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Abstract

Order-invariant formulas access an ordering on a structure’s universe, but the model relation is
independent of the used ordering. They are frequently used for logic-based approaches in computer
science. Order-invariant formulas capture unordered problems of complexity classes and they model
the independence of the answer to a database query from low-level aspects of databases. We study
the expressive power of order-invariant monadic second-order (MSO) and first-order (FO) logic on
restricted classes of structures that admit certain forms of tree decompositions (not necessarily of
bounded width).

While order-invariantMSO is more expressive thanMSO and, even,CMSO (MSO with modulo-
counting predicates) in general, we show that order-invariantMSO andCMSO are equally expressive
on graphs of bounded tree width and on planar graphs. This extends an earlier result for trees due to
Courcelle. Moreover, we show that all properties definable in order-invariantFO are also definable
in MSO on these classes. These results are applications of a theorem that shows how to lift up
definability results for order-invariant logics from the bags of a graph’s tree decomposition to the
graph itself.

Keywords:finite model theory, first-order logic, monadic second-order logic, order-invariant logic,
modulo-counting logic, bounded tree width, planarity

1 Introduction

A formula is order-invariant if it has access to an additional total ordering on the universe of a given
structure, but its answer is invariant with respect to the given order. The concept of order invariance
is used to formalize the observation that logical structures are often encoded in a form that implicitly
depends on a linear order of the elements of the structure; think of the adjacency-matrix representation of
a graph. Yet the properties of structures we are interested in should not depend on the encoding and hence
the implicit linear order, but just on the abstract structure. Thus, we use formulas that access orderings,
but define unordered properties. This approach can be prominently found in database theory where
formulas from first-order (FO) and monadic second-order (MSO) logic are used to model query languages
for relational databases and (hierarchical)XML documents, respectively. Being order-invariant means in
this setting that the formula evaluation process is always independent of low-level aspects of databases
like, for example, the encoding of elements as indices. Another example approach can be found in
descriptive complexity theory where formulas whose evaluation is invariant with respect to specific
encodings of the input structure capture unordered problems decidable by certain complexity classes.
The famous open problem of whether there is a logic that captures all unordered properties decidable in
polynomial time falls into this category.
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Gurevich [17] proved that order-invariantFO (<-inv-FO) is more expressive thanFO (also see [24]
for details). The same holds for order-invariantMSO (<-inv-MSO) andMSO with modulo-counting pred-
icates (CMSO); Ganzow and Rubin showed that<-inv-MSO is able to express more properties thanCMSO

on general finite structures [15]. Since it is not possible todecide, for a givenFO-formula, whether it
is order-invariant or not, this opens up the question of whether we can find alternative logics that are
equivalent to the order-invariant logics<-inv-FO and<-inv-MSO. While on general logical structures no
logics that are equivalent to<-inv-FO or <-inv-MSO are known, this changes if we consider classes of
structures that are well-behaved. Benedikt and Segoufin [1]showed that<-inv-FO andFO have the same
expressive power on the class of all strings and the class of all trees (we write<-inv-FO = FO on C to
indicate that the properties definable in<-inv-FO equal the properties definable inFO when considering
structures from a classC). Considering<-inv-MSO, Courcelle [7] showed that it has the same expressive
power asCMSO on the class of trees (that means,<-inv-MSO = CMSO on trees). Recently it was shown
that<-inv-FO= FO(= MSO) and<-inv-MSO= CFO(= CMSO) hold on classes of graphs of bounded tree
depth [12]. More general results that apply to graphs of bounded tree width or planar graphs have not
been obtained so far. This is due to the fact that, whenever wewant to move from an order-invariant
logic to another logic on a class of structures, we need to understand both (1) the expressive power of the
order-invariant logic when restricted to these structures, and (2) the ability of the other logic to handle
the structures in terms of, for example, definable decompositions.

Results. Our results address both of these issues to better understand the expressive power of order-
invariant logics on decomposable structures.

Addressing issue (1), we prove two general results, which show how to lift-up definability results for
order-invariant logics from the bags of tree decompositions up to the whole decomposed structure. We
show that, whenever we are able to useMSO-formulas to define a tree decomposition whose adhesion
is bounded (that means, bags have only bounded size intersections) and we can define total orderings
on the vertices of each bag individually, then<-inv-MSO = CMSO (Theorem 3.1) and<-inv-FO ⊆ MSO

(Theorem 3.2). Lifting theorems of this kind can be seen to beimplicitly used earlier [1, 5, 6], but so far
they only applied to the case where the defined tree decomposition has a bounded width. In this case,
the whole structure can be easily transformed into an equivalent tree. Our theorems also handle the case
where bags have an unbounded width: they merely assume the additional definability of a total ordering
on bags, possibly using arbitrary parameters (which may be sets in the case ofMSO-definability). This
is a much weaker assumption than having bounded width, and itcovers larger graph classes. The proofs
of the lifting theorems use type-composition methods to show how one can define the logical types of
structures from the logical types of substructures. The main challenge lies in trading the power of the
used types (in our case these are certain order-invariant types based on orderings that are compatible
with the given decomposition) with the ability to prove the needed type-composition methods. The
latter need to work with bags of unbounded size and, thus, aremore general than the type-composition
methods that are commonly used for the case of bounded size bags.

Addressing issue (2), we study two types of classes of graphswhere it is possible to meet the as-
sumptions of the lifting theorems and, thus, show that<-inv-MSO= CMSO and<-inv-FO⊆ MSO hold on
these classes. The first two results (formally stated as Theorems 5.6 and 5.7) apply to classes of graphs
of bounded tree width. For the proof, we show that one can define tree decompositions of bounded
adhesion inMSO, where the bags admitMSO-definable total orderings. Let us remark that in proving
these results we do not rely on theMSO-definability of width-bounded tree decompositions, a result
announced by Lapoire [18], but only proved recently (and independently of our work) by Bojańczyk
and Pilipczuk [3] [4]. Benedikt and Segoufin [1] had shown earlier how to prove these results using the
MSO-definability of width-bounded tree decompositions. Our second application of the lifting theorem
is concerned with classes of graphs that, for someℓ ∈ N, do not containK3,ℓ as a minor. This includes
the class of planar graphs and all classes of graphs embedabble in a fixed surface [22, 23]. Using an
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MSO-definable tree decomposition into 3-connected componentsdue to Courcelle [8] along with prov-
ing that there areMSO-definable total orderings for the 3-connected bags of the decomposition, we are
able to apply the lifting theorems to prove that<-inv-MSO= CMSO (Theorem 5.10) and<-inv-FO⊆ MSO

(Theorem 5.11) hold on every class of graphs that excludeK3,ℓ as a minor for someℓ ∈ N.

Organization of the paper. The paper starts with a preliminary section (Section 2) containing def-
initions related to graphs and logic. In Section 3, we formally state and prove the lifting theorems.
Section 4 shows how toMSO-define tree decompositions along clique separators and reviews the known
MSO-definable tree decomposition into 3-connected components. Section 5 picks up the decomposed
graphs and shows how to define total orderings for bags. This is combined with the lifting theorems to
prove the results about bounded tree width graphs andK3,ℓ-minor-free graphs stated above.

2 Background

In the present section, we introduce the necessary background related to logical structures and graphs
(Section 2.1), monadic second-order logic and its variants(Section 2.2), logical games and types (Sec-
tion 2.3), and transductions (Section 2.4).

2.1 Structures and Graphs

A vocabularyτ is a finite set ofrelational symbolswhere anarity ar(R)≥ 1 is assigned to eachR∈ τ . A
structure Aover a vocabularyτ consists of a finite setU(A), itsuniverse, and arelation R(A)⊆U(A)ar(R)

for everyR∈ τ . We sometimes writeR(A) by RA, in particular ifR is a symbol like≤.
An expansionof a τ-structureA is a τ ′-structureA′ for some vocabularyτ ′ ⊇ τ such thatU(A) =

U(A′) andR(A) = R(A′) for all R∈ τ . If A is aτ-structure andV ⊆U(A), then theinduced substructure
A[V] is theτ-structure with universeU(A[V]) =V and relationsR(A[V]) := R(A)∩Var(R) for all R∈ τ .
Furthermore, we letA\V := A[U(A)\V].

Graphs Gare structures over the vocabulary{E} with ar(E) = 2. When working with graphs, we
also writeV(G) for the graph’s universe (its set ofvertices) and callE(G) its set ofedges. The graphs
we are working with areundirected. That means, for every two verticesv andw, we have(v,w) ∈ E(G)
if, and only if, (w,v) ∈ E(G) and(v,v) 6∈ E(G). TheGaifman graph G(A) of a structureA has vertices
V(G(A)) =U(A) and for every pair of distinct elementsv andw that are part of a common tuple inA,
we insert the edge(v,w) into E(G(A)); thus,G(A) is always undirected.

A tree decomposition(T,β ) of a structureA is a treeT together with a labeling functionβ : V(T)→
2U(A) satisfying the following two conditions. (Connectedness condition) For every elementv∈U(A),
the induced subtreeT

[

{t ∈V(T) | v∈ β (t)}
]

is nonempty and connected. (Cover condition) For every
tuple (v1, . . . ,vr) of a relation inA, there is at ∈ V(T) with {v1, . . . ,vr} ⊆ β (t). It will be convenient
to assume that the trees underlying our tree decompositionsare directed. That means, all edges are
directed away from a root. The setNT(t) of neighborsof a nodet in a directed treeT consists of its
children (if t is not a leaf) and its parent (ift is not the root). The set of children of a nodet in a directed
treeT is denoted byNT

+(t). We omit T from NT(t) andNT
+(t) if it is clear from the context. The sets

β (t) for everyt ∈V(T) are thebagsof the tree decomposition. Thewidth of the tree decomposition is
maxt∈V(T) |β (t)|−1 and itsadhesionis max(t,u)∈E(T) |β (t)∩β (u)|. Thetree width, tw(A), of a structure
A is the minimum width of a tree decomposition for it. StructuresA and their Gaifman graphsG(A)
have the same tree decompositions. In particular tw(A) = tw(G(A)). Thetorsoof a nodet ∈V(T) in a
tree decompositionD = (T,β ) for a structureA with Gaifman graphG= G(A) is G[β (t)] together with
edges between all pairsv,w∈ β (t)∩β (u) for u∈ N(t).
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2.2 Monadic Second-Order Logic and its Variants

Monadic second-order logic(MSO-logic) is defined by taking all second-order formulas without second-
order quantifiers of arity 2 and higher. More specifically, todefine its syntax, we useelement variables
xi for i ∈ N andset variables Xi for i ∈ N. Formulas ofMSO-logic (MSO-formulas) over a vocabularyτ
are inductively defined as usual (see, for example, [19]). Such formulas are also calledMSO[τ ]-formulas
to indicate the vocabulary along with the logic. The set offree variablesof anMSO-formulaϕ , denoted
by free(ϕ), contains the variables ofϕ that are not used as part of a quantification. By renaming a
formula’s variables, we can always assume free(ϕ) = {x1, . . . ,xk,X1, . . . ,Xℓ} for somek, ℓ ∈N; we write
ϕ(x1, . . . ,xk,X1, . . . ,Xℓ) to indicate that the free variables ofϕ are exactlyx1 to xk andX1 to Xℓ. Given
anMSO-formulaϕ(x1, . . . ,xk,X1, . . . ,Xℓ), A |= ϕ(a1, . . . ,ak,A1, . . . ,Aℓ) indicates thatA together with the
assignmentxi 7→ ai , for i ∈ {1, . . . ,k}, andXi 7→ Ai, for i ∈ {1, . . . , ℓ}, to ϕ ’s free variables satisfiesϕ . A
formula without free variables is also called asentence.

Monadic second-order logic with modulo-counting(CMSO-logic) extendsMSO-logic with the ability
to access (built-in)modulo-counting atoms Cm(R) for everym∈ N whereR is a relation symbol. Given
a structureA over a vocabulary that containsR, we haveA |=Cm(R) exactly ifmdivides|R| (that means,
|R| ≡ 0 modm). AtomsCm(X) whereX is a set variable are used in the same way.

Let τ be a vocabulary and≤ a binary relation symbol not contained inτ . An MSO-sentenceϕ
of vocabularyτ ∪{≤} is order-invariant if for all τ-structuresA and all linear orders≤1,≤2 of U(A)
we have(A,≤1) |= ϕ if, and only if, (A,≤2) |= ϕ . We can now form a new logic,order-invariant
monadic second-order logic(<-inv-MSO-logic), where the sentences of vocabularyτ are the order-
invariant sentences of vocabularyτ ∪{≤}, and aτ-structureA satisfies an order-invariant sentenceϕ
if (A,≤) satisfiesϕ in the usual sense for some (and hence for all) linear orders≤ of U(A). There
is a slight ambiguity in the definition of order-invariant sentences in which binary relation symbol≤
we are referring to as our special “order symbol” (there may be several binary relation symbols inτ).
But we always assume that≤ is clear from the context. Alternatively, we could view≤ as a “built-in”
relation symbol that is fixed once and for all and is not part ofany vocabulary. However, this would be
inconvenient because we sometimes need to treat≤ just as an ordinary relation symbol and the sentences
of <-inv-MSO-logic of vocabularyτ just as ordinaryMSO-sentences of vocabularyτ ∪{≤}.

First-order logic (FO-logic) andorder-invariant first-order logic(<-inv-FO-logic) are defined by
taking all sentences ofMSO-logic and<-inv-MSO-logic, respectively, that do not contain set variables.

2.3 Games and Types

Thequantifier rankof anMSO-formulaϕ , denoted by qr(ϕ), is the maximum number of nested quanti-
fiers inϕ . For structuresA,B andq∈ N, we writeA≡MSO

q B if A andB satisfy the sameMSO-sentences
of quantifier rank at mostq. We writeA≡<-inv-MSO

q B if A andB satisfy the same order-invariantMSO-
sentences of quantifier rank at mostq. For everyc∈ N, we writeA≡CMSO

q,c B if A andB satisfy the same
CMSO-sentences of quantifier rank at mostq and only numbersm≤ c are used in the modulo-counting
atoms.

It will sometimes be convenient to use versions ofMSO andCMSO without element variables (see,
for example, [25]). In particular, in the context of Ehrenfeucht-Fraı̈ssé games. We will freely do so. We
assume that the reader is familiar with the characterizations ofMSO-equivalence andCMSO-equivalence
by Ehrenfeucht-Fraı̈ssé games (see, for example, [11, 15]). Corresponding to the versions of the logics
without element variables, we use a version of the games where the players only select sets and never
elements, and a positioninduces a partial isomorphismif the mapping between the singleton sets of the
position is a partial isomorphism. (The rules of the game require the Duplicator to answer to a singleton
set with a singleton set and to preserve the subset relation.) Then apositionof the game on structures
A,B is a sequenceΠ = (Pi,Qi)i∈[p] of pairs(Pi,Qi) of subsetsPi ⊆U(A) andQi ⊆U(B). The position
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is aq-move winning positionfor one of the players if this player has a winning strategy for theq-move
game starting in this position.

We also use the concept oftypes. Let τ be a vocabulary andq, p∈N. Then for allτ-structuresA and
setsP1, . . . ,Pp ⊆U(A), theMSO-type of(A,P1, . . . ,Pp) of quantifier rank qis

tpMSO
q (A,P1, . . . ,Pp) :=

{

ϕ(X1, . . . ,Xp) | ϕ is MSO-formula with qr(ϕ)≤ q andA |= ϕ(P1, . . . ,Pp)}.

Moreover, the class of all types overτ with respect to rankq andp free set variables is

TPMSO(τ ,q, p) :=
{

tpMSO
q (A,P1, . . . ,Pp) | A is τ-structure,P1, . . . ,Pp ⊆U(A)

}

,

and we letTPMSO(τ ,q) := TPMSO(τ ,q,0). For q,c ∈ N, we say that aCMSO-formula hasrank at most
(q,c) if it has quantifier rank at mostq and only contains modulo-counting atomsCm(X) with m≤ c.
Based on this notion of rank, we define theCMSO-type tpCMSO

q,c (A,P1, . . . ,Pp), and setsTPCMSO(τ ,q,c, p)
andTPCMSO(τ ,q,c).

Note that tpMSO
q (A,P1, . . . ,Pp) = tpMSO

q (B,Q1, . . . ,Qp) if, and only if,(Pi,Qi)i∈[p] is aq-move winning
position for the Duplicator in theMSO-game onA,B. Furthermore, forp= 0 we have tpq(A) = tpq(B)
if, and only if, A≡MSO

q B. Similar remarks apply toCMSO-types.
For a vocabularyτ and a binary relation symbol≤ /∈ τ , we say that a subsetI ⊆ TPMSO(τ ∪{≤},q) is

order-invariant if for all τ-structuresA and all linear orders≤,≤′ of A we have tpMSO
q (A,≤) ∈ I if, and

only if, tpMSO
q (A,≤′)∈ I . If I is inclusion-wise minimal order-invariant, then we call itanorder-invariant

type. Note that everyθ ∈ TPMSO(τ ∪{≤},q) is contained in exactly one order-invariant type, which we
denote by〈θ〉. We setTP<-inv-MSO(τ ,q) :=

{

〈θ〉
∣

∣ θ ∈ TPMSO(τ ∪{≤},q)
}

, the set of all order-invariant
types. For aτ-structureA, we call the set tp<-inv-MSO

q (A) :=
〈

tpMSO
q (A,≤)

〉

for some and, hence, for all
linear orders ofA theorder-invariant MSO-type of A of quantifier rank q. It may seem more natural to
define the order-invariant type of a structure as the set of all order-invariant sentences it satisfies. The
following proposition says that this would lead to an equivalent notion, but our version is easier to work
with, because it makes the connection between types of ordered structures and order-invariant types
more explicit.

Lemma 2.1. For all τ-structure A,A′, the following statements are equivalent.
1. tp<-inv-MSO

q (A) = tp<-inv-MSO
q (A′).

2. A≡<-inv-MSO
q A′.

3. There is a sequence A0, . . . ,Aℓ of τ-structures and linear orders≤i ,≤
′
i with A= A0, A′ = Aℓ, and

(Ai−1,≤i−1)≡
MSO
q (Ai,≤

′
i) for all i ∈ [ℓ].

If A≡<-inv-MSO
q A′, we say that sequences(Ai), (≤i), and(≤′

i) as in statement 3 of Lemma 2.1witness
A≡<-inv-MSO

q A′.

Proof of Lemma 2.1.We prove each of the implications from the chain (1)=⇒ (3)=⇒ (2)=⇒ (1).
For proving (1)=⇒ (3), suppose tp<-inv-MSO

q (A) = tp<-inv-MSO
q (A′). Let θ := tpMSO

q (A,≤) for some
linear order≤ of A andθ ′ := tp<-inv-MSO

q (A′,≤′) for some linear order≤′ of A′. Let [A] be the class of all
orderedτ-structures(A′′,≤′′) such that there is a sequenceA0, . . . ,Aℓ of τ-structures and linear orders
≤i,≤

′
i such thatA= A0 andA′′ = Aℓ and(Ai−1,≤i−1)≡

MSO
q (Ai,≤

′
i) for all i ∈ [ℓ], and let[θ ] the class

of types tpMSO
q (A′′,≤′′) for (A′′,≤′′) ∈ [A]. An easy induction on the lengthℓ of the witnessing sequence

shows that[θ ] ⊆ 〈θ〉. Moreover,[θ ] is order-invariant, and thus[θ ] = 〈θ〉. Similarly, we define[θ ′] and
prove that[θ ′] = 〈θ ′〉. Thus[θ ] = [θ ′], and this implies (3).

To prove (3)=⇒ (2), just note that all structures in a witnessing sequence satisfy the same order-
invariant formulas.

Finally, to prove (2)=⇒ (1), suppose thatA ≡<-inv-MSO
q A′. Let θ := tpMSO

q (A,≤) for some linear
order≤ of A. Then tp<-inv-MSO

q (A) = 〈θ〉. Let ϕ〈θ 〉 :=
∨

θ ′∈〈θ 〉ϕθ ′ with ϕθ ′ :=
∧

ψ∈θ ′ ψ . Thenϕ〈θ 〉 is an
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order-invariantMSO-sentence of quantifier rankq. As (A,≤) |= ϕθ , we have(A,≤) |= ϕ〈θ 〉, and thusA
satisfiesϕ〈θ 〉 as a sentence of<-inv-MSO. HenceA′ satisfiesϕ〈θ 〉 as a sentence of<-inv-MSO, and thus
(A′,≤′) |= ϕ〈θ 〉 for some linear order≤′ of A′. Thus there is aθ ′ ∈ 〈θ〉 such that(A′,≤′) |= ϕθ ′ , which
implies tpMSO

q (A′,≤′) = θ ′. Hence tp<-inv-MSO
q (A′) = 〈θ ′〉= 〈θ〉.

2.4 Transductions

Transductions define new structures out of a given structure. We usew-copying MSO-transductions as
defined in [10], but based on the below terminology. They are able to (1) enlarge the universe of a given
structure by establishingw copies of each element, (2) define relations over the new universe from the
given structure, and (3) not only define a single structure, but a set of new structures parameterized by
adding monadic relations to the given structure.

An MSO[τ ,τ ′]-transduction of width w with p parametersfor somew, p∈ N is defined via a finite
collectionΛ of MSO-formulas overτ ∪{P1, . . . ,Pp} where the relation symbolsPj are monadic and not
part ofτ . Λ consists of a group ofw MSO-formulasλ 1

U(x),. . . ,λ w
U (x) for defining the universe of a new

structure and for eachR∈ τ ′ with some arityr = ar(R) a group ofwr formulasλ (i1,...,ir )
R (x1, . . . ,xr) for

(i1, . . . , ir) ∈ {1, . . . ,w}r . Given aτ-structureA and P1, . . . ,Pp ⊆ U(A), they define the universe of a
τ ′-structureΛ[A,P1, . . . ,Pp] via

U(Λ[A,P1, . . . ,Pp]) := {(a, i) ∈U(A)×{1, . . . ,w} | (A,P1, . . . ,Pp) |= λ i
U(a)}

and for each relation symbolR∈ τ ′ the relation

R(Λ[A,P1, . . . ,Pp]) := {((a1, i1), . . . ,(ar , ir)) ∈ (U(A)×{1, . . . ,w})r | A |= λ (i1,...,ir )
R (a1, . . . ,ar)} .

Finally, by ranging over all possible parameters,Λ defines the set

Λ[A] := {Λ[A,P1, . . . ,Pp] | P1, . . . ,Pp ⊆U(A)∧ (A,P1, . . . ,Pp) |= λVALID }

for a given structureA whereλVALID is a formula that is also part of the transduction, which singles out
the valid combinations of the given structure and parameters. Moreover, for aτ ′-structureB, we set
Λ−1[B] := {τ-structureA | B∈ Λ[A]}. For an element(a, i), we calli its level.

MSO-transductions preserveMSO-definability (formally stated by Fact 2.2) and they can be com-
posed to form new transductions (formally stated by Fact 2.3). For a formal proof of Fact 2.3, which
implies Fact 2.2, see [10]. The facts also hold if we replace all occurrences ofMSO by CMSO.

Fact 2.2(MSO is closed underMSO-transductions). LetP be anMSO-definable property ofτ ′-structures
and Λ an MSO[τ ,τ ′]-transduction. Then the property ofτ-structuresP ′ :=

⋃

B∈P Λ−1[B] is MSO-
definable.

Fact 2.3(MSO-transductions are closed under composition). Let Λ1 be anMSO[τ ,τ ′]-transduction and
Λ2 be anMSO[τ ′,τ ′′] for some vocabulariesτ ,τ ′,τ ′′. Then there is anMSO[τ ,τ ′′]-transductionΛ with
Λ[A] =

⋃

B∈Λ1[A]Λ2[B] for everyτ-structure A.

3 Lifting Definability

An ordered tree decompositionof a structureA is a tree decomposition ofA together with a linear order
for each bag. We represent ordered tree decompositions by logical structures in the following way.
An ordered tree extension(otx for short) of aτ-structureA is a structureA⋆ that extendsA by a tree
decomposition(TA,β A) of A and a linear order�A

t of β A(t) for eacht ∈V(TA). Theadhesionof A⋆ is
the adhesion of the tree decomposition(TA,β A). Formally, we viewA⋆ as a structure over the vocabulary

6



τ⋆ := τ ∪{VS,VT ,ET ,Rβ ,R�}, whereVS andVT are unary,ET andRβ are binary, andR� is ternary. Of
course we assume that none of these symbols appears inτ . In the τ⋆-structureA⋆, these symbols are
interpreted as follows:

VS(A
⋆) :=U(A),

VT(A
⋆) :=V(TA),

ET(A
⋆) := E(TA),

Rβ (A
⋆) :=

{

(t,v) | t ∈V(TA),v∈ β A(t)
}

,and

R�(A
⋆) :=

{

(t,v,w) | t ∈V(TA) andv,w∈ β A(t) with v�A
t w

}

.

An MSO[τ ,τ⋆]-transductionΛ⋆ defines an otx (of adhesion at most k)of a τ-structureA if every
B ∈ Λ⋆(A) is isomorphic to an otx ofA (of adhesion at mostk) andΛ⋆(A) is nonempty. We say that
Λ⋆ defines otxs (of adhesion at most k)on a classC of τ-structures ifΛ⋆ defines an otx (of adhesion at
mostk) of everyA ∈ C. Moreover,C admitsMSO-definable ordered tree decompositions (of bounded
adhesion)if there is such a transductionΛ⋆ that defines otxs (of adhesion at mostk for some constant
k∈ N) onC. We make similar definitions for the logicCMSO.

We prove the following theorems, which show how to use the tree decompositions and the bag
orderings to define properties of order-invariant formulaswithout using order invariance.

Theorem 3.1 (Lifting theorem for<-inv-MSO). Let C be a class of structures that admitsCMSO-
definable ordered tree decompositions of bounded adhesion.Then<-inv-MSO = CMSO onC.

Theorem 3.2(Lifting theorem for<-inv-FO). Let C be a class of structures that admitsMSO-definable
ordered tree decompositions of bounded adhesion. Then<-inv-FO ⊆ MSO onC.

Theorem 3.1 is proved in three steps: First, in Section 3.1, we modify the given ordered tree exten-
sion, such that its tree decomposition follows a certain normal form that allows to partition its nodes into
two different classes (called a-nodes and b-nodes). The partition of the nodes along with a global partial
order that is based on the local orderings in the bags is then encoded as part of the structure, turning
every otx into an expanded otx. Second, in Section 3.2, we prove type-composition lemmas for both the
a-nodes and the b-nodes. They show how one can define the type of an expanded otx with respect to
total orderings that respect the already existing partial order from the types of substructures that arise by
adding such compatible orderings to them. Third, Section 3.3 shows how these type-composition lem-
mas can be used in the context of order-invariance. Finally,Section 3.4 applies the type compositions
to prove Theorem 3.1. The proof of Theorem 3.2 proceeds in a similar way. The modifications that we
need to apply to the proof of Theorem 3.1 in order to prove Theorem 3.2 are mentioned along the way.

3.1 Segmented Ordered Tree Extensions

Recall that we view the tree in a tree decomposition as directed. A tree decomposition(T,β ) of a
structureA is segmentedif the setV(T) can be partitioned into a setVa of adhesion nodesand a setVb

of bag nodes(a-nodesandb-nodes, for short) satisfying the following conditions.
1. For all edgestu∈ E(T), eithert ∈Va andu∈Vb or u∈Va andt ∈Vb.
2. For all a-nodest ∈Va and all distinct neighborsu1,u2 ∈ N(t), we haveβ (t) = β (u1)∩β (u2).
3. For all b-nodest ∈Vb and all distinct neighborsu1,u2 ∈ N(t) we haveβ (t)∩β (u1) 6= β (t)∩β (u2).
4. All leaves ofT are b-nodes.

We can transform an arbitrary tree decomposition(T,β ) into a segmented tree decomposition(T ′′,β ′′)
as follows. In the construction, we viewT as an undirected tree. We will haveV(T)⊆V(T ′′). Thus we
can direct the edges ofT ′′ away from the root ofT, which will remain the root ofT ′′. We first contract
all edgestu∈ E(T) with β (u)⊆ β (t), resulting in a decomposition(T ′,β ′) whereβ ′(u) 6⊆ β ′(t) for all

7



tu ∈ E(T′). Then, for all edgestu ∈ E(T ′), we introduce a new nodevtu, wherevtu = vut, and edges
from vtu to t andu. Then we identify all nodesvtu andvtu′ such thatβ ′(t)∩β ′(u) = β ′(t)∩β ′(u′). We
let T ′′ be the resulting tree. The nodes from the original treeT are the b-nodes, and the nodesvtu are
the a-nodes. We defineβ ′′ onV(T ′′) by β ′′(t) := β ′(t) for t ∈V(T ′) andβ ′′(vtu) := β ′(t)∩β ′(u) for all
tu∈ E(T′). The resulting tree decomposition(T ′′,β ′′) is segmented. This transformation is definable
by anMSO-transduction. Thus we may assume that the tree decompositions in ordered tree extensions
are segmented, because there is anMSO[τ⋆,τ⋆]-transductionΛSEGMENT that transforms every otx into an
otx where the tree decomposition is segmented.

For the rest of this section, we fix a vocabularyτ that does not contain the order symbol≤ and a
k∈ N. In the rest of this section, we only consider otxs ofτ-structures. We assume that the adhesion of
these otxs is at mostk and their tree decomposition is segmented.

It will be convenient to introduce some additional notation. As before, whenever we denote an otx
by A⋆, we denote the underlying structure byA and the tree decomposition by(TA,β A). We denote the
descendant order in the treeTA of an otxA⋆ by EA. For every nodet ∈V(TA), we letTA

t be the subtree
of TA rooted int, that is,TA

t := TA[{u ∈ V(TA) | t EA u}]. We let γA(t), called theconeof t, be the
union of all bagsβ A(u) for u∈V(TA

t ). If s is the parent oft we letσA(t) := β A(t)∩β A(s); this is the
separator at t. For the rootr we letσA(r) := ∅. In all these notations we may omit the indexA if A is
clear from the context. Note that for all a-nodest of T and allu∈ N+(t) we haveσ(t) = β (t) = σ(u).

We expand an otxA⋆ to a structureA⋆⋆ over the vocabularyτ⋆⋆ := τ⋆∪{Va,Vb,Rγ ,Rσ ,S1, . . . ,Sk,�},
whereVa,Vb are unary andRσ ,Rγ ,S1, . . . ,Sk,� are binary relation symbols that do not appear inτ . We
let Va(A⋆⋆) andVb(A⋆⋆) be the sets of a-nodes and b-nodes of the treeTA, respectively, and

Rσ (A
⋆⋆) :=

{

(t,v) | t ∈V(TA),v∈ σA(t)
}

,

Rγ(A
⋆⋆) :=

{

(t,v) | t ∈V(TA),v∈ γA(t)
}

.

We let�=�A⋆⋆
be the partial order onU(A⋆⋆) defined as follows. We first define the restriction of� to

V(T). For all b-nodest, we let�′
t be the linear order onN+(t) defined byu1 �

′
t u2 if the setσ(u1)⊆ β (t)

is lexicographically smaller than or equal to the setσ(u2)⊆ β (t) with respect to the linear order�t on
β (t), for all childrenu1,u2 ∈N+(t). This is indeed a linear order because�t is a linear order ofβ (t) and
σ(u1) 6= σ(u2) for all distinct u1,u2 ∈ N+(t). Then we let the restriction of� to V(T) be the reflexive
transitive closure of the “descendant order”E on T and all the relations�′

t for b-nodest ∈ V(T). To
define the restriction of� to U(A), for everyv∈U(A) we let t(v) be the topmost (that is,E-minimal)
nodet ∈ V(T) such thatv ∈ β (t). Then we letv � w if, and only if, t(v) ≺ t(w) or t(v) = t(w) and
v�t(v) w. To complete the definition of�, we lett � v for all t ∈V(T) andv∈U(A).

Finally, we define the relationsS1(A⋆⋆), . . . ,Sk(A⋆⋆) by letting Si(A⋆⋆) be the set of all pairs(t,v),
wheret ∈ V(TA) andv is the ith element ofσ(t) with respect to the partial order�, which is a linear
order when restricted toσ(t)⊆ β (t). Recall that we have|σ(t)| ≤ k by our general assumption that the
adhesion of all otxs is at mostk. This completes the definition ofA⋆⋆. It is easy to see that there is an
MSO[τ⋆,τ⋆⋆]-transductionΛEXPAND that definesA⋆⋆ in A⋆.

We call A⋆⋆ an expanded otx(otxx for short) ofA. More generally, we call aτ⋆⋆-structureA′ an
expanded otxif there is aτ-structureA such thatA′ is an otxx ofA. Let A⋆⋆ be an expanded otx. For
everyt ∈V(T), we let

A⋆⋆
t := A⋆⋆[γ(t)∪V(Tt)], and

A⋆⋆
(t) := A⋆⋆[β (t)∪N+(t)].

We call aτ⋆⋆-structureA′ a sub-otxxif there is an otxxA⋆⋆ and a nodet ∈V(TA) with A′ = A⋆⋆
t . The

only difference between an otxx and a sub-otxx is that in an otxx the setσ(r) is empty for the rootr
whereas in a sub-otxx it may be nonempty.
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Lemma 3.3. There areMSO-sentencesotxxs andsub-otxx of vocabularyτ⋆⋆ defining the classes of all
otxx and sub-otxx (satisfying our general assumptions: thetree decomposition is segmented and has
adhesion at most k).

Proof. Straightforward.

We will later modify an otxxA⋆⋆ by replacinga sub-otxxA⋆⋆
t , for somet ∈V(TA), by another sub-

otxx B⋆⋆. Let t ′ be the root node of the treeTB. The replacement is possible if the induced substructures
A⋆⋆[{t}∪σA(t)] andB⋆⋆[{t ′}∪σB(t ′)] are isomorphic. If they are, there is a unique isomorphism, be-
cause{t}∪σA(t) and{t ′}∪σB(t ′) are linearly ordered by the restrictions of�A⋆⋆

, �B⋆⋆
. Now replacing

A⋆⋆
t by B⋆⋆ in A⋆⋆ just means deleting all elements inU(A⋆⋆

t ) except those in{t}∪σA(t), adding a dis-
joint copy ofB⋆⋆, and identifying the elements in{t}∪σA(t) and{t ′}∪σB(t ′) according to the unique
isomorphism. Note that the substructuresA⋆⋆[{t}∪σA(t)] andB⋆⋆[{t ′}∪σB(t ′)] are isomorphic if the
sub-otxxsA⋆⋆

t andB⋆⋆ satisfy the same first-order sentences of quantifier rank ar(τ)+ 1, where ar(τ)
denote the maximum arity of a relation symbol in the vocabulary τ . To express isomorphism, we use the
relationsS1, . . . ,Sk and the fact that the root of an otxx can be defined by a formula of quantifier rank 2.
Thus in particular, if tpMSO

q (A⋆⋆
t ) = tpMSO

q (B⋆⋆) for someq≥ ar(τ)+1, we can replaceA⋆⋆
t by B⋆⋆.

Finally, we say that a linear order≤ on an otxx or sub-otxxA⋆⋆ is compatibleif it extends the partial
order�A⋆⋆

. If ≤ is a compatible linear order, then(A⋆⋆,≤) denotes theτ⋆⋆∪{≤}-expansion ofA⋆⋆ by
this order, and(A⋆⋆

t ,≤) denotes the induced substructure where≤ is restricted to the sub-otxxA⋆⋆
t . We

can extend the replacement operation to such ordered expansions of otxxs; in the same way we replace a
sub-otxxA⋆⋆

t by B⋆⋆, we can replace a(A⋆⋆
t ,≤) by (B⋆⋆,≤′) for some compatible linear order≤′ of B⋆⋆.

3.2 Ordered Type Compositions

As all structures we are working with in this subsection are otxxs and sub-otxx, we denote them byA
rather thanA⋆⋆. Apart from that, we use the same notation as before. In particular, ifA is an otxx then by
TA we denote the tree of its tree decomposition, and for a nodet ∈V(TA), by At we denote the sub-otxx
rooted int, and we letA(t) = A[β (t)∪N+(t)].

Throughout this subsection, we fix aq ∈ N such thatq ≥ 2 andq ≥ ar(τ) + 1 andq is at least
the quantifier rank of the formulasotxx andsub-otxx of Lemma 3.3. This means that ifA is an otxx
(or sub-otxx) andA′ an arbitraryτ⋆⋆-structure withA≡MSO

q A′, thenA′ is an otxx (a sub-otxx) as well.
Furthermore, ift, t ′ are the root nodes ofA, A′, respectively, then the induced substructuresA[{t}∪σA(t)]
and A′[{t ′}∪ σA′

(t ′)] are isomorphic. Finally, ifA,A′ are otxxs and≤,≤′ are linear orders ofA,A′,
respectively, such that(A,≤)≡MSO

q (A′,≤′) then≤ is compatible if, and only if,≤′ is compatible.
We letΘ := TPMSO(τ⋆⋆∪{≤},q). Furthermore, we assume thatΘ = {θ1, . . . ,θm}.
Let A be an otxx,≤ a compatible linear order ofA, and N ⊆ V(TA) (usually N = N+(t) for a

nodet ∈ V(TA)). For all i ∈ [m], let Pi be the set of allu ∈ N such that tpMSO
q (Au,≤) = θi . We call

(P1, . . . ,Pm) thetype partitionof N. (Note that some of thePi may be empty. We always allow partitions
to have empty parts.) The following lemma extends classicaltype-composition theorems [21, 14] to our
situation, where substructures are combined through b-nodes.

Lemma 3.4 (Ordered type composition at b-nodes). For everyθ ∈ Θ there is anMSO[τ⋆⋆]-formula
b-typeθ (X1, . . . ,Xm) such that for every otxx A, every b-node t∈ V(TA), and every compatible linear
order≤ of A, if (P1, . . . ,Pm) is the type partition of N+(t), then

A(t) |= b-typeθ (P1, . . . ,Pm) if, and only if,tpMSO
q (At ,≤) = θ .

Proof. For 0≤ i ≤ q, let Θi := TPMSO(τ⋆⋆ ∪{≤},q− i, i), and suppose thatΘi = {θi1, . . . ,θimi}. Then
Θ0 = Θ andm0 = m, and we may assume thatθ0 j = θ j for all j ∈ [m]. Let q′ := 1+∑q

i=1(1+mi). The
core of the proof is the following claim.
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Claim. Let A,B be otxxs and≤A,≤B compatible linear orders of A,B, respectively. Let t∈ V(TA)
and t′ ∈ V(TB). Let (P01, . . . ,P0m0) and (Q01, . . . ,Q0m0) be the type partitions of N+(t) and N+(t ′),
respectively. If

tpMSO
q′ (A(t),P01, . . . ,P0m0) = tpMSO

q′ (B(t′),Q01, . . . ,Q0m0), (1)

then(At ,≤
A)≡MSO

q (Bt′ ,≤
B).

Proof. We shall prove that Duplicator has a winning strategy for theq-move MSO-game on(At ,≤
A),

(Bt′ ,≤
B). It is crucial to note that the compatible linear orders≤A,≤B coincide with the partial orders

�A,�B of the structuresA,B when restricted toU(A(t)),U(B(t)), respectively. The reason for this is that
the restrictions of�A,�B toU(A(t)),U(B(t)), respectively, are linear orders, becauset andt ′ are b-nodes.
This means that the games on(A(t),≤

A),(B(t′),≤
B) and onA(t),B(t′) are the same.

With every sequenceP= (P1, . . . ,Pp) of subsets ofU(At) we associate a sequence

P
+

:= (P01, . . . ,P0m0,P10,P11, . . . ,P1m1,P20, . . . ,P(p−1)mp−1
Pp0,Pp1, . . . ,Ppmp)

of subsets ofU(A(t)) as follows:
– Pi0 := Pi ∩U(A(t)), for all i ∈ [p];
– Pi j is the set ofu∈ N+(t) with θi j = tpMSO

q−i

(

Au,≤,P1∩U(Au), . . . ,Pi ∩U(Au)
)

for all i ∈ [p], j ∈ [mi ].

For every sequenceQ= (Q1, . . . ,Qp) of subsets ofU(Bt′) we defineQ
+

similarly, and for every position
Π = (Pi,Qi)i∈[p] of theMSO-game on(At ,≤

A),(Bt′ ,≤
B) we letΠ+ be the position of theMSO-game on

A(t),B(t) consisting ofP
+

andQ
+

.
Our goal is to define a strategy for Duplicator in theq-move game on(At ,≤

A),(Bt′ ,≤
B) such that for

every reachable positionΠ of length p the positionΠ+ is a 1+∑q
i=p+1(1+mi)-move winning position

for Duplicator in theMSO-game onA(t),B(t′). Such a strategy will clearly be a winning strategy. We
define the strategy inductively. For the initial empty position Π0 we haveΠ+

0 = (P0 j ,Q0 j) j∈[m0], and it
follows from (1) that is is aq′-move winning position for Duplicator in theMSO-game onA(t),B(t′).

So suppose now we are in a positionΠ = (Pi,Qi)i∈[p] and the corresponding positionΠ+ is a 1+
∑q

i=p+1(1+mi)-move winning position for Duplicator in theMSO-game onA(t),B(t′). Without loss of

generality, we assume that in the(p+1)st move of the game on(At ,≤
A),(Bt′ ,≤

B), Spoiler chooses a
setPp+1 ⊆U(At). (The case that he chooses a setQp+1 ⊆U(Bt′) is symmetric.)

We define the setsPi j for i ∈ [p+1] and j ∈ {0, . . . ,mi} as above. Suppose that, starting in position
Π+, in the game onA(t),B(t′) Spoiler selects the setsP(p+1)0, . . . ,P(p+1)mp+1

in the nextmp+1+1 moves.
Let Q(p+1)0, . . . ,Q(p+1)mp+1

be Duplicator’s answers according to some winning strategy. Let (Π+)′ be
the resulting position of theMSO-game onA(t),B(t′); this is a 1+∑q

i=p+2(1+mi)-move winning position
for Duplicator.

As the setsP(p+1)0, . . . ,P(p+1)mp+1
form a partition ofN+(t), the setsQ(p+1)1, . . . ,Q(p+1)mp+1

form a
partition ofN+(t ′), because otherwise Spoiler wins in the next round of the game(this explains the ’1+’
in the the number of moves of the game). Letu′ ∈ N+(t ′) and j = j(u′) such thatu′ ∈ Q(p+1) j . Then
there is at least oneu∈ P(p+1) j ; otherwise Spoiler wins in the next round of the game. Letj ′ ∈ [mp] such
thatu∈ Pp j′ . Then

tpq−p(Au,≤,P1∩U(Au), . . . ,Pp∩U(Au)) = θp j′ , (2)

tpq−p−1(Au,≤,P1∩U(Au), . . . ,Pp+1∩U(Au)) = θ(p+1) j . (3)

Hence the typeθp j′ is the unique “restriction” ofθ(p+1) j , and for allu′′ ∈P(p+1) j we haveu′′ ∈Pp j′ . This
implies thatu′ ∈ Qp j′ , because otherwise Spoiler wins in the next round of the game. It follows that

tpq−p(Bu′ ,≤,Q1∩U(Bu′), . . . ,Qp∩U(Bu′)) = θp j′ . (4)
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This implies that there is aQu′
(p+1) ⊆U(Bu′) with

θ(p+1) j = tpq−p−1(Bu′ ,≤,Q1∩U(Bu′), . . . ,Qp∩U(Bu′),Q
u′
(p+1)) .

We let Qp+1 := Q(p+1)0 ∪
⋃

u′∈N+(t′)Qu′
(p+1). The new position isΠ′ := (Pi,Qi)i∈[p+1]. Then(Π′)+ =

(Π+)′, which is a 1+ ∑q
i=p+2(1+ mi)-move winning position for Duplicator in theMSO-game on

A(t),B(t′). y

The claim implies that tpMSO
q (A,≤A) only depends on the type of tpMSO

q′ (A(t),P1, . . . ,Pm). Let θ ∈
Θ. To define the formulab-typeθ , let θ ′

1, . . . ,θ ′
ℓ be the list of all typesθ ′ ∈ TPMSO(τ ,q′,m) such that

tpMSO
q′ (A(t),P1, . . . ,Pm) = θ ′ implies tpMSO

q (A,≤A) = θ . Then tpMSO
q (A,≤A) = θ if, and only, if

A(t) |=
ℓ
∨

i=1

∧

ψ(X1,...,Xm)∈θ ′

i

ψ(P1, . . . ,Pm) .

Note that the vocabulary of the formulab-type in the lemma isτ⋆⋆ and notτ⋆⋆ ∪{≤}. It will be
important throughout the proofs of the lifting theorems to keep track of the vocabularies. The next
lemma is a similar result for a-nodes, but there is one big difference: the formulaa-type we obtain has
vocabulary{≤} and notτ⋆⋆. This means that, at least a priori, the formula is not order-invariant. For
b-nodes, the formulab-typeθ does not depend on the order, because for b-nodest every compatible
linear order≤ coincides with� onU(A(t)). The proof of the lemma is a straightforward adaptation of
the proof of the previous lemma.

Lemma 3.5 (Ordered type composition at a-nodes). For everyθ ∈ Θ there is anMSO[{≤}]-formula
a-typeθ (X1, . . . ,Xm) such that for every otxx A, every a-node t∈ V(TA), and every compatible linear
order≤ of A, if (P1, . . . ,Pm) is the type partition of N+(t), then

(N+(t),≤) |= a-typeθ (P1, . . . ,Pm) if, and only if,tpMSO
q (At ,≤) = θ .

3.3 Order-Invariant Type Compositions

Recall from Section 2.3 the definition of order-invariant types and the characterization of order-invariant
equivalence that we gave in Lemma 2.1. We continue to adhere to the assumptions made in the previous
subsections (otxx have segmented tree decompositions of adhesion at mostk, q is sufficiently large, and
TPMSO(τ⋆⋆∪{≤},q) = Θ = {θ1, . . . ,θm}) and use the same notation.

Recall that, sinceq is sufficiently large and the class of otxxs isMSO-definable, ifA is an otxx and
A′ ≡MSO

q A thenA′ is an otxx. This implies that ifA ≡<-inv-MSO
q A′, then all structures appearing in a

sequence witnessing this equivalence (cf. Lemma 2.1(3)) are otxxs. The same is true for sub-otxxs.
However, it is not clear that all linear orders appearing in such a witnessing sequence are compatible. In
other words, it is not clear that order invariance on otxxs coincides with invariance with respect to all
compatible orders. For this reason, we need to introduce a finer equivalence relation≡co, compatible-
order equivalence. For two sub-otxxA,A′, we letA≡co A′ if there is a sequenceA0, . . . ,Aℓ of sub-otxxs
and compatible linear orders≤i ,≤

′
i of Ai such thatA= A0 andA′ = Aℓ and(Ai−1,≤i−1) ≡

MSO
q (Ai,≤

′
i)

for all i ∈ [ℓ]. Then clearlyA≡co A′ impliesA≡<-inv-MSO
q A′. The converse holds as well, because from

an arbitrary linear order we can define a compatible linear order, but this is not important for us.
Let us call a typeθ ∈ Θ realizableif there is a sub-otxxA and a compatible linear order≤ of A with

tpMSO
q (A,≤) = θ . We call(A,≤) arealizationof θ . Two typesθ ,θ ′ ∈Θ arecompatible-order equivalent

(we writeθ ≡co θ ′) if there are realizations(A,≤) of θ and(A′,≤′) of θ ′ such thatA≡co A′. Then≡co
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is an equivalence relation on the set of realizable types. Wedenote the equivalence class of a typeθ ∈ Θ
by 〈θ〉co. Clearly, we have〈θ〉co ⊆ 〈θ〉.

Now let A be an otxx andt ∈V(TA). We call a setΘ′ ⊆ Θ compatible at tif there is a compatible
linear order≤ of U(At) such thatθ := tpMSO

q (At ,≤) ∈ Θ′ andΘ′ ⊆ 〈θ〉co. Note that this implies that all
θ ′ ∈ Θ′ are realizable.

A coverof a setN is a sequence(P1, . . . ,Pm) of subsets ofN such that
⋃m

i=1Pi = N. For an otxxA
and nodet ∈V(TA), we call a cover(P1, . . . ,Pm) of N+(t) compatibleif for all u∈ N+(t) the set{θi | i ∈
[m] such thatu∈ Pi} is compatible atu. Observe that if(P1, . . . ,Pm) is the type partition ofN+(t) with
respect to some compatible linear order, then(P1, . . . ,Pm) is a compatible cover.

Lemma 3.6 (Order-invariant type composition at b-nodes). For everyθ ∈ Θ there is anMSO[τ⋆⋆]-
formulaoi-b-typeθ (X1, . . . ,Xm) such that for every otxx A, every b-node t∈V(TA), and every compatible
cover(P1, . . . ,Pm) of N+(t), the set of allθ ∈ Θ with A(t) |= oi-b-typeθ (P1, . . . ,Pm) is compatible at t.

The idea of the proof is that within the structureA(t) we can quantify over the possible type partitions
of the children (they are just collections of sets) and then apply Lemma 3.4 to each of them individually.

Proof of Lemma 3.6.Let ϕ(X1, . . . ,Xm,Y1, . . . ,Ym) be anMSO-formula stating thatYi ⊆ Xi for all i, that
theYi are mutually disjoint, and that

⋃

i Yi =
⋃

i Xi. We let

oi-b-typeθ (X1, . . . ,Xm) := ∃Y1 . . .∃Ym
(

ϕ(X1, . . . ,Xm,Y1, . . . ,Ym)∧b-typeθ (Y1, . . . ,Ym)
)

.

Let A be an otxx,t ∈V(TA) a b-node, and(P1, . . . ,Pm) a compatible cover ofN+(t). Let Θt be the set of
all θ such thatA(t) |= oi-b-typeθ (P1, . . . ,Pm). We need to prove thatΘt is compatible att.

For everyu∈ N+(t), let Θu := {θi | i ∈ [m] such thatu∈Pi}. As the cover(P1, . . . ,Pm) is compatible,
for all u the setΘu is compatible atu. Thus there is aθu ∈ Θu and a compatible linear order≤u of Au

such thatθu = tpMSO
q (Au,≤u) andΘu ⊆ 〈θu〉co. Let≤ be the (unique) compatible linear order ofAt such

that for all u ∈ N+(t), the restriction of≤ to U(Au) is ≤u. For everyi ∈ [m], let Qi be the set of all
u∈ N+(t) such thatθu = θi . Then(Q1, . . . ,Qm) is a partition ofN+(t) that refines the cover(P1, . . . ,Pm).

Let θt := tpMSO
q (At ,≤). By Lemma 3.4, we haveA(t) |= b-typeθ t (Q1, . . . ,Qm) and, thus,A(t) |=

oi-b-typeθ t(Q1, . . . ,Qm). Henceθt ∈ Θt .
We claim thatΘt ⊆ 〈θt〉co. Let θ ∈ Θt . We first prove thatθ is realizable. Since we haveA(t) |=

oi-b-typeθ (P1, . . . ,Pm), there is a partition(Q′
1, . . . ,Q

′
m) of N+(t) that refines the cover(P1, . . . ,Pm) such

that

A(t) |= b-typeθ (Q
′
1, . . . ,Q

′
m). (5)

For eachu∈N+(t), let θ ′
u := θi for the uniquei such thatu∈ Q′

i . Thenθ ′
u ∈ Θu, and thusθ ′

u is realizable.
Let (A′

u,≤
′
u) be a realization ofθ ′

u.
Let A′ be the sub-otxx obtained fromAt by simultaneously replacing the sub-otxxAu by the sub-

otxx A′
u for all u ∈ N+(t) (see page 9 for a description of the replacement operation).As θ ′

u ∈ Θu ⊆
〈θu〉co ⊆ 〈θu〉, we haveAu ≡

MSO
q A′

u and thus the induced substructuresA[{u}∪σA(u)] andA′
u[{u′}∪

σA′

u(t ′)], whereu′ is the root ofA′
u, are isomorphic, and the replacement is possible. (We will use

similar arguments about replacements below without mentioning them explicitly.) Let≤′ be the (unique)
compatible linear order ofA′ such that for allu∈ N+(t), the restriction of≤′ to U(A′

u) is ≤′
u. Note that

(A′
(t),≤

′) = (A(t),≤), because the linear orders≤ and≤′ both coincide with�A on U(A(t)). Thus by
(5), A′

(t) |= b-typeθ (Q
′
1, . . . ,Q

′
m), and by Lemma 3.4, tpMSO

q (A′,≤′) = θ . Thusθ is realizable.

It remains to prove thatθt ≡co θ . For eachu ∈ N+(t), we have tpMSO
q (Au,≤u) = θu ≡co θ ′

u =
tpMSO

q (A′
u,≤

′
u). Thus there is a sequenceAu0, . . . ,Auℓ of sub-otxxs and for eachi two compatible lin-

ear orders≤ui,≤
′
ui of Aui such that(Au0,≤u0) = (Au,≤u) and(Auℓ,≤uℓ) = (A′

u,≤
′
u) and

tpMSO
q (Au(i−1),≤

′
u(i−1)) = tpMSO

q (Aui,≤ui)
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for all i ∈ [ℓ]. As we do not require theAui and the orders≤ui,≤
′
ui to be distinct, we may assume without

loss of generality that the sequences have the same lengthℓ for all u. Let Ai be the structure obtained
from At by simultaneously replacingAu by Aui for all u∈ N+(t). Define linear orders≤i ,≤

′
i of Ai from

the orders≤′
ui,≤ui and�A in the usual way. The resulting sequence of structures and orders witnesses

θt = tpMSO
q (At ,≤)≡co tpMSO

q (A′,≤′) = θ . To prove this, we apply Lemma 3.4 at every step.

Lemma 3.7(Order-invariant type composition at a-nodes). For everyθ ∈Θ there is anCMSO[∅]-formula
oi-a-typeθ (X1, . . . ,Xm) such that for every otxx A, every a-node t∈V(TA), and every compatible cover
(P1, . . . ,Pm) of N+(t), the set of allθ ∈ Θ with (N+(t)) |= oi-a-typeθ (P1, . . . ,Pm) is compatible at t.

Here (N+(t)) denotes the∅-structure with universeN+(t). Note that, as opposed to the formula
a-typeθ of Lemma 3.5, the formulaoi-a-typeθ has an empty vocabulary. Thus, the condition expressed
by this formula no longer depends on the arbitrarily chosen compatible linear order. The proof builds on
the ideas developed in the previous proofs and, in addition,crucially depends on the fact that<-inv-MSO

coincides withCMSO on set structures, which only have monadic relations.

Proof of Lemma 3.7.Let θ ∈Θ. We may view theMSO-formulaa-typeθ (X1, . . . ,Xm) as anMSO-sentence
of vocabularyσ := {≤,X1, . . . ,Xm}, where we interpret theXi as unary relation symbols. Letχ1

θ be the
conjunction of this sentence with a sentence saying that≤ is a linear order and theXi partition the uni-
verse. Then all models ofχ1

θ are proper word structures. Letq1 be an upper bound for the quantifier rank
of the formulasχ1

θ ′ for θ ′ ∈ Θ. Let Ξ := TPMSO(σ ,q1), and for eachξ ∈ Ξ, let 〈ξ 〉 be the order-invariant
type that containsξ . Now letξ1, . . . ,ξℓ be allξ ∈ Ξ that containχ1

θ , and let

χ2
θ :=

ℓ
∨

i=1

∨

ξ∈〈ξi〉

∧

ϕ∈ξ
ϕ .

Then χ2
θ is order-invariant; we may view it has the “best order-invariant approximation” ofχ1

θ . The
sentenceχ2

θ is over the vocabulary of words, but is invariant with respect to the ordering underlying the
word. In other words, it is an order-invariant formula of vocabulary{X1, . . . ,Xm} and, thus, equivalent
to aCMSO-sentenceχ3

θ over the same vocabulary [7, Corollary 4.3].
We viewχ3

θ = χ3
θ (X1, . . . ,Xm) as aCMSO-formula of empty vocabulary with free variablesX1, . . . ,Xm.

Let Θθ be the set of allθ ′ ∈ Θ such that the following holds: there is an otxxA′, an a-nodet ′ ∈
V(TA′

), and a compatible linear order≤′ of A′ such that(N+(t ′)) |= χ3
θ (P

′
1, . . . ,P

′
m) for the type partition

(P′
1, . . . ,P

′
m) of N+(t ′) and tpMSO

q (A′
t′ ,≤

′) = θ ′. Then trivially, allθ ′ ∈ Θθ are realizable.

Claim 1. If Θθ 6= ∅, thenθ is realizable andθ ∈ Θθ andΘθ ⊆ 〈θ〉co.

Proof. Let θ ′ ∈ Θθ . Let A′ be an otxx,t ′ ∈V(TA′

) an a-node,≤′ a compatible linear order ofA′, and
(P′

1, . . . ,P
′
m) the type partition ofN+(t ′) such that(N+(t ′)) |= χ3

θ (P
′
1, . . . ,P

′
m) and tpMSO

q (A′
t′ ,≤

′) = θ ′.
Then(N+(t ′),≤′) |= χ2

θ (P
′
1, . . . ,P

′
m). Hence there is a(N,≤) and a partitionP1, . . . ,Pm of N such that

(N,≤,P1, . . . ,Pm)≡
<-inv-MSO
q1

(N+(t
′),≤′,P′

1, . . . ,P
′
m)

and(N,≤,P1, . . . ,Pm) |= χ1
θ . Equivalently, we have(N,≤) |= a-typeθ (P1, . . . ,Pm).

By Lemma 2.1, there is anℓ ∈ N and for 0≤ i ≤ ℓ setsNi, partitions(Pi1, . . . ,Pim) of Ni, and lin-
ear orders≤i,≤

′
i of Ni such that(N0,≤0,P01, . . . ,P0m) = (N,≤,P1, . . . ,Pm) and(Nℓ,≤

′
ℓ,Pℓ1, . . . ,Pℓm) =

(N+(t ′),≤′,P′
1, . . . ,P

′
m) and(Ni−1,≤

′
i−1,P(i−1)1, . . . ,P(i−1)m)≡

MSO
q1

(Ni ,≤i,Pi1, . . . ,Pim).
We let Aℓ := A′

t′ andtℓ := t ′, and for 0≤ i < ℓ we build a sub-otxxAi as follows: we take a fresh
nodeti , which will be the root of the treeTAi

. We makeN+(ti) := Ni the set of children ofti . The nodeti
will be an a-node inAi. We letβ Ai

(ti) := β A′

(t ′). For eachu∈ Ni, say, withu∈ Pi j , we take someu′ ∈
P′

j . Note thatP′
j is nonempty, becausePi j is nonempty and(Ni ,Pi1, . . . ,Pim) ≡

MSO
q1

(N+(t ′),P′
1, . . . ,P

′
m).
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Then we take a copyAi
u of A′

u′ and identify the copy ofu′ with u and the copy ofσA′

(u′) with the
corresponding elements inβ Ai

(ti) = β A′

(t ′). We define two compatible orders≤i,≤
′
i on Ai that extend

the corresponding orders onNi and coincide with the linear order induced by≤′ on the copies of the
sub-otxxsA′

u′ that we used to buildAi.
Then for 0≤ i < ℓ, all j ∈ [m], and all u ∈ Ni, if u ∈ Pi j then (Ai

u,≤i) and (Ai
u,≤

′
i) are copies

of (A′
u′ ,≤

′) for someu′ ∈ P′
j , and hence tpMSO

q (Ai
u,≤i) = tpMSO

q (Ai
u,≤

′
i) = tpMSO

q (A′
u′ ,≤

′) = θ j . Since
(Ni−1,≤

′
i−1,P(i−1)1, . . . ,P(i−1)m) ≡

MSO
q1

(Ni,≤i ,Pi1, . . . ,Pim), it follows from Lemma 3.5 that we have
tpMSO

q (Ai−1,≤′
i−1) = tpMSO

q (Ai ,≤i) for all i. Moreover, as we have(N0,≤0) |= a-typeθ (P01, . . . ,P0m),
again by Lemma 3.5 we have tpMSO

q (A0,≤0) = θ .
This implies thatθ is realizable and thatθ ≡co θ ′, or equivalently,θ ′ ∈ 〈θ〉co. As this holds for

all θ ′ ∈ Θθ , we haveΘθ ⊆ 〈θ〉co. We haveθ ∈ Θθ because(N0,≤0) |= a-typeθ (P01, . . . ,P0m) implies
(N0,≤0,P01, . . . ,P0m) |= χ2

θ , and this implies(N0) |= χ3
θ (P01, . . . ,P0m). y

Claim 2. Let A be an otxx, t∈V(TA) an a-node,≤ a compatible linear order of A, and(P1, . . . ,Pm) the
type partition of N+(t). Then the setΘt of all θ ∈ Θ with (N+(t)) |= χ3

θ (P1, . . . ,Pm) is compatible at t.

Proof. Let θt := tpMSO
q (At ,≤). Then for allθ ∈ Θt we haveθt ∈ Θθ and thus, by Claim 1,θt ∈ 〈θ〉co.

As ≡co is an equivalence relation, it follows that〈θt〉co = 〈θ〉co. ThusΘt ⊆ 〈θt〉co, and this shows that
Θt is compatible att. y

The rest of the proof is very similar to the proof of Lemma 3.6.Again, we letϕ(X1, . . . ,Xm,Y1, . . . ,Ym)
be anMSO-formula stating thatYi ⊆ Xi for all i, that theYi are mutually disjoint, and that

⋃

i Yi =
⋃

i Xi.
We letoi-a-typeθ (X1, . . . ,Xm) := ∃Y1 . . .∃Ym

(

ϕ(X1, . . . ,Xm,Y1, . . . ,Ym)∧ χ3
θ(Y1, . . . ,Ym)

)

.
Let A be an otxx,t ∈V(TA) an a-node, and(P1, . . . ,Pm) a compatible cover ofN+(t). Let Θt be the

set of allθ ∈ Θ such that(N+(t)) |= oi-a-typeθ (P1, . . . ,Pm). We need to prove thatΘt is compatible att.
For everyu∈ N+(t), let Θu := {θi | i ∈ [m] such thatu∈Pi}. As the cover(P1, . . . ,Pm) is compatible,

for all u the setΘu is compatible atu. In particular, there is aθu ∈ Θu and a compatible linear order≤u

of Au such thatθu = tpMSO
q (Au,≤u) andΘu ⊆ 〈θu〉co. Let≤1 be a compatible linear order ofAt such that

for all u∈ N+(t), the restriction of≤1 toU(Au) is≤u. For everyi ∈ [m], let Qi be the set of allu∈ N+(t)
such thatθu = θi . Then(Q1, . . . ,Qm) is the type partition ofN+(t) in (At ,≤

1), and it refines the cover
(P1, . . . ,Pm).

By Claim 2, the setΘt(Q1, . . . ,Qm) of all θ ∈ Θ such that(N+(t)) |= χ3
θ (Q1, . . . ,Qm) is compatible

at t. Thus there is a typeθt ∈ Θt(Q1, . . . ,Qm) and a linear order≤2 of A such that tpMSO
q (At ,≤

2) = θt

and Θt(Q1, . . . ,Qm) ⊆ 〈θt〉co. As θt ∈ Θt(Q1, . . . ,Qm) we have(N+(t)) |= χ3
θt
(Q1, . . . ,Qm) and thus

(N+(t)) |= oi-a-typeθt
(P1, . . . ,Pm). Thusθt ∈ Θt .

We need to prove thatΘt ⊆ 〈θt〉co. Let θ ∈ Θt . ThenA(t) |= oi-a-typeθ (P1, . . . ,Pm), and thus there is
a partition(Q′

1, . . . ,Q
′
m) of N+(t) that refines the cover(P1, . . . ,Pm) such that(N+(t)) |= χ3

θ (Q
′
1, . . . ,Q

′
m).

Let Θt(Q′
1, . . . ,Q

′
m) be the set of allθ ′ ∈ Θ such that(N+(t)) |= χ3

θ ′(Q′
1, . . . ,Q

′
m). Then we have

θ ∈ Θt(Q′
1, . . . ,Q

′
m). By Claim 2, the setΘt(Q′

1, . . . ,Q
′
m) is compatible att. Thus there is aθ ′

t ∈
Θt(Q′

1, . . . ,Q
′
m) and a compatible linear order≤3 of Asuch that tpMSO

q (At ,≤
3)= θ ′

t andΘt(Q′
1, . . . ,Q

′
m)⊆

〈θ ′
t 〉co.

It remains to prove thatθt ≡co θ ′
t , because thenθ ∈ Θt(Q′

1, . . . ,Q
′
m) ⊆ 〈θ ′

t 〉co = 〈θt〉co. For each
u ∈ N+(t), let θu := tpMSO

q (Au,≤
2) andθ ′

u := tpMSO
q (Au,≤

3). Thenθu = θi for the uniquei such that
u∈ Qi andθ ′

u = θi′ for the uniquei′ such thatu∈ Qi′ . As both(Q1, . . . ,Qm) and(Q′
1, . . . ,Q

′
m) refine the

cover(P1, . . . ,Pm) and the setΘu is compatible atu, we haveθu ≡co θ ′
u. Now we can form a sequence

witnessingθt ≡co θ ′
t from sequences witnessingθu ≡co θ ′

u for theu∈N+(t) as in the proof of Lemma 3.6
(when we showedθt ≡co θ ).
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3.4 Proofs of the lifting theorems

Proof of Theorem 3.1.Let C be a class of structures over some vocabularyτ that admitCMSO-definable
ordered tree decompositions and letϕ be an<-inv-MSO-formula overτ . We show that there exists a
CMSO-formulaψ , such that for every structureA from C we haveA |= ϕ if, and only if, A |= ψ .

First of all, we turnA into a structureA⋆⋆ that is isomorphic to an otx ofA. Using the theorem’s pre-
condition, this is possible by aCMSO-transduction that produces otxs with bounded adhesion. Using the
transformations discussed in Section 3.1, we continue to turn A⋆ into an otx whose tree decomposition
is segmented and, then, expand it into an otxxA⋆⋆. Both transductions preserve the bounded adhesion
property. SinceA’s relations are still present inA⋆⋆ and we can distinguish the elements inA⋆⋆ that are
also in the original structureA from the elements that are added toA⋆⋆ by the transductions, we can
rewrite ϕ to a formulaϕ⋆⋆, such that for eachA ∈ C we haveA |= ϕ if, and only if, A⋆⋆ |= ϕ⋆⋆. In
particular,ϕ⋆⋆ is still an order-invariantMSO-formula.

In order to test whetherA⋆⋆ |= ϕ⋆⋆ holds, we viewϕ⋆⋆ as anMSO[τ⋆⋆ ∪ {≤}]-formula and test
whether(A⋆⋆,≤) |= ϕ⋆⋆ holds for some total order≤ over U(A⋆⋆) compatible withA⋆⋆. Using the
terminology developed in Section 3.3, we ask whetherϕ⋆⋆ is equivalent to a formula from a realizable
type θ of A⋆⋆. Due to the order-invariance ofϕ⋆⋆, this is equivalent to asking whether each realizable
typeθ contains a formula equivalent toϕ⋆⋆. In order to have access to a realizable type ofA⋆⋆, we define
a compatible set of typesΘ′

r for the rootr by using aCMSO-formula that implements the following three
parts: (1) It existentially guesses a cover(P1, . . . ,Pm) of all nodes of the tree decomposition thatinduces
the set of typesΘ′

t := {θi | i ∈ [m] with t ∈ Pi} at each nodet of the tree decomposition. (2) It tests
whether the induced set of types for each leaf is compatible.This is possible since leaves are always
b-nodes and the substructures induced by their bags containtotal orderings. (3) It compares the induced
set of types of each inner nodet with the set of types that we get by applying Lemmas 3.6 (in thecase
of a b-node) or 3.7 (in the case of an a-nodes) to the cover(P1∩N+(t), . . . ,Pm∩N+(t)) of its children
N+(t).

Finally, we test whetherϕ⋆⋆ is equivalent to a formula from a typeθ ∈ Θ′
r . Overall, this results in a

CMSO-formulaψ⋆⋆ that is equivalent toϕ⋆⋆ on A⋆⋆. Sinceϕ⋆⋆ on A⋆⋆ is constructed to be equivalent to
ϕ onA andCMSO-transductions preserveCMSO-definability, we know that there exists aCMSO-formula
ψ on τ that is equivalent toϕ on all structures fromC.

Proof of Theorem 3.2.The arguments are the same as in the proof of Theorem 3.1, except that we need
to avoid the use ofCMSO-formulas. First of all, this is possible for the initial transduction that produces
the otxA⋆ from A since the theorem only talks aboutMSO-definable ordered tree decompositions, not
CMSO-definable ones. Second, we need to avoid the use ofCMSO-formulas in the order-invariant com-
positions for a-nodes. During the proof of Lemma 3.7, we translate an<-inv-MSO-formula on colored
sets into an equivalentCMSO-formula. If we start with an<-inv-FO-formula instead, then we are able
to translate it into an equivalentMSO-formula at this point in the proof. This follows from the fact that
FO has the same expressive power as<-inv-FO on this class of structures [1]. The resulting proof of
Theorem 3.2 produces anMSO-formula instead of aCMSO-formula.

4 Defining Decompositions

During the course of the present section, we useMSO-transductions to extend graphs with tree decom-
positions for them. The first transduction (developed in Section 4.1) is used to prove Theorems 5.6 and
5.7, which apply to graphs of bounded tree width. The second transduction (reviewed in Section 4.2) is
used to prove Theorems 5.10 and 5.11, which apply to graphs that excludeK3,ℓ for someℓ ∈ N as a mi-
nor. The present section’s results work with graphs insteadof general structures. Thus, we setτ = {E}
throughout the section whereE is the (binary) edge relation symbol.
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The structures defined by the transductions are over the vocabularyτ+ := τ ∪{VS,VT ,ET ,Rβ} where
VS andVT are unary, andET andRβ are binary. Atree extension(tx for short) of a graphG = (V,E)
is a τ+-structureG+ that extendsG by a tree decomposition(T,β ) of G. Tree decompositions are
encoded as part of txs just like they are encoded as part of otxs in Section 3, but without including a
partial order. The below transductions turn graphs of a certain kind into tree extensions of a certain
kind. In order to state the results concisely, we use the following terminology: whenever we talk about
the bags and separators of a tree extensionG+, we refer to the bags and separators, respectively, of the
tree decomposition(T,β ) encoded byG+. For a classC of graphs and a classD of tree extensions, we
say that anMSO[τ ,τ+]-transductionΛ defines tree extensions fromD for graphs fromC if the following
holds for everyG∈ C: we have∅ ( Λ[G] ⊆ D and everyG+ ∈ Λ[G] is isomorphic to a tree extension
of G.

4.1 Defining Tree Decompositions into Graphs without CliqueSeparators

A clique separatorin a graphG is a setS⊆ V(G), such thatG[S] is a clique (that means, there is an
edge inG between every pair of vertices fromS) and there are two verticesv,w ∈ V(G) \S that are
disconnected inG\S. In this case,S separates vandw. An atom is a graph without clique separators;
in particular, atoms are connected graphs. We prove the following lemma.

Lemma 4.1. Let k∈ N. There is anMSO[τ ,τ+]-transductionΛtw≤k that defines tree extensions for
graphs of tree width at most k where (1) the bags induce subgraphs that are atoms, and (2) the separators
of the tree decompositions are cliques.

Our proof uses the graph-theoretic ideas behind a logspace algorithm [13] for constructing tree de-
composition of the kind described by Lemma 4.1 and shows how to define the construction using an
MSO-transduction. The mentioned algorithm first constructs decompositions along small clique sepa-
rators of the graph and, then, refines the decompositions by also taking larger clique separators into
account. Since graphs of tree width at mostk only contain cliques of size at mostk+1, applyingk+1
refinement steps turns a given graph of tree width at mostk into a tree decomposition that proves the
lemma.

Formally, constructing tree decompositions via clique separators of a growing size involves working
with a refined notion of atoms. Forc∈N, ac-clique separatoris a clique separator of size at mostc and
a c-atomis a graph that does not contain clique separators of size at most c. Like atoms,c-atoms are
connected by definition.

For a graphG and a constantc ∈ N, we build a graphTc whereV(Tc) consists of all maximal
subgraphs ofG that arec-atoms, which are calledatom nodes, and allc-clique separators, which are
calledseparator nodes. In addition, to eacht ∈V(Tc) we assign a bagβc(t) ⊆V(G) as follows: if t is
an atom node, thenβc(t) is the vertex set of the corresponding atom, and ift is a separator node, then
βc(t) is the corresponding separator. An edge is inserted betweenevery atom nodet and separator node
u with βc(u)⊆ βc(t). While Tc is not a tree in general, [13] proved that, ifG is a(c−1)-atom forc≥ 1,
then(Tc,βc) is a tree decomposition forG.

Fact 4.2. Let c≥ 1 and G be a(c−1)-atom. Then(Tc,βc) is a tree decomposition for G. Moreover,
1. atom nodes are only connected to separator nodes and vice versa, and
2. all leaves are atom nodes.

The previous fact provides us with a single step in the decomposition refinement procedure outlined
above. We apply it in order to move from tree decompositions whose bags induce(c−1)-atoms to tree
decompositions whose bags inducec-atoms. This is similar to the approach of [13], which is based on
the following construction.
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Let G be a graph andD(c−1) = (T(c−1),β(c−1)) a tree decomposition ofG, such that for each node
t ∈V(T(c−1)) the bagβ (t) induces a maximal subgraphs ofG that is a(c−1)-atom or it induces a(c−1)-
separator. Moreover, the tree decomposition satisfies the two properties stated in Fact 4.2: neighbors of
atom nodes are only separator nodes and vice versa, and all leaves are atom nodes. We modify the
tree decomposition into a decompositionDc, such that it still satisfies the same properties, except that
the constantc− 1 is replaced byc. For each atom nodeV(t), we consider the tree decomposition
Dt

c = (Tt
c ,β t

c) of the (c− 1)-atomG[β (t)]) that we get from applying Fact 4.2. We replacet with Dt
c

insideD(c−1) as follows: if t is the root ofTt
c , we just replace it withDt

c. If t is not the root, it has a
unique parent separator nodeu and, in turn,u has a unique parent atom nodev. We replacet with Dt

c
and connectu to the root ofDt

c, which is constructed as an atom node whose bag contains all of β (u).
Similarly, v is replaced withDv

c and the edge betweenv andu is redirected such that there is an edge
to u from the highest atom node inDv

c (with respect to the root ofDv
c) that contains all ofβ (u), which

is unique. The following fact follows from [13]. The arguments about the shape of the decomposition
directly follow from the construction.

Fact 4.3. Let G, D(c−1), and the constructed Dc be defined as in the previous paragraph. Then Dc is a
tree decomposition for G. Moreover, in Dc,
1. atom nodes are only connected to separator nodes and vice versa, and
2. all leaves are atom nodes.

The final proof of Lemma 4.1 shows how the construction of Fact4.3 can be done by anMSO-trans-
duction. It also needs to turn a given graph, which can possibly be disconnected, into a tree decompo-
sition whose bags induce the connected components of the graph. Since this is a special case that is not
covered by the above constructions, we first prove it separately. In the context ofMSO-definable tree
decompositions, we use the concept of tree extensions. In order to do that, we use the following conven-
tion: when we say that the bags of a tree decomposition (or tree extension) arec-atoms, we mean that
the subgraphs induced by the bags arec-atoms. We frequently use the fact that there is anMSO-formula
for each of the following properties of vertex subsetsV ′ ⊆V of a given graphG: V ′ is a clique separator,
V ′ is a c-clique separator for some fixed, but arbitrary,c ∈ N, G[V ′] is an atom,G[V ′] is a c-atom for
some fixed, but arbitrary,c∈ N.

Lemma 4.4. There is anMSO[τ ,τ+]-transductionΛcomp that defines for every graph G a tree extension
whose tree decomposition
1. has a single node with an empty bag (representing the empty separator), and
2. for each component of G exactly one node whose bag equals the vertex set of it.

Proof. The main idea is to guess, via parameters, a set of vertices ofthe graph whose copies in the tree
extension represent the atoms and separators in the decomposition; the termrepresenthints to the fact
that we are able to define the vertex set of the corresponding atom or separator in anMSO-definable
way from the atom node or separator node, respectively. The transductionΛcomp has three parameters
ROOT0, ATOM0, andCLIQUE0 and three levels: Level 1 contains copies of the vertices of the original
graphG, level 2 contains the atom nodes of the decomposition, and level 3 contains the separator nodes
of the decomposition.

First of all, the formulaλVALID tests whether the parameters are chosen in a way that allows the other
formulas to define the tree extension from them. It ensures the following properties:ROOT0 contains
exactly one vertex that we callvr in the following,ROOT0∪ATOM0 contain exactly one vertex from each
connected component ofG, andCLIQUE0 contains exactly one vertex that we callvc with vc ∈ ATOM0.
Thus,vc is used to both represent an atom and to represent the unique separator in the construction.

For eachv∈ ROOT0∪ ATOM0, the transduction definesβ (v,2) to be the vertex set of the connected
component in whichv lies. Moreover, we setβ (vc,3) := ∅. We create an edge between(vc,3) and each
(v,2) for v∈ ATOM0. Moreover, edges are oriented away from the rootvr .
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We are now ready to prove Lemma 4.1. The remaining difficulty for the proof lies in defining the
construction of Fact 4.3 in anMSO-definable way, which involves defining the construction of Fact 4.2
simultaneously for all atom nodes.

Proof of Lemma 4.1.We first turn a given graph into a tree decomposition whose bags are the graph’s
connected components usingΛcomp from Lemma 4.4. Next, we refine this decompositionk+ 1 times
using MSO-transductions that implement the construction from Fact 4.3. Finally, the lemma follows
sinceMSO-transductions are closed under composition.

Let c ≥ 1 andG+ be a tree extension with a tree decomposition(T,β ) = (T(c−1),β(c−1)) as de-
scribed above. In order toMSO-define the construction of Fact 4.3, we use anMSO[τ+,τ+]-transduction
Λc, which transforms tree extensions into tree extensions. Similar to the transduction of the proof of
Lemma 4.4, it has three parameters, but this time they are called ROOTc, ATOMc, andCLIQUEc. More-
over, it has three levels: to level 1 we copy the vertex set of the underlying graph and decomposition
nodes whose bags are not refined, level 2 contains newly constructed atom nodes, and level 3 contains
newly constructed separator nodes. The parameters have to satisfy certain properties similar to the ones
in the proof of Lemma 4.4, but they are more involved due to thefollowing reasons. First, we need to
make sure that all atoms can be refined simultaneously. Second, we need to make sure that each new
atom node represents a unique atom. In the proof of Lemma 4.4 the connected components, which are
0-atoms, are disjoint and, thus, it was possible to choose a vertex from each component. In the case of
c-atoms forc ≥ 1, a vertex can be part of multiple atoms. In order to work around this problem, we
utilize the tree-like partial order that is given by the decomposition with respect to the chosen root.

We start with the existing tree extensionG+ and consider where it needs to be modified. Since
Λc[G+] will be a refinement ofG+ where new separator nodes are added, but existing separatornodes
do not change, all of the separator nodes present inG+ can be copied to level 1 directly without mod-
ification. On the other hand, the atom nodes inG+ are refined if they contain ac-clique separator, so
altogether the formulaλ 1

VT
(t) is satisfied only for somet ∈ V(T): either if t is a separator node, that

means, whereβ (t) induces a clique of size up toc; or otherwise if the size ofβ (t) is larger thanc and
there is noc-clique separator. This effectively removes exactly thoseatom nodes which have ac-clique
separator and which we thus need to decompose further. We defineλ 1

Rβ
, such thatRβ (t) = β (t) because

we do not want the bags of these copied nodes to change, and similarly, the edges between any pair of
copied nodess, t remain the same, so we defineλ 1,1

ET
(s, t) to be satisfied precisely if(s, t) ∈ E(T).

As a reminder, the indices of the formulas in a transduction specify a level for each of its free
variables – so as an example for a binary relation likeET , the formulaλ 2,3

ET
(v,w) being satisfied for two

concrete verticesa= v andb=w would mean that the vertex(a,2) (the copy ofaon level 2) is connected
to the vertex(b,3) (the copy ofb on level 3) in the treeT defined by the transduction. The transduction
then constructs the relationET by taking the union over all satisfying assignments ofλ i, j

ET
(v,w) for all

pairs of levelsi, j.
Next, we define the new atom and separator nodes, as well as their connectivity to the forestD

resulting from the described removal of atom nodes and theirincident edges fromT. Let t ∈ V(T) be
an atom node that is deleted and setAt := G[β (t)], which contains at least onec-clique separator. We
define a partial tree decompositionDt of At into c-atoms, and then show howDt is reinserted into the
forestD in place of the deleted nodet. We keep in mind thatAt is a (c− 1)-atom and, thus, free of
any clique separators up to sizec−1. Like in the construction of Fact 4.3, the root atom node of each
decompositionDt is chosen so that it contains theC = β (s) wheres is the parent separator node oft in
T. If t is itself the root ofT and thus has no parent, then considerC= ∅ in the following.

Parameters of the transduction and their validity properties. We describe the properties of the
parameters verified byλVALID . They are used to single out a unique vertex ofG+ for eachc-atom and
eachc-clique separator, as well as a uniquec-atom assigned to the root of each partial tree decomposition
Dt with the property describe above.
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The parameterROOTc contains exactly one vertex for eachc-atom that includes ac-clique separator.
We aim to find somer ∈ At ∩ ROOTc as the unique root vertex of ac-atom At . Sincer is supposed
to represent the root node(r,2) of Tt that is later connected to the parent separator nodes of t when
reinserting the partial tree decompositionDt into the forestD, the root atom has to contain the cliqueC
in its own bag. There are potentially multiple atoms that satisfy this property. If we consider the tree
decomposition from Fact 4.2 on the subgraphAt , then the set ofc-atoms containing the cliqueC form
a subtree (due to the cover and connectedness condition of any tree decomposition). The leaves of this
subtree arec-atoms which contain at least one vertexr that is not present in any of the otherc-atoms
from At that include all ofC. Note that this either immediately implies that eitherr /∈ C, or there is
just a single candidatec-atom, in which case we may freely pick anr /∈ C. This suffices as a unique
identifier of the rootc-atom ofAt , because then any otherc-atom containingr cannot contain all ofC.
An MSO-formula can ensure that for each(c−1)-atomAt that is decomposed further,ROOTc contains
a single root vertexr from the described candidates for thisAt . Sincer /∈C, the respectiver can only
appear in bags in the subtree ofT below t. So if r appeared again in the root of a different(c−1)-atom
that gets decomposed further, it would necessarily be in thebag of the separator node just above that
(c− 1)-atom, a contradiction. So there is a one-to-one correspondence between(c− 1)-atomsAt that
get decomposed further and the verticesr ∈ ROOTc. This showsROOTc has the desired properties for all
At simultaneously on all ofG.

For the otherc-atom representatives we utilize the fact that thec-cliques between any twoc-atoms
in At can be linearly ordered. To see this, remember the construction of the tree decomposition from
Fact 4.2. In particular, for any vertexv ∈ At outside of the rootc-atom, we can define thec-clique
separatorS closest to v compared to the root atomin the sense thatSseparates a vertex of the root atom
of At from v, but no otherc-cliqueS′ separates a vertex of the root atom from bothv and a vertex ofS.
We define anMSO-formula closest-clique-separatorc(v,S), which is satisfied exactly for verticesv and
c-cliquesS that satisfy this property. Note that this formula works globally on all of G+, because the
root vertexr of eachAt an be retrieved from the parameterROOTc. So for eachc-atomA within At , we
define the (nonempty) setZA of vertices of this atom which are not in its closestc-clique separator. For
different c-atoms, these sets are distinct – since an overlap would meanthat this vertex would appear
in thec-clique separator between them, which is then a closer clique separator for one of thec-atoms,
a contradiction. Via the parameterATOMc, we guess a single vertex ofZA for eachc-atom. AnMSO-
formula can verify that conversely, no two vertices ofATOMc are in the same setZA. This establishes the
one-to-one correspondence of everya∈ ATOMc to the setsZA and thus, the non-rootc-atomsA in all of
G. Remember that the root atoms are already covered above byROOTc.

To define representatives for the separator nodes ofTt , we make the following observation: in the tree
decomposition, each separator node will have at least one atom node as its child. Consequently, we use
the representative of a child atom nodes also as the representative of its closestc-clique separator towards
the root vertexr. This overlap explains why we use separate levels for atom and separator nodes. We use
the parameterCLIQUEc to guess these representatives, and have to only verifyCLIQUEc ⊆ ATOMc, that
no two vertices inCLIQUEc have the same closestc-clique separator, and that for eachc-clique separator
S some vertexv ∈ CLIQUEc exists that hasS as its closest separator. This guarantees the one-to-one
correspondence ofc-clique separators and vertices inCLIQUEc not just forAt , but for all ofG.

Defining the construction of Fact 4.2. We follow the construction of the decompositions from
Fact 4.2. We define the formulaλ 2

VT
(v) such that it is satisfied exactly for the verticesv∈ ROOTc∪ATOMc,

andλ 3
VT
(v) such that it is defined exactly for the verticesv∈ CLIQUEc. The properties of these parameters

as discussed above can be defined inMSO.
We now know that for a separator node(v,3) created in this way, the clique separator it represents is

the closestc-clique separatorS towards the unique rootr ∈ ROOTc∩At , which we can extract using the
formula MSO- formulaclosest-clique-separatorc(v,S) and thus setRβ (v,3) = Sby defining the formula
λ 3,1(v,x) such that it is satisfied exactly forx∈ S. Conversely, for an atom node(v,2) created this way,

19



we extract thec-atomA it represents by finding the closestc-clique separatorStowardsr. The atomA is
then the set of vertices which either haveSas its closestc-clique separator, which means they are in the
setZA defined above, or which are itself inS. We can then defineRβ (v,3) = A similarly to above. This
sets up the bags of the separator and atom nodes to be exactly the set of vertices of the clique separator
(and respectively, atom) which they represent.

Finally, we define the edges between nodes inTt . Remember that the construction from Fact 4.2
connects an atom and a separator node if the bag of the separator node is completely contained in the
bag of the atom node. We only have to define this as a directed tree decomposition rooted in the atom
node(r,2) of At for the unique root representativer ∈ At ∩ROOTc.

We use the formulaλ 3,2
ET

to express that there is an edge from a separator node(u,3) to an atom node
(v,2) precisely if the verticesu andv have the same closestc-clique separatorS, which is unique. Then
by the above, the bag of(u,3) is precisely this separatorSand thisS is completely contained in the bag
of (v,2), so the desired property is satisfied. Similarly, we use the formulaλ 2,3

ET
to express that there is

an edge from an atom node(v,2) to a separator node(u,3) precisely if the bag of(u,3) is completely
contained in the bag of(v,2), but they do not have the same closestc-clique separatorS. Thus, we
constructed a tree decompositionDt as described in Fact 4.2.

Defining the construction of Fact 4.3. We now move from the view of the single(c− 1)-atom
At and its tree decompositionTt to the global view on all ofG+. If we stopped defining the rest of
the transduction here, the decomposition graph would now bethe forestD together with all partial tree
decompositionsDt for removed(c−1)-atom nodest. It remains to define how this forest is merged back
together into a single tree decomposition.

Let t be a deleted(c−1)-atom node andTt the newly constructed tree of the partial decomposition
Dt into c-atoms on the bagAt := G[β (t)]. Further lets be the parent oft in T, which is a separator
node. We use the formulaλ 1,2

ET
to define the edges froms to the root ofTt and thereby reattach the partial

tree decompositions at the appropriate position. Soλ 1,2
ET

(s,u) is satisfied ifs is a separator node with a
deleted child node,u∈ ROOTc, andβ (s) is the closestc-clique separator ofu since this means precisely
that the node(u,2) has the root atom ofDt as its bag.

For the formulasλ 2,1
ET

, finding the correct point of attachment is a bit more involved. If t had no
child nodes, there is nothing to reattach. Otherwise we haveto consider all former child nodess1, . . . ,sn

of the deleted nodet, each of which is a separator node according to Fact 4.2. Eachof their bags is a
clique, and we would thus receive a valid tree decompositionif we connected eachsj to an atom node
t j of Tt such thatβ (sj) ⊆ β (t j) for all j ∈ [n]. Following the construction of Fact 4.3, to find a unique
connection point, we take a closer look at the potential choices of the compatible atom nodes for a node
sj : due to the connectedness property, the set of nodes inTt which contain all ofβ (sj) is connected.
This means that there is a unique atom nodet∗j in this tree which lies closest to the root ofTt . Moreover,
because the set of nodes that include the cliqueβ (sj) is connected inTt , this node can be found inMSO

by asking for a node whose bag includesβ (sj), but whose parent node inTt does not includeβ (sj). We
can thus defineλ 2,1

ET
(t,s) to be satisfied precisely ifs= sj andt = t∗j hold, which isMSO-definable. This

concludes the reintegration ofTt and finishes the description of theMSO-transduction that implements
the construction of Fact 4.3.

4.2 Defining Tree Decompositions into 3-Connected Components

A graphG is k-connectedif |G| > k andG has no separatorS⊆ V(G) of size |S| < k. Courcelle [8]
showed that one can useMSO-transductions to define tree decompositions into 3-connected components.
We formulate this result with respect to the notion of tree extensions as Fact 4.5.

Fact 4.5. There is anMSO-transductionΛ3-comp that defines tree extensions whose torsos (1) are 3-
connected, cycles, a single edge, or a single vertex, and (2)separators have size at most 2 for all graphs.
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The torsos of the tree decomposition produced by Fact 4.5 always induce topological subgraphs; a
topological subgraph G′ of a graphG arises by taking a subgraph ofG and replacing some paths with
edges. Later we use this insight since whenever a graphG does not contain a certain graphH as a minor,
then this also holds for each of its topological subgraphs. In our applicationH equalsK3,ℓ for some
ℓ ∈ N.

5 Defining Orderings

In the previous section, we have seen how to define tree decompositions along clique separators and
discussed how to define tree decompositions into 3-connected components. In the present section we
further define total orders for the bags of these decompositions whenever our graphs have bounded tree
width or exclude aK3,ℓ-minor for someℓ. The latter covers planar graphs since they exclude the minor
K3,3.

5.1 Orderings Definable in Monadic Second-Order Logic

Our bag orderings are based on applying the following resultof Blumensath and Courcelle [2]. In order
to state it formally, we introduce some terminology. Letτ be a vocabulary that does not contain the
binary relation symbol≤. We say that anMSO[τ ,τ ∪{≤}]-transductionΛ defines orderingson a classC
of τ-structures if the following holds for everyA∈ C: Λ(A) 6= ∅ and everyB∈ Λ(A) is an expansion ofA
with a binary relation≤B that is a linear order ofU(B). A classC of graphs has thebounded separability
property if there is a functions: N→ N, such that for all graphsG∈ C and vertex setsS⊆ V(G), the
number of components ofG\S is bounded byf (|S|). The below fact refers toGSO-logic on graphs;
it is defined by takingMSO-logic on graphs and extend it with the ability to quantify over subsets of a
graph’s edges [16].

Fact 5.1. Let C be a class of graphs with bounded separability that excludesKℓ,ℓ as a minor for some
ℓ ∈ N. There is aGSO-transductionΛORDER-SEP that defines total orderings onC.

SinceGSO-logic collapses toMSO-logic on every class of graphs that exclude a fixed minor [9] (in
fact, this applies to the more general class of uniformlyk-sparse graphs, but we do not need them for
our proofs), and neither bounded tree width graphs nor theK3,ℓ-minor-free graphs contain all complete
bipartite minors, the fact has the following corollary.

Corollary 5.2. Let C be a class of graphs with bounded separability that excludesKℓ,ℓ as a minor for
someℓ ∈N. There is anMSO-transductionΛORDER-SEP that defines total orderings onC.

5.2 Defining Orderings in the Bounded Tree Width Case

In general, it is not possible to totally order atoms of bounded tree width inMSO or, even,CMSO. An
example being a graph made up byn cycles of lengthn each connected to two universal verticesu1 and
u2, but without an edge betweenu1 andu2. Graphs of this kind have bounded tree width and are atoms,
but CMSO is not able to define a total ordering on the graph’s vertices.In the following we show how
to preprocess given graphs, such that the resulting atoms cannot be of the above kind. In particular, the
preprocessing ensures that the two universal vertices in the above example have an edge between them
and, thus, the considered graph is no longer an atom.

Given a graphG, its improved version G′ is the graph with vertex setV(G′) := V(G) and(v,w) ∈
E(G′) holds for every two distinct verticesv,w ∈ V(G′) if, and only if, (v,w) ∈ E(G) or there are
tw(G)+1 internally disjoint paths betweenv andw in G. Computing the improved version of a graph is
commonly part of algorithms that construct tree decompositions [20]. Pairs of vertices with tw(G)+1
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internally-disjoint paths between them always lie in a common bag in every tree decomposition. Thus,
connecting pairs with this property with an edge does not change the tree decompositions of the graph
and, moreover, it simplifies the task of constructing tree decompositions by producing a graph that is
closer to embeddings intok-trees fork = tw(G) than the original graph. TheMSO-transduction of the
below proposition is based on defining a constant number,k+ 1, of disjoint paths between pairs of
vertices of the graph. This can be done by usingk+1 set variables where each set colors the vertices of
a single path that does not share vertices with other paths.

Proposition 5.3. Let k∈ N. There is anMSO-transductionΛIMPROVE that defines the improved version
for every graph of tree width at most k.

SinceMSO-transductions are closed under composition, we continue to work with the improved
version of the graph instead of the original input graph.

The main reason behind the non-definability of total orderings in the above example lies in the fact
that there is an unbounded number of subgraphs connected to each other via a small separator. This is
not possible if we look at the bags of decomposed improved graphs.

Lemma 5.4. LetC be a class of graphs of bounded tree width that are improved and atoms. ThenC has
the bounded separability property.

Proof. Let G ∈ C andk := tw(G). Let S⊆ V(G), and letG1, . . . ,Gn be the components ofG\S. We
shall prove thatn≤

(

|S|
2

)

·k+1 holds.
Without loss of generality we assume thatn≥ 2. For everyi ∈ [n], let Si be the set of neighbors ofGi

in S. As G is an atom,Si is not a clique inG. Thus there areu,v∈ Si such that{u,v} /∈ E(G). SinceG is
improved, we haveu,v∈ Si for at mostk indicesi ∈ [n]. As there are

(|S|
2

)

pairs{u,v} ⊆ S, this implies

n≤
(|S|

2

)

k and, thus, the above inequality holds.

We get the following from combining Lemma 5.4 with Fact 5.1.

Corollary 5.5. LetC be a class of graphs of bounded tree width that are improved and atoms. There is
an MSO-transductionΛORDER-TW that defines a total ordering for every G∈ C.

Using the definable decompositions from the previous section and the just developed definable or-
derings, we can prove the results about bounded tree width and <-inv-MSO as well as<-inv-FO.

Theorem 5.6. LetC be a class of graphs with bounded tree width. Then<-inv-MSO = CMSO onC.

Proof. We show thatC admitsMSO-definable (henceCMSO-definable) ordered tree decompositions of
bounded adhesion. This proves the theorem by applying Theorem 3.1, the lifting theorem for<-inv-MSO.
Let k be a tree width bound for the graphs fromC. Instead of directly working with the structureA,
we work with its Gaifman graphG′ = G(A), which has the same tree decompositions and isMSO-
definable inA. We start to define the improved versionG′ in G using theMSO-transductionΛIMPROVE

from Proposition 5.3. Next, we apply the transductionΛ of Lemma 4.1 toG′, which defines a tree
extensionG+. The bags of the tree decomposition underlying the tree extension induce subgraphs that
are atoms, and all adhesion sets are cliques. SinceG and, hence, alsoG′ has tree widthk and graphs
of tree width at mostk only contain cliques of size at mostk+1, this implies a bounded adhesion (the
adhesion is bounded byk+1). In order to obtain an otx, we need to add total orderings for each bag. The
bags of the tree decomposition obtained so far induce atoms and, sinceG′ is an improved graph, these
atoms are improved, too. That means, we can now use the transduction ΛORDER-TW from Corollary 5.5
to obtain a total ordering for a given bag. In order to define orderings for all bags at the same time, we
utilize the decomposition’s bounded adhesion in the following way. TransductionΛORDER-TW orders a
single bag by using a collection of set parameters, which arevertex colorings from which we can define
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the ordering. If we now want to order different neighboring bags at the same time, these vertex colorings
might interfere in a way that makes it impossible to reconstruct an ordering.

We can do the following: as our (improved) graph has tree width at mostk, it has coloring number
at mostk+1, and thus we can first guess a proper(k+1)-coloring where no two adjacent vertices have
the same color. In particular, this implies that for each adhesion setS that occurs, all elements ofShave
different colors, because they are cliques. This gives us a way to simultaneously get a linear order of all
adhesion sets by just fixing an order on the(k+ 1) colors. Let us call the(k+ 1)-colors we used this
way ouradhesion colors.

Now we guess a collection of colors that we would like to use toorder the bags at the atom nodes.
(The bags at separator nodes are just adhesion sets and thus already ordered by the adhesion colors.) We
globally guess a suitable collection of colors. Let us call thembag colors. Within each bagB of the tree,
we ignore the colors in the adhesion (upward) adhesion setSand instead consider all extensions of the
coloring of the remaining nodes that lead to a linear order ofthe bag. There is only a bounded number of
such extensions, and as the adhesion setS is linearly ordered, we can use the lexicographically smallest
of these extensions to define the order.

Theorem 5.7. LetC be a class of graphs with bounded tree width. Then<-inv-FO ⊆ MSO onC.

Proof. We use the proof of Theorem 5.6, but apply Theorem 3.2, the lifting theorem for<-inv-FO,
instead of Theorem 3.1, the lifting theorem for<-inv-MSO.

5.3 Defining Orderings in theK3,ℓ-Minor-Free Case

Like in the previous section, we want to apply Fact 5.1 to define total orderings, but this time use it for
graphs that are 3-connected and do not containK3,ℓ as a minor for someℓ ∈ N.

Lemma 5.8. Let C be a class of 3-connected graphs that exclude a K3,ℓ-minor for someℓ ∈ N. ThenC
has the bounded separability property.

Proof. Let G be a 3-connected graph that does not containK3,ℓ for someℓ ∈N as a minor andS⊆V(G)
with k= |S|. Now letG1, . . . ,Gn be the components ofG\S. If k≤ 2, thenn≤ 1 sinceG is 3-connected.
If k ≥ 3, 3-connectedness implies that every component is connected to at least 3 vertices inS. For the
sake of contradiction, assumen≥ ℓ

(k
3

)

. Then there exists a subsetT of Swith T = 3 that is connected to
at leastℓ components. By deleting everything exceptT and these components as well as contracting the
components we produce the minorK3,ℓ. Since this is not possible, we haven< ℓ

(k
3

)

and hence bounded
separability.

Corollary 5.9. LetC be a class of 3-connected graphs that exclude a K3,ℓ-minor for someℓ ∈ N. There
is anMSO-transductionΛORDER-MINOR that defines a total ordering for every G∈ C.

Combining the decompositions from the previous section with the ordering from Corollary 5.9, we
can prove the following.

Theorem 5.10.LetC be a class of graphs that exclude K3,ℓ as a minor for someℓ∈N. Then<-inv-MSO=
CMSO onC.

Proof. The proof is similar to the proof of Theorem 5.6, except that we need to use different transduc-
tions to define the tree decomposition and the ordering for the bags. Everything else remains the same
since we still work with tree decompositions that have a bounded adhesion (in this case, the maximum
adhesion is 2) and apply the lifting theorem for<-inv-MSO. For constructing a tree decomposition of
bounded adhesion, we use Fact 4.5. For constructing the bag orderings, we follow the arguments from
Theorem 5.6, but apply Corollary 5.9 to the torsos of the decomposition combined with the observation
that graphs that exclude a minor can be properly colored witha bounded number of colors.
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Theorem 5.11.LetC be a class of graphs that exclude K3,ℓ as a minor for someℓ∈N. Then<-inv-FO⊆
MSO onC.

Proof. Similar to the idea in the proof of Theorem 5.7. We take the proof of Theorem 5.10, but use the
lifting theorem for<-inv-FO instead of the lifting theorem for<-inv-MSO.

6 Conclusions

We proved two lifting definability theorems, which show thatif a classC of structures admitsMSO-
definable ordered tree extensions, then<-inv-MSO = CMSO and<-inv-FO⊆ MSO onC. Using the lifting
theorems in conjunction with definable tree decompositionsand definable bag orderings, we were able
to show that<-inv-MSO = CMSO and<-inv-FO ⊆ MSO hold for every class of graphs (and structures)
of bounded tree width and every class of graphs (and structures) that excludeK3,ℓ for someℓ ∈ N as a
minor. The latter covers planar graphs.

Seeing the wide range of applications of the lifting theorems, it seems promising to apply or extend
them in order to handle every graph class defined by excludingminors in future works. Moreover, an
interesting question is whether the<-inv-FO ⊆ MSO in Theorem 3.2 can be turned into an equality;
possibly by using a logic more restrictive thanMSO.
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