J. ACM, 60(4), 2013.
[20] S. Lassen. Eager normal form bisimulation. In LICS, 2005.
[21] S. B. Lassen and P. B. Levy. Typed normal form bisimulation for

parametric polymorphism. In LICS, 2008.
[22] G. Longo, K. Milsted, and S. Soloviev. The genericity theorem and

parametricity in the polymorphic λ-calculus. TCS, 121(1&2), 1993.
[23] P. Levy and S. Staton. Transition systems over games. In LICS, 2014.
[24] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. A contextual

equivalence checker for IMJ*. In ATVA, 2015.
[25] B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymor-

phic pi-calculus. J. ACM, 47(3), 2000.
[26] J. Reynolds. Types, abstraction and parametric polymorphism. In IFIP

Congress, 1983.
[27] C. Strachey. Fundamental concepts in programming languages.

Reprint. Higher-Order and Symbolic Computation, 13(1/2), 2000.
[28] E. Sumii. A complete characterization of observational equivalence in

polymorphic λ-calculus with general references. In CSL, 2009.
[29] P. Wadler. Theorems for free! In FPCA, 1989.
[30] A. K. Wright. Simple imperative polymorphism. LASC, 8(4), 1995.

	Introduction
	System ReF
	The Semantic Model
	Semantic Universe
	Interaction Reduction

	Type Disclosure, Casts and *-Conditions
	Type disclosure and casts
	The starred conditions
	Examples

	Soundness
	Valid configurations
	Composite reduction
	Soundness result

	Completeness

