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Abstract

Order-invariant formulas access an ordering on a strusturaverse, but the model relation is
independent of the used ordering. They are frequently usdddic-based approaches in computer
science. Order-invariant formulas capture unorderedipnok of complexity classes and they model
the independence of the answer to a database query fronel@bdspects of databases. We study
the expressive power of order-invariant monadic seconéoso) and first-order o) logic on
restricted classes of structures that admit certain forfrisee decompositions (not necessarily of
bounded width).

While order-invarianmMso is more expressive thanso and, evencmso (Mso with modulo-
counting predicates) in general, we show that order-iaveikiso andcmso are equally expressive
on graphs of bounded tree width and on planar graphs. Thémdgtan earlier result for trees due to
Courcelle. Moreover, we show that all properties definablerder-invarianto are also definable
in MSO on these classes. These results are applications of a thabegd shows how to lift up
definability results for order-invariant logics from thegsaof a graph’s tree decomposition to the
graph itself.

Keywords:finite model theory, first-order logic, monadic second-otdgic, order-invariant logic,
modulo-counting logic, bounded tree width, planarity

1 Introduction

A formula is order-invariantif it has access to an additional total ordering on the usivesf a given
structure, but its answer is invariant with respect to thegiorder. The concept of order invariance
is used to formalize the observation that logical strucee often encoded in a form that implicitly
depends on a linear order of the elements of the structurd difithe adjacency-matrix representation of
agraph. Yetthe properties of structures we are interestsialduld not depend on the encoding and hence
the implicit linear order, but just on the abstract struetufhus, we use formulas that access orderings,
but define unordered properties. This approach can be pemthjnfound in database theory where
formulas from first-orderfo) and monadic second-orden$o) logic are used to model query languages
for relational databases and (hierarchical) documents, respectively. Being order-invariant means in
this setting that the formula evaluation process is alwaglependent of low-level aspects of databases
like, for example, the encoding of elements as indices. Berexample approach can be found in
descriptive complexity theory where formulas whose eu#nais invariant with respect to specific
encodings of the input structure capture unordered prabl@ecidable by certain complexity classes.
The famous open problem of whether there is a logic that captail unordered properties decidable in
polynomial time falls into this category.
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Gurevich [17] proved that order-invariarb (<-inv-FO) is more expressive tharo (also seel[24]
for details). The same holds for order-invariargo (<-inv-mMso) andmso with modulo-counting pred-
icates EMs0); Ganzow and Rubin showed thatinv-mso is able to express more properties tltamso
on general finite structures [15]. Since it is not possibledoide, for a giverro-formula, whether it
is order-invariant or not, this opens up the question of Wietve can find alternative logics that are
equivalent to the order-invariant logiesinv-Fo and<-inv-Mso. While on general logical structures no
logics that are equivalent te-inv-FO or <-inv-MsSO are known, this changes if we consider classes of
structures that are well-behaved. Benedikt and Segaoufishidlved thak-inv-Fo andrFo have the same
expressive power on the class of all strings and the clash twéas (we write<-inv-Fo = Fo onC to
indicate that the properties definable<rinv-Fo equal the properties definablerm when considering
structures from a clag®). Considering<-inv-mso, Courcelle[[7] showed that it has the same expressive
power ascMso on the class of trees (that mearsinv-MSO = CMSO on trees). Recently it was shown
that<-inv-FO = FO(= MS0) and<-inv-MSO = CFO(= cMs0) hold on classes of graphs of bounded tree
depth [12]. More general results that apply to graphs of dedrtree width or planar graphs have not
been obtained so far. This is due to the fact that, wheneverave to move from an order-invariant
logic to another logic on a class of structures, we need tenstand both (1) the expressive power of the
order-invariant logic when restricted to these structuaesl (2) the ability of the other logic to handle
the structures in terms of, for example, definable decortiposi

Results. Our results address both of these issues to better undertarexpressive power of order-
invariant logics on decomposable structures.

Addressing issue (1), we prove two general results, whiowsiow to lift-up definability results for
order-invariant logics from the bags of tree decompositiop to the whole decomposed structure. We
show that, whenever we are able to wsgo-formulas to define a tree decomposition whose adhesion
is bounded (that means, bags have only bounded size inierscand we can define total orderings
on the vertices of each bag individually, thefinv-Mso = cmso (Theoreni 3.11) anet-inv-FO C MSO
(Theoreni_3.R). Lifting theorems of this kind can be seen toni@icitly used earlier[1, 5,16], but so far
they only applied to the case where the defined tree decotiggobias a bounded width. In this case,
the whole structure can be easily transformed into an elpuivvéree. Our theorems also handle the case
where bags have an unbounded width: they merely assumedhmadl definability of a total ordering
on bags, possibly using arbitrary parameters (which mayetsis the case afiso-definability). This
is a much weaker assumption than having bounded width, aodérs larger graph classes. The proofs
of the lifting theorems use type-composition methods tanshow one can define the logical types of
structures from the logical types of substructures. Thenrahallenge lies in trading the power of the
used types (in our case these are certain order-invarigesthased on orderings that are compatible
with the given decomposition) with the ability to prove theeded type-composition methods. The
latter need to work with bags of unbounded size and, thusnare general than the type-composition
methods that are commonly used for the case of bounded gige ba

Addressing issue (2), we study two types of classes of graytese it is possible to meet the as-
sumptions of the lifting theorems and, thus, show thdtiv-Mmso = cmsoand<-inv-FO C MSo hold on
these classes. The first two results (formally stated asréhe5.6 and 517) apply to classes of graphs
of bounded tree width. For the proof, we show that one can eldéfee decompositions of bounded
adhesion inMso, where the bags admitso-definable total orderings. Let us remark that in proving
these results we do not rely on tivso-definability of width-bounded tree decompositions, a ltesu
announced by Lapoiré [18], but only proved recently (ancepehdently of our work) by Bojanhczyk
and Pilipczukl[3][4]. Benedikt and Segoufin [1] had showrlieahow to prove these results using the
Mso-definability of width-bounded tree decompositions. Owosel application of the lifting theorem
is concerned with classes of graphs that, for séraeN, do not contairKs, as a minor. This includes
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the class of planar graphs and all classes of graphs emHtedald fixed surface [22, 23]. Using an



Mso-definable tree decomposition into 3-connected compordrgso Courcelle[8] along with prov-
ing that there areso-definable total orderings for the 3-connected bags of tikemposition, we are
able to apply the lifting theorems to prove thatnv-Mso = cmso (Theoreni 5.10) and-inv-Fo C MSO
(Theoreni5.1]1) hold on every class of graphs that exciigdeas a minor for somé € N.

Organization of the paper. The paper starts with a preliminary section (Seclibn 2) @ioirig def-
initions related to graphs and logic. In Sectldn 3, we folynatate and prove the lifting theorems.
Sectiorl 4 shows how taso-define tree decompositions along clique separators amnelwethe known
mso-definable tree decomposition into 3-connected componedestion b picks up the decomposed
graphs and shows how to define total orderings for bags. $hiembined with the lifting theorems to
prove the results about bounded tree width graphskaneminor-free graphs stated above.

2 Background

In the present section, we introduce the necessary baakgnalated to logical structures and graphs
(Sectior 2.11), monadic second-order logic and its varig®éstion 2.P), logical games and types (Sec-
tion[2.3), and transductions (Section]2.4).

2.1 Structures and Graphs

A vocabularyt is a finite set ofelational symbolsvhere ararity ar(R) > 1 is assigned to eadRe 7. A
structure Aover a vocabulary consists of a finite sét (A), its universe and arelation RA) C U (A)2®
for everyR € 1. We sometimes writ®(A) by R, in particular ifRis a symbol like<.

An expansionof a T-structureA is a t’-structureA’ for some vocabulary’ O 1 such thatU (A) =
U(A) andR(A) = R(A) for all Re 1. If Ais at-structure an&/ C U (A), then thenduced substructure
A\V] is the T-structure with universe (A[V]) =V and relationR(AV]) := R(A) NV ® for all Re 1.
Furthermore, we leA\V := AlU(A) \ V].

Graphs Gare structures over the vocabuldlg } with ar(E) = 2. When working with graphs, we
also writeV (G) for the graph’s universe (its set vérticeg and callE(G) its set ofedges The graphs
we are working with areindirected That means, for every two verticesandw, we have(v,w) € E(G)
if, and only if, (w,v) € E(G) and(v,v) € E(G). TheGaifman graph GA) of a structureA has vertices
V(G(A)) =U(A) and for every pair of distinct elemenisandw that are part of a common tuple A
we insert the edgév,w) into E(G(A)); thus,G(A) is always undirected.

A tree decompositiofiT, B) of a structureA is a treeT together with a labeling functiof: V(T) —
2V satisfying the following two conditions.Qonnectedness conditipfor every element € U (A),
the induced subtre& [{t € V(T) | v B(t)}] is nonempty and connectedCdver conditiof For every
tuple (v1,...,v;) of a relation inA, there is & € V(T) with {vq,...,v,} C B(t). It will be convenient
to assume that the trees underlying our tree decompositionglirected. That means, all edges are
directed away from a root. The shit' (t) of neighborsof a nodet in a directed tred consists of its
children (ift is not a leaf) and its parent (ifis not the root). The set of children of a nadi@ a directed
treeT is denoted byNT(t). We omit™ from NT(t) andNI (t) if it is clear from the context. The sets
B(t) for everyt € V(T) are thebagsof the tree decomposition. Theidth of the tree decomposition is
maxey Ty |B(t)| — 1 and itsadhesioris max; g (1) |B(t) N B(U)|. Thetree width tw(A), of a structure
A is the minimum width of a tree decomposition for it. StruetiA and their Gaifman graphG(A)
have the same tree decompositions. In particuldAjw= tw(G(A)). Thetorsoof a nodet € V(T) in a
tree decompositiod = (T, 3) for a structureA with Gaifman graplG = G(A) is G| (t)] together with
edges between all paivaw € B(t) N B(u) for u e N(t).



2.2 Monadic Second-Order Logic and its Variants

Monadic second-order logigvso-logic) is defined by taking all second-order formulas withsecond-
order quantifiers of arity 2 and higher. More specificallyd&dine its syntax, we usgdement variables
x for i € N andset variables Xfor i € N. Formulas ofmso-logic (Mso-formulag over a vocabulary
are inductively defined as usual (see, for example, [19]3hSormulas are also calledso[t]-formulas
to indicate the vocabulary along with the logic. The sefreé variablesof anmso-formula ¢, denoted
by freg¢), contains the variables @f that are not used as part of a quantification. By renaming a
formula’s variables, we can always assume (fgee= {xi, ..., %, X1, ..., X} for somek, ¢ € N; we write
& (Xa,..., %, X1,...,X¢) to indicate that the free variables ¢fare exactlyx; to xx andX; to X,. Given
anmMso-formula (xa, ..., %, X1,..., X)), AE ¢ (as,...,a,As,...,Ar) indicates thah together with the
assignmenx; — &;, fori € {1,...,k}, andX — A;, fori € {1,...,¢}, to ¢’s free variables satisfigs. A
formula without free variables is also calledentence

Monadic second-order logic with modulo-countifmvso-logic) extendsvso-logic with the ability
to access (built-injnodulo-counting atoms&R) for everym € N whereR is a relation symbol. Given
a structureA over a vocabulary that contaifs we haveA = Cy(R) exactly ifmdivides|R| (that means,
IRl =0 modm). AtomsCny(X) whereX is a set variable are used in the same way.

Let T be a vocabulary ang a binary relation symbol not contained m An MSoO-sentencep
of vocabularyt U {<} is order-invariantif for all t-structuresA and all linear orders<;, <, of U (A)
we have(A,<1) | ¢ if, and only if, (A,<2) = ¢. We can now form a new logigrder-invariant
monadic second-order logit<-inv-mso-logic), where the sentences of vocabularare the order-
invariant sentences of vocabulary {<}, and art-structureA satisfies an order-invariant sentence
if (A <) satisfiesg in the usual sense for some (and hence for all) linear ordeo$ U (A). There
is a slight ambiguity in the definition of order-invariantngences in which binary relation symbgl
we are referring to as our special “order symbol” (there mayséveral binary relation symbols ).
But we always assume that is clear from the context. Alternatively, we could viewas a “built-in”
relation symbol that is fixed once and for all and is not parmf vocabulary. However, this would be
inconvenient because we sometimes need to ttg¢ast as an ordinary relation symbol and the sentences
of <-inv-Mso-logic of vocabularyr just as ordinaryso-sentences of vocabularyJ {<}.

First-order logic (Fo-logic) andorder-invariant first-order logic(<-inv-Fo-logic) are defined by
taking all sentences ofso-logic and<-inv-mso-logic, respectively, that do not contain set variables.

2.3 Games and Types

Thequantifier rankof anmso-formula ¢, denoted by drp), is the maximum number of nested quanti-
fiers ing. For structure®\, B andg € N, we write A zgso B if A andB satisfy the sam&so-sentences
of quantifier rank at mosy. We write A zq<‘"“"MS° B if A andB satisfy the same order-invariamiso-
sentences of quantifier rank at mgst-or everyc € N, we write A ;g}gso B if A andB satisfy the same
cMmso-sentences of quantifier rank at mgsand only numbersn < ¢ are used in the modulo-counting
atoms.

It will sometimes be convenient to use versionsvdo and cMso without element variables (see,
for example,[[25]). In particular, in the context of Ehramfbt-Fraissé games. We will freely do so. We
assume that the reader is familiar with the characterizataiMso-equivalence andmso-equivalence
by Ehrenfeucht-Fraissé games (see, for examipléel [1), €8fresponding to the versions of the logics
without element variables, we use a version of the gamesentherplayers only select sets and never
elements, and a positianduces a partial isomorphisiiithe mapping between the singleton sets of the
position is a partial isomorphism. (The rules of the gamelirecthe Duplicator to answer to a singleton
set with a singleton set and to preserve the subset relpfidren apositionof the game on structures
A Bis a sequencel = (R,Qj)ic|p Of pairs (R, Qi) of subset, C U(A) andQ; € U (B). The position



is ag-move winning positiofor one of the players if this player has a winning strategytifie g-move
game starting in this position.

We also use the conceptiypes Let T be a vocabulary ang, p € N. Then for allt-structuresA and
setsPy,...,P, CU(A), themso-type of(A, Py, ..., Py) of quantifier rank gs

Py SO(APL, ..., Py) == {d(Xq,...,Xp) | ¢ is MSoO-formula with qi(¢) < qandA|= ¢ (Py,...,Pp)}.
Moreover, the class of all types ovemith respect to rankj andp free set variables is
TPYSO(1,0, p) := {tpy°°(A,PL,...,Pp) | Ais T-structurePy, ... ,P, CU(A) },

and we lettPMs°(1,q) := TPV5°(1,q,0). Forg,c € N, we say that &mso-formula hasrank at most
(g,c) if it has quantifier rank at mogt and only contains modulo-counting ato@g(X) with m < c.

Based on this notion of rank, we define theso-type tif°°(A, Py, ..., Pp), and setgp°"*°(t,q,c, p)

andTPMsO(t g, c).

Note that tifS°(A, Py,...,Py) =tpg°°(B,Qu,...,Qp) if, and only if, (R, Qi )ic[p is @g-move winning
position for the Duplicator in thmso—game orA,B. Furthermore, fop = 0 we have tR(A) = tpy(B)
if, and only if, A={*° B. Similar remarks apply tamso-types.

For a vocabulary and a binary relation symbel ¢ 1, we say that a subsetC TP¥°(tU{<},q) is
order-invariantif for all t-structuresA and all linear orders<, <’ of A we have tﬂSO(A,g) el if, and
only if, tpgﬂso(A, <) el. If l is inclusion-wise minimal order-invariant, then we calitorder-invariant
type Note that evenp € TPMS°(tU{<},q) is contained in exactly one order-invariant type, which we
denote by(8). We setrP<-™-Ms0( q) := { (0) | 6 € TPMS°(TU{<},0)}, the set of all order-invariant
types. For ar-structureA, we call the set tH™™MSO(A) := (tp}/s°(A, <)) for some and, hence, for all
linear orders ofA the order-invariant Mso-type of A of quantifier rank.glt may seem more natural to
define the order-invariant type of a structure as the setlafrdér-invariant sentences it satisfies. The
following proposition says that this would lead to an eqgléaanotion, but our version is easier to work
with, because it makes the connection between types of eddsructures and order-invariant types
more explicit.

Lemma 2.1. For all t-structure AA/, the following statements are equivalent.

1. tp<—inV—MSO(A) — tp<—inv—MSO(A/)_

2. Aq—<-inV—MSOA/ d

3. There is a sequencepA. ., A, of T-structures and linear ordersS;, </ with A= Ay, A' = A, and
(Ai—1,<i—1) =4°° (A, <{) for all i € [¢].

If A=5T"MSO A we say that sequencés;), (<i), and(<]) as in statemerifl 3 of Lemnia Pwlitness
A_< Inv MSO A/

Proof of Lemma2]1We prove each of the implications from the chaih & @) = (@) = (@).

For proving [1)=— @), suppose @'"‘"""'50 A) =tpg~ Iv-MSO(A/), Let O = tpg °°(A, <) for some
linear order< of Aand6’ := tpq<“”"'M5°(A’, <’) for some linear ordex’ of A’. Let[A] be the class of all
orderedt-structures(A”, <”) such that there is a sequenkg ..., A, of T-structures and linear orders
<j, <j such thatA = Ag andA” = A, and (A1, <i—1) =¢°° (A.,_,) for all i € [¢], and let[6] the class
of types tifs°(A”, <) for (A", <") € [A]. An easy mductlon on the lengthof the witnessing sequence
shows thaf6] C (6). Moreover,[6] is order-invariant, and thy®] = (6). Similarly, we defind6’] and
prove thai6’] = (6’). Thus[8] = [6’], and this implies[(3).

To prove [[B)— (2), just note that all structures in a witnessing sequeatisfg the same order-
invariant formulas.

Finally, to prove [2)—=- (I, suppose thah =5~ IV-MSO A/ | et @ := tpy >°(A, <) for some linear
order< of A. Then t[ﬁ V-MSO(A) = (). Letd ) := Vore(o) Por With ¢pgr := Ayco Y. Theng gy is an



order-invariantmso-sentence of quantifier rartk As (A, <) = ¢g, we have(A, <) = ¢ gy, and thusA
satisfiesp g, as a sentence ef-inv-mso. HenceA' satisfiesp ) as a sentence ef-inv-mso, and thus
(A, <') = @) for some linear ordex’ of A'. Thus there is &' € () such thaA', <') |= ¢/, which
implies tifS°(A’, <) = 6'. Hence tg "™ ™MSO(A) = (6') = (6). O

2.4 Transductions

Transductions define new structures out of a given structie usew-copying Mso-transductions as
defined in[[10], but based on the below terminology. They ate # (1) enlarge the universe of a given
structure by establishing copies of each element, (2) define relations over the newetsevifrom the
given structure, and (3) not only define a single structune alset of new structures parameterized by
adding monadic relations to the given structure.

An MsO[T, T']-transduction of width w with p parametefsr somew, p € N is defined via a finite
collectionA of mso-formulas overr U {Py,...,P,} where the relation symboR; are monadic and not
part of . A consists of a group off Mso-formulasA3 (x),... AJ(x) for defining the universe of a new

structure and for eacR € 1/ with some arityr = ar(R) a group ofw formulasASl"“’ir)(xl, ..., X) for
(i1,...,ir) € {1,...,w}". Given at-structureA andPy,...,P, CU(A), they define the universe of a
T'-structureN[A, Py, ..., Py] via

U(AA P, ..., P]) i={(ai) e U(A) x {1,...,w} | (A,PL,....Py) = AL (@)}
and for each relation symb®& € 1/ the relation

RAIAPL....Po)) == {((a,i1),..., (arir)) € U(A) x {1,....w}) | A" (ay,...,a)}.
Finally, by ranging over all possible parameteksiefines the set

for a given structuré whereA,,, o is a formula that is also part of the transduction, which leagut
the valid combinations of the given structure and parammet®oreover, for ar’-structureB, we set
A~1[B] := {t-structureA | B € A[A]}. For an elementa, i), we calli its level

Mso-transductions preserveso-definability (formally stated by Fa€t 2.2) and they can beneo
posed to form new transductions (formally stated by Eadt 2F8r a formal proof of Fadt 213, which
implies Facf 2.2, seé [10]. The facts also hold if we repldcecaurrences of1so by cmso.

Fact 2.2(Msois closed undexso-transductions) Let P be anmso-definable property of’-structures
and A an mMso[t, T']-transduction. Then the property afstructures?’ := Jgep A" 1[B] is MSO-
definable.

Fact 2.3(Mso-transductions are closed under compositidmgt A1 be anMso|[T, T']-transduction and
N2 be anmso[1’, "] for some vocabularies, 7/, 7. Then there is amso|t, T”]-transduction/ with
NA] = Ugen,n /\2[B] for everyt-structure A.

3 Lifting Definability

An ordered tree decompositiasf a structureA is a tree decomposition @ftogether with a linear order
for each bag. We represent ordered tree decompositionsdigalcstructures in the following way.
An ordered tree extensiofotx for short) of ar-structureA is a structureA* that extendsA by a tree
decomposition(TA, 8”) of A and a linear ordex?! of BA(t) for eacht € V(T#). Theadhesiorof A* is
the adhesion of the tree decompositi@f', 3*). Formally, we viewA* as a structure over the vocabulary
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" .= TU{Vs,Vr,Er,Rg,R<}, whereVs andVr are unaryEr andRg are binary, andR is ternary. Of
course we assume that none of these symbols appearslinthe 7*-structureA*, these symbols are
interpreted as follows:

Vs(A") :=U(A),

Vi (AY) 1= V(TH),

Er(AY) :=E(TA),

Rg(A") == {(t,v) [t e V(T?),ve BAt)},and

R<(A) := {(t,vww) [t € V(T?) andv,w e BA(t) with v <{ w}.

An MsoO[1, T*]-transduction\* defines an otx (of adhesion at mostdf)a 7-structureA if every
B € A*(A) is isomorphic to an otx oA (of adhesion at mogt) andA*(A) is nonempty. We say that
N\* defines otxs (of adhesion at mostik) a clasg of 7-structures ifA* defines an otx (of adhesion at
mostk) of everyA € C. Moreover,C admitsmso-definable ordered tree decompositions (of bounded
adhesion)if there is such a transductiol* that defines otxs (of adhesion at m&dbr some constant
k € N) onC. We make similar definitions for the logmso.

We prove the following theorems, which show how to use the ttecompositions and the bag
orderings to define properties of order-invariant formuléfout using order invariance.

Theorem 3.1 (Lifting theorem for <-inv-Ms0). Let C be a class of structures that admitsuso-
definable ordered tree decompositions of bounded adhe§lmm<-inv-Mso = cmsoonC.

Theorem 3.2(Lifting theorem for<-inv-Fo). LetC be a class of structures that admitso-definable
ordered tree decompositions of bounded adhesion. Thier-Fo C msoonC.

Theoreni 31l is proved in three steps: First, in Seétioh 3elmadify the given ordered tree exten-
sion, such that its tree decomposition follows a certaimrabiform that allows to partition its nodes into
two different classes (called a-nodes and b-nodes). Thigigaof the nodes along with a global partial
order that is based on the local orderings in the bags is theoded as part of the structure, turning
every otx into an expanded otx. Second, in Sedtioh 3.2, weepggpe-composition lemmas for both the
a-nodes and the b-nodes. They show how one can define theftgmeeapanded otx with respect to
total orderings that respect the already existing partidiofrom the types of substructures that arise by
adding such compatible orderings to them. Third, Se¢ii@sBows how these type-composition lem-
mas can be used in the context of order-invariance. Find#gtion 3.4 applies the type compositions
to prove Theorern 3l1. The proof of Theorem| 3.2 proceeds imaasiway. The modifications that we
need to apply to the proof of Theorém13.1 in order to prove Tém®@B.2 are mentioned along the way.

3.1 Segmented Ordered Tree Extensions

Recall that we view the tree in a tree decomposition as dicectA tree decompositiofiT, 3) of a
structureA is segmentedf the setV (T) can be partitioned into a s&} of adhesion nodeand a seV,
of bag nodega-nodesandb-nodes for short) satisfying the following conditions.

1. For all edgesu € E(T), eithert € V; andu € V,, or u € V; andt € .

2. For all a-nodes € V, and all distinct neighbors,u; € N(t), we haveB(t) = B(u1) N B(uz).

3. For all b-nodes €V, and all distinct neighbors;, u, € N(t) we haveB(t) N B (u1) # B(t) N B(u2).

4. All leaves of T are b-nodes.
We can transform an arbitrary tree decomposiiié3) into a segmented tree decompositi@’, )
as follows. In the construction, we vielvas an undirected tree. We will havéT) CV(T”). Thus we
can direct the edges df’ away from the root off, which will remain the root off . We first contract
all edgestu € E(T) with B(u) C B(t), resulting in a decompositiofi’, ) wheref’(u) Z B'(t) for all
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tue E(T’). Then, for all edgesu € E(T’), we introduce a new node,, wherev, = v, and edges
from v, to t andu. Then we identify all nodes,, andw,, such that3’(t)Ng’(u) = p'(t)nB’'(u). We

let T” be the resulting tree. The nodes from the original ffeare the b-nodes, and the nodgsare
the a-nodes. We defi® onV (T”) by g”(t) := B/(t) fort e V(T') andB” (wy) := B’ (t) N B’ (u) for all

tu e E(T'). The resulting tree decompositidii”, 3”) is segmented. This transformation is definable
by anmso-transduction. Thus we may assume that the tree decompusiti ordered tree extensions
are segmented, because there imao[T*, T*|-transductioMsegvent that transforms every otx into an
otx where the tree decomposition is segmented.

For the rest of this section, we fix a vocabularyhat does not contain the order symboland a
k € N. In the rest of this section, we only consider otxseftructures. We assume that the adhesion of
these otxs is at mo&tand their tree decomposition is segmented.

It will be convenient to introduce some additional notatidws before, whenever we denote an otx
by A*, we denote the underlying structure Ayand the tree decomposition ¥4, 3*). We denote the
descendant order in the tr&é of an otxA* by <. For every nodé € V (T#), we letT” be the subtree
of TA rooted int, that is, TA := TA[{u € V(TA) | t <Au}]. We let yA(t), called theconeof t, be the
union of all baggB”(u) for u € V(TA). If sis the parent of we let g’ (t) := BA(t) N BA(s); this is the
separator att For the rootr we leta”(r) := (. In all these notations we may omit the ind®¥ A is
clear from the context. Note that for all a-nodesf T and allu € N, (t) we haveo (t) = B(t) = o(u).

We expand an otA* to a structure\** over the vocabulary™ := 1*U{Va,Wu,Ry,Rs, S1, ..., S, <},
whereVa,, Wy are unary an®Ry, Ry, S, ..., &, = are binary relation symbols that do not appear.iiwe
let Va(A**) andV,(A*) be the sets of a-nodes and b-nodes of the Tfgaespectively, and

) ={tv) [ teVv(T ),ve a?(t)},

M= {(tv) [teV(TA),ve YAt}

We let<==A" be the partial order ob (A**) defined as follows. We first define the restriction-ofo
V(T). For all b-nodes, we let={ be the linear order oN, (t) defined byu; <{ u, if the seta(u;) C B(t)
is lexicographically smaller than or equal to the géti,) C B(t) with respect to the linear ordet; on
B(t), for all childrenuy,uz € N (t). This is indeed a linear order becausgis a linear order of(t) and
o(u) # o(up) for all distinctug,u, € N (t). Then we let the restriction of to V(T) be the reflexive
transitive closure of the “descendant ordet’™on T and all the relations; for b-nodest € V(T). To
define the restriction ok to U (A), for everyv € U (A) we lett(v) be the topmost (that i]-minimal)
nodet € V(T) such thatv € B(t). Then we letv < w if, and only if, t(v) < t(w) or t(v) = t(w) and
V =y W. To complete the definition o, we lett <vforallt e V(T) andve U(A).

Finally, we define the relationS; (A™),...,S(A*) by letting S(A™) be the set of all pairgt,v),
wheret € V(T#) andv is theith element ofo(t) with respect to the partial ordet, which is a linear
order when restricted ta(t) C B(t). Recall that we havio(t)| < k by our general assumption that the
adhesion of all otxs is at mo&t This completes the definition &*. It is easy to see that there is an
MSO[T*, T**]-transductioM\expanp that defined\™ in A*.

We call A~ an expanded otXotxx for short) of A. More generally, we call a**-structureA’ an
expanded otk there is ar-structureA such thatA’ is an otxx ofA. Let A** be an expanded otx. For
everyt ¢ V(T), we let

A" = ATTy(t) UV (Tr)], and
A= AR UNL ().
We call at**-structureA’ a sub-otxxif there is an otxxA*™ and a nodé € V (TA) with A’ = A**. The

only difference between an otxx and a sub-otxx is that in aw tte seto(r) is empty for the root
whereas in a sub-otxx it may be nonempty.



Lemma 3.3. There aremso-sentencestxxs andsub-otxx of vocabularyt™ defining the classes of all
otxx and sub-otxx (satisfying our general assumptions:tibe decomposition is segmented and has
adhesion at most k).

Proof. Straightforward. O

We will later modify an otxxA** by replacinga sub-otxxA:*, for somet € V(T4), by another sub-
otxx B**. Lett’ be the root node of the trée?. The replacement is possible if the induced substructures
A=[{t} U o”(t)] andB*[{t'} U aB(t’)] are isomorphic. If they are, there is a unique isomorphisen, b
cause{t} UoA(t) and{t'} U gB(t’) are linearly ordered by the restrictionsef™, <B”. Now replacing
A by B in A~ just means deleting all elementsW{A*) except those ifft} U g”(t), adding a dis-
joint copy of B**, and identifying the elements it} U g”(t) and{t'} U aB(t) according to the unique
isomorphism. Note that the substructurs[{t} U o”(t)] andB**[{t'} U aB(t’)] are isomorphic if the
sub-otxxsA™* and B** satisfy the same first-order sentences of quantifier rafk) ar1, where aft)
denote the maximum arity of a relation symbol in the vocatyuta To express isomorphism, we use the
relationsSy, ..., S and the fact that the root of an otxx can be defined by a formiudmantifier rank 2.
Thus in particular, if tif>°(A™) = tpy>°(B**) for someq > ar(1) + 1, we can replacé{™ by B*.

Finally, we say that a linear ordet on an otxx or sub-otx&** is compatibleif it extends the partial
order<A". If < is a compatible linear order, thé A, <) denotes tha** U {<}-expansion oA** by
this order, andA™, <) denotes the induced substructure wheris restricted to the sub-otx#¢™. We
can extend the replacement operation to such ordered egpamd otxxs; in the same way we replace a
sub-otxxA* by B**, we can replace g™, <) by (B**, <’) for some compatible linear ordet’ of B**.

3.2 Ordered Type Compositions

As all structures we are working with in this subsection asex® and sub-otxx, we denote them By
rather tharA**. Apart from that, we use the same notation as before. Inqudati if A is an otxx then by
TA we denote the tree of its tree decomposition, and for a hedé(T*), by A, we denote the sub-otxx
rooted int, and we letdq) = A[B(t) UN, (1)].

Throughout this subsection, we fixcge N such thatq > 2 andq > ar(1) + 1 andq is at least
the quantifier rank of the formulastxx andsub-otxx of Lemmal3.8. This means thatAfis an otxx
(or sub-otxx) andY an arbitraryr**-structure withA =i°° A’, thenA’ is an otxx (a sub-otxx) as well.
Furthermore, if,t’ are the root nodes &, A, respectively, then the induced substructuxgs} U a”(t)]
and A'[{t'} U o® (t')] are isomorphic. Finally, i\, A’ are otxxs and<,<’ are linear orders oA, A,
respectively, such thdi, <) zgso (A, <’) then< is compatible if, and only if<’ is compatible.

We let® := TPMSO(1** U {<},q). Furthermore, we assume tl@t= {6y,...,6n}.

Let A be an otxx,< a compatible linear order ok, andN C V(T#) (usually N = N, (t) for a
nodet € V(T#)). For alli € [m], let R be the set of all € N such that t§f5°(A,, <) = 6. We call
(Py,...,Pn) thetype partitionof N. (Note that some of thE may be empty. We always allow partitions
to have empty parts.) The following lemma extends classjqed-composition theorems [21,]14] to our
situation, where substructures are combined through lesiod

Lemma 3.4 (Ordered type composition at b-nodespr every 6 € © there is anmso[t**]-formula
b-typeg (Xy,...,Xm) such that for every otxx A, every b-node V(T#), and every compatible linear
order < of A, if (Py,...,Pn) is the type partition of N(t), then

A = b-typeg(Py,...,Py) if, and only if tpy *°(A;, <) = 6.

Proof. For 0<i < q, let®; := TP"S°(t** U {<},q—1i,i), and suppose th&@; = {61,...,6m }. Then
©p = ©® andmy = m, and we may assume thég; = 6 for all j € [m]. Letq :=1+ 3 ,(1+m). The
core of the proof is the following claim.



Claim. Let AB be otxxs and”,<B compatible linear orders of B, respectively. Let € V(T#)
and t € V(TB). Let (Poy,...,Pom,) and (Qoy,---,Qom,) be the type partitions of Nt) and N, (t'),
respectively. If

tp('\:;l’so(A(t)7 P017 ceey POnb) = tpg’SO(B(t’)v Q017 e 7Q0fT'b)7 (1)

then (A, <*) =45° (By,<B).

Proof. We shall prove that Duplicator has a winning strategy fordfraove Mso-game on(A;, <#),
(By, SB). It is crucial to note that the compatible linear orders, <B coincide with the partial orders
<A, <B of the structure#\, B when restricted ttJ (Aw)),U (By)), respectively. The reason for this is that
the restrictions o&k” <BtoU (Aw),U (By)), respectively, are linear orders, becatiaadt’ are b-nodes.
This means that the games Ry, <*), (B, <®) and onA;), B are the same.

With every sequenck = (Py,...,P,) of subsets obJ (A;) we associate a sequence

ﬁ+ = (P01>"'7P0ﬂb7P107 Plla"'>P1m1>P20> 7P(p71)mpflpp0> Ppla"‘>prT1p)

of subsets obl (Ay)) as follows:

— Ro:=RNU(Ay), foralli € [p];

— Rj isthe set oli € N (t) with 6 = tp°P(Au, <,PLNU (Ay),...,RNU(Ay)) for alli € [p], j € [m].
For every sequend® = (Qy, ..., Qp) of subsets ob) (By) we define@Jr similarly, and for every position
M= (R,Q)ic[p of themso-game on(A, <*), (By, <B) we letl™ be the position of the1so-game on
A),By) consisting oP " andQ "

Our goal is to define a strategy for Duplicator in thenove game ofiA, <*), (By, <B) such that for
every reachable positidi of length p the position* is a 1+ z?:p+1(1+ m;)-move winning position
for Duplicator in themso-game onAy),B). Such a strategy will clearly be a winning strategy. We
define the strategy inductively. For the initial empty positfy we havell} = (Poj, Qoj) jejmy)» @nd it
follows from (1) that is is &-move winning position for Duplicator in theso-game oMy, B

So suppose now we are in a position= (R, Q;)ic; and the corresponding positiéh™ is a 1+
ziq:p+1(1+ m;)-move winning position for Duplicator in theso-game oA, B. Without loss of
generality, we assume that in tip+ 1)st move of the game of, <*), (By, <B), Spoiler chooses a
setPp 1 CU(A). (The case that he chooses a@gt1 C U (By) is symmetric.)

We define the set§; fori € [p+1] andj € {0,...,m} as above. Suppose that, starting in position
N+, in the game o\, By Spoiler selects the seB, 1)0, - - -, Ppr1m,,, in the nextmp 1 + 1 moves.
Let Qp11)0;---» Qupriymps be Duplicator’s answers according to some winning strategy (M)’ be
the resulting position of theso-game o), B(y; this is a 1+ zﬁ:p+2(l+ m;)-move winning position
for Duplicator.

As the set . 1)0,- - -, Ppr1m,,, form a partition ofN, (), the setQpy1)1- - :Q(pr1m,,, form a
partition of N, (t'), because otherwise Spoiler wins in the next round of the gémeeexplains the '3+’
in the the number of moves of the game). et N, (t') and j = j(U') such that' € Q(p,4);- Then
there is at least onec P,;,, 1);; otherwise Spoiler wins in the next round of the game. jLet [m] such
thatu € Py». Then

tpq_p(Au,S,PlﬂU(Au),...,PpﬂU(Au)) = ijr, (2)
tPg—p—1(Au, <, PLNU (AY), -, Porat NU(AW)) = Bpra)j- )

Hence the typd,; is the unique “restriction” 08,1, and for allu” € Py, 1); we haveu” € Pyjr. This
implies thatu’ € Qpj/, because otherwise Spoiler wins in the next round of the gétrflows that

tqup(Bu’>§>leU(Bu’)w .- anmU (BU’)) = Bpj" (4)
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This implies that there is @t’ C U (By) with

p+l) =
6(erl)j = tpq—p—l(Bu’v <,QiNuU (Bu’)7 e 7meU (Bu’)7Ql(J;)+1))-

We letQp,1 = Q(p+1)OUUu’eN+(t’)Ql(J;)+1)- The new position ig1" := (B, Qi)icpsy- Then(N')™ =
(M*), which is a 1+ ziq:p+2(1+m)-move winning position for Duplicator in theiso-game on

A(t)7 B(t’)- N

The claim implies that §°°(A, <A) only depends on the type ofgﬁo(Am,Pl,...,Pm). Let 6
©. To define the formuld-typeg, let 8;,..., 6, be the list of all types®)’ € TPVS°(1,q,m) such that
tpiy>°(An), P1, .., Pm) = 6 implies tdf*°(A, <*) = 6. Then ti§>°(A, <*) = @ if, and only, if

l
A(t) |: \/ /\ w(Pla"'apm)~

i:]‘w(xlv“‘vxm>eei/
O

Note that the vocabulary of the formutatype in the lemma ist™* and notr*™* U {<}. It will be
important throughout the proofs of the lifting theorems &®j track of the vocabularies. The next
lemma is a similar result for a-nodes, but there is one bigihce: the formula-type we obtain has
vocabulary{<} and nott**. This means that, at least a priori, the formula is not ondeariant. For
b-nodes, the formul&-typeg does not depend on the order, because for b-no@eery compatible
linear order< coincides with= onU (A,). The proof of the lemma is a straightforward adaptation of
the proof of the previous lemma.

Lemma 3.5 (Ordered type composition at a-nodegpr every8 € © there is anmso[{<}|-formula
a-typeg (X1, ..., Xm) such that for every otxx A, every a-node V(T#), and every compatible linear
order < of A, if (Py,...,Pny) is the type partition of N(t), then

(N4 (), <) = a-typeg (P, Pr) if, and only if, i >°(A, <) = 6.

3.3 Order-Invariant Type Compositions

Recall from Sectioh 2]3 the definition of order-invariarpeyg and the characterization of order-invariant
equivalence that we gave in Lemimal2.1. We continue to adbdéhetassumptions made in the previous
subsections (otxx have segmented tree decompositionseexh at mosk, q is sufficiently large, and
TPMSO(T* U {<},q) = © = {64,...,6n}) and use the same notation.

Recall that, sinceq is sufficiently large and the class of otxxsMso-definable, ifA is an otxx and
A =}°° AthenA' is an otxx. This implies that iA zq<'i”""‘”5° A, then all structures appearing in a
sequence witnessing this equivalence (cf. Lerhmd P.1(8)pbaexs. The same is true for sub-otxxs.
However, it is not clear that all linear orders appearinguichsa witnessing sequence are compatible. In
other words, it is not clear that order invariance on otxxsa@des with invariance with respect to all
compatible orders. For this reason, we need to introduceea diquivalence relatios,, compatible-
order equivalenceFor two sub-otxxA, A, we letA =, A’ if there is a sequenchy, ..., A, of sub-otxxs
and compatible linear orders;, </ of A; such thatA = Ag andA’ = A, and (Ai_1,<j_1) zg"so (AL, <))
for all i € [¢]. Then clearlyA =, A’ impliesA ch'i”"‘MSO A, The converse holds as well, because from
an arbitrary linear order we can define a compatible linedembut this is not important for us.

Let us call a typed € © realizableif there is a sub-otx>A and a compatible linear ordet of A with
tpy >°(A, <) = 6. We call(A, <) arealizationof 6. Two typesd, 8’ € © arecompatible-order equivalent
(we write 8 =¢, 0) if there are realization§A, <) of 8 and(A’, <’) of 8’ such thatA =, A". Then=,
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is an equivalence relation on the set of realizable typesd&¥iete the equivalence class of a type ©
by (6) ., Clearly, we have®) ., C (6).

Now let A be an otxx and € V(T#). We call a se® C © compatible at tif there is a compatible
linear order< of U (A;) such tha := tp>°(A, <) € © and®’ C (0),. Note that this implies that all
6’ € © are realizable.

A coverof a setN is a sequencéPy, ..., Py) of subsets of\ such thai J; B = N. For an otxxA
and node €V (T#), we call a cove(Py,...,Py) of N, (t) compatibleif for all ue N, (t) the set{§, |i €
[m] such thau € B} is compatible at. Observe that ifPy, ..., Py) is the type partition of\ (t) with
respect to some compatible linear order, tlien. .., Py) is a compatible cover.

Lemma 3.6 (Order-invariant type composition at b-node$pr every 8 € © there is anmMso[T**]-
formulaoi-b-typeg (X, ..., Xm) such that for every otxx A, every b-nodeV (T#), and every compatible
cover(Py,...,Pn) of N.(t), the set of allf € © with Ay = oi-b-typeg(Py, ..., Pr) is compatible at t.

The idea of the proof is that within the structukg, we can quantify over the possible type partitions
of the children (they are just collections of sets) and thgriyaLemmd 3.4 to each of them individually.

Proof of Lemma3l6Let ¢ (Xy,...,Xm,Y1,...,Ym) be anmso-formula stating tha¥; C X; for all i, that
the; are mutually disjoint, and that;Y; = |U; Xi. We let

oi-b-typeg (X1, ..., Xm) := 3Y1... IVn(@ (X1, ..., Xm, Y1, ..., Ym) A b-typeg(Y1,...,Ym)) .

Let A be an otxxt € V(TA) a b-node, andPy, ..., Py) a compatible cover dfl, (). Let @' be the set of
all 8 such thath) |= oi-b-typeg(Py,...,Pm). We need to prove th@' is compatible at.

Foreveryue N, (t), let@":= {6 |i € [m] such thau € R}. As the covel(Py,...,Py) is compatible,
for all u the set®" is compatible atl. Thus there is @, € ©" and a compatible linear ordet, of A,
such thatg, = tpy°°(Ay, <y) and®" C (8,),. Let < be the (unique) compatible linear orderAfsuch
that for allu € N, (t), the restriction of< to U (A,) is <,. For everyi € [m], let Q; be the set of all
u€ N, (t) such tha, = 6. Then(Qu,...,Qm) is a partition ofN_ (t) that refines the coveP,...,Py).

Let & = tpy (A, <). By Lemmal3#, we havéy = b-typeg (Qi,...,Qm) and, thus Ay =
oi-b-typegi(Q1,...,Qm). Hence € @'

We claim that®' C (&).,. Let 8 € . We first prove thab is realizable. Since we havg) =
oi-b-typeg (P, ...,Pn), there is a partitiod @y, ..., Q},) of N (t) that refines the coveP,...,Py) such
that

A = b-typeg(Ql, -+, Q) 5)

For eactu e N, (1), let 6, := & for the unique such thati € Q{. Then§, € ©, and thus}, is realizable.
Let (A, <|,) be arealization o).

Let A’ be the sub-otxx obtained frody by simultaneously replacing the sub-ot&y by the sub-
otxx A], for all u € N, (t) (see pag€l9 for a description of the replacement operatiés)g), € O C
(Bu)co C (Bu), we haveA, =§/5° A and thus the induced substructurdgu} U o(u)] and A [{u'} U
o”i(t')], whereu is the root ofA, are isomorphic, and the replacement is possible. (We \s#l u
similar arguments about replacements below without meimtgpthem explicitly.) Let<’ be the (unique)
compatible linear order o&’ such that for all € N (t), the restriction oK’ toU (A)) is <{,. Note that
(Ago,g’) = (Ay), <), because the linear ordersand <’ both coincide with<” onU (A))- Thus by
@), Azt) = b-typeg(Q),- - -, Qfn), and by Lemma3l4, §ff°(A’, <') = 6. Thus@ is realizable.

It remains to prove thaB =, 6. For eachu € N, (t), we have tQSO(Au,gu) =6y =0 6, =
tpy *°(AL, <u). Thus there is a sequenégp, ..., Ay of sub-otxxs and for eachtwo compatible lin-
ear orders<;, </; of Ayi such thatAyo, <uo) = (Au, <u) and(Au, <uw) = (A, <[,) and

thSO(Au(i_l), S[J(i—l)) = tpglso(Auia Eui)
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for alli € [¢]. As we do not require tha; and the orders;, </; to be distinct, we may assume without
loss of generality that the sequences have the same Iérigthall u. Let A; be the structure obtained
from A; by simultaneously replacing, by A for all u € N, (t). Define linear ordersS;, <! of A; from
the orders<{“, <ui and="in the usual way. The resulting sequence of structures atet®mwitnesses
& = tpg > (A, <) =co tpy °°(A',<') = 6. To prove this, we apply Lemnia 3.4 at every step. O

Lemma 3.7(Order-invariant type composition at a-node&)r every6 € O there is ancMso|()]-formula
oi-a-typeg (X, ..., Xm) such that for every otxx A, every a-node ¥ (T#), and every compatible cover
(P1,...,Pm) of Ni(t), the set of alld € © with (N.(t)) |= oi-a-typeg(Px, ..., Pn) is compatible at t.

Here (N, (t)) denotes thé)-structure with universé\, (t). Note that, as opposed to the formula
a-typeg of Lemmd 3.5, the formulai-a-typey has an empty vocabulary. Thus, the condition expressed
by this formula no longer depends on the arbitrarily chosengatible linear order. The proof builds on
the ideas developed in the previous proofs and, in additiargially depends on the fact thatinv-mso
coincides withcmso on set structures, which only have monadic relations.

Proof of Lemm&3]7Let 6 € ©. We may view theuso-formulaa-typeg (X, ..., Xm) @s arMso-sentence
of vocabularyo := {<,Xy,...,Xm}, where we interpret th¥ as unary relation symbols. Lg‘é be the
conjunction of this sentence with a sentence saying<thiata linear order and thx; partition the uni-
verse. Then all models ¢f} are proper word structures. Letbe an upper bound for the quantifier rank
of the formulasyj, for 6’ € ©. Let=:= TP"°(0,q1), and for eaclf € =, let (£) be the order-invariant
type that containg. Now leté, ..., &, be all§ € = that containxg, and let

“V VA9

i=1&e(&) pel

Then xé is order-invariant; we may view it has the “best order-iimar approximation” ofxé. The
sentence(g is over the vocabulary of words, but is invariant with reggedhe ordering underlying the
word. In other words, it is an order-invariant formula of abalary{Xi,...,Xn} and, thus, equivalent
to aCMso-sentence(g’ over the same vocabulary! [7, Corollary 4.3].

We viewxg = XS(Xl, ..., Xm) as acmso-formula of empty vocabulary with free variabl¥s, . .. , Xm.

Let Og be the set of alb’ € © such that the following holds: there is an otA% an a-nodd’ €
V(TA), and a compatible linear order’ of A’ such tha(N, (t')) = x3(P},..., P, for the type partition
(Pf,...,Pn) of N (') and t{SC(A,, <) = 6. Then trivially, all6’ € © are realizable.

Claim 1. If ©g # (), then® is realizable andd € ©g and©g C (0),,

Proof. Let 8’ € @y. Let A’ be an otxxt’ € V(T#) an a-node<’ a compatible linear order @¥, and

(Py,...,Py) the type partition ofN, (t') such that(N. (t')) |= x3(Pi,...,Py) and tgs°(A,,<') = @'

Then(NL(t'),<’) = x3(P},...,P4). Hence there is &N, <) and a partitiorP, ..., Py of N such that
(N7 <, Pl7 ) Pm) Eq<1-inV-MSO (N-i-(t,)v Slv Pill_v ) Pr/n)

and(N,<,P,...,Pn) = Xa- Equivalently, we havéN, <) |= a-typeg (PL,. . ., Pm).

By Lemmal 2.1, there is ahe N and for 0< i < /¢ setsN;, partitions(Rz,...,Pm) of Ni, and lin-
ear orders<;, <! of N; such that(No, <o,Pos,...,Pom) = (N, < Pl, .,Pm) and (N, <),,Ps,...,Pm) =
(N+( ),S/,P/ 7Pr41) and(Ni_l,gi’_l,P(i_l>1,...,P(i_l) )= _Q1 (N|,<|,P|1, LR )

We let Al := A, andt, :=t’, and for 0<i < ¢ we build a sub- otoA as foIIows: we take a fresh
nodet;, which will be the root of the tre@” . We makeN, (tj) := N; the set of children of. The node;
will be an a-node i\, We letB” (t;) := B~ (t'). For eactu € N;, say, withu € R;, we take some/ €
Pi. Note thatP] is nonempty, becaus®; is nonempty andN;,P,...,Rm) =g°° (N4 ('), Py,...,Py).
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Then we take a cop, of A/, and identify the copy off with u and the copy oo™ (U) with the
corresponding elements B (t;) = B~ (t'). We define two compatible orders;, </ on Al that extend
the corresponding orders @ and coincide with the linear order induced by on the copies of the
sub-otxxsA/, that we used to build.

Then for 0<i < ¢, all j € [m], and allu € N;, if u € B; then (A}, <;) and (A}, </) are copies
of (A, <) for someu’ € P/, and hence {§f*°(A),, <i) = tpiS°(A,, <!) = tp{S°(A,,<’) = 6;. Since
(Ni—1, <{_1,Pi—y1,-- -5 Picym) =400 (Ni,<i,R1,...,Pm), it follows from Lemma[3.b that we have
tpySO(AT, <) = tpS°(A', <;) for all i. Moreover, as we havéNo, <o) = a-typeg(Pos,. - ., Pom),
again by Lemm&3]5 we havelffP(A°, <o) = 6.

This implies thatf is realizable and thaf =¢, 6’, or equivalently,8’ € (8),. As this holds for
all 8’ € ©g, we havedg C (0).,. We haved € Oy becaus€No, <o) = a-typeg(Po1, . .., Pom) implies
(No7 <o,Po1,-- -, Pom) lz Xs, and this impliegNo) lz Xg(POL ey POm)- J

Claim 2. Let A be an otxx, & V(TA) an a-node< a compatible linear order of A, angPy, ..., Py) the
type partition of N.(t). Then the se®; of all 6 € © with (N(t)) = x3(Py,...,Pm) is compatible at t.

Proof. Let 6 := tpgSO(A{,g). Then for all@ € ©; we haveg € ©g and thus, by Claiml16 < (6) .
As =¢, is an equivalence relation, it follows thef )., = (8) ... ThusG; C (&), and this shows that
© is compatible at. g

The rest of the proof is very similar to the proof of Lemima #Gain, we letd (Xy, ..., Xm, Y1, ..., Ym)
be anmso-formula stating that; C X for all i, that theY; are mutually disjoint, and thay, Y, = U; X.
We letoi-a-typeg (X1, ..., Xm) 1= I¥1... I (d (X, .., Xm, Y1, .. Ym) AXZ(Y1,- ., Ym)).

Let A be an otxxt € V(TA) an a-node, andP;,...,P,) a compatible cover dfl, (t). Let @' be the
set of all@ € © such thatN, (t)) = oi-a-typeg(Py, ..., Pm). We need to prove th&' is compatible at.

Foreveryu e N, (t), let@":= {6 |i € [m] such thau € R}. As the covelPy,...,Py,) is compatible,
for all u the set®" is compatible at. In particular, there is 8, € ®“ and a compatible linear ordet,
of A, such thatf, = tpgSO(Au, <u) ande C (8,),,- Let <1 be a compatible linear order #f such that
for all u € N, (t), the restriction ok toU (A,) is <. For everyi € [m], letQ; be the set of alli € N (t)
such thatd, = 6. Then(Qq,...,Qn) is the type partition oN, (t) in (A, <?), and it refines the cover
(P,...,Pm).

By Claim[2, the se®;(Qq,...,Qm) of all 6 € © such thatN, (t)) = x3(Qu,...,Qm) is compatible
att. Thus there is a typ& € ©(Q,...,Qm) and a linear ordex? of A such that t}fS°(A;, <?) = &
and ©¢(Q1,...,Qm) € (B)so AS B € 6¢(Q1,...,Qm) we have(N, (1)) = X&(Ql,-.-,Qm) and thus
(N4 (t)) = oi-a-typeg (P1,...,Pm). Thusg € ©'.

We need to prove th@' C (&), Let8 € ©'. ThenAy, |= oi-a-typeg(Py,...,Pn), and thus there is
a partition(Q,,....,Qp,) of N (t) that refines the covéP, ..., Py) such tha(N, (t)) = x3(Q), ..., Q).
Let ©(Q,,...,Q,) be the set of all’ € ® such that(N.(t)) = x5, (Q},....Q). Then we have
0 € &(Q},...,Q). By Claim[2, the se(Q],...,Qp,) is compatible at. Thus there is & €
©:(Q}, ..., Q) and a compatible linear order® of Asuch that t}fS°(A, <*) = § and®;(Q}, ..., Q) €
(&) oo

It remains to prove tha =, 6/, because thel® € 6(Q},...,Q,) C (&), = (&) For each
ue Ny(t), let 8, := tpyS°(A,, <?) and 6 := tp/>°(A,,<*). Then@, = 6 for the uniquei such that
ue Q and@), = 6 for the unique’ such thau € Q;/. As both(Q,...,Qm) and(Qj,...,Q},) refine the
cover (Py,...,Ry) and the se®" is compatible ati, we havef, =¢, 6/. Now we can form a sequence
witnessingd =, 8 from sequences witnessifg =, 6, for theu € N, (t) as in the proof of Lemna 3.6
(when we showed =, 9). O
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3.4 Proofs of the lifting theorems

Proof of Theorerh 311LetC be a class of structures over some vocabutattyat admitcmso-definable
ordered tree decompositions and gebe an<-inv-mso-formula overt. We show that there exists a
cmso-formulay, such that for every structukefrom C we haveA = ¢ if, and only if, A = ¢.

First of all, we turnA into a structuréd* that is isomorphic to an otx &. Using the theorem'’s pre-
condition, this is possible by@avso-transduction that produces otxs with bounded adhesiomguke
transformations discussed in Section| 3.1, we continuertoAti into an otx whose tree decomposition
is segmented and, then, expand it into an o&% Both transductions preserve the bounded adhesion
property. Sinceéd’s relations are still present i* and we can distinguish the elementsAiff that are
also in the original structurd from the elements that are addedAtr by the transductions, we can
rewrite ¢ to a formulag**, such that for eaclh € C we haveA |= ¢ if, and only if, A = ¢**. In
particular,¢** is still an order-invariantso-formula.

In order to test whetheA*™ = ¢** holds, we view$** as anmso[t** U {<}]-formula and test
whether (A, <) = ¢** holds for some total ordex over U (A™) compatible withA**. Using the
terminology developed in Sectidn 8.3, we ask whetheris equivalent to a formula from a realizable
type 6 of A**. Due to the order-invariance @f*, this is equivalent to asking whether each realizable
type 6 contains a formula equivalent §o™. In order to have access to a realizable typA’sf we define
a compatible set of typed; for the rootr by using acmso-formula that implements the following three
parts: (1) It existentially guesses a covyEy, ..., Py) of all nodes of the tree decomposition tiaduces
the set of type®; := {6 | i € [m witht € B} at each nodé¢ of the tree decomposition. (2) It tests
whether the induced set of types for each leaf is compatibhés is possible since leaves are always
b-nodes and the substructures induced by their bags cdntalrorderings. (3) It compares the induced
set of types of each inner notlevith the set of types that we get by applying Lemrmas 3.6 (inctme
of a b-node) o 3]7 (in the case of an a-nodes) to the c@®en N, (t),...,PnN N, (t)) of its children
N, (t).

Finally, we test whetheg** is equivalent to a formula from a tyge ©/. Overall, this results in a
cmso-formula ¢** that is equivalent t@** on A**. Since¢™ on A*™ is constructed to be equivalent to
¢ on A andcmMmso-transductions presengvso-definability, we know that there existscamso-formula
Y on T that is equivalent tg on all structures frong. O

Proof of Theorerh 312The arguments are the same as in the proof of Thebrem 3.Ipteked we need

to avoid the use oEmso-formulas. First of all, this is possible for the initial frieduction that produces
the otxA* from A since the theorem only talks abauso-definable ordered tree decompositions, not
cMmso-definable ones. Second, we need to avoid the usaisio-formulas in the order-invariant com-
positions for a-nodes. During the proof of Lemmal 3.7, wedlae an<-inv-mso-formula on colored
sets into an equivalertmso-formula. If we start with anc-inv-Fo-formula instead, then we are able
to translate it into an equivalentso-formula at this point in the proof. This follows from the fabat

FO has the same expressive power<agiv-FO on this class of structures|[1]. The resulting proof of
Theoreni 3.2 produces amso-formula instead of @mso-formula. O

4 Defining Decompositions

During the course of the present section, we Mse-transductions to extend graphs with tree decom-
positions for them. The first transduction (developed inti®a@l.1) is used to prove Theorems]5.6 and
5.7, which apply to graphs of bounded tree width. The secamtiuction (reviewed in Sectibn 4.2) is
used to prove Theorerhs 5110 and 5.11, which apply to graphetieludeks, for somel € N as a mi-
nor. The present section’s results work with graphs instéageneral structures. Thus, we set {E}
throughout the section whekEeis the (binary) edge relation symbol.
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The structures defined by the transductions are over thdutang 1+ := 1U{Vs,V1,Er,Rg} where
Vs andVr are unary, andEr andRg are binary. Atree extensiorftx for short) of a graptG = (V,E)
is a T-structureG" that extendsG by a tree decompositiofiT,3) of G. Tree decompositions are
encoded as part of txs just like they are encoded as part sfiot$ectiori B, but without including a
partial order. The below transductions turn graphs of aageitind into tree extensions of a certain
kind. In order to state the results concisely, we use theviotig terminology: whenever we talk about
the bags and separators of a tree exten€onwe refer to the bags and separators, respectively, of the
tree decompositio(T, 3) encoded byG". For a clas€ of graphs and a clas of tree extensions, we
say that aimso[1, T1]-transductiom\ defines tree extensions frafor graphs fromC if the following
holds for everyG € C: we havel) C A[G] C D and everyG"™ € A[G] is isomorphic to a tree extension
of G.

4.1 Defining Tree Decompositions into Graphs without CliqueSeparators

A cligue separatoiin a graphG is a setSC V(G), such thaiG[g is a clique (that means, there is an
edge inG between every pair of vertices frof) and there are two verticesw € V(G) \ S that are
disconnected i\ S. In this caseS separates andw. An atomis a graph without clique separators;
in particular, atoms are connected graphs. We prove thewoly lemma.

Lemma 4.1. Let ke N. There is anmso[1, T]-transduction/Aw<k that defines tree extensions for
graphs of tree width at most k where (1) the bags induce sythgr¢éhat are atoms, and (2) the separators
of the tree decompositions are cliques.

Our proof uses the graph-theoretic ideas behind a logspgogtam [13] for constructing tree de-
composition of the kind described by Lemimal4.1 and shows lodefine the construction using an
Mso-transduction. The mentioned algorithm first constructsodgoositions along small clique sepa-
rators of the graph and, then, refines the decompositiondsioytaking larger clique separators into
account. Since graphs of tree width at mlosinly contain cliques of size at most- 1, applyingk+ 1
refinement steps turns a given graph of tree width at rkasto a tree decomposition that proves the
lemma.

Formally, constructing tree decompositions via cliqueasafors of a growing size involves working
with a refined notion of atoms. Fore N, ac-clique separatois a clique separator of size at mestind
a c-atomis a graph that does not contain clique separators of sizeostanLike atoms,c-atoms are
connected by definition.

For a graphG and a constant € N, we build a graphl; whereV (T;) consists of all maximal
subgraphs ofs that arec-atoms, which are calledtom nodesand allc-clique separators, which are
calledseparator nodeslin addition, to each € V(T;) we assign a baf.(t) CV(G) as follows: ift is
an atom node, thefi;(t) is the vertex set of the corresponding atom, artdisfa separator node, then
Bc(t) is the corresponding separator. An edge is inserted betexsssy atom nodé and separator node
uwith B¢(u) C Bc(t). While T is not a tree in general, [13] proved that@fis a(c— 1)-atom forc > 1,
then(Te, Bc) is a tree decomposition fas.

Fact4.2. Letc>1and G be ac— 1)-atom. Then(T, ;) is a tree decomposition for G. Moreover,
1. atom nodes are only connected to separator nodes and visa,vamd
2. all leaves are atom nodes.

The previous fact provides us with a single step in the deoitipn refinement procedure outlined
above. We apply it in order to move from tree decompositiohese bags inducg — 1)-atoms to tree
decompositions whose bags indueatoms. This is similar to the approach of [13], which is lohea
the following construction.
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Let G be a graph an®_1) = (T(c_1),Bc—1)) @ tree decomposition @, such that for each node
t €V(T(c_1)) the bagB(t) induces a maximal subgraphs®that is a(c— 1)-atom or itinduces & — 1)-
separator. Moreover, the tree decomposition satisfieswh@toperties stated in Fdct 4.2: neighbors of
atom nodes are only separator nodes and vice versa, andadslare atom nodes. We modify the
tree decomposition into a decompositiDg, such that it still satisfies the same properties, except tha
the constant — 1 is replaced by. For each atom nod¥(t), we consider the tree decomposition
Dt = (T¢, B) of the (c— 1)-atom G[B(t)]) that we get from applying Fatt4.2. We repldceith D%
inside D(c_y) as follows: ift is the root of !, we just replace it wittDL. If t is not the root, it has a
unique parent separator nodend, in turn,u has a unique parent atom nodeWe replace with D
and connecti to the root ofDL, which is constructed as an atom node whose bag containé @{U.
Similarly, v is replaced withD¥ and the edge betweanandu is redirected such that there is an edge
to u from the highest atom node b (with respect to the root dDy) that contains all of3(u), which
is unique. The following fact follows from_[13]. The argumerabout the shape of the decomposition
directly follow from the construction.

Fact 4.3. Let G, D_y), and the constructed £be defined as in the previous paragraph. Thenda
tree decomposition for G. Moreover, inD

1. atom nodes are only connected to separator nodes and visa,vand

2. all leaves are atom nodes.

The final proof of Lemma4]1 shows how the construction of Bagtan be done by anso-trans-
duction. It also needs to turn a given graph, which can plsbib disconnected, into a tree decompo-
sition whose bags induce the connected components of thl.g&ince this is a special case that is not
covered by the above constructions, we first prove it segigratn the context ofvso-definable tree
decompositions, we use the concept of tree extensionsdér tw do that, we use the following conven-
tion: when we say that the bags of a tree decomposition (eraxéension) are-atoms, we mean that
the subgraphs induced by the bags@edoms. We frequently use the fact that there isigo-formula
for each of the following properties of vertex subséts” V of a given graptG: V' is a cligue separator,
V' is ac-clique separator for some fixed, but arbitracys N, G|V'] is an atomG[V'] is ac-atom for
some fixed, but arbitrary € N.

Lemma 4.4. There is armso|[T, T*]-transduction\comp that defines for every graph G a tree extension
whose tree decomposition

1. has a single node with an empty bag (representing the empéarater), and

2. for each component of G exactly one node whose bag equalsties et of it.

Proof. The main idea is to guess, via parameters, a set of vertidbe gfraph whose copies in the tree
extension represent the atoms and separators in the destimpothe ternrepresenthints to the fact
that we are able to define the vertex set of the correspondorg ar separator in amso-definable
way from the atom node or separator node, respectively. fEmsduction\comp has three parameters
ROOTy, ATOMg, andCLIQUEg and three levels: Level 1 contains copies of the verticeh@fariginal
graphG, level 2 contains the atom nodes of the decomposition, aradl 8econtains the separator nodes
of the decomposition.

First of all, the formulay,, o tests whether the parameters are chosen in a way that alievadtter
formulas to define the tree extension from them. It ensureddtiowing properties:ROOTy contains
exactly one vertex that we call in the following,ROOToUATOMg contain exactly one vertex from each
connected component &, andCLIQUEy contains exactly one vertex that we callwith v, € ATOMg.
Thus, V. is used to both represent an atom and to represent the urdgaeasor in the construction.

For eachv € ROOTo U ATOMy, the transduction defing3(v,2) to be the vertex set of the connected
component in whiclv lies. Moreover, we sg8(vc, 3) := (). We create an edge betwegn, 3) and each
(v,2) for v e ATOMq. Moreover, edges are oriented away from the kot O
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We are now ready to prove Lemrhald.1. The remaining difficudtytfie proof lies in defining the
construction of Fadt 413 in amso-definable way, which involves defining the construction a€t4.2
simultaneously for all atom nodes.

Proof of Lemma 4]1We first turn a given graph into a tree decomposition whose bag the graph’s
connected components usifgomp from Lemma4.4. Next, we refine this decompositiof 1 times
using Mso-transductions that implement the construction from Ea8t 4inally, the lemma follows
sincemso-transductions are closed under composition.

Letc> 1 andG™ be a tree extension with a tree decompositiong) = (Tc_1),Bc_1)) as de-
scribed above. In order taso-define the construction of F4ct%.3, we useveso[T ", T"|-transduction
N¢, which transforms tree extensions into tree extensionmil&ito the transduction of the proof of
Lemma 4.4, it has three parameters, but this time they aledaaboT;, ATOM(, andCLIQUE.. More-
over, it has three levels: to level 1 we copy the vertex sehefunderlying graph and decomposition
nodes whose bags are not refined, level 2 contains newlyrootest atom nodes, and level 3 contains
newly constructed separator nodes. The parameters haatisfy £ertain properties similar to the ones
in the proof of Lemma 414, but they are more involved due toftflewing reasons. First, we need to
make sure that all atoms can be refined simultaneously. 8egeanneed to make sure that each new
atom node represents a unique atom. In the proof of Lemnéad.dannected components, which are
0-atoms, are disjoint and, thus, it was possible to choosataxfrom each component. In the case of
c-atoms forc > 1, a vertex can be part of multiple atoms. In order to work adbthis problem, we
utilize the tree-like partial order that is given by the depmsition with respect to the chosen root.

We start with the existing tree extensi@’ and consider where it needs to be modified. Since
Ac[GT] will be a refinement o5+ where new separator nodes are added, but existing sepacates
do not change, all of the separator nodes prese@ttican be copied to level 1 directly without mod-
ification. On the other hand, the atom node<Gih are refined if they contain eclique separator, so
altogether the formuldy; (t) is satisfied only for somee V(T): either ift is a separator node, that
means, wher@(t) induces a clique of size up t or otherwise if the size oB(t) is larger tharc and
there is nac-cligue separator. This effectively removes exactly thateen nodes which havecclique
separator and which we thus need to decompose further. Wedgfi, such thaRg(t) = B(t) because
we do not want the bags of these copied nodes to change, aifdrlsinthe edges between any pair of
copied nodes,t remain the same, so we defihérl(s,t) to be satisfied precisely {5,t) € E(T).

As a reminder, the indices of the formulas in a transductipecgy a level for each of its free
variables — so as an example for a binary relation likethe formulax\éf(v, w) being satisfied for two
concrete verticea = v andb = wwould mean that the vertéa, 2) (the copy ofa on level 2) is connected
to the vertex b, 3) (the copy ofb on level 3) in the tre@ defined by the transduction. The transduction
then constructs the relatidér by taking the union over all satisfying assignments?\gf(v,w) for all
pairs of levelq, j.

Next, we define the new atom and separator nodes, as well atinmectivity to the foresD
resulting from the described removal of atom nodes and theident edges fronT. Lett € V(T) be
an atom node that is deleted and &et= G[B(t)], which contains at least oreeclique separator. We
define a partial tree decompositi@q of A; into c-atoms, and then show holy is reinserted into the
forestD in place of the deleted node We keep in mind tha# is a (c— 1)-atom and, thus, free of
any clique separators up to size- 1. Like in the construction of Fatt 4.3, the root atom nodeaafhe
decompositiorD; is chosen so that it contains tlie= 3(s) wheres s the parent separator nodetah
T. If tis itself the root ofT and thus has no parent, then consi@et () in the following.

Parameters of the transduction and their validity properties. We describe the properties of the
parameters verified b¥y..,0. They are used to single out a unique vertexGof for eachc-atom and
eachc-clique separator, as well as a uniguatom assigned to the root of each partial tree decompnsitio
D; with the property describe above.
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The parameterROOT, contains exactly one vertex for eactatom that includes e-clique separator.
We aim to find some& € A, NROOT; as the unique root vertex of @atom A;. Sincer is supposed
to represent the root node 2) of T; that is later connected to the parent separator rsoafet when
reinserting the partial tree decompositibpinto the foresD, the root atom has to contain the cligGe
in its own bag. There are potentially multiple atoms thais$athis property. If we consider the tree
decomposition from Fa€i 4.2 on the subgrahthen the set of-atoms containing the cliqué form
a subtree (due to the cover and connectedness conditiory éfesndecomposition). The leaves of this
subtree are-atoms which contain at least one vertethat is not present in any of the othesatoms
from A; that include all ofC. Note that this either immediately implies that eitmeg C, or there is
just a single candidate-atom, in which case we may freely pick ar¢ C. This suffices as a unique
identifier of the rootc-atom of A;, because then any othefatom containing cannot contain all o€.

An Mso-formula can ensure that for eaéh— 1)-atom A, that is decomposed furthexpOT. contains

a single root vertex from the described candidates for tiiis Sincer ¢ C, the respective can only
appear in bags in the subtreeTobelowt. So ifr appeared again in the root of a differént- 1)-atom
that gets decomposed further, it would necessarily be irb#geof the separator node just above that
(c—1)-atom, a contradiction. So there is a one-to-one correspwalbetweeric — 1)-atomsA; that
get decomposed further and the verticesROOT;. This showsR0OOT. has the desired properties for all
A simultaneously on all o&.

For the otherc-atom representatives we utilize the fact that ¢hbddiques between any two-atoms
in A; can be linearly ordered. To see this, remember the conistnuof the tree decomposition from
Fact[4.2. In particular, for any vertexc A; outside of the root-atom, we can define theclique
separatofS closest to v compared to the root atomthe sense thad separates a vertex of the root atom
of A; from v, but no otherc-clique S separates a vertex of the root atom from botind a vertex of.
We define ammso-formula closest-clique-separator®(v, S), which is satisfied exactly for verticasand
c-cliquesSthat satisfy this property. Note that this formula workshglty on all of G, because the
root vertexr of eachA; an be retrieved from the parametoOT.. So for eactt-atomA within A, we
define the (nonempty) s&h of vertices of this atom which are not in its closestlique separator. For
different c-atoms, these sets are distinct — since an overlap would thearthis vertex would appear
in the c-clique separator between them, which is then a closerelggparator for one of theatoms,

a contradiction. Via the parametaroM., we guess a single vertex dh for eachc-atom. AnmMso-
formula can verify that conversely, no two verticessobMm are in the same s@&h. This establishes the
one-to-one correspondence of evarg ATOM. to the setZa and thus, the non-roatatomsA in all of
G. Remember that the root atoms are already covered abore 0Y.

To define representatives for the separator nodés wfe make the following observation: in the tree
decomposition, each separator node will have at least ame mbde as its child. Consequently, we use
the representative of a child atom nodes also as the repatiserof its closest-clique separator towards
the root vertex. This overlap explains why we use separate levels for atahsaparator nodes. We use
the parametecLIQUE, to guess these representatives, and have to only werifyue. C ATOMg, that
no two vertices ircLIQUE. have the same closestlique separator, and that for eacklique separator
S some vertew € CLIQUE, exists that has$ as its closest separator. This guarantees the one-to-one
correspondence afclique separators and verticesdniQUE. not just forA;, but for all of G.

Defining the construction of Fact[4.2. We follow the construction of the decompositions from
Fac{4.2. We define the formulg. (v) such that it is satisfied exactly for the vertises ROOT.UATOM(,
and)\\ﬁT (v) such that it is defined exactly for the vertioes CLIQUE.. The properties of these parameters
as discussed above can be definesi go.

We now know that for a separator no@e3) created in this way, the clique separator it represents is
the closest-clique separato$ towards the unique roate ROOT. N A, which we can extract using the
formulamso- formula closest-clique-separator®(v, S) and thus seRg (v, 3) = Sby defining the formula
A31(v,x) such that it is satisfied exactly farc S. Conversely, for an atom node, 2) created this way,
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we extract the-atomA it represents by finding the closestlique separato&towardsr. The atomA is
then the set of vertices which either hawas its closest-clique separator, which means they are in the
setZa defined above, or which are itself & We can then definBg(v,3) = A similarly to above. This
sets up the bags of the separator and atom nodes to be exectgttof vertices of the clique separator
(and respectively, atom) which they represent.

Finally, we define the edges between node3;inRemember that the construction from Haci 4.2
connects an atom and a separator node if the bag of the sapaoaie is completely contained in the
bag of the atom node. We only have to define this as a direateddecomposition rooted in the atom
node(r, 2) of A for the unique root representatives A; N ROOT.

We use the formula\é’T2 to express that there is an edge from a separator uo8¢to an atom node
(v,2) precisely if the vertices andv have the same closestlique separatos, which is unique. Then
by the above, the bag 96, 3) is precisely this separat&and thisSis completely contained in the bag
of (v,2), so the desired property is satisfied. Similarly, we use dinm[ﬂla)\éf’ to express that there is
an edge from an atom node 2) to a separator nodg, 3) precisely if the bag ofu,3) is completely
contained in the bag dfv,2), but they do not have the same closesfique separato6. Thus, we
constructed a tree decompositibpas described in Fact 4.2.

Defining the construction of Fact[4.8. We now move from the view of the single — 1)-atom
A and its tree decompositiof to the global view on all ofc". If we stopped defining the rest of
the transduction here, the decomposition graph would notiadéorestD together with all partial tree
decomposition®; for removed(c— 1)-atom nodes. It remains to define how this forest is merged back
together into a single tree decomposition.

Lett be a deletedc— 1)-atom node and; the newly constructed tree of the partial decomposition
D; into c-atoms on the bagy := G[B(t)]. Further lets be the parent of in T, which is a separator
node. We use the formul?eEl’T2 to define the edges frosto the root ofT; and thereby reattach the partial

tree decompositions at the appropriate position)@%(s, u) is satisfied ifsis a separator node with a
deleted child nodey € ROOT;, and(s) is the closest-clique separator ai since this means precisely
that the nod€u, 2) has the root atom db; as its bag.

For the formulas?\él, finding the correct point of attachment is a bit more invdlvéf t had no
child nodes, there is nothing to reattach. Otherwise we t@eensider all former child nodes, ..., s,
of the deleted nodg each of which is a separator node according to Eact 4.2. &fhaitteir bags is a
clique, and we would thus receive a valid tree decompositiare connected eacl; to an atom node
tj of T such thaiB(sj) C B(t;) for all j € [n]. Following the construction of Fact 4.3, to find a unique
connection point, we take a closer look at the potentiala®bf the compatible atom nodes for a node
sj: due to the connectedness property, the set of nod&svimich contain all of3(s;) is connected.
This means that there is a unique atom ngde this tree which lies closest to the root®f Moreover,
because the set of nodes that include the cli§(8) is connected iffy, this node can be found mso
by asking for a node whose bag inclug&s; ), but whose parent node ik does not includgs(s;j). We
can thus definééf(t,s) to be satisfied precisely #= s; andt =t hold, which ismso-definable. This
concludes the reintegration @f and finishes the description of thveso-transduction that implements
the construction of Fagi4.3. O

4.2 Defining Tree Decompositions into 3-Connected Componen

A graphG is k-connectedf |G| > k and G has no separatd® C V(G) of size|S < k. Courcelle [[8]
showed that one can usiso-transductions to define tree decompositions into 3-cdedezomponents.
We formulate this result with respect to the notion of treeergions as Fatt 4.5.

Fact 4.5. There is anmso-transduction/Asz.comp that defines tree extensions whose torsos (1) are 3-
connected, cycles, a single edge, or a single vertex, argerators have size at most 2 for all graphs.
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The torsos of the tree decomposition produced by [Fatt 4.&8yahinduce topological subgraphs; a
topological subgraph Gof a graphG arises by taking a subgraph Gfand replacing some paths with
edges. Later we use this insight since whenever a géaghhes not contain a certain graphas a minor,
then this also holds for each of its topological subgrapimsour applicationH equalsKsz, for some
/e N.

5 Defining Orderings

In the previous section, we have seen how to define tree dexsitigms along clique separators and
discussed how to define tree decompositions into 3-conmhextmponents. In the present section we
further define total orders for the bags of these decompasitivhenever our graphs have bounded tree
width or exclude &3 ,-minor for somef. The latter covers planar graphs since they exclude thermino
Kss.

5.1 Orderings Definable in Monadic Second-Order Logic

Our bag orderings are based on applying the following refiBlumensath and Courcellel[2]. In order
to state it formally, we introduce some terminology. lrebe a vocabulary that does not contain the
binary relation symboK. We say that amso|t, T U {<}]-transductiom\ defines orderingsn a clas€

of t-structures if the following holds for eveie C: A(A) # () and everyB € A(A) is an expansion oA
with a binary relation<® that is a linear order af (B). A classC of graphs has theounded separability
property if there is a functios: N — N, such that for all graph& € C and vertex set§C V(G), the
number of components @ \ Sis bounded byf (|S). The below fact refers taso-logic on graphs;

it is defined by takinguso-logic on graphs and extend it with the ability to quantifyeosubsets of a
graph’s edges [16].

Fact 5.1. LetC be a class of graphs with bounded separability that excliiesas a minor for some
£ € N. There is acsotransduction\orper-serthat defines total orderings an

SinceGsologic collapses tanso-logic on every class of graphs that exclude a fixed minbrif9] (
fact, this applies to the more general class of uniforkagparse graphs, but we do not need them for
our proofs), and neither bounded tree width graphs noKteminor-free graphs contain all complete
bipartite minors, the fact has the following corollary.

Corollary 5.2. LetC be a class of graphs with bounded separability that exclutiesas a minor for
somel € N. There is armso-transduction\orpersep that defines total orderings an

5.2 Defining Orderings in the Bounded Tree Width Case

In general, it is not possible to totally order atoms of baeohéree width inmso or, even,cmso. An
example being a graph made uptygycles of lengtm each connected to two universal verticesand

Up, but without an edge between andu,. Graphs of this kind have bounded tree width and are atoms,
but cmso is not able to define a total ordering on the graph’s verti¢eghe following we show how

to preprocess given graphs, such that the resulting atonmotae of the above kind. In particular, the
preprocessing ensures that the two universal verticesiallove example have an edge between them
and, thus, the considered graph is no longer an atom.

Given a graphG, its improved version Gis the graph with vertex s&t(G') :=V(G) and (v,w) €
E(G’) holds for every two distinct verticegw € V(G') if, and only if, (v,w) € E(G) or there are
tw(G) + 1 internally disjoint paths betweerandw in G. Computing the improved version of a graph is
commonly part of algorithms that construct tree decomjmsst[20]. Pairs of vertices with t4G) + 1
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internally-disjoint paths between them always lie in a camrbag in every tree decomposition. Thus,
connecting pairs with this property with an edge does nohgbahe tree decompositions of the graph
and, moreover, it simplifies the task of constructing treeodgpositions by producing a graph that is
closer to embeddings intotrees fork = tw(G) than the original graph. Theso-transduction of the
below proposition is based on defining a constant nunmber]l, of disjoint paths between pairs of
vertices of the graph. This can be done by udirgl set variables where each set colors the vertices of
a single path that does not share vertices with other paths.

Proposition 5.3. Let ke N. There is anmso-transduction/\,yprove that defines the improved version
for every graph of tree width at most k.

Since Mso-transductions are closed under composition, we contioueark with the improved
version of the graph instead of the original input graph.

The main reason behind the non-definability of total ordgsim the above example lies in the fact
that there is an unbounded number of subgraphs connectedhoother via a small separator. This is
not possible if we look at the bags of decomposed improvephgra

Lemma 5.4. LetC be a class of graphs of bounded tree width that are improveddaaoms. Thed has
the bounded separability property.

Proof. Let G € C andk :=tw(G). Let SC V(G), and letG;,...,Gy be the components @&\ S We
shall prove than < (') -k+ 1 holds.

Without loss of generality we assume that 2. For everyi € [n], letS be the set of neighbors &
in S. AsGis an atom§ is not a clique inG. Thus there are,v € § such thafu,v} ¢ E(G). SinceG is
improved, we have,,v € § for at mostk indicesi € [n]. As there are(‘g‘) pairs{u,v} C S this implies
n< (i¥)kand, thus, the above inequality holds. O

We get the following from combining Lemnia 5.4 with FAcf]5.1.

Corollary 5.5. LetC be a class of graphs of bounded tree width that are improvetdaoms. There is
an Mmso-transduction\orper 1w that defines a total ordering for every &C.

Using the definable decompositions from the previous sectial the just developed definable or-
derings, we can prove the results about bounded tree width anv-mso as well as<-inv-Fo.

Theorem 5.6. LetC be a class of graphs with bounded tree width. Thenv-Mso = cmsoonC.

Proof. We show thatC admitsmso-definable (hencemso-definable) ordered tree decompositions of
bounded adhesion. This proves the theorem by applying €n#8rl, the lifting theorem fot-inv-mso.
Let k be a tree width bound for the graphs fra@m Instead of directly working with the structuig
we work with its Gaifman grapl&’ = G(A), which has the same tree decompositions andds-
definable inA. We start to define the improved versi@ in G using themso-transduction\yprove
from Propositiof 513. Next, we apply the transductibrof Lemmal4.1 toG’, which defines a tree
extensionG*. The bags of the tree decomposition underlying the treensida induce subgraphs that
are atoms, and all adhesion sets are cliques. Skared, hence, als@’ has tree widthk and graphs
of tree width at mosk only contain cliques of size at molst+ 1, this implies a bounded adhesion (the
adhesion is bounded - 1). In order to obtain an otx, we need to add total orderingséch bag. The
bags of the tree decomposition obtained so far induce atowhssinceG' is an improved graph, these
atoms are improved, too. That means, we can now use the @@ rperw from Corollary[5.5

to obtain a total ordering for a given bag. In order to defirdedngs for all bags at the same time, we
utilize the decomposition’s bounded adhesion in the falhgamvay. Transductiom\orperTw Orders a
single bag by using a collection of set parameters, whiclvertex colorings from which we can define

22



the ordering. If we now want to order different neighboriragb at the same time, these vertex colorings
might interfere in a way that makes it impossible to recartgtan ordering.

We can do the following: as our (improved) graph has treeiwadtmost, it has coloring number
at mostk+ 1, and thus we can first guess a profle# 1)-coloring where no two adjacent vertices have
the same color. In particular, this implies that for eachesilin seSthat occurs, all elements &have
different colors, because they are cliques. This gives uayatasimultaneously get a linear order of all
adhesion sets by just fixing an order on tlhet 1) colors. Let us call thék + 1)-colors we used this
way ouradhesion colors

Now we guess a collection of colors that we would like to usertier the bags at the atom nodes.
(The bags at separator nodes are just adhesion sets andrdaay ardered by the adhesion colors.) We
globally guess a suitable collection of colors. Let us dehhbag colors Within each bad of the tree,
we ignore the colors in the adhesion (upward) adhesiofs aatl instead consider all extensions of the
coloring of the remaining nodes that lead to a linear ordéh@bag. There is only a bounded number of
such extensions, and as the adhesiorss&tinearly ordered, we can use the lexicographically sesall
of these extensions to define the order. O

Theorem 5.7. LetC be a class of graphs with bounded tree width. Thenv-Fo C msoonC.

Proof. We use the proof of Theorem 5.6, but apply Theotem 3.2, thieditheorem for<-inv-rFo,
instead of Theorenh_3.1, the lifting theorem fotinv-mso. O

5.3 Defining Orderings in theK3 ,-Minor-Free Case

Like in the previous section, we want to apply 5.1 to defotal orderings, but this time use it for
graphs that are 3-connected and do not corgjinas a minor for somé € N.

Lemma 5.8. LetC be a class of 3-connected graphs that exclude; g#dinor for some/ € N. ThenC
has the bounded separability property.

Proof. Let G be a 3-connected graph that does not cortajnfor some/ € N as a minor anéC V(G)

with k=|9. Now letGgy, ..., G, be the components &\ S. If k< 2, thenn < 1 sinceG is 3-connected.

If k> 3, 3-connectedness implies that every component is comhéatat least 3 vertices @ For the
sake of contradiction, assume> E('g) Then there exists a subsebf Swith T = 3 that is connected to

at least/ components. By deleting everything excé&pand these components as well as contracting the
components we produce the mirtdg,. Since this is not possible, we hamec E(g) and hence bounded
separability. O

Corollary 5.9. LetC be a class of 3-connected graphs that exclude aiikinor for some’ € N. There
is anMmso-transduction\orperminor that defines a total ordering for every &C.

Combining the decompositions from the previous sectiomh wie ordering from Corollary 5.9, we
can prove the following.

Theorem 5.10.LetC be a class of graphs that exclude Kas a minor for soméc N. Then<-inv-mMso =
cMsoonc.

Proof. The proof is similar to the proof of Theordm b.6, except thatneed to use different transduc-
tions to define the tree decomposition and the ordering btgs. Everything else remains the same
since we still work with tree decompositions that have a lleagnadhesion (in this case, the maximum
adhesion is 2) and apply the lifting theorem fotinv-mso. For constructing a tree decomposition of
bounded adhesion, we use 4.5. For constructing therbdagrays, we follow the arguments from
Theoreni 5.6, but apply Corollaky 5.9 to the torsos of the degmmsition combined with the observation
that graphs that exclude a minor can be properly colored avithunded number of colors. O
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Theorem 5.11.LetC be a class of graphs that excludg Kas a minor for somé € N. Then<-inv-Fo C
mMsoonC.

Proof. Similar to the idea in the proof of Theordmb.7. We take thepad Theoren 5.70, but use the
lifting theorem for<-inv-Fo instead of the lifting theorem fot-inv-Mso. O

6 Conclusions

We proved two lifting definability theorems, which show thilaa classC of structures admitsso-
definable ordered tree extensions, thkeimv-mMmso = cMsoand<-inv-FO C Mso onC. Using the lifting
theorems in conjunction with definable tree decompositems definable bag orderings, we were able
to show that<-inv-Mso = cMsSO and <-inv-FO C MSO hold for every class of graphs (and structures)
of bounded tree width and every class of graphs (and stesjtthat excludé&s, for somel € N as a
minor. The latter covers planar graphs.

Seeing the wide range of applications of the lifting theaeinseems promising to apply or extend
them in order to handle every graph class defined by excludiimgrs in future works. Moreover, an
interesting question is whether theinv-Fo C Mso in Theorem 3.2 can be turned into an equality;
possibly by using a logic more restrictive thaeuso.
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