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Abstract

A non-deterministic recursion scheme recognizes a lareyoég-
nite trees. This very expressive model can simulate, amtmgrs
higher-order pushdown automata with collapse. We showdded
ity of the diagonal problem for schemes. This result has rs¢ve
interesting consequences. In particular, it gives an #lgaorthat
computes the downward closure of languages of words rezedni
by schemes. In turn, this has immediate application to sdjldy
problems and reachability analysis of concurrent systems.

1. Introduction

The diagonal problenis a decision problem with a number of in-
teresting algorithmic consequences. It is a central suibpno for
computing the downward closure of languages of words [29], a
well as for the problem of separability by piecewise-telgdan-
guages [11]. It is used in deciding reachability of a certgpe of
parameterized concurrent systems [25]. In its originanfadation
over finite words, the problem asks, for a given set of letieesd

a given language of words, whether for every number there is a
word in L where every letter fronX occurs at least times. In this
paper, we study a generalization of the diagonal problemafior
guages of finite trees recognized by non-deterministicédriginder
recursion schemes.

Higher-order recursion schememre algorithmically manage-
able abstractions of higher-order programs. Higher-ofelatures
are now present in most mainstream languages like Javé& dapt
Python, or C++. Higher-order schemes, or, equivalently)pby
typed lambda-calculus with a fixpoint combinator, are a falism
that can faithfully model the control flow in higher-ordepgrams.
In this paper, we consider non-deterministic higher-ordeursion
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schemes as recognizers of languages of finite trees. Inwtrels
we consider higher-order Ol grammars [12, 21]. This is amesq
sive formalism covering many other models such as indexachgr
mars [2], ordered multi-pushdown automata [5], or the mare-g
eral higher-order pushdown automata with collapse [17]4tfo
the equivalent model of ordered tree-pushdown automaja [7]

Our main result is a procedure for solving the diagonal bl
for higher-order schemes. This is a missing ingredient t@iob
several new decidability results for this model. It is wialewn
that schemes have a decidable emptiness problem [23], aad it
be shown that they are closed under rational linear trarisohsg
and in particular they form a full trio when restricted to feni
word languages. In this context, a result by Zetzsche [2%ilsn
computability of thedownward closureof languages of words
recognized by higher-order schemes. Moreover, a receuit t®s
Czerwinski, Martens, van Rooijen, and Zeitoun [10] estdiiat
the separability by piecewise testable languageslecidable for
languages recognized by higher-order schemes. Finalliird t
example comes from La Torre, Muscholl, and Walukiewicz [25]
showing how to use downward closures to decide reachalaility
parameterized asynchronous shared-memory concurretgnsys
where every process is a higher-order scheme.

While the examples above show that the diagonal problem is
intimately connected to downward closurethe computation of
the downward closure is an important problem in its own right
The downward closure of a language offers an effective atistn
thereof. Since the subword relation is a well quasi-ord8t,[the
downward closure of a language is always a regular language d
termined by a finite set of forbidden patterns. This abswads
thus particularly interesting for complex languages, likese not
having a semilinear Parikh image. While the downward clessir
always regular, it is not always possible to effectively stonct a fi-
nite automaton for it. This is obviously the case for classi¢is un-
decidable emptiness (since the downward closure presempst-
ness), but it is also the case for relatively better behalastes for
which the emptiness problem is decidable, such as ChurelsdéRo
languages [13], and lossy channel systems [22].

The problem of computing the downward closure of a language
has attracted a considerable attention recently. Earlyiteeshow
how to compute it for context-free languages [9, 26] (cf.oals
[4]), for Petri-net languages [14], for stacked counteroadta
[28], and context-free FIFO rewriting systems and-systems [1].
More recently, Zetzsche [27] has given an algorithm for ksdke
grammars, or equivalently for second-order pushdown aatam
Hague, Kochems, and Ong [16] have made an important further
advance by showing how to compute the downward closure of

11n fact, the diagonal problem, separability by piecewisgatele languages,
and computing the downward closure are inter-reduciblduiibtrios [11].
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the language of pushdown automata of arbitrary order. Ia thi
paper, we complete the picture by giving an algorithm forrtture
general model of higher-order pushdown automata with pséa
[17]. We use the fact that these automata recognize the sas® ¢
of languages as higher-order recursion schemes, and wewitbrk
the latter model instead.

Let us briefly outline our approach. While are mainly inter-
ested in higher-order recursion schemes (HORSes) gemgrati
nite words, for technical reasons we also need to consideowa
trees, i.e., trees with a bounded number of paths. In thisole f
low an idea of Hague et al. [16] who have used this technique fo
higher-order pushdown automata (without collapse). FooRS
S and a set of letters, the diagonal problem asks whether for ev-
eryn € N there is a tree generated 8yin which every letter from
Y appears at least times. Our goal is an algorithm solving this
problem. WhensS is of order0, we have a regular grammar, for
which the diagonal problem can be solved by direct inspector
higher orders, apply a transformation that decreases ther dy
one. The order is decreased in two steps. First, we ensuréhtha
HORS generates only narrow trees: we construct a HOR®f
the same order a$, generating only narrow trees and such that the
diagonal problems faf andS’ are equivalent. Then, in the narrow
HORSS’ we lower the order by one: we create a HOR'Sthat is
of order smaller by one tha&’ (but no longer narrow), and such
that the diagonal problems f&' andS” are equivalent.

While narrowing the HORS s relatively easy to achieve, the
main technical difficulty is order reduction. This point isopably
better explained in terms of higher-order pushdown autamiét
a higher-order pushdown automaton of ordeaccepts with an
empty stack then an accepting computation has no choiceobut t
pop out levelrn stacks one by one. In other words, for every config-
uration the level return points are easily predictable. Using this
we can eliminate them obtaining an automaton of ordet. When
we allow the collapse operation the situation changes cerelgt
a configuration may have arbitrary many leveteturn points, and
different computations may use different return points.

In this paper we prefer to use HORSes rather than higher-orde
pushdown automata with collapse. Our solution resembkestie
from [3], where a word-generating HORS is turned into a tree-
generating HORS of order lower by one, whose frontier laggua
(the language of words written from left to right in the leayés
exactly the language of the original word-generating HOR&ur
narrow trees were of width one (i.e., word-generating), weld
just invoke [3], since their transformation preserves irtipalar
the cardinality of the produced letters. While in generainged to
handle narrow trees instead of words (a more general inpatith
[3]), we only prove that our construction preserves the nemus
their occurrences (and not their order, thus having a regegtker
than in [3]). While the two results are thus formally incomgale,
it is worth remarking that our construction does actuallgsarve
the order of symbols belonging to the same branch of the warro
tree.

After some preliminaries in Section 2, we state formally our

sic sorto using a binary operation». Thuso is a sort, and if
«, 8 are sorts, so isx — 3. The order of a sort is defined by:
ord(o) = 0, andord(a — ) = max(1 + ord(a), ord(B)). By
convention,— associates to the right, i.ex, - 8 — ~ is under-
stood asx — (8 — =). Every sorta can be uniquely written as
al —as — ... > an —o0.Thesorto — -+ = 0 = awithr
occurrences of is denotech” — «, whereo® — v is simply .

The set oftermsis defined inductively as follows. For each sort
« there is a countable set vériablesz®, y*, ... and a countable
set ofnonterminalsA®, B<,...; all of them are terms of sott.
There is also a countable setleftersa, b, . . . ; out of a lettera and
a sorta of order at most one can create symbole® that is a term
of sorta. Moreover, if K and L are terms of sortx — 3 anda,
respectively, thetiX L)? is a term of sor3. Fora = (0" — o)
we often shortem™ to «”, and we call therank of a”. Moreover,
we omit the sort annotation of variables, nonterminals,eoms,
but note that each of them is implicitly assigned a particsiat.
We also omit some parentheses when writing terms and denote
(...(KL1)...Lp)simplybyKL; ...Ly,. Atermis callecclosed
if it uses no variables.

We deviate here from usual definitions in the detail thattstt
itself are unranked, and thus out of a single letene may create
a symbola” for every rankr. This is convenient for us, as during
the transformations of HORSes described in Sections 4 and 5 w
need to change the rank of tree nodes, without changing their
labels. Notice, however, that in terms a letter is used adweith a
particular rank.

A higher-order recursion schem@ORS for short) is a pair
S = (Ainit, R), whereA,;; is theinitial nonterminalthat is of sort
o, andR is a finite set of rules of the for~ z{* ... 2* — K°
wherea = a1 — - — ax — o andK is a term that uses only
variables from the seftz{?, ...,z * }. The order ofS is defined as
the highest order of a nonterminal for which there is a rul§.ikiVe
write R(S) to denote the set of rules of a HORSS Observe that
our schemes amon-deterministién the sense thaR (S) can have
many rules with the same nonterminal on the left side. A sehem
with at most one rule for each nonterminal is caltederministic

Let us now describe the dynamics of HORSes. Substitution is
defined as expected:

A[M/z] = A,

yM/z] =yify # =,

We shall use the substitution only what is closed, so there is no
need to perform-conversion. We also allow simultaneous substi-
tutions: we writeK [M1 /x4, . .., My /z] to denote the simultane-
ous substitution of\/y, ..., M), respectively forzq, ..., zr. We
notice that when the term¥/; are closed, this amounts to apply the
substitutiongM; /x;] (with s € {1, ..., k}) in any order.

A HORSS defines a reduction relatior s on closed terms:

(Azi ... 2 = K) € R(S)
AMl . Mg —s K[Ml/ml,...7Mk/:ck]

a"[M/z] =a", x[M/x] = M,

(K L)[M/a] = K[M/x] L]M/x].

main result and some of its consequences in Section 3. The res
of the paper is devoted to the proof. In Section 4, we present a
transformation of a scheme to a narrow one that preservesdie,

and in Section 5 we present the reduction of a narrow scheme to
a scheme of a smaller order (but not necessarily narrow) Bot
reductions preserve the diagonal problem. Finally, iniSed, we
conclude with some further considerations.

K, —s K forsomel € {1,...,r} K; = K. foralli #1
a" K ... K—sd Ky ... K.

We thus apply some of the rules &f to one of the outermost
nonterminals in the term.

We are interested in finite trees generated by HORSes. Adlose
term L of sorto is atreeif it does not contain any nonterminal. A
HORS S generatesa treeL from a termK if K —%5 L; when
we do not mention the terfd’ we mean generating from the initial
nonterminal ofS. Since a scheme may have more than one rule
for some nonterminals, it may generate more than one treeaWe

2. Preliminaries

Higher-order recursion schemes. We use the name “sort” in-
stead of “simple type” or “type” to avoid confusion with thgoes
introduced later. The set abrtsis constructed from a unique ba-

2 2018/4/23



view a HORS of ordef essentially as a finite tree automaton, thus
a HORS of ordef generates a regular language of finite trees.
Let A be a finite set of symbols of rarik(called alsonullary
symbols). A treek is A-narrowif it has exactly|A| leaves, each of
them labeled by a different symbol froth. A HORS is calledA-
narrow if it generates onlyA-narrow trees, and it is calletarrow
if itis A-narrow for someA. We are particularly interested if-
narrow HORSes fofA| = 1; trees generated by them consist of a
single branch and thus can be seen as words.

Transductions. A (bottom-up, nondeterministidjnite tree trans-
ducer(FTT) is a tupled = (Q,Qr, d), whereQ is a finite set of
control statesR » C Q is the set of final states, ardds a finite set
of transitions of the form

a” (p1,z1) ... (pryxr) — g, ¢t OF

p,x1 — q,t (e-transition)

wherea is a letter,p, ¢, p1, ..., pr are statesgs, ..., z, are vari-
ables of sorb, andt is a term built of variables froniz1, ..., zx}
({z1}, respectively) and symbols, but no nonterminals. An EAT
defines in a natural way a binary relati@r{.4) on trees [8]. We say
that an FTT idinear if no termt¢ on the right of transitions contains
more than one occurrence of the same variable.

finite words, or, in our terminology{eo}-narrow HORSes, where
% is a nullary symbol acting as an end-marker.

Corollary 3.2. There is an algorithm that given afe”}-narrow
HORSS computes a regular expression for the downward closure
of the language generated I8y

Proof. By Corollary 2.2, word languages generated by schemes
are closed under rational transductions. In this case, rEhe@®.1
together with a result of Zetzsche [27] can be used to contpete
downward closure of a language generated by aHORS. O

Piecewise testable languages of words are boolean combina-
tions of languages of the form*a1X*as ... X ar X" for some
ai,...,ar € 2. Such languages talk about possible orders of
occurrences of letters. The problem of separability by gigse
testable languages asks, for two given languages of woltkther
there is a piecewise testable language of words contaimadam-
guage and disjoint from the other. A separating languageiges
a simple explanation of the disjointness of the two langadge].

Corollary 3.3. There is an algorithm that given twia" }-narrow
HORSes decides whether there is a piecewise testable lgagua
separating the languages of the two HORSes.

We show that HORSes are closed under linear transductions.

The construction relies on the reflection operation [6], idev to
detect unproductive subtrees.

Theorem 2.1. HORSes are effectively closed under linear tree
transductions.

A family of word languages isfall trio if it is effectively closed
under rational (word) transductions. Since rational tdgaicsions on
words are a special case of linear tree transductions, vegnothte
following corollary of Theorem 2.1.

Corollary 2.2. Languages of finite words recognized by HORSes
form a full trio.

3. The Main Result
We formulate the main result and state some of its conseggenc

Definition 3.1 (Diagonal problem) For a higher-order recursion
schemeS, and a set of letterEL, the predicateDiagy, (S) holds
if for everyn € N there is a treet generated byS with at least
n occurrences of every letter fromi. The diagonal problenfor
schemes is to decide whethBfag, (S) holds for a given scheme
S and a set.

Theorem 3.1. The diagonal problem for higher-order recursion
schemes is decidable.

Proof. The proof is by induction on the order of a HOBSIt relies

on results from the next two sections dfhas ordel, thenS can

be converted to an equivalent finite automaton on trees, fachw
the diagonal problem can be solved by direct inspection.S~of
order greater thaf, we first convertS to a narrow HORSS such
that Diagy,(S) holds iff Diags(S’) holds (Theorem 4.1). Then,
we employ the construction from Section 5 and obtain a HORS
S" of order smaller byl than the order of5’. By Lemmata 5.1
and 5.2:Diags,(S’) holds iff Diag(S”) holds. O

The main theorem allows to solve some other problems for
higher-order schemes. Thdownward closureof a language of
words is the set of its (scattered) subwords. Since the stthres
lation is a well quasi-order [18], the downward closure of &am-
guage of words is regular. The main theorem implies that thene
ward closure can be computed for HORSes generating languadge

Proof. This is an immediate consequence of a result of Czerwihski
et al. [11] who show that for any class of languages effelgtive
closed under rational transductions, the problem reducsslving

the diagonal problem. a

The final example concerns deciding reachability in paramet
ized asynchronous shared-memory systems [15]. In this hooge
instance of a process, called leader, communicates witnaeter-
mined number of instances of another process, called toitbri
The communication is implemented by common registers oghwhi
the processes can perform read and write operations; hovopes-
ations of the kind of test-and-set are not possible. Thehadaility
problem asks if for some number of instances of the conwitthie
system has a run writing a designated value to a register.

Corollary 3.4. The reachability problem for parameterized asyn-
chronous shared-memory systems is decidable for systeere wh
leaders and contributors are given Ky° }-narrow HORSes.

Proof. La Torre et al. [25] show how to use the downward closure
of the language of the leader to reduce the reachabilitylpnob
for a parameterized system to the reachability problem Her t
contributor. Being a full trio is sufficient for this reduati to work.

|

4. Narrowing the HORS

The first step in our proof of Theorem 3.1 is to convert a scheme
to a narrow scheme. The property of being narrow is essential
the second step, as lowering the order of a scheme works only f
narrow schemes. This approach through narrowing has besh us
by Hague et al. [16] for higher-order pushdown automataektder
deal with recursion schemes, which are equivalent to highaer
pushdown automata with collapse.

The idea behind narrowing is quite intuitive. Consider aabyn
tree, and suppose that we are interested in the number of-occu
rences of a certain letter, that may appear only in leaves. Con-
sider a path that, at each node, selects the subtree cowgtdhe
larger number of:’s, and let’s label the node by if the succes-
sor of the node that is not on the path has:dabeled descendant.
Then, if the original tree had occurrences of, then on the se-
lected path we put betweéog n andn labelsa. The lower bound
holds since, whenever a subtree is selected, at most hdleafs
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is discarded (on the other subtree), and this happens a mwhbe
times equal to the number afs on the resulting path. This obser-
vation implies it suffices to convert a scheSigenerating trees to a
schemeS’ generating all paths (words) in the trees generatef by
with the additional labeling. The®iag ,,(S) will be equivalent
to Dlag{a} (S,).

The general situation is a bit more complicated since we are
interested in the diagonal problem not just for a singletetiut for
a set of letterst. In this case, different letters may have different
witnessing paths, s&’ should generate not a single path but a
narrow tree whose number of paths is boundedbtjy

Theorem 4.1. For a HORSS and a set of letters:, one can
construct a set of nullary symbols of size|3| and a A-narrow
HORSS' of the same order a8, such thatDiagy,(S) holds if, and
only if, Diag(S’) holds.

Proof. We start by assuming tha uses only symbols of rank
and0, where additionally letters frork appear only in leaves. The
general situation can be easily reduced to this one, by aqply
tree transduction that replaces every node by a small fragoie
tree built of binary symbols, with the original label in afea

Then, we consider a linear bottom-up transdudeirom trees
produced byS to narrow trees. As labels in the resulting trees we
use:(i) new leaf symbols\ = {ef, ..., ey}, (ii) unary symbols
a' for all ¢ € X, and (iii) new auxiliary symbols* (of rank
k > 1). For each set of letterB C ¥, A contains a state?
making sure that each letter frafhoccurs at least once in the input
tree. Moreover, for each nonempty set of leaf lab&lsC A, A
contains a statpa. that outputs onlyA’-narrow trees. The final
state of A is pa. Transitions are as follows:

(Branch) a” (pa,, 1) (pay, T2) — PA,UA,, @ T1 T2,
(Leaf)
(Choose)  a” (pay, 1) (pr, x2) — pay,ai(--- (ai 71)),
(Choose)  a” (pf,x1) (pay, 2) — Pag, ai(--- (aix2)).

whereA; and A, aredisjoint subsets ofA, wherei; < --- < i,
and wherel' = {a1,...,ax} C X. Intuitively, rules of types
(Branch) and (Leaf) make sure that we output narrow trees, an
rules of types (Choosgselect a branch and output (only) letters
that appear at least once in the discarded subtree. $fawseck
that each letter ih" occurs at least once, as follows:

(Check)
(Check)

The set7 (pr)({t}) is either a single leaf ofi, depending on
whether¢ satisfies the condition or not. The choicedjfon the
right side of the transitions is notimportant, since, inway states
pi are used, it only matters whether the input can be succéssful
parsed, and not what the output actually is.

It is clear that the image of stage\: is always a language of
A’-narrow trees. Correctness follows from the following wiai

0 k
a ? p{ei1,4.4,eik}7. €ip «-. Cipy

o o 2
a’2 (pF1 ) 1’1) (pf‘gy 1’2) — pi"lurgy 6(1)

0 ? 0
a ? P{a}: €1

Claim. Lett be an input tree. Then,(i) if has at leastn occur-
rences of every letter € X, then7 (A)(t) contains a tree with at
leastlog n occurrences of every letter € X, and (ii) if 7(A)(¢)
contains a tree with at least occurrences of every letter € X,
thent has at least: occurrences of every letterc 3.

To conclude the proof, Iéf’ be the transductioff (.A) realized
by A. By Theorem 2.1, there exists a HOBSof the same order as
Swith £(S') = T(L(S)). First, itis clear tha’(S') is a language
of A-narrow trees. Second, thanks to the claim abd¥ayg,, (S)
holds if, and only if,Diags (S’) holds. |

5. Lowering the Order

Let S be aA-narrow HORS of ordek > 1, and letX be a finite
set of letters. The goal of this section is to construct a HGR6f
orderk — 1 s.t. Diagy(S) holds if and only ifDiag (S’) holds.

Let o be a fresh letter, not used &, and not inX. We will use
it to label auxiliary nodes of trees generateddjyWe say that two
treesK;, K, areequivalentif, for each lettera # e, they have
the same number of occurrenceszoflhe resulting HORS' will
have the property that for every tree generatedShthere exists
an equivalent tree generated Y, and for every tree generated
by &’ there exists an equivalent tree generatedSbyhen surely
Diagy (S) holds if and only ifDiags,(S’) holds.

Let us explain the idea of lowering the order of a scheme on two
simple examples. Consider the following transformationsorts
that removes arguments of sort

74
B = (vd)

We have that the order of | is max(0, ord(a) — 1).

Very roughly our construction will take a scheme and produce
a scheme of a lower order by changing every nonterminal efesor
to a nonterminal of soik |. This is achieved by outputting immedi-
ately arguments of sortinstead of passing them to nonterminals.

if 8 =o,

ol=o0, and (B—7)l= { otherwise.

Example 1. Consider the scheme

S — Fe, Fz—ux, Faz— F(b'z).
This scheme generates words of the faiih)”e’. It can be trans-

formed to an equivalent scheme:

F' - /02

F/

S — o? F'— o

F’ - ~ eo ~N
where we have used a graphical notation for terms; in standar
notation the first rule would b8’ — 2 F’ €. Now bothb and

e are used with rank; we have also used auxiliary symbefsand

. Observe that the new scheme has smaller order as the sorts of
S’ and F’ areo. The new scheme is equivalent to the initial one
since a derivation ofb*)"e® can be matched by the derivation of a
tree with one® andb® appearing: times:

Example 2. Let us now look at a more complicated example. This
time we take the following scheme of ord&r

S — Fb' e, Fgxz —a' (F(Bg)(c' ),
Bgz —b'(gx).

Fgx —gu,

Hereg has sorto — o, andx has sorto. This scheme generates
words of the form(a®)™(b')" " (c')™e’. We transform it into a
scheme of ordet:

’ 2 YA ’

S — A F'g—>g
F'p° el
F/ g/ N .3 B/ g/ N .2
] ~ ~
a® F’ (B'F P b° g
The latter scheme generates trees of the form:
2018/4/23
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The intuition behind the above two examples is as follows.
Consider some closed ter& of sorto, and its subterni. of sort
o. In a tree generated hi(, the termL will be used to generate
some subtrees. Take a tree whérgenerates exactly subtrees.
Then we can create a new term starting with a symiiol': in
the first subtree we puk with L replaced bye’, and in thek
remaining subtrees we piit From this new term we can generate
a tree similar to the initial one: the subtrees generated.tgre
moved closer to the root, but the multisets of letters appgan
the tree do not change. We do this with every subterm of sort
on the right hand side of every rule 6% In the obtained system,
whenever an argument has sotthen it ise. Because of this, we
can just drop arguments of sert This is what our translation |
on sorts does, and this is what happens in the two example® abo
Since the original schemes from the two examples generatetsyw
and all arguments were eventually used to generate a supfeord
every subterm of sou the multiplication factok was alwaysl.

The crucial part of this argument was the information on the
number of timesl will be used inK. This is the main technical
problem we need to address. We propose a special type system f
tracking the use of closures of sartlt will non-deterministically

foreachi € {1,...,k} s.t. {A7? ..., A7"} are pairwise disjoint
andA, U- - -UAy is separated. Let us emphasize thafor a; = o
can only contain pairgS, 7) with .S # (. We fix some (arbitrary)
order< on elements o7 for every sorto.

Types do not describe all the possible trees generated logna te
but rather restrict the generating power of a term. Intaljiva
labeled typd So, r) assigned to a closed term of sorsays that we
are interested in generating trees that S¢enarrow. A functional
type (So, A — 7) says that the term becomes of ty@ 7) when
taking an argument that will be used only with labeled typesf
A. Here,S equalsSy plus the symbols; U - - - U S, generated by
an argument of typa& = {(S1,71),..., (Sk, Tk) }-

A type environment’ is a set of bindings of variables of the
form z® : X\, wherel € L£7“; we may have multiple bindings
% A,...,xz% : N\, for the same variable (which we also
abbreviate as™ : {A1,...,An}), however{\,..., \,} must
be separated in the sense abovetype judgments of the form
T'F M : X\ where agaim\ € LT <.

The rules of the type system are given in Figure Hekivation
is a tree whose nodes are labeled by type judgments coresiruct
according to the rules of the type system (we draw a pareptbel
its children, unlikely the usual convention for trees). Bw proof
it will be convenient to assume that a derivation is an ordlere
tree: in the application rule the premise withis the first sibling
followed by the premises with/ ordered using our fixed ordering
on (S;, ), without repetitions. We say thd® is a derivation for
T'+ M : A, orthatD derivesI" = M : X, if this type judgment
labels the root ofD. All the nodes of derivations are required to
be labeled by valid type judgments, thus all the restriction

guess the number of usages, and then enforce derivatiohs thatypes from the definition of stay in force: in particular, in the

conform to this guess. The reason why sucfinéde type system
can exist is thasS is Xp-narrow, which, in turn, implies thak can
be used to generate at m¢S | subtrees of a tree.

In the sequel we assume w.l.0.g. thatSrthe only rule from
the initial nonterminal isA;..; — Ae ... ef, (for some non-
terminal A) where A = {ef,..., ¢, }, and no other rule uses
a nullary symbol nor the initial nonterminal;,;:. To ensure this
condition, we perform the following simple transformatiohthe
HORS. Every ruleBz1 ...z, — K in R(S) is replaced by
Byi ... yjaj21 ... xx — K', whereK' is obtained by replac-
ing in K every use of a symbal? € A by y;, and every use of
a nullary symbol not being i\ by an arbitraryy; (this symbol
anyway does not appear in any tree generatedlyand every
use of a nonterminal’ by C'y1 ... y|a| (the sort of every nonter-
minal is changed from to o/®! — «). Additionally a new rule
A — A€l ... 6(\)A\ is added, wherél,,,;; is a fresh nonterminal
that becomes initial, and is the nonterminal that was initial previ-
ously. It is easy to see that this transformation does natghéhe
set of generated trees. It also does not increase the ondeg, ia
this section we assume th&thas order at least

5.1 Type System

We now present a type system whose main purpose is to track

nullary symbols that eventually will end as leaves of a getest
tree. The type of a term will say which nullary symbols areatty
present in the term and which will come from each of its arguisie
For every sorte = (a1 — --+ — ar — o) we define the
set 7 of typesof sort « and the setC7“ of labeled typesof
sort by induction ona. Labeled types inC7® are just pairs
(S,7) € P(A) x T, where ifa = o we require thatS # 0. The
support of a seh of labeled types is the subs&t? of its elements
(S,7) € Awith S # (. A set of labeled typed is separatedf
there are no two distingtS, 7) and (S, 7’) in A s.t. SN .S" # 0.
Types inT < are of the formA; — --- — Ax — r, wherer is a
distinguished type corresponding to sort\; is a subset of2 7 *

application rule forL M, the setsS, .. ., Sk are disjoint.

5.2 Transformation

Once we have the type system, we can show how the HORS
transformed into the HORS'.

A term of typer will be transformed into a term of sott (7).
This sort is defined by induction on the structurerpés follows:

e tr(r) = o,and

eif 7 = (A = 7') € TP with A = {(S1,71) < ...
(Sk, %)}, then we have

tr(r) = {

We see that iff € 7%, thenord(tr(7)) = max(0, ord(a) — 1).
This translation is a refined version of the translatio on sorts
that we have seen earlier in the examples.

The nonterminals of’ will be the nonterminals of labeled
with types. For every nonterminal from S, of some sorty, and for
everyr such that(), 7) € LT, in S’ we consider a nonterminal
Al, of sorttr(r). Moreover, for every variable used inS, being
of some soriv # o, and for everyl = (S,7) € LT%,in S’ we
consider a variable [, of sortir(r).

Before defining the rules @’, we need to explain how to trans-
form terms to match the transformation on types. This ti@msa-
tion is guided by derivations. We define a tetn{D), whereD is
a derivation fol" - K : A, as follows:

<

tr(mi) — - — tr(mg) — tr(7)
tr(7')

if a# o,

if a=o.

o If K = a" is a symbol, thertr(D) = a°.

o If K = z“ is a variable, thertr(D) = o if o
tr(D) = x|, otherwise.

e If K = Ais anonterminal, them-(D) = A[_ provided that
A= (0,7).

o, and
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r>1

Dyz:Abkxz: A r-A: (0,7

' L:(So,{(S1,71),--.,(Sk,Tk)} — 7)

r'+a’: ({a°},r) TEa: (0,{(S1,r)} — -

'+ M:(S;,m)foreachi € {1,...,k}

= {(Sr 1)} =)

provided thatSo N (S1 U --- U Sk) =0

FFLM:(S()US&U“'US]WT)

Figure 1. Type system for tracing nullary symbols in a term

F'kg:(@,{(e,r)} =r) Tkz:(er)
'kgx:(er)
b (ga): (er)

T : (0, {(e,r)} =)

Figure 2. An example derivation

e Suppose thalkl’ = L M is an application. Then ifv we have a
subtreeD, derivingl' - L : (So, A — 7), whereA = {1 <
-++ < A}, and for each € {1, ..., k} a subtreeD; deriving
I' B M : A If the sort of M is o, then we takeir(D) =
tr(Do); otherwisetr(D) = tr(Do) tr(D1) ... tr(Dg).

We notice that for\ = (.S, 7) the sort oftr(D) is indeedtr ().

We see that arguments of serare ignored while transforming
an application. Because of that, we need to collect thetretle
transformation for all those subtrees of the derivation tlescribe
terms of sorb. This is realized by ther ..., operation that returns
a list of terms of sorb. When D is a derivation for a term of
sort «, and subtrees oD starting in the children of the root are
Ds,..., Dy, then

troum (D) = tr(D); treum(D1); ... treum(Dm)  if = o,
eum Tl treum(D1); -t cum (Dm) otherwise.
For a list Ry;...; Ry of terms of sorto, let us define the term

merge(Ry1;...; Ri) ase® Ry ... Ry. Finally, for a substitution
n, and a list of termdist we write list[n] for the list where the
substitution is performed on every term of the.

Example 3. To see an example of such a translation take the term
b' (g x) that is on the right side of the rule f@ in Example 2. For
readability of types, we writée, r) instead of({e’}, r). We take

an environment’ = z : (e,r), g : (0, {(e,r)} — r) and consider
the derivation presented in Figure 2. Calling this derivatD, we
havetr(D) = b° andtr cum (D) = b%; gl (g {(c.r)} ey @ - FinaAIlY,
merge(treum (D)) = o3 b° 9@, {(er)—r) o’ is the (slightly per-
turbed) result of the transformation of the rule #rin Example 2.

The new HORSS' is created as follows. The ruld;,;; —
Aefl ... e)s from the initial nonterminal ofS is replaced by
Ainit — merge(Ary;ed;.. .;e?A‘) wherery = {({e}}, 1)} —

- {({e?A‘},r)} — r. For every other rule of of the form
A%zt . xp® — K we create arule s’ for every derivation of
K. More precisely, for eache {1, ..., k} consider the (separated)
set of labeled typed; = {X\i1 < -+ < Aijn; }, Wherel; ; =
(Ss,5,7,5) for everyi, j. For every derivatiorD of the formz; :

1y..03 Tk Ak F K (Uie{l,.“,k} Uje{l,.“,ni} Sm,r) we
create a rule
ArX7 ... X — merge(treum (D)),

wherer = (Ay — -+ —» Ay — r) € T%, andX; denotes
zily,, -~ @ily, , if a; # o, and the empty sequence of variables
if a; =o(forie{1,...,k}).

The correctness of the transformation is described by the fo
lowing two lemmata, which are proved in the next two subsesti

Their statements refer to the notion of equivalence intcedwat the
beginning of this section.

Lemma 5.1 (Soundness) For every tree generated h§’ there
exists an equivalent tree generated$y

Lemma 5.2 (Completeness)For every tree generated hy there
exists an equivalent tree generated$y

5.3 Soundness

To prove Lemma 5.1, we follow a sequence of reductions'of
and we construct corresponding reductions ofVe however need
to assume that the sequence of reductions'ins leftmost. We
write P —, P’ to denote that this is thieftmostreduction: in
o* P, ... P, we can reduce insid®; only when inPy, ..., P;_,
there are no more nonterminals. Not surprisingly, the coflexduc-
tions does not influence the final result, as stated in theviitg
lemma.

Lemma 5.3. Suppose that a tre@ can be reached from a terid
using some sequence of reductionsSaf Then@ can be reached
from P using a sequence of reductions&fof the same length in
which all reductions are leftmost.

We need to generalize the definition of equivalence fromstree
to (lists of) terms of sorb possibly containing nonterminals. We
say that two lists of terms of sastaremerge-equivalentf one can
be obtained from the other by:

e permuting its elements,

e adding or removing the® term,

¢ merging/unmerging some list elements using the syrabol
The following property ofmerge-equivalentlists should be clear.

Lemma 5.4. Let list and list’ be twomerge-equivalent lists of
terms of sorb. Suppose that a tre@ can be generated hy’ from
merge(list). Then some tre€’ equivalent taQ can be generated
by S’ from merge(list’) using a sequence of reductions of the same
length.

The next lemma contains an important observation, needed la
in the proof of Lemma 5.6.

Lemma 5.5. If D derivest K : (0, 7), thentr .um (D) is empty.

Proof. By induction on the structure ab. Recall thatC7° does
not contain pairs with) on the first coordinate, so the sort of
K is not o, and thusir....(D) is defined as the concatenation
of treum(-) for the subtrees oD starting in the children of the
root. WhenD consists of a single node, we immediately have
that ¢rcum (D) is empty. OtherwiseK L M, and the sub-
trees of D starting in the children of the root arB, deriving

F L : (So,{(S1,71),...,(Sk,7x)} — 7) and D; deriving

F M : (S;,7;) fori € {1,...,k}. Since) = Sp U --- U Sk,
we haveS; = ) for every: € {0, ..., k}. The induction assump-
tion implies thatir .. (D;) is empty for evenyi € {0, ..., k}, and
thustr cum (D) is empty. |
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Before relating reductions in the HORSes, we analyze what \; = (T3, 0;) for every:i € {1,...,k}. When some; is such

happens during a substitution.

Lemma 5.6. Consider a derivationDg for I' = KX : (S, 7).

Suppose all bindings for a variable®= inT" are (x : A\1),...,(z:

Ak), whered; < -+ < g, and({A1,...,\} — r)is atypein
T<=7°. Suppose also that we have a closed tévit¥ with, for

everyi = 1,...,k, aderivationD; for = N : \;. Then there is
a derivationD’ for T = K[N/z] : (S, 7) such thattrcyn (D’) is

merge-equivalent tar cum (Dk ) [1]; t7 cum (Diy ); - - - 5 t7 cum (Diy, )
wheren = (tr(D1)/xly,,...,tr(Dx)/zly, ), andiy < - <

im are those among € {1,...,k} for which in Dk there is
a node labeled by = x : \;. Moreover, ifax # o then

tr(D') = tr(Dic)[1.

Proof. Induction on the structure . We consider three cases.

The trivial case is whet is a nonterminal, or a symbol, or a
variable other tham. Then K[N/x] = K, so asD’ we can take
Dx. Notice that we haven = 0 and that the substitution does
not change neithetrc...(Dx) nor tr(Dx) since variablese,,
do not appear in these terms.

Another easy case is whed = z, and thus(S, ) = X, for
somel € {1,...,k}. We havem = 1, andi; = [, andK[N/z] =
N. The required derivatio®’ is obtained fromD, by prepending
the type judgment in every its node by the type environniént
Clearly D’ remains a valid derivation, ang(D') = tr(D;) and
treum(D’) = treum(Dy). We see thatr ..., (Dx) is either the
empty list (whenax # o) or ¢° (Whenax = o), so attaching
tr.um (Dx)[n] does not change the classmtrge-equivalence. If
ak # o, we havelr(Dk)[n] =y, [n] = tr(D).

A more involved case is whel = L* M*™. Then in
Dk, below its root, we have a subtreg, deriving’ - L :
(So0,{(S1,71),..-,(Sn, ™)} — 7), and foreacly € {1,...,n}

a subtree”; derivingI' = M : (S;, 7;), where(S1,71) < -+ <
(Sn,Tn),@andSo N (S1U---US,) =0, andS = SoU--- U Sp.
We apply the induction assumption to all these subtreeajriby a
derivationCj for T' = L[N/z] : (So, {(S1,71),--+,(Sn,Tn)} —
7) and for eacty € {1,...,n} aderivationC; for I' - M[N/x] :
(Sj,7;). We compose these derivations into a single derivafién
forI' = K[N/z] : (S, 7) using the application rule. It remains to
prove the required equalities abautt...., andir.

Let us first see thatr(D') = ¢r(Dx)[n] (notonly if ax # o,
but also ifax = o). From the induction assumption we know
that tr(Cy) = ¢r(Co)[n], as surelyar, # o. If anr = o, we
simply havetr(D') = tr(C}) andtr(Dgk) = tr(Co), so clearly
tr(D’) tr(Dg)[n] holds. If aps # o, from the induction
assumption we also know that(C}) = tr(Cj)[n] for every
Jj € {1,...,n}; we havetr(D’) tr(Co) tr(CY) ... tr(Cy)
and similarlytr(Dx) = tr(Co) tr(Cy) ... tr(Cr), SO we also
obtaintr(D’) = tr(Dk)[n).

Next, we prove thattr..(D’) is merge-equivalent to the
list trcum (Dx)[n]; trcum (D, ); - - -5 treum(Di,, ). FoOr eachj €
{0,...,n}, letij1 < --- < i;m,; bethose amonge {1,...,k}
for which in C; there is a node labeled By - = : A;. By def-
inition ¢rcum (D') consists oftreun,(C;) for j € {0,...,n},
and if ax o then also oftr(D’). Similarly, ¢rcum(Dxk)[n]
consists oftr cum (Co)[n]; - - - ; treum (Cn) 0], and oftr(Dx ) [n)] if
ak = o. We have already shown that(D’) = tr(Dxk)[n]. The
induction assumption implies that c.m (C}) is merge-equivalent
10 47 cum (C5) )5 treum (Dij 1 )5 - - -5 trcum(Dijym].) for eachj €
{0,...,n}. It remains to observe that the concatenation of the
lists trcum(Dij,l);...;trcum(Dij,mj) for j € {0,...,n} is
merge-equivalent totr cum (Ds, ); - . - 5t cum (Ds,, ). By definition
everyi;; equals to some&;; and everyi; equals to some; ;;
the only question is about duplicates on these lists. Let rit®e w

that7;, = 0, then the listtrcum (D;,) is empty (Lemma 5.5), so
anyway we do not have to care about duplicates. On the otinek; ha
whenT;, # (¢ and a node labeled by - « : \;, appears in some
Cj, thenT;, C S;. Since the sets),..., S, are disjoint, such
node appears iv'; only for onej, and thus suchy equals to only
one among the; ;/’s. O

We can now formulate and prove the key lemma of this section,
allowing us to simulate a single step8f by a single step of.

Lemma5.7. Let D be a derivation fot- L : (S,r), whereL does
not contain the initial nonterminal &8. If merge (trcum (D)) —>g,

P, then there exists a tery’ and a derivationD’ for - L’ : (S, r)
such thatl, —s L’ and trcum (D’) is merge-equivalent toP.

Proof. We proceed by induction on the structurelof

Suppose first thal = a" M7 ... M, (where surelyr > 1).
Then D starts with a sequence of application rules followed
by a single-node derivation for " : (0,{(S1,r)} — -+ —
{(Sr,r)} — r), and by derivation®; for = M; : (S;,r), for
eachi € {1,...,r}. In particular,Sy, . . ., S, are disjoint and their
union isS. It holds thattr cum (D) = (a%; trcum (D1); . . . ; t7 cum (D).
The reductionmerge (tr cum (D)) —>g, P concerns one of terms
on one of the liststrcum(D;), and thus we can writeP?
merge(a®; list}; . .. ; list).), where for somd € {1,...,r} we
have merge (tr cum(D1)) —>g, merge(list;), and tr cum (D;)
list, for i # 1. We apply the induction assumption fd;, ob-
taining a termM; and a derivationD; for - M| (Si,r)
such thatM; —s M| and thattr ..., (D]) is merge-equivalent

to list;. Taking D; = D; and M] = M, for i # [, and
L' = a"M{ ... M, we haveL —s L’. Out of a node la-
beled byt a" : (0, {(S1,r)} = -+ = {(Sr,r)} — r) and

of derivationsD) for i € {1,...,r} we compose a derivation
D', using the application rule times. We haveir ... (D’)
(@®; tr cum (D) . . .5 17 cum (D2)), and thustr cum (D) is merge-
equivalent taP.

The remaining possibility is thdt = A N** ... N.*. ThenD
starts with a sequence of application rules ending in a singte
derivation for= A : (B, 7) with7 = {X11,.. ., Ainy } = .o, —
{Ak,15- -+, Akyny, + — 1, andin derivationd; ; for N; : \; 5, for
eachi € {1,...,k},j € {1,...,n;}. Suppose\;;1 < --- < Ain,
for everyi € {1,...,k}, and\;; = (Si;,7,;) for everyi,j.
Since we consider the leftmost reduction @krge (trcum (D)),
it necessarily concerns its pamt(D) (which is the first term in
the listtrc.m (D)), that consists of the nonterminall _ to which
some of the termsr(D; ;) are applied (namely, terms:(D; ;)
for thoses for which a; # o). This reduction uses some rule
ArXT ... Xk — merge(treum(Dr)), where inS we have a rule
Azi ...z, — K, and we have a derivatioDg for I + K :
(S,7)with ' = Uie{l ,,,,, k} Uje{l,.“,ni}{‘ri : Aij}, and where
X; denotesr; [y, ... zily, If a; # o and the empty sequence
of variables ifa;; = o (fori € 7{17 ok}

As L’ we take the result of applying the rulez; ...z, — K
toL,i.e. L’ = K[N1/z1,..., Ny /zi]. To construct a derivation
for it, we construct derivation®; x, for K[N1/z1, ..., N/x;], for

i =1,...,k. We takeDyg x = Dg. To obtainD; x we apply
Lemma 5.6 toN;, D;_1,x and D;1,. .., D;n,. The derivation
Dy, k derivesT + L’ : (S,r). Let D' be the derivation fot-
L’ : (S,r) obtained fromDy, x by removing the type environment
T from type judgments in all its nodes; we obtain a valid derra
sinceL’ is closed.

It remains to see that ..., (D’) is merge-equivalent toP. Let
list be the concatenation of list8cu. (D;,;) foralli € {1,...,k},
j € {1,...,n:} and letQ = merge(trcum(Dx)) [N, -, M)
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wheren; = (tr(D;1)/x; [Am, ..
{1,...,k}; we see that) is the result of applying the considered
rule to tr(D) (substitutionsn; for ¢ such thata; o can be
skipped, since anyway variablesf,, = for suchi do not appear
in tr(Dk)). Fori € {1,....k}, letjii < -+ < jim, be
those among € {1,...,n;} for which in D there is a node
labeled byI" - x : \; ;. By definitiontrcum (D) = (tr(D); list),
and thusP = merge(Q;list). On the other hand Lemma 5.6
says thattr .., (D') is merge-equivalent toQ; list’, where list’

is the concatenation ofr cum (Di,j,); - - - ; i cum (Di g, ) fOr i €
{1,...,k}. We notice, however, thdtst = list’. Indeed, ifS; ; =

() for somei, j, thentr cum (D; ;) is empty by Lemma 5.5. Suppose
that.S;,; # 0. The rules of the type system ensure that the subset
of A in the root of Dk (that isS) is the union of those subsets in
all leaves ofDx. We have assumed that symbols frdndo not
appear inK (they are allowed to appear only in the rule from the
initial nonterminal). MoreoverS; ; C S, and all other sets);, ;/
are disjoint froms; ; (by the definition of types). Thus necessarily
anode labeled by - z; : \; ; appears iDx (this is the only way
the elements of; ; can be introduced i%). This means that our
Jj is listed amongj;,i, .. ., ji,m,;, and hencer ...(D; ;) appears
in list’. This proves thatiist = list’, and in consequence that
trcum (D') is merge-equivalent taP. O

.y tT(Diyni)/l‘i r>\i ) for i ¢

ng

Lemma 5.8. Let D be a derivation for- L : (S,r) such that
merge(tre.m (D)) is a tree. TherL is a tree, and is equivalent to
merge(trcum(D)).

Proof. Induction on the structure oL. If L was of the form
AM, ... Mg, then inD we would necessarily have a node for
the nonterminald, which would imply thatmerge(¢rcum (D)) is
not a tree, i.e., it contains a nonterminal. Thugs of the form
a” Mi ... M.. Looking at the type system we notice thatnec-
essarily starts with a sequencerofpplication rules followed by
a single-node derivation for a” : (So, 70), and derivationsD;
for = M; : (Si,r), fori € {1,...,r}. Recall thattr cum (D) =
(@®; tr cum (D1); . . .5 treum (Dy)). Fori € {1,...,r} we know
thatmerge (tr..m(D;)) is a tree; the induction assumption implies
that); is a tree, and is equivalent toerge (tr cum (D:)). It follows
that L is a tree, and is equivalent taerge (tr cum (D)). |

Corollary 5.9. Let D be a derivation for- L : (S,r), where
L does not contain the initial nonterminal. If a treé@ can be
generated byS’ from merge(tr... (D)), then a tree equivalent
to @ can be generated h§ from L.

Proof. Induction on the smallest length of a sequence of reductions
merge(treum (D)) —% Q. If this length is0, we apply Lemma
5.8. Suppose that the length is positive. Thanks to Lemmavg.3
can write merge(tr cum (D)) —%, P —% Q (without changing

the length of the sequence of reductions). Using Lemma 5.7 we
obtain a termZ’ and a derivationD’ for = L’ : (S, r) such that

L —s L' and thattr ., (D) is merge-equivalent taP. The initial
nonterminal does not appear Iri since by assumption it does not
appear on the right side of any rule. Becase>s, @, by Lemma

Take a tre€) generated by$’. Since the only rule of’ from the
initial nonterminal iS4, — merge(Ar;el;. .. ;ed), the treeQ
is generated by’ also frommerge (trc.m(D)). By Corollary 5.9
atreeQ’ equivalent taQ can be generated kyfrom Ae? ... €2,
and thus also from the initial nonterminal. |

5.4 Completeness

The proof of Lemma 5.2 is similar to the one of Lemma 5.1; we
just need to proceed in the opposite direction. Namely, we ta

a sequence of reductions &ffinishing in a finite tree, and then
working from the end of the sequence we construct backwards a
sequence of reductions 6&f.

There is one additional difficulty that was absent in the pre-
vious subsection: we need some kind of uniqueness of deriva-
tions. Indeed, while proceeding forwards framN; ... Ny to
K[N1/z1,...,Ny/zi], we take a derivation folN; from the sin-
gle place wheréV; appears in the first term, and we put it in mul-
tiple places whereV; appears in the second term. This time we
proceed backwards, so there are multiple places in the d¢eom
where we have a derivation fa¥; . Our type system can accommo-
date different derivations for the occurrences\afhaving different
types, but for each type we have to ensure that in differeatiec
rences ofN; with this type the derivations are the same. Because
of that we only consider maximal derivations.

A derivation D is calledmaximalif for every internal node of
D the following holds: if the label of this node 1§+ L M : (S, 7)
and it is possible to derivé' - M : (0,0) for someo, then
necessarily this node has a child labeledIby- M : (0,0).
The following two lemmata say that it is enough to considdyon
maximal derivations, and that maximal derivations are uaidf
we restrict ourselves to labeled types with empty subse.oiVe
will see later that for other types the multiple occurrenoebem
mentioned above does not occur.

Lemma 5.10. If - K : (S,7) can be derived, then it can be
derived by a maximal derivation.

Proof. Let = A1 —...— A, —r and suppos® is a derivation
for K< : (S, 7). We prove a stronger statementfif, ..., T, are
suchthat’ = (A U({0} xT1)) —...— (A U({0} x T)) —

r) is a type in7T* then there exists a maximal derivatié) for

F K : (S,7'). This is shown by induction on the structure &f.
Surely K is not a variable, as then a type judgment with empty
type environment could not be derived Afis a nonterminal, then
S = 0, and~ K : (S,7) (for any 7' € T*) can be derived by
a single-node derivation; this is a maximal derivationAlfis a
symbol, its sort iso™ — o; by definition of £7° we know that
T, = () for everyi € {1,...,n}, which impliesr’ = 7. ThusD
derives K : (S, 7') and is maximal, since it consists of a single
node.

Finally, suppose thakl’ = L M. Then inD we have a subtree
D; derivingt- L: (So, Ao — 7), and for every\ € Ag a subtreeD
deriving M : A. LetT, contain those for which we can derive:
M :(0,0)but(d, o) & Ao. Then by the induction assumption there
exists a maximal derivatiof;, for = L: (So, (Ao U ({0} x To)) —

5.4 we also have a sequence of reductions of the same lengthr’), and for everyA € (Ao U ({0} x Tp)) there exists a maximal

merge(treum (D)) =% Q' to some tree)’ equivalent toQ; to
this sequence of reductions we apply the induction assempti]

Proof of Lemma 5.1Let n |A|. Consider the ruled;n; —
Ael ... €Y fromthe initial nonterminal of. Let D be a derivation
for - Ael ... el : (A,r) that consists of a node labeled by
FA:@7) witht = {{ef},0)} = ... = {({e2}, 1)} = r,
and of nodes labeled by ef : ({ef},r) fori € {1,...,n},
joined together by application rules. We see that,.. (D)
(Arel; . sen).

derivationD), for - M : \. By composing these derivations together,
we obtain a maximal derivatio®’ for - K : (S,7'): the side
condition of the application rule still holds since we haviled
only derivations for labeled types of the for(fh, o). O

Lemma 5.11. For every type judgment of the fodht K : (0, 7)
there exists at most one maximal derivatibrderiving it.

Proof. By induction on the structure df . If K is a variable, a sym-
bol, or a nonterminal, the® necessarily consists of a single node
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labeled by the resulting type judgment, so it is unique. ®8pphat

K = L M. Then below the root oD, labeled byl" + K : (0, 1),
we have a subtre®, derivingl' - L: (0, {#} x T — 7), and for
everyo € T a subtreeD,, derivingl’ - M : (0, o). By maximality,
whenever we can derivié - M : (0, o) for someo, there should be

a child of the root ofD labeled byl" - M : (), o), and thero € T
This fixes the seT", and thus the set of child labels. The derivations
Dy andD, for 7 € T are unique by the induction assumptiori]

After these preparatory results about derivations we comek b

to our proof. The next lemma deals with the base case: for the

last term in a sequence of reductionsSn(this term is a narrow
tree) we create an equivalent term that will be the last tertme
corresponding sequence of reductionsin

Lemma 5.12. LetS C A, and letK be anS-narrow tree. Then
there exists a maximal derivatioP for - K : (S,r) such that
merge(treum (D)) is a tree equivalent tds.

Proof. We proceed by induction on the structure igf which is
necessarily of the form”™ M; ... M,.. If » = 0, thenS = {a°}
and we takeD to be the single-node derivation fer’ : ({a’}, r);
we have trcum (D) a®. Suppose that > 1. Then S can
be represented as a union of disjoint séis..., S, s.t. M; is
a S;-narrow tree for eachi € {1,...,r}. By induction,Vi €
{1,...,r} we obtain a maximal derivatio®; for - M; : (S;,r)
s.t. merge(tr..m(D;)) is a tree equivalent td/;. The derivation
D is obtained by derivingra”: (0, {(S1,r)} —... = {(Sr,r)} =
r) and attachingDs, ..., D, using the application rule times.
Because thé/;’s are of sorto, and£7° does not contain pairs of
the form (0, o), the definition of maximality requires no additional
children for the new internal nodes 6f, and henceD is maximal.
Thustr cum (D) (aO; treum (D1); - .- treum (Dr)). O

We now describe what happens during a substitution.

Lemma 5.13. Suppose thaD’ is a maximal derivation foil® +

K*K[N/z**] : (S,7), whereN is closed. LetAy be the set of

those(,0) € LT<* for whicht- N : (,0) can be derived.

Then there exists a sét € £7 “*, a maximal derivationDx for

't K:(S,m)withIY =TU{z: A | X € A}, and for each

A € A amaximal derivationD, for = N : )\, such that

1. Ag CA,

2. for everyh € A\ Ay in D there is a node labeled By +x: A,

3. the listtr .y, (D') is merge-equivalent to the list
trcum(DK)[T]]; trcum(D)\l); cees trcum(DAk)y where

{A, ., A withAs < -+ < A\, and
n=(tr(Dx,)/2ly,,---, tr(Dx,)/2ly, ), and

4. if ax # othen alsotr(D’) = tr(Dk)[n].

Proof. We proceed by induction on the structure®6fBy Lemma 5.10,
for A € Ay, there exists a maximal derivation fer N : A, which
is unique by Lemma 5.11. We denote this unique derivatioRy

We consider three cases. First suppose K a nonterminal,
or a symbol, or a variable other thanIn this casek' [N/z] = K.
We take A Ay, and to obtainDx we just extend the type
environment in the only node @’ by {z : A | A € A}. Points 1-2
hold trivially. For points 3-4 we observe that neithef Dx ) nor
trum (D) contains a variable[, (so the substitutiory does not
change these terms); additionally.... (D) for A € A are empty
(Lemma5.5).

Next, suppose thak’ = x. We takeA = Ay U {(S,7)}. As
Dx we take the single-node derivation fbf - z : (S, 7), and as
Ds,-) we takeD’ in which we remove the type environment from
every node. SinceV is closed,D s, remains a valid derivation
and it remains maximal (whef\S,7) € Ay, we have already

definedD s, -y previously, but these two definitions give the same
derivation). Points 1-2 hold trivially. We have(D’) = tr(D(s,-))
andir cum (D) = trcum(D(s,7)). We see thatr cum (D) is either

an empty list (whenvx # o) or ° (Whenax = o), so attaching
treum(Dxk )[n] does not change the class oferge-equivalence.
Moreovertr . (Dy) for A € Ay are empty (Lemma 5.5), which
gives point 3. Ifax # o, we haveir(Dk)n] = zls N =
tr(Ds,r) = tr(D") (point 4).

Finally suppose thak’ = L“L M *™  which is a more involved
case. InD’, below its root, we have a subtrég, deriving ' -
L[N/z] : (So,{(S1,71),...,(Sn, ™)} — 7), and for eachy €
{1,...,n} a subtreeC deriving" - M[N/z] : (S, ;), where
(S1,71) < -+ < (Snym),@andSo N (S1U---USy) = 0, and
S = Sy U---US,. We apply the induction assumption to all
these subtrees, obtaining a maximal derivatinfor ' U {z : X |
A€ Ao} F L:(So,{(S1,71),--.,(Sn, )} — 7) and for each
j € {1,...,n} a maximal derivatiorC; for TU{z : A\ | A €
A} + M : (S;,75), and for eacly € {0,...,n} andX € A; a
maximal derivationD; » for = N : A.

Let A = U,cqo,...,ny Ai- FOrA € Ag we have already defined
D), and we havé, = D, » foreveryj € {0, ...,n}. Recall that
for everyA € A; \ Ay there is a node ii€; deriving the labeled
type A, and hence the set on the first coordinate\ é a subset of
S; (point 2). Since the setS; are disjoint, for everyA € A\ Ay
there is exactly ong for which A € A;, and we definé), to be
D;. » for this ;.

We extend the type environment in every node of evéyto
I =TuU{z: A | X € A}, and we compose these derivations
into a single derivationDx for I’ = K : (S, 7) using the rule
for application. In order to see thd?x is maximal, take some
internal node of Dk . Suppose first that this node is contained
inside someC; and it is labeled by = P @Q, and it is possible
to deriveI” + @ : (0,0). Then it is as well possible to derive
Fu{z:A|Xx€eA;} FQ: (0,0), because\ \ A; contains only
labeled types with nonempty set on the first coordinate aag th
anyway cannot be used while deriving a labeled type with gmpt
set on the first coordinate. Thus by maximality@f our node has
a child labeled by + Q : (0, o). Next, consider the root dDx,
and suppose that it is possible to deriVet- M : (0, ). Then by
Lemma 5.6 it is as well possible to deri® - M[N/z] : (0,0),
soalsd’ - M[N/z] : (§,c) (sincex does not appear i/ [N/z]),
which by maximality ofD’ means thatf, o) is one of(S;, 7;), and
thus the root oDk has a child labeled by’ - M : (0, o) (created
out of the root ofC}).

Points 1, 2 follow from the induction assumption. It remains
to prove points 3, 4. Let\ {A1 < -+ < Nt andn =
(tr(Dxy) /x5 s tr(Dag)/zly, ). Similarly, letA; = {A;1 <
e & )‘j,kj} andnj (tT(DAjJ)/I[Aij Cey tr(D}‘j,k)/m[Aj,kj )
Let us first see thatr(D’) = tr(Dxk)[n] (not only if ax # o,
as in point 4, but also ifax = 0). By induction we know
that tr(Cy) = tr(Co)[no], as surelyar, # o. Thustr(Cy) =
tr(Co)[n], since tr(Cy) (hence alsotr(Co)[no]) does not con-
tain variablesz|,, so substituting for them does not change any-
thing. If anr = o, we simply havetr(D’) tr(Cp) and
tr(Dk) tr(Co), so clearlytr(D’) = tr(Dxk)[n] holds. If
am # o, by induction we also know that-(C%) = tr(Cy)[n;]

Vj € {1,...,n}, and thus alsar(Cj) = tr(C;)[n]; we have
tr(D") = tr(Ch) tr(CY) ... tr(Cy,) and similarly tr(Dk)
tr(Co) tr(C1) ... tr(Cy), so we also obtaitr(D') = tr(Dxk)[n].
To show point 3 we prove that ..., (D’) is merge-equivalent to
the list trcum (Dr)[n); trcum (Day); - - -5 8 cum (Da,, ). By defini-
tion ¢rcum (D’) consists oftr ., (C5) for j € {0,...,n}, and
if ax = o then also oftr(D’). Similarly, tr....(Dx)[n] equals
t0 trcum (Co)[n; - - -5 treum (Cn)[n], prepended byr(Dx)[n] if
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ak = o. We have already shown that(D’) = tr(Dx)[n]. By
the induction assumption, the ligt ... (C?) is merge-equivalent
to the list trcum (C;)[n;]; trcum(DAjyl); A trcum(DAj,kj) for
all j € {0,...,n}. We can replace heng by 7, sincetr cum(C;)
does not contain variables], with A\ € A\A;. To finish the
proof it is enough to observe that the concatenation of thts li
trcum(DAjyl); cel trcum(DAj’kj ) for j € {0,...,n} is merge-
equivalent totr cum (Da, ); - - - ; treum (D2, ). Indeed, forh € Ay

by Lemma 5.5 .m (D)) is empty, and, as we have already shown,
every\ € A\ Ay belongs to exactly ond;. a

Lemma 5.14. Let D’ be a maximal derivation for L’ : (S,r),
and letL be a term that does not contain the initial nonterminal of
S and such tha —s L’. Then there exists a maximal derivation
D for L : (S,r) and a termP that is merge-equivalent to
treum (D) and such thatnerge (tr cym (D)) —s/ P.

The lemma is proved by induction on the structurd.p€f. App. B.
The case whet starts with a nonterminal uses Lemma 5.13.

Corollary 5.15. Let L be a term that is of sorb and does not
contain the initial nonterminal of, and letM be anS-narrow tree
generated byS from L. Then there exists a maximal derivatiéh
for - L : (S,r) such that a tree equivalent f/ can be generated
by S’ from merge(tr cum (D)).

Proof. We proceed by induction on the smallest length of the se-

qguence of reductions —35 M. If L = M, we just apply Lemma
5.12. Suppose that the length is positive, and wititess L' —%
M. The initial nonterminal does not appearlihsince by assump-
tion it does not appear on the right side of any rule. By induncive
obtain a maximal derivatio®’ for - L’ : (S, r) such that a tre€)
equivalent toM can be generated by from merge(trcum (D')).
Then, from Lemma 5.14 we obtain a maximal derivatibnfor
F L : (S,r) and a termP that ismerge-equivalent totr cum (D)
and such thatnerge(treum (D)) —s P. By Lemma 5.4 a tree
equivalent toR) (and hence td/) can be generated &y from P,
and hence also fromerge (7 cum (D)). |

Proof of Lemma 5.2Consider a treeM generated byS, and
a sequence of reductions & leading to M. In the first step
the initial nonterminal reduces tdef ... e},,. Corollary 5.15
gives us a derivatiorD for - Ae? ... elr : (A,r) such that
merge(treum (D)) generates a tree equivalent 3. Necessar-
ily treum(D) = (Ary; ed ... e?A‘), somerge(trcum (D)) is ob-
tained as the result of the initial rule &f. a

6. Conclusions

This work leaves open the question of the exact complexithef
diagonal problem. The only known lower bound is given by the
emptiness problem, that is the same as for the model-ctgeckin
problem [20]. Our procedure is probably not optimal, onehaf t
reasons being the use of reflection in operation Theorem 2.1.
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A. Closure under linear transductions and full
trio
In this section we prove that finite tree languages generbayed
HORSes are closed undéarear bottom-up tree transductions.
An FTT is completeif every variablex; appearing on the left
side of any transition also appears in the teron the right side
of the transition, i.e., no subtree is discardedre&triction is a

ing the order. It amounts to splitting every rule into mukipules,
using fresh nonterminals in the cut points.

Lemma A.1. HORSes are affectively closed under complete linear
tree transductions.

Proof. Let S be a HORS and letl be a linear FTT. We construct
a HORSSH s.t. L(H) = T(A)(L(S)). The set of control states

special case of an FTT where there is only one control state, a Of 7 is taken to be the set of control states of the EA.TAs noted

where every transition is of the form" (¢,z1) ... (¢,zr) —
q,b" xi, ...z, Withl < 43 < -+ < i, < 1, e, it relabels
the tree and discards some its subtrees. Clearly, every &1fiei
composition of a complete FTT with a restriction.

A higher-order recursion scheme with statdsORSS) is a
triple H = (Q, (qinit, Ainit), R), Where@ is a finite set of con-
trol states,(ginit, Ainit) is theinitial processwith gi,i¢ the initial
control stateand A;,.;; theinitial nonterminalthat is of sorto, and
R is a finite set of rules of the form

o= —0 o ap o
(l) p7A Ty o Ty _>q7K

(”) p7a7“£cz1> ‘Tﬁ —a” (p17£C1) (pr'7xf')
where the ternd uses only variables from the st , ...,z " }.

Rules of type () are as in standard HORS except that they are

guarded by control states. Rules of type (II) correspond finite

top-down tree automaton reading the tree produced by the$O
The order ofS is defined as the highest order of a nonterminal for
which there is a rule irS. Let us now describe the dynamics of

HORSSes. Aprocesss a pair(p, M) wherelM is a closed term of
sorto andp is a state inQ). A process treés a tree built of symbols
and processes, where the latter are seen as symbols o rank
HORSSH defines a reduction relation4, on process trees:

(p,Az1 ... 2k — q, K) € R(H)
(p,AMl Mk) —H (q7K[M1/CC1,...,Mk/CCk])

(p,a" 21 - xr v a(pr,z1) - (pr,zr)) € R(H)
(p7 a” My --- MT) —H a’(p17 Ml) e (p7'7 M”)

K; —3 K| forsomel € {1,...,r} K; =K, foralli#1
a" Ki...Kr—>nad K; ... K|

We are interested in finite trees generated by HORSSes. A&gsoc

treeT is atreeif it does not contain any process. A HORS$S5
generatesa treeT" from a processp, M) if (p, M) —3, T. The

above, we can assume w.l.0.g. ti%ails normalized.

First, if S contains a ruleAZ — h M, --- M, with h not a
symbol, thenH contains the ruleo, AZ — p, h M, --- M, for
every control state.

Next, for every such rule witth being a symbok™, and for
every transition ofd havinga” on the left side, we take t& one
rule illustrated by means of a representative exampld:ébntains
a transition

a’ (p1, 1) (p2,x2) — p, b2 (c1 x1) T2

andS contains a ruled ¥ — a? (B1 %) (B2 §), then?{ contains
the rule

p, AF = (c! (p1, B1§)) (p2, B2 7))
Technically speaking, this is not a HORSS rule, but it carubegd

into one type (l) rule and several type (Il) rules by addingvne

R states.

Finally, we also add rules correspondingetéransitions ofA,

what is again defined by an example:Afcontains a transition

p,x1 —> q, al Z1
then, for every nonterminal of S, ‘H contains the rule
g, Aj— a' (p, Af)

The two inclusions needed to show thatH) = T (A)(L(S))
can be proved straightforwardly by induction on the length o
derivations. |

The difficulty in proving closure under possibly non-comiple
FTTs is that when combining a (non-complete) FTT transitibn
the form e.ga® (p, z1) (p,z2) — p,b* x1 with a HORS rule of
the form e.g.A§ — a® (B1 %) (B2 ), we cannot simply discard
the subtermB; 7, but we have to make sure that it generates at
least one tree on which the FTT has some run. While concéargrat
on closure only under restrictions, one think becomes easie
restriction has a run almost on every tree. There is, however
exception: a restrictiotd does not have a run on a tree that uses a

languageL(H) is the set of trees generated by the initial process symbol for which.4 has no transition. We deal with this in Lemma

(qinit ) Ainit ) .

A.2, below. However, knowing that on every tree there is aafin

A HORS can be seen as a special case of a HORSS where 4 js not enough; we also need to know th&t i generates at least

Q has only one statg with the trivial rule p,az1-- -z —

one tree. This problem is resolved by Lemma A.3.

a(p,z1) - - (p,xx). Itis well known that this extension does not in-
crease expressive power of HORS, in the sense that given 88OR  LemmaA.2. For every set ,°f (ranked) symbdisand every HORS
H itis possible to construct a (standard) HORSf the same order S We can build a HORS" of the same order, such thdl(S")
asH (but where the arity of nonterminals is increased) such that contains those trees froy(S) which use only symbols frof.
L(H) = L(S) [17]. However, while combining a HORS with an
FTT itis convenient to create a HORSS, as its states can loetaise
simulate states of the FTT.

On the other hand, it is also useful to have the input HORS in
a special normalized form, defined next. We say that a HORS is
normalizedif every its rule is of the form

A£C1

Proof. We start by assuming w.l.0.g. th&tis normalized. Then,
we simply remove fromS all rules that use symbols not i@.
Then surely trees iff(S”) use only symbols fron®. On the other
hand, sinceS was normalized, every removed rule was of the form
Ay — a" (B1Y) ... (Br ) (with a” ¢ ©), so whenever such

a rule was used, am”-labeled node was created. In consequence,
removing these rules has no influence on generating treessha

Ty, > h(Bix1 ... xp) ..
! (Brm ») only symbols from®. a

(Brx1 ... xp),

wherer > 0, h is either one of ther;’s, a nonterminal, or a sym-
bol, and theB;’s are nonterminals. The arity may be different
in each rule. We will not detail the rather standard procedafr
transforming any HORS into a normalized HORS without insrea

A HORS S = (Ainit, R) is productiveif, whenever we can
reduceA,;: to a termM (which may contain nonterminals), then
M can be reduced to some finite tree. By using the reflection
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operation [6], we can easily turn a HORS into a productive. one

Lemma A.3. For every HORS we can build a productive HORS
S’ of the same order generating the same trees.

Proof. First, we construct a deterministic schefidrom the non-
deterministic schemé&. To 7 we will be then able to apply a
reflection transformation. We use a letter to eliminate non-
determinism. For every nontermindl of S we collect all its rules:

Azxy ...xp - Ki,...,Az1 ... 2, — K,,, and add toT the
single rule:
Azy ... xp = K (Ko (oo (F° K1 K. .2)).

The (possibly infinite) tree generated Byrepresents the language
of trees generated froi since the non-deterministic choices that
can be made ¥ are represented by nodes labeledtbin the tree
generated by . In this latter tree, we can find every tree generated
by S using a finite number of rewriting steps consisting of rejoigc

a subtree rooted in- by one of its children.

We now take the monotone applicative structure (see [2]), 24]
M = (Ma)aesorts Where M, is the two element lattice, with
maximal elemenil and minimal element._. Intuitively, T means
nonempty language and means empty language. We interptét
as the join (max) of its arguments, and every other synafichs
the meet (min) of its arguments; in particular symbols okraare
interpreted as. This allows us to define the semantg¥, x, v]
of a term given a valuatior for nonterminals and for variables
(these valuations assign to a variable/nonterminal a valu#1
of an appropriate sort). The definition p§/, x, v/] is standard, in
particular[K L, x, v] = [K, x, v]([L, x, v]).

The meaning of nonterminals i is given by the least fix-
point computation. For a valuatioy of the nonterminals of
T, we write 7(x) for the valuationy’ such thatx’(A4)
Agi. o Mg K, X, [91/x1, .-, gp/xp]] Where Az, ...z, —

K is the rule for A in 7. Then the meaning of nonterminals
is given by the valuation that is the least fixpoint of this @pe

tor: x7 = A{x : T(x) € x}. Having x+ we can define the

semantics of a ternd/ in a valuationv of its free variables as

[M,v] = [M, xT,V].

Least fixed point models of schemes induce an interpretation
infinite trees by finite approximations. An infinite tree hatue T
iff it represents a non-empty language [21]. The importanihipis
that the semantics of a term and that of the infinite tree gdedr
from the term coincide.

We can now apply t@" the reflection operation [6] with respect
to the above interpretatioi. The result is a schenfE’ that gener-
ates the same tree @sbut where every node is additionally marked
by a tuple(as,...,ar,b) whereay, ..., a, is the semantics of the
arguments of that node (i.e., subtrees rooted at its chijcxadb
is the semantics of the subtree rooted at that node. Whatpisrim
tant here is thaf”’ has the same order &5 which is the same as
that of S. The additional labels allow us to remove unproductive
parts of the tree generated BY. For this we introduce two more
nonterminalsll; andIl; of sorto — o — o. We then add the
rulesIly x1 2 — x1, 2 1 z2 — x2. Now we replace every oc-
currence off-2 labeled by(T, L, T) by IT;, and every occurrence
of +-2 labeled by(_L, T, T) by IT,. After these transformations we
obtain a schem&”’ generating a tree which contains exactly those
nodes of7” that are labeled witfT, ..., T, T).

We convert7” into a HORSS’ whose language is the same
as that ofS. For this we replace every remaining occurrence-of
(thus labeled by T, T, T)) by a nonterminal of sorto — 0 — o,
and we add two rewrite rule§'zy — z andCzy — y. We
also remove the additional labels from symbols. By consivnc
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&' is productive andZ(S’) C L(S). Moreover, since we only
eliminated non-productive nonterminald(S’) = £(S). |

Lemma A.4. Let S be a productive HORS, and a restriction
such that for every symbal” appearing in any tree generated by
S there is a transition of4 havinga” on the left side. Then we can
build a HORSS’ whose language i# (A)(L(S)).

Proof. First, w.l.0.g. we assume th&tis normalized (notice that
while converting a productive HORS to a normalized one, it re
mains productive). Every rul§ § — h (B1 %) ... (B, ) of Sin
which h is not a symbol is also taken /. If h = a” is a symbol,
we consider every transition of havinga™ on the left side. Since
A is a restriction, this transition is of the form

a" (p,z1) ... (p,xr) — p,b" x4y -+ Ts,,
wherel < iy < --- < i, < r. Then, toS’ we take the rule
Ag,_> b” (BLl g) e (Bin g) *

In general, 7 (A)(L(S)) C L(S'). SinceS is productive, the
subtermsB; i obtained by rewriting the initial nonterminal
produce at least one tree, and since for every symbol in tbés t
there is a transition afl having this symbol on the left sidel has
some run on this tree. ThB(A) (L(S)) = L(S'). O

Theorem 2.1. HORSes are effectively closed under linear tree
transductions.

Proof. A transductionA realized by an FTT is the composition of
a complete onés and a restrictior. We first apply Lemma A.1 to
the complete transduction realized By Then, using Lemma A.2
we remove from the generated language all trees that useosymb
not appearing on the left side of any transitiorCofNext, we turn

the resulting HORS into a productive one by Lemma A.3, and,
finally, we apply Lemma A.4 to the resulting productive HORS a
the restriction realized hg. We end up with a HORS producing the
image of A applied to the original HORS, and being of the same
order. |

B. Proofof Lemmab5.14
We recall the the statement of the lemma.

Lemma 5.14. Let D’ be a maximal derivation for L’ : (S,r),
and letL be a term that does not contain the initial nonterminal of
S and such that —s L’. Then there exists a maximal derivation
D for+ L : (S,r) and a termP that is merge-equivalent to
treum(D’) and such thatnerge(trcum (D)) —s: P.

Proof. We proceed by induction on the structurelof

Suppose first that. = o" M; ... M, (where surelyr >
1). ThenL' = a" Mj ... M/, where M; —s M, for some
l € {1,...,r}, andM; = M; for all ¢ # [. The derivation

D' contains a node labeled by a” : (0,{(S1,v)} — -+ —
{(Sr,r)} — r), and for eachi € {1,...,r} a subtreeD; de-
riving = M; : (S;,r) (they are merged together by using the
application ruler times), whereSy, . .., S, are disjoint and their
union is S. We apply the induction assumption f#;, obtain-
ing a derivationD; for = M; : (S;,r) and a termP; merge-
equivalent tar c..» (D;) and such thatnerge (trcum (D1)) —s/ P
We can writeP, = merge(list;) (where the length ofist; and
trewm (D) is the same). We takd; = Dj for i # I, and
out of the single-node derivation for " : (0,{(S1,r)} —

- —= {(Sr,r)} — r) and of derivationd; fori € {1,...,r}
we compose a derivatio®, using the application rule times.
We see thatr.um (D) = (ao; treum(D1); .. .5 treum(Dr)), and
tr cum (D) = (a%; treum (DY); - . . ; treum (DL)). Moreover, taking
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list; = treum(D;) for i # 1 we getmerge(trcum (D)) —s/
merge(a®; listy; . .. ; list.), where merge(a®; list}; . . .; list).) is
merge-equivalent totr ..., (D’). It remains to observe thdD is
maximal. Indeed, the nodes inside somghave all required chil-
dren sinceD; are maximal, and the new internal nodes created in
D describe applications with an argumew; of sorto, and it is
impossible to derive- M, : (0, o) for anyo (since£7° does not
contain pairs with empty set on the first coordinate).

The remaining possibility is that = AN ... N.*. Let
Az ...z — K bethe rule ofS used in the reductioh —s L',
that is such that’ = K[Ni/z1,...,Ny/zi|. Take Do x =
D'. Fori € {1,...,k}, consecutively, we apply Lemma 5.13 to
D;_1,x andN;, creating setd; C L7 and maximal derivations
D; x and D; » for A € A;. Let Dx = Dy k; it derivesT'
K : (S,r),wherel’ = {z; : A | i € {1,...,k},X € A;}. By
point 2 of Lemma 5.13 we know that for every € A; with a
nonempty set on the first coordinate, /it there is a hode labeled
by " - z; : A. On the one hand, since our type systems requires
that subsets oE, coming from different children are disjoint, we
can be sure that the sets on the first coordinate of labele iyp
A1, ..., Ay aredisjoint. Itfollowsthaty = A1 — - = Ay —>r
is a type. On the other hand, nodes labeled’dy x; : A give the
only possibility for introducing elements 6fto our derivationD
(by assumption ik we do not have nullary symbols, singeis
not the initial nonterminal), which means that the unionhaf sets
on the first coordinate of labeled typesAn, ..., Ay is S. Since
(S,r) € LT°, we haveS # @, and thust > 1, which means that
(0, 74) is a labeled type.

In order to obtain the required derivatid@hfor - L : (S,r), we
start with the single-node derivation fbr A : (), 74), and using
the application rulet: times we attach derivation®; » for each
i € {1,...,k}andX € A;. This derivation is maximal, sincB; »
were maximal, and by point 1 of Lemma 5.13 the newly created
internal nodes have all required children (whenever it ssfige to
derive a type judgmerit N; : (0, o), we are deriving it inD).

Recall thatitr..m(D) is a concatenation ofr(D) and of
treum(D; ) for everyi € {1,...,k} and A € A;. Fori €
{1,...,k} let n; be the substitution that maps|, to ¢r(D; )
for every \ € A;. In &’ we have the ruled, %7 ... X, —
merge(trcum(Dx)), WhereX; lists variablesz; [, for A € A;
if a; # o, and is empty itv; = o (fori € {1,...,k}). Notice that
this rule applied toir (D) gives merge (7 cum (Dx ) [, -« - s M)
(substitutionsy; for 7 such thate; = o can be skipped, since any-
way variablesz; [, ; for suchi do not appear inr.um(Dx)).
As P we take merge(-) of the concatenation of this term and
of all treum(D;,x); as we have saitherge(trcum(D)) —s/ P.
From point 3 of Lemma 5.13 it follows that ..., (D’) is merge-
equivalent taP, what finishes the proof. a
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