
ar
X

iv
:1

60
5.

00
37

1v
1

 [c
s.

F
L]

 2
 M

ay
 2

01
6

The Diagonal Problem for Higher-Order
Recursion Schemes is Decidable

Lorenzo Clemente∗ Paweł Parys†

University of Warsaw
Warsaw, Poland

{l.clemente,parys}@mimuw.edu.pl

Sylvain Salvati Igor Walukiewicz
University of Bordeaux, CNRS, INRIA

Bordeaux, France
{sylvain.salvati,igw}@labri.fr

Keywords downward closure, separability problem, diagonal
problem, higher-order recursion schemes, higher-order OIgram-
mars.

Abstract
A non-deterministic recursion scheme recognizes a language of fi-
nite trees. This very expressive model can simulate, among others,
higher-order pushdown automata with collapse. We show decidabil-
ity of the diagonal problem for schemes. This result has several
interesting consequences. In particular, it gives an algorithm that
computes the downward closure of languages of words recognized
by schemes. In turn, this has immediate application to separability
problems and reachability analysis of concurrent systems.

1. Introduction
Thediagonal problemis a decision problem with a number of in-
teresting algorithmic consequences. It is a central subproblem for
computing the downward closure of languages of words [27], as
well as for the problem of separability by piecewise-testable lan-
guages [11]. It is used in deciding reachability of a certaintype of
parameterized concurrent systems [25]. In its original formulation
over finite words, the problem asks, for a given set of lettersΣ and
a given language of wordsL, whether for every numbern there is a
word inL where every letter fromΣ occurs at leastn times. In this
paper, we study a generalization of the diagonal problem forlan-
guages of finite trees recognized by non-deterministic higher-order
recursion schemes.

Higher-order recursion schemesare algorithmically manage-
able abstractions of higher-order programs. Higher-orderfeatures
are now present in most mainstream languages like Java, JavaScript,
Python, or C++. Higher-order schemes, or, equivalently, simply
typed lambda-calculus with a fixpoint combinator, are a formalism
that can faithfully model the control flow in higher-order programs.
In this paper, we consider non-deterministic higher-orderrecursion

∗ This work was partially supported by the Polish National Science Centre
grant 2013/09/B/ST6/01575.
† This work was partially supported by the National Science Center (deci-
sion DEC-2012/07/D/ST6/02443).

[Copyright notice will appear here once ’preprint’ option is removed.]

schemes as recognizers of languages of finite trees. In otherwords
we consider higher-order OI grammars [12, 21]. This is an expres-
sive formalism covering many other models such as indexed gram-
mars [2], ordered multi-pushdown automata [5], or the more gen-
eral higher-order pushdown automata with collapse [17] (cf. also
the equivalent model of ordered tree-pushdown automata [7]).

Our main result is a procedure for solving the diagonal problem
for higher-order schemes. This is a missing ingredient to obtain
several new decidability results for this model. It is well-known
that schemes have a decidable emptiness problem [23], and itcan
be shown that they are closed under rational linear transductions,
and in particular they form a full trio when restricted to finite
word languages. In this context, a result by Zetzsche [27] entails
computability of thedownward closureof languages of words
recognized by higher-order schemes. Moreover, a recent result by
Czerwiński, Martens, van Rooijen, and Zeitoun [10] entails that
the separability by piecewise testable languagesis decidable for
languages recognized by higher-order schemes. Finally, a third
example comes from La Torre, Muscholl, and Walukiewicz [25]
showing how to use downward closures to decide reachabilityin
parameterized asynchronous shared-memory concurrent systems
where every process is a higher-order scheme.

While the examples above show that the diagonal problem is
intimately connected to downward closures1, the computation of
the downward closure is an important problem in its own right.
The downward closure of a language offers an effective abstraction
thereof. Since the subword relation is a well quasi-order [18], the
downward closure of a language is always a regular language de-
termined by a finite set of forbidden patterns. This abstraction is
thus particularly interesting for complex languages, likethose not
having a semilinear Parikh image. While the downward closure is
always regular, it is not always possible to effectively construct a fi-
nite automaton for it. This is obviously the case for classeswith un-
decidable emptiness (since the downward closure preservesempti-
ness), but it is also the case for relatively better behaved classes for
which the emptiness problem is decidable, such as Church-Rosser
languages [13], and lossy channel systems [22].

The problem of computing the downward closure of a language
has attracted a considerable attention recently. Early results show
how to compute it for context-free languages [9, 26] (cf. also
[4]), for Petri-net languages [14], for stacked counter automata
[28], and context-free FIFO rewriting systems and0L-systems [1].
More recently, Zetzsche [27] has given an algorithm for indexed
grammars, or equivalently for second-order pushdown automata.
Hague, Kochems, and Ong [16] have made an important further
advance by showing how to compute the downward closure of

1 In fact, the diagonal problem, separability by piecewise testable languages,
and computing the downward closure are inter-reducible forfull trios [11].

1 2018/4/23

http://arxiv.org/abs/1605.00371v1

the language of pushdown automata of arbitrary order. In this
paper, we complete the picture by giving an algorithm for themore
general model of higher-order pushdown automata with collapse
[17]. We use the fact that these automata recognize the same class
of languages as higher-order recursion schemes, and we workwith
the latter model instead.

Let us briefly outline our approach. While are mainly inter-
ested in higher-order recursion schemes (HORSes) generating fi-
nite words, for technical reasons we also need to consider narrow
trees, i.e., trees with a bounded number of paths. In this we fol-
low an idea of Hague et al. [16] who have used this technique for
higher-order pushdown automata (without collapse). For a HORS
S and a set of lettersΣ, the diagonal problem asks whether for ev-
eryn ∈ N there is a tree generated byS in which every letter from
Σ appears at leastn times. Our goal is an algorithm solving this
problem. WhenS is of order0, we have a regular grammar, for
which the diagonal problem can be solved by direct inspection. For
higher orders, apply a transformation that decreases the order by
one. The order is decreased in two steps. First, we ensure that the
HORS generates only narrow trees: we construct a HORSS ′, of
the same order asS , generating only narrow trees and such that the
diagonal problems forS andS ′ are equivalent. Then, in the narrow
HORSS ′ we lower the order by one: we create a HORSS ′′ that is
of order smaller by one thanS ′ (but no longer narrow), and such
that the diagonal problems forS ′ andS ′′ are equivalent.

While narrowing the HORS is relatively easy to achieve, the
main technical difficulty is order reduction. This point is probably
better explained in terms of higher-order pushdown automata. If
a higher-order pushdown automaton of ordern accepts with an
empty stack then an accepting computation has no choice but to
pop out level-n stacks one by one. In other words, for every config-
uration the level-n return points are easily predictable. Using this
we can eliminate them obtaining an automaton of ordern−1. When
we allow the collapse operation the situation changes completely:
a configuration may have arbitrary many level-n return points, and
different computations may use different return points.

In this paper we prefer to use HORSes rather than higher-order
pushdown automata with collapse. Our solution resembles the one
from [3], where a word-generating HORS is turned into a tree-
generating HORS of order lower by one, whose frontier language
(the language of words written from left to right in the leaves) is
exactly the language of the original word-generating HORS.If our
narrow trees were of width one (i.e., word-generating), we could
just invoke [3], since their transformation preserves in particular
the cardinality of the produced letters. While in general weneed to
handle narrow trees instead of words (a more general input than in
[3]), we only prove that our construction preserves the number of
their occurrences (and not their order, thus having a resultweaker
than in [3]). While the two results are thus formally incomparable,
it is worth remarking that our construction does actually preserve
the order of symbols belonging to the same branch of the narrow
tree.

After some preliminaries in Section 2, we state formally our
main result and some of its consequences in Section 3. The rest
of the paper is devoted to the proof. In Section 4, we present a
transformation of a scheme to a narrow one that preserves theorder,
and in Section 5 we present the reduction of a narrow scheme to
a scheme of a smaller order (but not necessarily narrow). Both
reductions preserve the diagonal problem. Finally, in Section 6, we
conclude with some further considerations.

2. Preliminaries
Higher-order recursion schemes. We use the name “sort” in-
stead of “simple type” or “type” to avoid confusion with the types
introduced later. The set ofsorts is constructed from a unique ba-

sic sort o using a binary operation→. Thus o is a sort, and if
α, β are sorts, so isα → β. The order of a sort is defined by:
ord(o) = 0, andord(α → β) = max(1 + ord(α), ord(β)). By
convention,→ associates to the right, i.e.,α → β → γ is under-
stood asα → (β → γ). Every sortα can be uniquely written as
α1 → α2 → . . . → αn → o. The sorto → · · · → o → α with r
occurrences ofo is denotedor → α, whereo0 → α is simplyα.

The set oftermsis defined inductively as follows. For each sort
α there is a countable set ofvariablesxα, yα, . . . and a countable
set ofnonterminalsAα, Bα, . . . ; all of them are terms of sortα.
There is also a countable set oflettersa, b, . . . ; out of a lettera and
a sortα of order at most1 one can create asymbolaα that is a term
of sortα. Moreover, ifK andL are terms of sortα → β andα,
respectively, then(K L)β is a term of sortβ. Forα = (or → o)
we often shortenaα to ar, and we callr therank of ar. Moreover,
we omit the sort annotation of variables, nonterminals, or terms,
but note that each of them is implicitly assigned a particular sort.
We also omit some parentheses when writing terms and denote
(. . . (K L1) . . . Ln) simply byKL1 . . . Ln. A term is calledclosed
if it uses no variables.

We deviate here from usual definitions in the detail that letters
itself are unranked, and thus out of a single lettera one may create
a symbolar for every rankr. This is convenient for us, as during
the transformations of HORSes described in Sections 4 and 5 we
need to change the rank of tree nodes, without changing their
labels. Notice, however, that in terms a letter is used always with a
particular rank.

A higher-order recursion scheme(HORS for short) is a pair
S = (Ainit ,R), whereAinit is theinitial nonterminalthat is of sort
o, andR is a finite set of rules of the formAα xα1

1 . . . xαk

k → Ko

whereα = α1 → · · · → αk → o andK is a term that uses only
variables from the set{xα1

1 , . . . , xαk

k }. The order ofS is defined as
the highest order of a nonterminal for which there is a rule inS . We
write R(S) to denote the set of rules of a HORSS . Observe that
our schemes arenon-deterministicin the sense thatR(S) can have
many rules with the same nonterminal on the left side. A scheme
with at most one rule for each nonterminal is calleddeterministic.

Let us now describe the dynamics of HORSes. Substitution is
defined as expected:

A[M/x] = A, ar[M/x] = ar, x[M/x] = M,

y[M/x] = y if y 6= x, (K L)[M/x] = K[M/x]L[M/x].

We shall use the substitution only whenM is closed, so there is no
need to performα-conversion. We also allow simultaneous substi-
tutions: we writeK[M1/x1, . . . ,Mk/xk] to denote the simultane-
ous substitution ofM1, . . . , Mk respectively forx1, . . . , xk. We
notice that when the termsMi are closed, this amounts to apply the
substitutions[Mi/xi] (with i ∈ {1, . . . , k}) in any order.

A HORSS defines a reduction relation→S on closed terms:

(Ax1 . . . xk → K) ∈ R(S)

AM1 . . . Mk →S K[M1/x1, . . . ,Mk/xk]

Kl →S K′
l for somel ∈ {1, . . . , r} Ki = K′

i for all i 6= l

ar K1 . . . Kr →S ar K′
1 . . . K′

r

We thus apply some of the rules ofS to one of the outermost
nonterminals in the term.

We are interested in finite trees generated by HORSes. A closed
termL of sorto is a tree if it does not contain any nonterminal. A
HORSS generatesa treeL from a termK if K →∗

S L; when
we do not mention the termK we mean generating from the initial
nonterminal ofS . Since a scheme may have more than one rule
for some nonterminals, it may generate more than one tree. Wecan

2 2018/4/23

view a HORS of order0 essentially as a finite tree automaton, thus
a HORS of order0 generates a regular language of finite trees.

Let ∆ be a finite set of symbols of rank0 (called alsonullary
symbols). A treeK is∆-narrow if it has exactly|∆| leaves, each of
them labeled by a different symbol from∆. A HORS is called∆-
narrow if it generates only∆-narrow trees, and it is callednarrow
if it is ∆-narrow for some∆. We are particularly interested in∆-
narrow HORSes for|∆| = 1; trees generated by them consist of a
single branch and thus can be seen as words.

Transductions. A (bottom-up, nondeterministic)finite tree trans-
ducer(FTT) is a tupleA = (Q,QF , δ), whereQ is a finite set of
control states,QF ⊆ Q is the set of final states, andδ is a finite set
of transitions of the form

ar (p1, x1) . . . (pr, xr) −→ q, t or

p, x1 −→ q, t (ε-transition)

wherea is a letter,p, q, p1, . . . , pr are states,x1, . . . , xr are vari-
ables of sorto, andt is a term built of variables from{x1, . . . , xk}
({x1}, respectively) and symbols, but no nonterminals. An FTTA
defines in a natural way a binary relationT (A) on trees [8]. We say
that an FTT islinear if no termt on the right of transitions contains
more than one occurrence of the same variable.

We show that HORSes are closed under linear transductions.
The construction relies on the reflection operation [6], in order to
detect unproductive subtrees.

Theorem 2.1. HORSes are effectively closed under linear tree
transductions.

A family of word languages is afull trio if it is effectively closed
under rational (word) transductions. Since rational transductions on
words are a special case of linear tree transductions, we obtain the
following corollary of Theorem 2.1.

Corollary 2.2. Languages of finite words recognized by HORSes
form a full trio.

3. The Main Result
We formulate the main result and state some of its consequences.

Definition 3.1 (Diagonal problem). For a higher-order recursion
schemeS , and a set of lettersΣ, the predicateDiagΣ(S) holds
if for everyn ∈ N there is a treet generated byS with at least
n occurrences of every letter fromΣ. Thediagonal problemfor
schemes is to decide whetherDiagΣ(S) holds for a given scheme
S and a setΣ.

Theorem 3.1. The diagonal problem for higher-order recursion
schemes is decidable.

Proof. The proof is by induction on the order of a HORSS . It relies
on results from the next two sections. IfS has order0, thenS can
be converted to an equivalent finite automaton on trees, for which
the diagonal problem can be solved by direct inspection. ForS of
order greater than0, we first convertS to a narrow HORSS ′such
that DiagΣ(S) holds iff DiagΣ(S

′) holds (Theorem 4.1). Then,
we employ the construction from Section 5 and obtain a HORS
S ′′ of order smaller by1 than the order ofS ′. By Lemmata 5.1
and 5.2:DiagΣ(S

′) holds iffDiagΣ(S
′′) holds.

The main theorem allows to solve some other problems for
higher-order schemes. Thedownward closureof a language of
words is the set of its (scattered) subwords. Since the subword re-
lation is a well quasi-order [18], the downward closure of any lan-
guage of words is regular. The main theorem implies that the down-
ward closure can be computed for HORSes generating languages of

finite words, or, in our terminology,{e0}-narrow HORSes, where
e0 is a nullary symbol acting as an end-marker.

Corollary 3.2. There is an algorithm that given an{e0}-narrow
HORSS computes a regular expression for the downward closure
of the language generated byS .

Proof. By Corollary 2.2, word languages generated by schemes
are closed under rational transductions. In this case, Theorem 3.1
together with a result of Zetzsche [27] can be used to computethe
downward closure of a language generated by a HORS.

Piecewise testable languages of words are boolean combina-
tions of languages of the formΣ∗a1Σ

∗a2 . . .Σ
∗akΣ

∗ for some
a1, . . . , ak ∈ Σ. Such languages talk about possible orders of
occurrences of letters. The problem of separability by piecewise
testable languages asks, for two given languages of words, whether
there is a piecewise testable language of words containing one lan-
guage and disjoint from the other. A separating language provides
a simple explanation of the disjointness of the two languages [19].

Corollary 3.3. There is an algorithm that given two{e0}-narrow
HORSes decides whether there is a piecewise testable language
separating the languages of the two HORSes.

Proof. This is an immediate consequence of a result of Czerwiński
et al. [11] who show that for any class of languages effectively
closed under rational transductions, the problem reduces to solving
the diagonal problem.

The final example concerns deciding reachability in parameter-
ized asynchronous shared-memory systems [15]. In this model one
instance of a process, called leader, communicates with an undeter-
mined number of instances of another process, called contributor.
The communication is implemented by common registers on which
the processes can perform read and write operations; however, oper-
ations of the kind of test-and-set are not possible. The reachability
problem asks if for some number of instances of the contributor the
system has a run writing a designated value to a register.

Corollary 3.4. The reachability problem for parameterized asyn-
chronous shared-memory systems is decidable for systems where
leaders and contributors are given by{e0}-narrow HORSes.

Proof. La Torre et al. [25] show how to use the downward closure
of the language of the leader to reduce the reachability problem
for a parameterized system to the reachability problem for the
contributor. Being a full trio is sufficient for this reduction to work.

4. Narrowing the HORS
The first step in our proof of Theorem 3.1 is to convert a scheme
to a narrow scheme. The property of being narrow is essentialfor
the second step, as lowering the order of a scheme works only for
narrow schemes. This approach through narrowing has been used
by Hague et al. [16] for higher-order pushdown automata. Here we
deal with recursion schemes, which are equivalent to higher-order
pushdown automata with collapse.

The idea behind narrowing is quite intuitive. Consider a binary
tree, and suppose that we are interested in the number of occur-
rences of a certain lettera, that may appear only in leaves. Con-
sider a path that, at each node, selects the subtree containing the
larger number ofa’s, and let’s label the node bya if the succes-
sor of the node that is not on the path has ana-labeled descendant.
Then, if the original tree hadn occurrences ofa, then on the se-
lected path we put betweenlog n andn labelsa. The lower bound
holds since, whenever a subtree is selected, at most half of thea’s

3 2018/4/23

is discarded (on the other subtree), and this happens a number of
times equal to the number ofa’s on the resulting path. This obser-
vation implies it suffices to convert a schemeS generating trees to a
schemeS ′ generating all paths (words) in the trees generated byS
with the additional labeling. ThenDiag{a}(S) will be equivalent
toDiag{a}(S

′).
The general situation is a bit more complicated since we are

interested in the diagonal problem not just for a single letter, but for
a set of lettersΣ. In this case, different letters may have different
witnessing paths, soS ′ should generate not a single path but a
narrow tree whose number of paths is bounded by|Σ|.

Theorem 4.1. For a HORSS and a set of lettersΣ, one can
construct a set of nullary symbols∆ of size|Σ| and a∆-narrow
HORSS ′ of the same order asS , such thatDiagΣ(S) holds if, and
only if,DiagΣ(S

′) holds.

Proof. We start by assuming thatS uses only symbols of rank2
and0, where additionally letters fromΣ appear only in leaves. The
general situation can be easily reduced to this one, by applying a
tree transduction that replaces every node by a small fragment of a
tree built of binary symbols, with the original label in a leaf.

Then, we consider a linear bottom-up transducerA from trees
produced byS to narrow trees. As labels in the resulting trees we
use:(i) new leaf symbols∆ = {e01, . . . , e

0
|Σ|}, (ii) unary symbols

a1 for all a ∈ Σ, and (iii) new auxiliary symbols•k (of rank
k ≥ 1). For each set of lettersΓ ⊆ Σ, A contains a statep?Γ
making sure that each letter fromΓ occurs at least once in the input
tree. Moreover, for each nonempty set of leaf labels∆′ ⊆ ∆, A
contains a statep∆′ that outputs only∆′-narrow trees. The final
state ofA is p∆. Transitions are as follows:

(Branch) a2 (p∆1
, x1) (p∆2

, x2) −→ p∆1∪∆2
, •2 x1 x2 ,

(Leaf) a0 −→ p{ei1 ,...,eik
}, •

k ei1 . . . eik ,

(Choose1) a2 (p∆1
, x1) (p

?
Γ, x2) −→ p∆1

, a1
1(· · · (a

1
k x1)) ,

(Choose2) a2 (p?Γ, x1) (p∆2
, x2) −→ p∆2

, a1
1(· · · (a

1
k x2)) .

where∆1 and∆2 aredisjoint subsets of∆, wherei1 < · · · < ik,
and whereΓ = {a1, . . . , ak} ⊆ Σ. Intuitively, rules of types
(Branch) and (Leaf) make sure that we output narrow trees, and
rules of types (Choosei) select a branch and output (only) letters
that appear at least once in the discarded subtree. Statesp?Γ check
that each letter inΓ occurs at least once, as follows:

(Check2) a2 (p?Γ1
, x1) (p

?
Γ2
, x2) −→ p?Γ1∪Γ2

, e01

(Check0) a0 −→ p?{a}, e
0
1

The setT (p?Γ)({t}) is either a single leaf or∅, depending on
whethert satisfies the condition or not. The choice ofe01 on the
right side of the transitions is not important, since, in theway states
p?Γ are used, it only matters whether the input can be successfully
parsed, and not what the output actually is.

It is clear that the image of statep∆′ is always a language of
∆′-narrow trees. Correctness follows from the following claim.

Claim. Let t be an input tree. Then,(i) ift has at leastn occur-
rences of every lettera ∈ Σ, thenT (A)(t) contains a tree with at
least log n occurrences of every lettera ∈ Σ, and (ii) if T (A)(t)
contains a tree with at leastn occurrences of every lettera ∈ Σ,
thent has at leastn occurrences of every lettera ∈ Σ.

To conclude the proof, letT be the transductionT (A) realized
byA. By Theorem 2.1, there exists a HORSS ′ of the same order as
S with L(S ′) = T (L(S)). First, it is clear thatL(S ′) is a language
of ∆-narrow trees. Second, thanks to the claim above,DiagΣ(S)
holds if, and only if,DiagΣ(S

′) holds.

5. Lowering the Order
Let S be a∆-narrow HORS of orderk ≥ 1, and letΣ be a finite
set of letters. The goal of this section is to construct a HORSS ′ of
orderk − 1 s.t.DiagΣ(S) holds if and only ifDiagΣ(S

′) holds.
Let • be a fresh letter, not used inS , and not inΣ. We will use

it to label auxiliary nodes of trees generated byS ′. We say that two
treesK1, K2 areequivalentif, for each lettera 6= •, they have
the same number of occurrences ofa. The resulting HORSS ′ will
have the property that for every tree generated byS there exists
an equivalent tree generated byS ′, and for every tree generated
by S ′ there exists an equivalent tree generated byS . Then surely
DiagΣ(S) holds if and only ifDiagΣ(S

′) holds.
Let us explain the idea of lowering the order of a scheme on two

simple examples. Consider the following transformation onsorts
that removes arguments of sorto:

o↓= o, and (β → γ)↓=

{

γ ↓ if β = o,
(β ↓) → (γ ↓) otherwise.

We have that the order ofα↓ ismax(0, ord(α)− 1).
Very roughly our construction will take a scheme and produce

a scheme of a lower order by changing every nonterminal of sort α
to a nonterminal of sortα↓. This is achieved by outputting immedi-
ately arguments of sorto instead of passing them to nonterminals.

Example 1. Consider the scheme

S → F e0, F x → x, F x → F (b1 x) .

This scheme generates words of the form(b1)ne0. It can be trans-
formed to an equivalent scheme:

S′ → •2

F ′ e0
F ′ → •0 F ′ → •2

F ′ b0

where we have used a graphical notation for terms; in standard
notation the first rule would beS′ → •2 F ′ e0. Now bothb and
e are used with rank0; we have also used auxiliary symbols•2 and
•0. Observe that the new scheme has smaller order as the sorts of
S′ andF ′ areo. The new scheme is equivalent to the initial one
since a derivation of(b1)ne0 can be matched by the derivation of a
tree with onee0 andb0 appearingn times:

•2

•2

•2

•2

•0 b0
b0

b0
e0

n

Example 2. Let us now look at a more complicated example. This
time we take the following scheme of order2:

S → F b1 e0, F g x → g x, F g x → a1 (F (B g) (c1 x)),

B g x → b1 (g x) .

Hereg has sorto → o, andx has sorto. This scheme generates
words of the form(a1)n(b1)n+1(c1)ne0. We transform it into a
scheme of order1:

S′ → •2

F ′ b0 e0
F ′ g′ → g′

F ′ g′ → •3

a0 F ′ (B′ g′) c0
B′ g′ → •2

b0 g′

The latter scheme generates trees of the form:

4 2018/4/23

•2

•3

a0

•3

a0 tnb c0

c0

e0

n

tnb = •2

b0 •2

b0 •2

b0 b0

n

The intuition behind the above two examples is as follows.
Consider some closed termK of sorto, and its subtermL of sort
o. In a tree generated byK, the termL will be used to generate
some subtrees. Take a tree whereL generates exactlyk subtrees.
Then we can create a new term starting with a symbol•k+1: in
the first subtree we putK with L replaced by•0, and in thek
remaining subtrees we putL. From this new term we can generate
a tree similar to the initial one: the subtrees generated byL are
moved closer to the root, but the multisets of letters appearing in
the tree do not change. We do this with every subterm of sorto
on the right hand side of every rule ofS . In the obtained system,
whenever an argument has sorto then it is•0. Because of this, we
can just drop arguments of sorto. This is what our translationα ↓
on sorts does, and this is what happens in the two examples above.
Since the original schemes from the two examples generated words,
and all arguments were eventually used to generate a subword, for
every subterm of sorto the multiplication factork was always1.

The crucial part of this argument was the information on the
number of timesL will be used inK. This is the main technical
problem we need to address. We propose a special type system for
tracking the use of closures of sorto. It will non-deterministically
guess the number of usages, and then enforce derivations that
conform to this guess. The reason why such afinite type system
can exist is thatS is Σ0-narrow, which, in turn, implies thatL can
be used to generate at most|Σ0| subtrees of a tree.

In the sequel we assume w.l.o.g. that inS the only rule from
the initial nonterminal isAinit → Ae01 . . . e0|∆| (for some non-
terminalA) where∆ = {e01, . . . , e

0
|∆|}, and no other rule uses

a nullary symbol nor the initial nonterminalAinit . To ensure this
condition, we perform the following simple transformationof the
HORS. Every ruleB x1 . . . xk → K in R(S) is replaced by
B y1 . . . y|∆| x1 . . . xk → K′, whereK′ is obtained by replac-
ing in K every use of a symbole0i ∈ ∆ by yi, and every use of
a nullary symbol not being in∆ by an arbitraryyi (this symbol
anyway does not appear in any tree generated byS), and every
use of a nonterminalC by C y1 . . . y|∆| (the sort of every nonter-
minal is changed fromα to o|∆| → α). Additionally a new rule
Ainit → Ae01 . . . e0|∆| is added, whereAinit is a fresh nonterminal
that becomes initial, andA is the nonterminal that was initial previ-
ously. It is easy to see that this transformation does not change the
set of generated trees. It also does not increase the order, since in
this section we assume thatS has order at least1.

5.1 Type System

We now present a type system whose main purpose is to track
nullary symbols that eventually will end as leaves of a generated
tree. The type of a term will say which nullary symbols are already
present in the term and which will come from each of its arguments.

For every sortα = (α1 → · · · → αk → o) we define the
set T α of typesof sort α and the setLT α of labeled typesof
sort α by induction onα. Labeled types inLT α are just pairs
(S, τ) ∈ P(∆) × T α, where ifα = o we require thatS 6= ∅. The
support of a setΛ of labeled types is the subsetΛ6=∅ of its elements
(S, τ) ∈ Λ with S 6= ∅. A set of labeled typesΛ is separatedif
there are no two distinct(S, τ) and(S′, τ ′) in Λ s.t.S ∩ S′ 6= ∅.
Types inT α are of the formΛ1 → · · · → Λk → r, wherer is a
distinguished type corresponding to sorto, Λi is a subset ofLT αi

for eachi ∈ {1, . . . , k} s.t.{Λ6=∅
1 , . . . ,Λ6=∅

k } are pairwise disjoint
andΛ1∪· · ·∪Λk is separated. Let us emphasize thatΛi for αi = o
can only contain pairs(S, τ) with S 6= ∅. We fix some (arbitrary)
order< on elements ofLT α for every sortα.

Types do not describe all the possible trees generated by a term,
but rather restrict the generating power of a term. Intuitively, a
labeled type(S0, r) assigned to a closed term of sorto says that we
are interested in generating trees that areS0-narrow. A functional
type(S0,Λ → τ) says that the term becomes of type(S, τ) when
taking an argument that will be used only with labeled types from
Λ. Here,S equalsS0 plus the symbolsS1 ∪ · · · ∪ Sk generated by
an argument of typeΛ = {(S1, τ1), . . . , (Sk, τk)}.

A type environmentΓ is a set of bindings of variables of the
form xα : λ, whereλ ∈ LT α; we may have multiple bindings
xα : λ1, . . . , x

α : λn for the same variable (which we also
abbreviate asxα : {λ1, . . . , λn}), however{λ1, . . . , λn} must
be separated in the sense above. Atype judgmentis of the form
Γ ⊢ Mα : λ, where againλ ∈ LT α.

The rules of the type system are given in Figure 1. Aderivation
is a tree whose nodes are labeled by type judgments constructed
according to the rules of the type system (we draw a parent below
its children, unlikely the usual convention for trees). Forthe proof
it will be convenient to assume that a derivation is an ordered
tree: in the application rule the premise withL is the first sibling
followed by the premises withM ordered using our fixed ordering
on (Si, τi), without repetitions. We say thatD is a derivation for
Γ ⊢ M : λ, or thatD derivesΓ ⊢ M : λ, if this type judgment
labels the root ofD. All the nodes of derivations are required to
be labeled by valid type judgments, thus all the restrictions on
types from the definition ofT α stay in force; in particular, in the
application rule forLM , the setsS1, . . . , Sk are disjoint.

5.2 Transformation

Once we have the type system, we can show how the HORSS is
transformed into the HORSS ′.

A term of typeτ will be transformed into a term of sorttr(τ).
This sort is defined by induction on the structure ofτ , as follows:

• tr(r) = o, and

• if τ = (Λ → τ ′) ∈ T α→β with Λ = {(S1, τ1) < . . . <
(Sk, τk)}, then we have

tr(τ) =

{

tr(τ1) → · · · → tr(τk) → tr(τ ′) if α 6= o,
tr(τ ′) if α = o.

We see that ifτ ∈ T α, thenord(tr(τ)) = max(0, ord(α) − 1).
This translation is a refined version of the translationα ↓ on sorts
that we have seen earlier in the examples.

The nonterminals ofS ′ will be the nonterminals ofS labeled
with types. For every nonterminalA fromS , of some sortα, and for
everyτ such that(∅, τ) ∈ LT α, in S ′ we consider a nonterminal
A↾τ of sort tr(τ). Moreover, for every variablex used inS , being
of some sortα 6= o, and for everyλ = (S, τ) ∈ LT α, in S ′ we
consider a variablex↾λ of sorttr(τ).

Before defining the rules ofS ′, we need to explain how to trans-
form terms to match the transformation on types. This transforma-
tion is guided by derivations. We define a termtr(D), whereD is
a derivation forΓ ⊢ K : λ, as follows:

• If K = ar is a symbol, thentr(D) = a0.

• If K = xα is a variable, thentr(D) = •0 if α = o, and
tr(D) = x↾λ otherwise.

• If K = A is a nonterminal, thentr(D) = A↾τ provided that
λ = (∅, τ).

5 2018/4/23

Γ, x : λ ⊢ x : λ Γ ⊢ A : (∅, τ) Γ ⊢ a0 : ({a0}, r)

r ≥ 1

Γ ⊢ ar : (∅, {(S1, r)} → · · · → {(Sr, r)} → r)

Γ ⊢ L : (S0, {(S1, τ1), . . . , (Sk, τk)} → τ) Γ ⊢ M : (Si, τi) for eachi ∈ {1, . . . , k}

Γ ⊢ LM : (S0 ∪ S1 ∪ · · · ∪ Sk, τ)
provided thatS0 ∩ (S1 ∪ · · · ∪ Sk) = ∅

Figure 1. Type system for tracing nullary symbols in a term

Γ ⊢ b1 : (∅, {(e, r)} → r)
Γ ⊢ g : (∅, {(e, r)} → r) Γ ⊢ x : (e, r)

Γ ⊢ g x : (e, r)

Γ ⊢ b1 (g x) : (e, r)

Figure 2. An example derivation

• Suppose thatK = LM is an application. Then inD we have a
subtreeD0 derivingΓ ⊢ L : (S0,Λ → τ), whereΛ = {λ1 <
· · · < λk}, and for eachi ∈ {1, . . . , k} a subtreeDi deriving
Γ ⊢ M : λi. If the sort ofM is o, then we taketr(D) =
tr(D0); otherwise,tr(D) = tr(D0) tr(D1) . . . tr(Dk).

We notice that forλ = (S, τ) the sort oftr(D) is indeedtr(τ).
We see that arguments of sorto are ignored while transforming

an application. Because of that, we need to collect the result of the
transformation for all those subtrees of the derivation that describe
terms of sorto. This is realized by thetr cum operation that returns
a list of terms of sorto. WhenD is a derivation for a term of
sort α, and subtrees ofD starting in the children of the root are
D1, . . . , Dm, then

tr cum(D) =

{

tr(D); tr cum(D1); . . . ; tr cum(Dm) if α = o,
tr cum(D1); . . . ; tr cum(Dm) otherwise.

For a listR1; . . . ;Rk of terms of sorto, let us define the term
merge(R1; . . . ;Rk) as •k R1 . . . Rk. Finally, for a substitution
η, and a list of termslist we write list [η] for the list where the
substitution is performed on every term of thelist .

Example 3. To see an example of such a translation take the term
b1 (g x) that is on the right side of the rule forB in Example 2. For
readability of types, we write(e, r) instead of({e0}, r). We take
an environmentΓ ≡ x : (e, r), g : (∅, {(e, r)} → r) and consider
the derivation presented in Figure 2. Calling this derivationD, we
havetr(D) = b0 andtr cum(D) = b0; g↾(∅,{(e,r)}→r); •

0. Finally,
merge(trcum(D)) = •3 b0 g↾(∅,{(e,r)}→r) •

0 is the (slightly per-
turbed) result of the transformation of the rule forB in Example 2.

The new HORSS ′ is created as follows. The ruleAinit →
Ae01 . . . e0|∆| from the initial nonterminal ofS is replaced by
Ainit → merge(Aτ0 ; e

0
1; . . . ; e

0
|∆|) whereτ0 = {({e01}, r)} →

· · · → {({e0|∆|}, r)} → r. For every other rule ofS of the form
Aα xα1

1 . . . x
αk

k → K we create a rule inS ′ for every derivation of
K. More precisely, for eachi ∈ {1, . . . , k} consider the (separated)
set of labeled typesΛi = {λi,1 < · · · < λi,ni

}, whereλi,j =
(Si,j , τi,j) for everyi, j. For every derivationD of the formx1 :
Λ1, . . . , xk : Λk ⊢ K : (

⋃

i∈{1,...,k}

⋃

j∈{1,...,ni}
Si,j , r) we

create a rule

Aτ x1 . . . xk → merge(trcum(D)) ,

whereτ = (Λ1 → · · · → Λk → r) ∈ T α, andxi denotes
xi↾λi,1

. . . xi↾λi,ni
if αi 6= o, and the empty sequence of variables

if αi = o (for i ∈ {1, . . . , k}).
The correctness of the transformation is described by the fol-

lowing two lemmata, which are proved in the next two subsections.

Their statements refer to the notion of equivalence introduced at the
beginning of this section.

Lemma 5.1 (Soundness). For every tree generated byS ′ there
exists an equivalent tree generated byS .

Lemma 5.2 (Completeness). For every tree generated byS there
exists an equivalent tree generated byS ′.

5.3 Soundness

To prove Lemma 5.1, we follow a sequence of reductions ofS ′,
and we construct corresponding reductions ofS . We however need
to assume that the sequence of reductions inS ′ is leftmost. We
write P →lf

S′ P ′ to denote that this is theleftmostreduction: in
•k P1 . . . Pk we can reduce insidePi only when inP1, . . . , Pi−1

there are no more nonterminals. Not surprisingly, the orderof reduc-
tions does not influence the final result, as stated in the following
lemma.

Lemma 5.3. Suppose that a treeQ can be reached from a termP
using some sequence of reductions ofS ′. ThenQ can be reached
fromP using a sequence of reductions ofS ′ of the same length in
which all reductions are leftmost.

We need to generalize the definition of equivalence from trees
to (lists of) terms of sorto possibly containing nonterminals. We
say that two lists of terms of sorto aremerge-equivalentif one can
be obtained from the other by:

• permuting its elements,

• adding or removing the•0 term,

• merging/unmerging some list elements using the symbol•k.

The following property ofmerge-equivalentlists should be clear.

Lemma 5.4. Let list and list ′ be twomerge-equivalent lists of
terms of sorto. Suppose that a treeQ can be generated byS ′ from
merge(list). Then some treeQ′ equivalent toQ can be generated
byS ′ frommerge(list ′) using a sequence of reductions of the same
length.

The next lemma contains an important observation, needed later
in the proof of Lemma 5.6.

Lemma 5.5. If D derives⊢ K : (∅, τ), thentr cum(D) is empty.

Proof. By induction on the structure ofD. Recall thatLT o does
not contain pairs with∅ on the first coordinate, so the sort of
K is not o, and thustr cum(D) is defined as the concatenation
of tr cum(·) for the subtrees ofD starting in the children of the
root. WhenD consists of a single node, we immediately have
that trcum(D) is empty. OtherwiseK = LM , and the sub-
trees ofD starting in the children of the root areD0 deriving
⊢ L : (S0, {(S1, τ1), . . . , (Sk, τk)} → τ) and Di deriving
⊢ M : (Si, τi) for i ∈ {1, . . . , k}. Since∅ = S0 ∪ · · · ∪ Sk,
we haveSi = ∅ for everyi ∈ {0, . . . , k}. The induction assump-
tion implies thattr cum(Di) is empty for everyi ∈ {0, . . . , k}, and
thustr cum(D) is empty.

6 2018/4/23

Before relating reductions in the HORSes, we analyze what
happens during a substitution.

Lemma 5.6. Consider a derivationDK for Γ ⊢ KαK : (S, τ).
Suppose all bindings for a variablexαx in Γ are (x : λ1), . . . , (x :
λk), whereλ1 < · · · < λk, and({λ1, . . . , λk} → r) is a type in
T αx→o. Suppose also that we have a closed termNαx with, for
everyi = 1, . . . , k, a derivationDi for ⊢ N : λi. Then there is
a derivationD′ for Γ ⊢ K[N/x] : (S, τ) such thattr cum(D′) is
merge-equivalent totr cum(DK)[η]; tr cum(Di1); . . . ; tr cum(Dim)
whereη = (tr(D1)/x↾λ1

, . . . , tr(Dk)/x↾λk
), and i1 < · · · <

im are those amongi ∈ {1, . . . , k} for which in DK there is
a node labeled byΓ ⊢ x : λi. Moreover, ifαK 6= o then
tr(D′) = tr(DK)[η].

Proof. Induction on the structure ofK. We consider three cases.
The trivial case is whenK is a nonterminal, or a symbol, or a

variable other thanx. ThenK[N/x] = K, so asD′ we can take
DK . Notice that we havem = 0 and that the substitutionη does
not change neithertrcum(DK) nor tr(DK) since variablesx↾λi

do not appear in these terms.
Another easy case is whenK = x, and thus(S, τ) = λl for

somel ∈ {1, . . . , k}. We havem = 1, andi1 = l, andK[N/x] =
N . The required derivationD′ is obtained fromDl by prepending
the type judgment in every its node by the type environmentΓ.
ClearlyD′ remains a valid derivation, andtr(D′) = tr(Dl) and
tr cum(D′) = tr cum(Dl). We see thattr cum(DK) is either the
empty list (whenαK 6= o) or •0 (whenαK = o), so attaching
tr cum(DK)[η] does not change the class ofmerge-equivalence. If
αK 6= o, we havetr(DK)[η] = x↾λl

[η] = tr(Dl).
A more involved case is whenK = LαL MαM . Then in

DK , below its root, we have a subtreeC0 deriving Γ ⊢ L :
(S0, {(S1, τ1), . . . , (Sn, τn)} → τ), and for eachj ∈ {1, . . . , n}
a subtreeCj derivingΓ ⊢ M : (Sj , τj), where(S1, τ1) < · · · <
(Sn, τn), andS0 ∩ (S1 ∪ · · · ∪ Sn) = ∅, andS = S0 ∪ · · · ∪ Sn.
We apply the induction assumption to all these subtrees, obtaining a
derivationC′

0 for Γ ⊢ L[N/x] : (S0, {(S1, τ1), . . . , (Sn, τn)} →
τ) and for eachj ∈ {1, . . . , n} a derivationC′

j for Γ ⊢ M [N/x] :
(Sj , τj). We compose these derivations into a single derivationD′

for Γ ⊢ K[N/x] : (S, τ) using the application rule. It remains to
prove the required equalities abouttr cum andtr .

Let us first see thattr(D′) = tr(DK)[η] (not only if αK 6= o,
but also ifαK = o). From the induction assumption we know
that tr(C′

0) = tr(C0)[η], as surelyαL 6= o. If αM = o, we
simply havetr(D′) = tr(C′

0) andtr(DK) = tr(C0), so clearly
tr(D′) = tr(DK)[η] holds. If αM 6= o, from the induction
assumption we also know thattr(C′

j) = tr(Cj)[η] for every
j ∈ {1, . . . , n}; we havetr(D′) = tr(C′

0) tr(C
′
1) . . . tr(C

′
n)

and similarlytr(DK) = tr(C0) tr(C1) . . . tr(Cn), so we also
obtaintr(D′) = tr(DK)[η].

Next, we prove thattr cum(D′) is merge-equivalent to the
list trcum(DK)[η]; tr cum(Di1); . . . ; tr cum(Dim). For eachj ∈
{0, . . . , n}, let ij,1 < · · · < ij,mj

be those amongi ∈ {1, . . . , k}
for which in Cj there is a node labeled byΓ ⊢ x : λi. By def-
inition tr cum(D′) consists oftr cum(C′

j) for j ∈ {0, . . . , n},
and if αK = o then also oftr(D′). Similarly, trcum(DK)[η]
consists oftr cum(C0)[η]; . . . ; tr cum(Cn)[η], and oftr(DK)[η] if
αK = o. We have already shown thattr(D′) = tr(DK)[η]. The
induction assumption implies thattr cum(C′

j) is merge-equivalent
to tr cum(Cj)[η]; tr cum(Dij,1); . . . ; tr cum(Dij,mj

) for eachj ∈

{0, . . . , n}. It remains to observe that the concatenation of the
lists tr cum(Dij,1); . . . ; tr cum(Dij,mj

) for j ∈ {0, . . . , n} is
merge-equivalent totr cum(Di1); . . . ; tr cum(Dim). By definition
every ij,l equals to someil′ and everyil equals to someij,l′ ;
the only question is about duplicates on these lists. Let us write

λi = (Ti, σi) for every i ∈ {1, . . . , k}. When someil is such
thatTil = ∅, then the listtrcum(Dil) is empty (Lemma 5.5), so
anyway we do not have to care about duplicates. On the other hand,
whenTil 6= ∅ and a node labeled byΓ ⊢ x : λil appears in some
Cj , thenTil ⊆ Sj . Since the setsS0, . . . , Sn are disjoint, such
node appears inCj only for onej, and thus suchil equals to only
one among theij,l′ ’s.

We can now formulate and prove the key lemma of this section,
allowing us to simulate a single step ofS ′ by a single step ofS .

Lemma 5.7. LetD be a derivation for⊢ L : (S, r), whereL does
not contain the initial nonterminal ofS . If merge(trcum(D)) →lf

S′

P , then there exists a termL′ and a derivationD′ for ⊢ L′ : (S, r)
such thatL →S L′ andtr cum(D′) is merge-equivalent toP .

Proof. We proceed by induction on the structure ofL.
Suppose first thatL = ar M1 . . . Mr (where surelyr ≥ 1).

Then D starts with a sequence ofr application rules followed
by a single-node derivation for⊢ ar : (∅, {(S1, r)} → · · · →
{(Sr, r)} → r), and by derivationsDi for ⊢ Mi : (Si, r), for
eachi ∈ {1, . . . , r}. In particular,S1, . . . , Sr are disjoint and their
union isS. It holds thattr cum(D) = (a0; tr cum(D1); . . . ; tr cum(Dr)).
The reductionmerge(trcum(D)) →lf

S′ P concerns one of terms
on one of the liststr cum(Di), and thus we can writeP =
merge(a0; list ′1; . . . ; list

′
r), where for somel ∈ {1, . . . , r} we

havemerge(tr cum(Dl)) →lf

S′ merge(list ′l), and tr cum(Di) =
list ′i for i 6= l. We apply the induction assumption toMl, ob-
taining a termM ′

l and a derivationD′
l for ⊢ M ′

l : (Sl, r)
such thatMl →S M ′

l and thattr cum(D′
l) is merge-equivalent

to list ′l. Taking D′
i = Di and M ′

i = Mi for i 6= l, and
L′ = ar M ′

1 . . . M ′
r, we haveL →S L′. Out of a node la-

beled by⊢ ar : (∅, {(S1, r)} → · · · → {(Sr, r)} → r) and
of derivationsD′

i for i ∈ {1, . . . , r} we compose a derivation
D′, using the application ruler times. We havetr cum(D′) =
(a0; tr cum(D′

1); . . . ; tr cum(D′
r)), and thustr cum(D′) is merge-

equivalent toP .
The remaining possibility is thatL = ANα1

1 . . . Nαk
k . ThenD

starts with a sequence of application rules ending in a single-node
derivation for⊢ A : (∅, τ) with τ = {λ1,1, . . . , λ1,n1

} → . . . ,→
{λk,1, . . . , λk,nk

} → r, and in derivationsDi,j for⊢ Ni : λi,j , for
eachi ∈ {1, . . . , k}, j ∈ {1, . . . , ni}. Supposeλi,1 < · · · < λi,ni

for every i ∈ {1, . . . , k}, andλi,j = (Si,j , τi,j) for every i, j.
Since we consider the leftmost reduction ofmerge(trcum(D)),
it necessarily concerns its parttr(D) (which is the first term in
the list tr cum(D)), that consists of the nonterminalA↾τ to which
some of the termstr(Di,j) are applied (namely, termstr(Di,j)
for thosei for which αi 6= o). This reduction uses some rule
Aτ x1 . . . xk → merge(tr cum(DK)), where inS we have a rule
Ax1 . . . xk → K, and we have a derivationDK for Γ ⊢ K :
(S, τ) with Γ =

⋃

i∈{1,...,k}

⋃

j∈{1,...,ni}
{xi : λi,j}, and where

xi denotesxi↾λi,1
. . . xi↾λi,ni

if αi 6= o and the empty sequence
of variables ifαi = o (for i ∈ {1, . . . , k}).

AsL′ we take the result of applying the ruleAx1 . . . xk → K
to L, i.e.L′ = K[N1/x1, . . . , Nk/xk]. To construct a derivation
for it, we construct derivationsDi,K, for K[N1/x1, . . . , N/xi], for
i = 1, . . . , k. We takeD0,K = DK . To obtainDi,K we apply
Lemma 5.6 toNi, Di−1,K andDi,1, . . . , Di,ni

. The derivation
Dk,K derivesΓ ⊢ L′ : (S, r). Let D′ be the derivation for⊢
L′ : (S, r) obtained fromDk,K by removing the type environment
Γ from type judgments in all its nodes; we obtain a valid derivation
sinceL′ is closed.

It remains to see thattr cum(D′) is merge-equivalent toP . Let
list be the concatenation of liststrcum(Di,j) for all i ∈ {1, . . . , k},
j ∈ {1, . . . , ni} and letQ = merge(trcum(DK))[η1, . . . , ηk]

7 2018/4/23

whereηi = (tr(Di,1)/xi↾λi,1
, . . . , tr(Di,ni

)/xi↾λi,ni
) for i ∈

{1, . . . , k}; we see thatQ is the result of applying the considered
rule to tr(D) (substitutionsηi for i such thatαi = o can be
skipped, since anyway variablesxi↾λi,j

for suchi do not appear
in tr(DK)). For i ∈ {1, . . . , k}, let ji,1 < · · · < ji,mi

be
those amongj ∈ {1, . . . , ni} for which in DK there is a node
labeled byΓ ⊢ x : λi,j . By definitiontr cum(D) = (tr(D); list),
and thusP = merge(Q; list). On the other hand Lemma 5.6
says thattr cum(D′) is merge-equivalent toQ; list ′, wherelist ′

is the concatenation oftr cum(Di,j1); . . . ; tr cum(Di,jmi
) for i ∈

{1, . . . , k}. We notice, however, thatlist = list ′. Indeed, ifSi,j =
∅ for somei, j, thentr cum(Di,j) is empty by Lemma 5.5. Suppose
thatSi,j 6= ∅. The rules of the type system ensure that the subset
of ∆ in the root ofDK (that isS) is the union of those subsets in
all leaves ofDK . We have assumed that symbols from∆ do not
appear inK (they are allowed to appear only in the rule from the
initial nonterminal). Moreover,Si,j ⊆ S, and all other setsSi′,j′

are disjoint fromSi,j (by the definition of types). Thus necessarily
a node labeled byΓ ⊢ xi : λi,j appears inDK (this is the only way
the elements ofSi,j can be introduced inS). This means that our
j is listed amongji,1, . . . , ji,mi

, and hencetr cum(Di,j) appears
in list ′. This proves thatlist = list ′, and in consequence that
tr cum(D′) ismerge-equivalent toP .

Lemma 5.8. Let D be a derivation for⊢ L : (S, r) such that
merge(trcum(D)) is a tree. ThenL is a tree, and is equivalent to
merge(trcum(D)).

Proof. Induction on the structure ofL. If L was of the form
AM1 . . . Mk, then inD we would necessarily have a node for
the nonterminalA, which would imply thatmerge(tr cum(D)) is
not a tree, i.e., it contains a nonterminal. ThusL is of the form
ar M1 . . . Mr. Looking at the type system we notice thatD nec-
essarily starts with a sequence ofr application rules followed by
a single-node derivation for⊢ ar : (S0, τ0), and derivationsDi

for ⊢ Mi : (Si, r), for i ∈ {1, . . . , r}. Recall thattr cum(D) =
(a0; tr cum(D1); . . . ; tr cum(Dr)). For i ∈ {1, . . . , r} we know
thatmerge(tr cum(Di)) is a tree; the induction assumption implies
thatMi is a tree, and is equivalent tomerge(tr cum(Di)). It follows
thatL is a tree, and is equivalent tomerge(tr cum(D)).

Corollary 5.9. Let D be a derivation for⊢ L : (S, r), where
L does not contain the initial nonterminal. If a treeQ can be
generated byS ′ from merge(tr cum(D)), then a tree equivalent
toQ can be generated byS fromL.

Proof. Induction on the smallest length of a sequence of reductions
merge(trcum(D)) →∗

S′ Q. If this length is0, we apply Lemma
5.8. Suppose that the length is positive. Thanks to Lemma 5.3we
can writemerge(tr cum(D)) →lf

S′ P →∗
S′ Q (without changing

the length of the sequence of reductions). Using Lemma 5.7 we
obtain a termL′ and a derivationD′ for ⊢ L′ : (S, r) such that
L →S L′ and thattr cum(D′) ismerge-equivalent toP . The initial
nonterminal does not appear inL′ since by assumption it does not
appear on the right side of any rule. BecauseP →∗

S′ Q, by Lemma
5.4 we also have a sequence of reductions of the same length
merge(trcum(D′)) →∗

S′ Q′ to some treeQ′ equivalent toQ; to
this sequence of reductions we apply the induction assumption.

Proof of Lemma 5.1.Let n = |∆|. Consider the ruleAinit →
Ae01 . . . e0n from the initial nonterminal ofS . LetD be a derivation
for ⊢ Ae01 . . . e0n : (∆, r) that consists of a node labeled by
⊢ A : (∅, τ) with τ = {({e01}, r)} → . . . → {({e0n}, r)} → r,
and of nodes labeled by⊢ e0i : ({e0i }, r) for i ∈ {1, . . . , n},
joined together by application rules. We see thattr cum(D) =
(Aτ ; e

0
1; . . . ; e

0
n).

Take a treeQ generated byS ′. Since the only rule ofS ′ from the
initial nonterminal isAinit → merge(Aτ ; e

0
1; . . . ; e

0
n), the treeQ

is generated byS ′ also frommerge(tr cum(D)). By Corollary 5.9
a treeQ′ equivalent toQ can be generated byS from Ae01 . . . e0n,
and thus also from the initial nonterminal.

5.4 Completeness

The proof of Lemma 5.2 is similar to the one of Lemma 5.1; we
just need to proceed in the opposite direction. Namely, we take
a sequence of reductions ofS finishing in a finite tree, and then
working from the end of the sequence we construct backwards a
sequence of reductions ofS ′.

There is one additional difficulty that was absent in the pre-
vious subsection: we need some kind of uniqueness of deriva-
tions. Indeed, while proceeding forwards fromAN1 . . . Nk to
K[N1/x1, . . . , Nk/xk], we take a derivation forN1 from the sin-
gle place whereN1 appears in the first term, and we put it in mul-
tiple places whereN1 appears in the second term. This time we
proceed backwards, so there are multiple places in the second term
where we have a derivation forN1. Our type system can accommo-
date different derivations for the occurrences ofN1 having different
types, but for each type we have to ensure that in different occur-
rences ofN1 with this type the derivations are the same. Because
of that we only consider maximal derivations.

A derivationD is calledmaximalif for every internal node of
D the following holds: if the label of this node isΓ ⊢ LM : (S, τ)
and it is possible to deriveΓ ⊢ M : (∅, σ) for someσ, then
necessarily this node has a child labeled byΓ ⊢ M : (∅, σ).
The following two lemmata say that it is enough to consider only
maximal derivations, and that maximal derivations are unique if
we restrict ourselves to labeled types with empty subset of∆. We
will see later that for other types the multiple occurrence problem
mentioned above does not occur.

Lemma 5.10. If ⊢ K : (S, τ) can be derived, then it can be
derived by a maximal derivation.

Proof. Let τ = Λ1→ . . .→Λn→r and supposeD is a derivation
for ⊢ Kα : (S, τ). We prove a stronger statement: ifT1, . . . , Tn are
such thatτ ′ = ((Λ1∪({∅}×T1)) → . . .→ (Λn∪({∅}×Tn)) →
r) is a type inT α then there exists a maximal derivationD′ for
⊢ K : (S, τ ′). This is shown by induction on the structure ofK.
SurelyK is not a variable, as then a type judgment with empty
type environment could not be derived. IfK is a nonterminal, then
S = ∅, and⊢ K : (S, τ ′) (for any τ ′ ∈ T α) can be derived by
a single-node derivation; this is a maximal derivation. IfK is a
symbol, its sort ison → o; by definition ofLT o we know that
Ti = ∅ for everyi ∈ {1, . . . , n}, which impliesτ ′ = τ . ThusD
derives⊢K : (S, τ ′) and is maximal, since it consists of a single
node.

Finally, suppose thatK = LM . Then inD we have a subtree
Di deriving⊢L : (S0,Λ0→τ), and for everyλ ∈ Λ0 a subtreeDλ

deriving⊢ M : λ. LetT0 contain thoseσ for which we can derive⊢
M : (∅, σ) but(∅, σ) 6∈ Λ0. Then by the induction assumption there
exists a maximal derivationD′

0 for ⊢L : (S0, (Λ0∪ ({∅}×T0)) →
τ ′), and for everyλ ∈ (Λ0 ∪ ({∅} × T0)) there exists a maximal
derivationD′

λ for⊢M :λ. By composing these derivations together,
we obtain a maximal derivationD′ for ⊢ K : (S, τ ′): the side
condition of the application rule still holds since we have added
only derivations for labeled types of the form(∅, σ).

Lemma 5.11. For every type judgment of the formΓ ⊢ K : (∅, τ)
there exists at most one maximal derivationD deriving it.

Proof. By induction on the structure ofK. If K is a variable, a sym-
bol, or a nonterminal, thenD necessarily consists of a single node

8 2018/4/23

labeled by the resulting type judgment, so it is unique. Suppose that
K = LM . Then below the root ofD, labeled byΓ ⊢K : (∅, τ),
we have a subtreeD0 derivingΓ ⊢L : (∅, {∅} × T → τ), and for
everyσ ∈ T a subtreeDσ derivingΓ ⊢M : (∅, σ). By maximality,
whenever we can deriveΓ ⊢M : (∅, σ) for someσ, there should be
a child of the root ofD labeled byΓ ⊢M : (∅, σ), and thenσ ∈ T .
This fixes the setT , and thus the set of child labels. The derivations
D0 andDτ for τ ∈ T are unique by the induction assumption.

After these preparatory results about derivations we come back
to our proof. The next lemma deals with the base case: for the
last term in a sequence of reductions inS (this term is a narrow
tree) we create an equivalent term that will be the last term in the
corresponding sequence of reductions inS ′.

Lemma 5.12. LetS ⊆ ∆, and letK be anS-narrow tree. Then
there exists a maximal derivationD for ⊢ K : (S, r) such that
merge(trcum(D)) is a tree equivalent toK.

Proof. We proceed by induction on the structure ofK, which is
necessarily of the formar M1 . . . Mr. If r = 0, thenS = {a0}
and we takeD to be the single-node derivation for⊢a0 : ({a0}, r);
we havetr cum(D) = a0. Suppose thatr ≥ 1. Then S can
be represented as a union of disjoint setsS1, . . . , Sr s.t. Mi is
a Si-narrow tree for eachi ∈ {1, . . . , r}. By induction, ∀i ∈
{1, . . . , r} we obtain a maximal derivationDi for ⊢ Mi : (Si, r)
s.t.merge(tr cum(Di)) is a tree equivalent toMi. The derivation
D is obtained by deriving⊢ar : (∅, {(S1, r)}→ . . .→{(Sr, r)}→
r) and attachingD1, . . . , Dr using the application ruler times.
Because theMi’s are of sorto, andLT o does not contain pairs of
the form(∅, σ), the definition of maximality requires no additional
children for the new internal nodes ofD, and henceD is maximal.
Thustr cum(D) = (a0; tr cum(D1); . . . ; tr cum(Dr)).

We now describe what happens during a substitution.

Lemma 5.13. Suppose thatD′ is a maximal derivation forΓ ⊢
KαK [N/xαx] : (S, τ), whereN is closed. LetΛ∅ be the set of
those(∅, σ) ∈ LT αx for which ⊢ N : (∅, σ) can be derived.
Then there exists a setΛ ∈ LT αx , a maximal derivationDK for
Γ′ ⊢ K : (S, τ) with Γ′ = Γ ∪ {x : λ | λ ∈ Λ}, and for each
λ ∈ Λ a maximal derivationDλ for ⊢ N : λ, such that

1. Λ∅ ⊆ Λ,
2. for everyλ∈Λ\Λ∅ in DK there is a node labeled byΓ′ ⊢x :λ,
3. the listtr cum(D′) ismerge-equivalent to the list

tr cum(DK)[η]; tr cum(Dλ1
); . . . ; trcum(Dλk

), where
Λ = {λ1, . . . , λk} with λ1 < · · · < λk, and
η = (tr(Dλ1

)/x↾λ1
, . . . , tr(Dλk

)/x↾λk
), and

4. if αK 6= o then alsotr(D′) = tr(DK)[η].

Proof. We proceed by induction on the structure ofK. By Lemma 5.10,
for λ ∈ Λ∅, there exists a maximal derivation for⊢ N : λ, which
is unique by Lemma 5.11. We denote this unique derivation byDλ.

We consider three cases. First suppose thatK is a nonterminal,
or a symbol, or a variable other thanx. In this caseK[N/x] = K.
We takeΛ = Λ∅, and to obtainDK we just extend the type
environment in the only node ofD′ by {x : λ | λ ∈ Λ}. Points 1-2
hold trivially. For points 3-4 we observe that neithertr(DK) nor
tr cum(DK) contains a variablex↾λ (so the substitutionη does not
change these terms); additionallytr cum(Dλ) for λ ∈ Λ are empty
(Lemma 5.5).

Next, suppose thatK = x. We takeΛ = Λ∅ ∪ {(S, τ)}. As
DK we take the single-node derivation forΓ′ ⊢ x : (S, τ), and as
D(S,τ) we takeD′ in which we remove the type environment from
every node. SinceN is closed,D(S,τ) remains a valid derivation
and it remains maximal (when(S, τ) ∈ Λ∅, we have already

definedD(S,τ) previously, but these two definitions give the same
derivation). Points 1-2 hold trivially. We havetr(D′) = tr(D(S,τ))
andtr cum(D′) = tr cum(D(S,τ)). We see thattr cum(DK) is either
an empty list (whenαK 6= o) or •0 (whenαK = o), so attaching
tr cum(DK)[η] does not change the class ofmerge-equivalence.
Moreovertr cum(Dλ) for λ ∈ Λ∅ are empty (Lemma 5.5), which
gives point 3. IfαK 6= o, we havetr(DK)[η] = x↾(S,τ)[η] =

tr(D(S,τ)) = tr(D′) (point 4).
Finally suppose thatK = LαL MαM , which is a more involved

case. InD′, below its root, we have a subtreeC′
0 deriving Γ ⊢

L[N/x] : (S0, {(S1, τ1), . . . , (Sn, τn)} → τ), and for eachj ∈
{1, . . . , n} a subtreeC′

j derivingΓ ⊢ M [N/x] : (Sj , τj), where
(S1, τ1) < · · · < (Sn, τn), andS0 ∩ (S1 ∪ · · · ∪ Sn) = ∅, and
S = S0 ∪ · · · ∪ Sn. We apply the induction assumption to all
these subtrees, obtaining a maximal derivationC0 for Γ ∪ {x : λ |
λ ∈ Λ0} ⊢ L : (S0, {(S1, τ1), . . . , (Sn, τn)} → τ) and for each
j ∈ {1, . . . , n} a maximal derivationCj for Γ ∪ {x : λ | λ ∈
Λj} ⊢ M : (Sj , τj), and for eachj ∈ {0, . . . , n} andλ ∈ Λj a
maximal derivationDj,λ for ⊢ N : λ.

Let Λ =
⋃

j∈{0,...,n} Λj . Forλ ∈ Λ∅ we have already defined
Dλ, and we haveDλ = Dj,λ for everyj ∈ {0, . . . , n}. Recall that
for everyλ ∈ Λj \ Λ∅ there is a node inCj deriving the labeled
typeλ, and hence the set on the first coordinate ofλ is a subset of
Sj (point 2). Since the setsSj are disjoint, for everyλ ∈ Λ \ Λ∅

there is exactly onej for which λ ∈ Λj , and we defineDλ to be
Dj,λ for this j.

We extend the type environment in every node of everyCj to
Γ′ = Γ ∪ {x : λ | λ ∈ Λ}, and we compose these derivations
into a single derivationDK for Γ′ ⊢ K : (S, τ) using the rule
for application. In order to see thatDK is maximal, take some
internal node ofDK . Suppose first that this node is contained
inside someCj and it is labeled byΓ′ ⊢ P Q, and it is possible
to deriveΓ′ ⊢ Q : (∅, σ). Then it is as well possible to derive
Γ ∪ {x : λ | λ ∈ Λj} ⊢ Q : (∅, σ), becauseΛ \ Λj contains only
labeled types with nonempty set on the first coordinate and they
anyway cannot be used while deriving a labeled type with empty
set on the first coordinate. Thus by maximality ofCj our node has
a child labeled byΓ′ ⊢ Q : (∅, σ). Next, consider the root ofDK ,
and suppose that it is possible to deriveΓ′ ⊢ M : (∅, σ). Then by
Lemma 5.6 it is as well possible to deriveΓ′ ⊢ M [N/x] : (∅, σ),
so alsoΓ ⊢ M [N/x] : (∅, σ) (sincex does not appear inM [N/x]),
which by maximality ofD′ means that(∅, σ) is one of(Sj , τj), and
thus the root ofDK has a child labeled byΓ′ ⊢ M : (∅, σ) (created
out of the root ofCj).

Points 1, 2 follow from the induction assumption. It remains
to prove points 3, 4. LetΛ = {λ1 < · · · < λk} and η =
(tr(Dλ1

)/x↾λ1
, . . . , tr(Dλk

)/x↾λk
). Similarly, letΛj = {λj,1 <

· · · < λj,kj
} andηj = (tr(Dλj,1

)/x↾λj,1
, . . . , tr(Dλj,k

)/x↾λj,kj
).

Let us first see thattr(D′) = tr(DK)[η] (not only if αK 6= o,
as in point 4, but also ifαK = o). By induction we know
that tr(C′

0) = tr(C0)[η0], as surelyαL 6= o. Thus tr(C′
0) =

tr(C0)[η], since tr(C′
0) (hence alsotr(C0)[η0]) does not con-

tain variablesx↾λ, so substituting for them does not change any-
thing. If αM = o, we simply havetr(D′) = tr(C′

0) and
tr(DK) = tr(C0), so clearlytr(D′) = tr(DK)[η] holds. If
αM 6= o, by induction we also know thattr(C′

j) = tr(Cj)[ηj]
∀j ∈ {1, . . . , n}, and thus alsotr(C′

j) = tr(Cj)[η]; we have
tr(D′) = tr(C′

0) tr(C
′
1) . . . tr(C

′
n) and similarly tr(DK) =

tr(C0) tr(C1) . . . tr(Cn), so we also obtaintr(D′) = tr(DK)[η].
To show point 3 we prove thattr cum(D′) is merge-equivalent to
the list tr cum(DK)[η]; tr cum(Dλ1

); . . . ; trcum(Dλk
). By defini-

tion tr cum(D′) consists oftr cum(C′
j) for j ∈ {0, . . . , n}, and

if αK = o then also oftr(D′). Similarly, tr cum(DK)[η] equals
to tr cum(C0)[η]; . . . ; tr cum(Cn)[η], prepended bytr(DK)[η] if

9 2018/4/23

αK = o. We have already shown thattr(D′) = tr(DK)[η]. By
the induction assumption, the listtr cum(C′

j) is merge-equivalent
to the list tr cum(Cj)[ηj]; trcum(Dλj,1

); . . . ; tr cum(Dλj,kj
) for

all j ∈ {0, . . . , n}. We can replace hereηj by η, sincetr cum(C′
j)

does not contain variablesx↾λ with λ ∈ Λ\Λj . To finish the
proof it is enough to observe that the concatenation of the lists
tr cum(Dλj,1

); . . . ; tr cum(Dλj,kj
) for j ∈ {0, . . . , n} is merge-

equivalent totr cum(Dλ1
); . . . ; tr cum(Dλk

). Indeed, forλ ∈ Λ∅

by Lemma 5.5tr cum(Dλ) is empty, and, as we have already shown,
everyλ ∈ Λ \ Λ∅ belongs to exactly oneΛj .

Lemma 5.14. Let D′ be a maximal derivation for⊢ L′ : (S, r),
and letL be a term that does not contain the initial nonterminal of
S and such thatL →S L′. Then there exists a maximal derivation
D for ⊢ L : (S, r) and a termP that is merge-equivalent to
tr cum(D′) and such thatmerge(trcum(D)) →S′ P .

The lemma is proved by induction on the structure ofL; cf. App. B.
The case whenL starts with a nonterminal uses Lemma 5.13.

Corollary 5.15. Let L be a term that is of sorto and does not
contain the initial nonterminal ofS , and letM be anS-narrow tree
generated byS fromL. Then there exists a maximal derivationD
for ⊢ L : (S, r) such that a tree equivalent toM can be generated
byS ′ frommerge(tr cum(D)).

Proof. We proceed by induction on the smallest length of the se-
quence of reductionsL →∗

S M . If L = M , we just apply Lemma
5.12. Suppose that the length is positive, and writeL →S L′ →∗

S

M . The initial nonterminal does not appear inL′ since by assump-
tion it does not appear on the right side of any rule. By induction we
obtain a maximal derivationD′ for ⊢ L′ : (S, r) such that a treeQ
equivalent toM can be generated byS ′ from merge(tr cum(D′)).
Then, from Lemma 5.14 we obtain a maximal derivationD for
⊢ L : (S, r) and a termP that ismerge-equivalent totr cum(D′)
and such thatmerge(trcum(D)) →S′ P . By Lemma 5.4 a tree
equivalent toQ (and hence toM) can be generated byS ′ from P ,
and hence also frommerge(tr cum(D)).

Proof of Lemma 5.2.Consider a treeM generated byS , and
a sequence of reductions ofS leading toM . In the first step
the initial nonterminal reduces toAe01 . . . e0|∆|. Corollary 5.15
gives us a derivationD for ⊢ Ae01 . . . e0|∆| : (∆, r) such that
merge(trcum(D)) generates a tree equivalent toM . Necessar-
ily tr cum(D) = (Aτ0 ; e

0
1; . . . ; e

0
|∆|), somerge(tr cum(D)) is ob-

tained as the result of the initial rule ofS ′.

6. Conclusions
This work leaves open the question of the exact complexity ofthe
diagonal problem. The only known lower bound is given by the
emptiness problem, that is the same as for the model-checking
problem [20]. Our procedure is probably not optimal, one of the
reasons being the use of reflection in operation Theorem 2.1.

References
[1] P. A. Abdulla, L. Boasson, and A. Bouajjani. Effective lossy queue

languages. InIn Proc. of ICALP’01, LNCS, pages 639–651, 2001.

[2] A. V. Aho. Indexed grammars - an extension of context-free grammars.
J. ACM, 15(4):647–671, Oct. 1968.

[3] K. Asada and N. Kobayashi. On word and frontier languagesof unsafe
higher-order grammars. To appear in Proc. of ICALP’16.

[4] G. Bachmeier, M. Luttenberger, and M. Schlund. Finite automata for
the sub- and superword closure of CFLs: Descriptional and compu-
tational complexity. InIn Proc. of LATA’15, volume 8977 ofLNCS,
pages 473–485, 2015.

[5] L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi-Reghizzi. Multi-
push-down languages and grammars.Int. J. Found. Comput. Sci.,
7(3):253–292, 1996.

[6] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion
schemes and logical reflection. InLICS’10, pages 120–129, 2010.

[7] L. Clemente, P. Parys, S. Salvati, and I. Walukiewicz. Ordered tree-
pushdown systems. InIn Proc. of FSTTCS’15, volume 45 ofLIPIcs,
pages 163–177, 2015.

[8] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and
applications.http://www.grappa.univ-lille3.fr/tata , 2007.

[9] B. Courcelle. On constructing obstruction sets of words. Bulletin of
EATCS, 1991.

[10] W. Czerwiński, W. Martens, L. van Rooijen, and M. Zeitoun. A note
on decidable separability by piecewise testable languages. In FCT’15,
volume 9210 ofLNCS, pages 173–185, 2015.

[11] W. Czerwiński, W. Martens, L. van Rooijen, M. Zeitoun,and G. Zet-
zsche. A characterization for decidable separability by piecewise
testable languages. Submitted, 2015.

[12] W. Damm. The IO- and OI-hierarchies.Theoretical Computer Science,
20:95–207, 1982.

[13] H. Gruber, M. Holzer, and M. Kutrib. The size of Higman–Haines sets.
Theor. Comput. Sci., 387(2):167–176, 2007.

[14] P. Habermehl, R. Meyer, and H. Wimmel. The downward-closure of
Petri net languages. InIn Proc. of ICALP’10, volume 6199 ofLNCS,
pages 466–477, 2010.

[15] M. Hague. Parameterised pushdown systems with non-atomic writes.
In FSTTCS, volume 13 ofLIPIcs, pages 457–468, 2011.

[16] M. Hague, J. Kochems, and C.-H. L. Ong. Unboundedness and
downward closures of higher-order pushdown automata. InProc. of
POPL’16, pages 151–163, 2016.

[17] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. InProc. of LICS’08,
pages 452–461. IEEE Computer Society, 2008.

[18] G. Higman. Ordering by divisibility in abstract algebras.Proc. London
Math. Soc., s3-2(1):326–336, Jan. 1952.

[19] P. Hofman and W. Martens. Separability by short subsequences and
subwords. InICDT 2015, volume 31 ofLIPIcs, pages 230–246, 2015.

[20] N. Kobayashi and C.-H. L. Ong. Complexity of model checking
recursion schemes for fragments of the modal mu-calculus.Logical
Methods in Computer Science, 7(4), 2011.

[21] G. M. Kobele and S. Salvati. The IO and OI hierarchies revisited.
Information and Computation, 243:205–221, 2015.

[22] R. Mayr. Undecidable problems in unreliable computations. Theor.
Comput. Sci., 297(1-3):337–354, Mar. 2003.

[23] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. InProc. of LICS’06, pages 81–90, 2006.

[24] S. Salvati and I. Walukiewicz. Using models to model-check recursive
schemes.Logical Methods In Computer Science, 2015.

[25] S. L. Torre, A. Muscholl, and I. Walukiewicz. Safety of parametrized
asynchronous shared-memory systems is almost always decidable. In
In Proc. of CONCUR’15, volume 42 ofLIPIcs, pages 72–84, 2015.

[26] J. van Leeuwen. Effective constructions in well-partially-ordered free
monoids.Discrete Math., 21(3):237–252, May 1978.

[27] G. Zetzsche. An approach to computing downward closures. In In
Proc. of ICALP’15, volume 9135 ofLNCS, pages 440–451, 2015.

[28] G. Zetzsche. Computing downward closures for stacked counter
automata. InIn Proc. of STACS’15, volume 30 ofLIPIcs, pages 743–
756, 2015.

10 2018/4/23

http://www.grappa.univ-lille3.fr/tata

A. Closure under linear transductions and full
trio

In this section we prove that finite tree languages generatedby
HORSes are closed underlinear bottom-up tree transductions.

An FTT is completeif every variablexi appearing on the left
side of any transition also appears in the termt on the right side
of the transition, i.e., no subtree is discarded. Arestriction is a
special case of an FTT where there is only one control state, and
where every transition is of the formar (q,x1) . . . (q, xr) −→
q, bn xi1 . . . xin with 1 ≤ i1 < · · · < in ≤ r, i.e., it relabels
the tree and discards some its subtrees. Clearly, every FTT is the
composition of a complete FTT with a restriction.

A higher-order recursion scheme with states(HORSS) is a
triple H = (Q, (qinit , Ainit),R), whereQ is a finite set of con-
trol states,(qinit , Ainit) is the initial processwith qinit the initial
control stateandAinit the initial nonterminalthat is of sorto, and
R is a finite set of rules of the form

(I) p,Aα1→···→αk→o xα1

1 · · · xαk

k → q,Ko

(II) p, ar xo
1 · · · xo

r → ar (p1, x1) · · · (pr, xr)

where the termK uses only variables from the set{xα1

1 , . . . , xαk

k }.
Rules of type (I) are as in standard HORS except that they are
guarded by control states. Rules of type (II) correspond to afinite
top-down tree automaton reading the tree produced by the HORS.
The order ofS is defined as the highest order of a nonterminal for
which there is a rule inS . Let us now describe the dynamics of
HORSSes. Aprocessis a pair(p,M) whereM is a closed term of
sorto andp is a state inQ. A process treeis a tree built of symbols
and processes, where the latter are seen as symbols of rank0. A
HORSSH defines a reduction relation→H on process trees:

(p,A x1 . . . xk → q,K) ∈ R(H)

(p,AM1 . . . Mk) →H (q,K[M1/x1, . . . ,Mk/xk])

(p, ar x1 · · · xr → a (p1, x1) · · · (pr, xr)) ∈ R(H)

(p, ar M1 · · ·Mr) →H a (p1,M1) · · · (pr,Mr)

Kl →H K′
l for somel ∈ {1, . . . , r} Ki = K′

i for all i 6= l

ar K1 . . . Kr →H ar K′
1 . . . K′

r

We are interested in finite trees generated by HORSSes. A process
treeT is a tree if it does not contain any process. A HORSSH
generatesa treeT from a process(p,M) if (p,M) →∗

H T . The
languageL(H) is the set of trees generated by the initial process
(qinit , Ainit).

A HORS can be seen as a special case of a HORSS where
Q has only one statêp with the trivial rule p̂, a x1 · · ·xk →
a (p̂, x1) · · · (p̂, xk). It is well known that this extension does not in-
crease expressive power of HORS, in the sense that given a HORSS
H it is possible to construct a (standard) HORSS of the same order
asH (but where the arity of nonterminals is increased) such that
L(H) = L(S) [17]. However, while combining a HORS with an
FTT it is convenient to create a HORSS, as its states can be used to
simulate states of the FTT.

On the other hand, it is also useful to have the input HORS in
a special normalized form, defined next. We say that a HORS is
normalizedif every its rule is of the form

Ax1 . . . xp → h (B1 x1 . . . xp) . . . (Br x1 . . . xp) ,

wherer ≥ 0, h is either one of thexi’s, a nonterminal, or a sym-
bol, and theBj ’s are nonterminals. The arityp may be different
in each rule. We will not detail the rather standard procedure of
transforming any HORS into a normalized HORS without increas-

ing the order. It amounts to splitting every rule into multiple rules,
using fresh nonterminals in the cut points.

Lemma A.1. HORSes are affectively closed under complete linear
tree transductions.

Proof. Let S be a HORS and letA be a linear FTT. We construct
a HORSSH s.t.L(H) = T (A)(L(S)). The set of control states
of H is taken to be the set of control states of the FTTA. As noted
above, we can assume w.l.o.g. thatS is normalized.

First, if S contains a ruleA~x → hM1 · · ·Mr with h not a
symbol, thenH contains the rulep,A ~x → p, hM1 · · ·Mr for
every control statep.

Next, for every such rule withh being a symbolar, and for
every transition ofA havingar on the left side, we take toH one
rule illustrated by means of a representative example: ifA contains
a transition

a2 (p1, x1) (p2, x2) −→ p, b2 (c1 x1) x2

andS contains a ruleA~y → a2 (B1 ~y) (B2 ~y), thenH contains
the rule

p,A ~y → b2 (c1 (p1, B1 ~y)) (p2, B2 ~y)

Technically speaking, this is not a HORSS rule, but it can be turned
into one type (I) rule and several type (II) rules by adding new
states.

Finally, we also add rules corresponding toε-transitions ofA,
what is again defined by an example: ifA contains a transition

p, x1 −→ q, a1 x1

then, for every nonterminalA of S , H contains the rule

q,A ~y → a1 (p,A ~y)

The two inclusions needed to show thatL(H) = T (A)(L(S))
can be proved straightforwardly by induction on the length of
derivations.

The difficulty in proving closure under possibly non-complete
FTTs is that when combining a (non-complete) FTT transitionof
the form e.g.a2 (p, x1) (p, x2) −→ p, b1 x1 with a HORS rule of
the form e.g.A~y → a2 (B1 ~y) (B2 ~y), we cannot simply discard
the subtermB2 ~y, but we have to make sure that it generates at
least one tree on which the FTT has some run. While concentrating
on closure only under restrictions, one think becomes easier: a
restriction has a run almost on every tree. There is, however, one
exception: a restrictionA does not have a run on a tree that uses a
symbol for whichA has no transition. We deal with this in Lemma
A.2, below. However, knowing that on every tree there is a runof
A is not enough; we also need to know thatB2 ~y generates at least
one tree. This problem is resolved by Lemma A.3.

Lemma A.2. For every set of (ranked) symbolsΘ and every HORS
S we can build a HORSS ′ of the same order, such thatL(S ′)
contains those trees fromL(S) which use only symbols fromΘ.

Proof. We start by assuming w.l.o.g. thatS is normalized. Then,
we simply remove fromS all rules that use symbols not inΘ.
Then surely trees inL(S ′) use only symbols fromΘ. On the other
hand, sinceS was normalized, every removed rule was of the form
A~y → ar (B1 ~y) . . . (Br ~y) (with ar 6∈ Θ), so whenever such
a rule was used, anar-labeled node was created. In consequence,
removing these rules has no influence on generating trees that use
only symbols fromΘ.

A HORS S = (Ainit ,R) is productiveif, whenever we can
reduceAinit to a termM (which may contain nonterminals), then
M can be reduced to some finite tree. By using the reflection

11 2018/4/23

operation [6], we can easily turn a HORS into a productive one.

Lemma A.3. For every HORSS we can build a productive HORS
S ′ of the same order generating the same trees.

Proof. First, we construct a deterministic schemeT from the non-
deterministic schemeS . To T we will be then able to apply a
reflection transformation. We use a letter+ to eliminate non-
determinism. For every nonterminalA of S we collect all its rules:
Ax1 . . . xp → K1, . . . , A x1 . . . xp → Km, and add toT the
single rule:

Ax1 . . . xp → +2 K1 (+
2 K2 (. . . (+

2 Km−1 Km) . . .)) .

The (possibly infinite) tree generated byT represents the language
of trees generated fromS since the non-deterministic choices that
can be made inS are represented by nodes labeled by+ in the tree
generated byT . In this latter tree, we can find every tree generated
byS using a finite number of rewriting steps consisting of replacing
a subtree rooted in+ by one of its children.

We now take the monotone applicative structure (see [21, 24])
M = (Mα)α∈Sorts whereMo is the two element lattice, with
maximal element⊤ and minimal element⊥. Intuitively, ⊤ means
nonempty language and⊥ means empty language. We interpret+2

as the join (max) of its arguments, and every other symbolar as
the meet (min) of its arguments; in particular symbols of rank 0 are
interpreted as⊤. This allows us to define the semantics[[M,χ, ν]]
of a term given a valuationχ for nonterminals andν for variables
(these valuations assign to a variable/nonterminal a valuein M
of an appropriate sort). The definition of[[M,χ, ν]] is standard, in
particular[[K L,χ, ν]] = [[K, χ, ν]]([[L, χ, ν]]).

The meaning of nonterminals inT is given by the least fix-
point computation. For a valuationχ of the nonterminals of
T , we write T (χ) for the valuationχ′ such thatχ′(A) =
λg1. · · · .λgp.[[K, χ, [g1/x1, . . . , gp/xp]]] whereAx1 . . . xp →
K is the rule forA in T . Then the meaning of nonterminals
is given by the valuation that is the least fixpoint of this opera-
tor: χT =

∧

{χ : T (χ) ⊆ χ}. HavingχT we can define the
semantics of a termM in a valuationν of its free variables as
[[M, ν]] = [[M,χT , ν]].

Least fixed point models of schemes induce an interpretationon
infinite trees by finite approximations. An infinite tree has value⊤
iff it represents a non-empty language [21]. The important point is
that the semantics of a term and that of the infinite tree generated
from the term coincide.

We can now apply toT the reflection operation [6] with respect
to the above interpretationM. The result is a schemeT ′ that gener-
ates the same tree asT but where every node is additionally marked
by a tuple(a1, . . . , ar, b) wherea1, . . . ,ar is the semantics of the
arguments of that node (i.e., subtrees rooted at its children) andb
is the semantics of the subtree rooted at that node. What is impor-
tant here is thatT ′ has the same order asT which is the same as
that ofS . The additional labels allow us to remove unproductive
parts of the tree generated byT ′. For this we introduce two more
nonterminalsΠ1 andΠ2 of sort o → o → o. We then add the
rulesΠ1 x1 x2 → x1, Π2 x1 x2 → x2. Now we replace every oc-
currence of+2 labeled by(⊤,⊥,⊤) by Π1, and every occurrence
of +2 labeled by(⊥,⊤,⊤) byΠ2. After these transformations we
obtain a schemeT ′′ generating a tree which contains exactly those
nodes ofT ′ that are labeled with(⊤, . . . ,⊤,⊤).

We convertT ′′ into a HORSS ′ whose language is the same
as that ofS . For this we replace every remaining occurrence of+2

(thus labeled by(⊤,⊤,⊤)) by a nonterminalC of sorto → o → o,
and we add two rewrite rulesC xy → x andC xy → y. We
also remove the additional labels from symbols. By construction,

S ′ is productive andL(S ′) ⊆ L(S). Moreover, since we only
eliminated non-productive nonterminals,L(S ′) = L(S).

Lemma A.4. Let S be a productive HORS, andA a restriction
such that for every symbolar appearing in any tree generated by
S there is a transition ofA havingar on the left side. Then we can
build a HORSS ′ whose language isT (A)(L(S)).

Proof. First, w.l.o.g. we assume thatS is normalized (notice that
while converting a productive HORS to a normalized one, it re-
mains productive). Every ruleS ~y → h (B1 ~y) . . . (Br ~y) of S in
whichh is not a symbol is also taken toS ′. If h = ar is a symbol,
we consider every transition ofA havingar on the left side. Since
A is a restriction, this transition is of the form

ar (p, x1) . . . (p, xr) −→ p, bn xi1 · · ·xin ,

where1 ≤ i1 < · · · < in ≤ r. Then, toS ′ we take the rule

A~y → bn (Bi1 ~y) · · · (Bin ~y) .

In general,T (A)(L(S)) ⊆ L(S ′). SinceS is productive, the
subtermsBi ~y obtained by rewriting the initial nonterminalAinit

produce at least one tree, and since for every symbol in this tree
there is a transition ofA having this symbol on the left side,A has
some run on this tree. ThusT (A)(L(S)) = L(S ′).

Theorem 2.1. HORSes are effectively closed under linear tree
transductions.

Proof. A transductionA realized by an FTT is the composition of
a complete oneB and a restrictionC. We first apply Lemma A.1 to
the complete transduction realized byB. Then, using Lemma A.2
we remove from the generated language all trees that use symbols
not appearing on the left side of any transition ofC. Next, we turn
the resulting HORS into a productive one by Lemma A.3, and,
finally, we apply Lemma A.4 to the resulting productive HORS and
the restriction realized byC. We end up with a HORS producing the
image ofA applied to the original HORS, and being of the same
order.

B. Proof of Lemma 5.14
We recall the the statement of the lemma.

Lemma 5.14. Let D′ be a maximal derivation for⊢ L′ : (S, r),
and letL be a term that does not contain the initial nonterminal of
S and such thatL →S L′. Then there exists a maximal derivation
D for ⊢ L : (S, r) and a termP that is merge-equivalent to
tr cum(D′) and such thatmerge(tr cum(D)) →S′ P .

Proof. We proceed by induction on the structure ofL.
Suppose first thatL = ar M1 . . . Mr (where surelyr ≥

1). Then L′ = ar M ′
1 . . . M ′

r, whereMl →S M ′
l for some

l ∈ {1, . . . , r}, andMi = M ′
i for all i 6= l. The derivation

D′ contains a node labeled by⊢ ar : (∅, {(S1, r)} → · · · →
{(Sr, r)} → r), and for eachi ∈ {1, . . . , r} a subtreeD′

i de-
riving ⊢ M ′

i : (Si, r) (they are merged together by using the
application ruler times), whereS1, . . . , Sr are disjoint and their
union is S. We apply the induction assumption toMl, obtain-
ing a derivationDl for ⊢ Ml : (Sl, r) and a termPl merge-
equivalent totr cum(D′

l) and such thatmerge(trcum(Dl)) →S′ Pl.
We can writePl = merge(list ′l) (where the length oflist ′l and
tr cum(Dl) is the same). We takeDi = D′

i for i 6= l, and
out of the single-node derivation for⊢ ar : (∅, {(S1, r)} →
· · · → {(Sr, r)} → r) and of derivationsDi for i ∈ {1, . . . , r}
we compose a derivationD, using the application ruler times.
We see thattrcum(D) = (a0; tr cum(D1); . . . ; trcum(Dr)), and
tr cum(D′) = (a0; trcum(D′

1); . . . ; tr cum(D′
r)). Moreover, taking

12 2018/4/23

list ′i = tr cum(Di) for i 6= l we getmerge(tr cum(D)) →S′

merge(a0; list ′1; . . . ; list
′
r), wheremerge(a0; list ′1; . . . ; list

′
r) is

merge-equivalent totrcum(D′). It remains to observe thatD is
maximal. Indeed, the nodes inside someDi have all required chil-
dren sinceDi are maximal, and the new internal nodes created in
D describe applications with an argumentMi of sort o, and it is
impossible to derive⊢ Mi : (∅, σ) for anyσ (sinceLT o does not
contain pairs with empty set on the first coordinate).

The remaining possibility is thatL = ANα1

1 . . . Nαk

k . Let
Ax1 . . . xk → K be the rule ofS used in the reductionL →S L′,
that is such thatL′ = K[N1/x1, . . . , Nk/xk]. Take D0,K =
D′. For i ∈ {1, . . . , k}, consecutively, we apply Lemma 5.13 to
Di−1,K andNi, creating setsΛi ⊆ LT αi and maximal derivations
Di,K andDi,λ for λ ∈ Λi. Let DK = Dk,K ; it derivesΓ ⊢
K : (S, r), whereΓ = {xi : λ | i ∈ {1, . . . , k}, λ ∈ Λi}. By
point 2 of Lemma 5.13 we know that for everyλ ∈ Λi with a
nonempty set on the first coordinate, inDK there is a node labeled
by Γ ⊢ xi : λ. On the one hand, since our type systems requires
that subsets ofΣ0 coming from different children are disjoint, we
can be sure that the sets on the first coordinate of labeled types in
Λ1, . . . ,Λk are disjoint. It follows thatτA = Λ1 → · · · → Λk → r

is a type. On the other hand, nodes labeled byΓ ⊢ xi : λ give the
only possibility for introducing elements ofS to our derivationDK

(by assumption inK we do not have nullary symbols, sinceA is
not the initial nonterminal), which means that the union of the sets
on the first coordinate of labeled types inΛ1, . . . ,Λk is S. Since
(S, r) ∈ LT o, we haveS 6= ∅, and thusk ≥ 1, which means that
(∅, τA) is a labeled type.

In order to obtain the required derivationD for ⊢ L : (S, r), we
start with the single-node derivation for⊢ A : (∅, τA), and using
the application rulek times we attach derivationsDi,λ for each
i ∈ {1, . . . , k} andλ ∈ Λi. This derivation is maximal, sinceDi,λ

were maximal, and by point 1 of Lemma 5.13 the newly created
internal nodes have all required children (whenever it is possible to
derive a type judgment⊢ Ni : (∅, σ), we are deriving it inD).

Recall that tr cum(D) is a concatenation oftr(D) and of
tr cum(Di,λ) for every i ∈ {1, . . . , k} and λ ∈ Λi. For i ∈
{1, . . . , k} let ηi be the substitution that mapsxi↾λ to tr(Di,λ)
for every λ ∈ Λi. In S ′ we have the ruleAτ x1 . . . xk →
merge(trcum(DK)), wherexi lists variablesxi↾λ for λ ∈ Λi

if αi 6= o, and is empty ifαi = o (for i ∈ {1, . . . , k}). Notice that
this rule applied totr(D) givesmerge(tr cum(DK))[η1, . . . , ηk]
(substitutionsηi for i such thatαi = o can be skipped, since any-
way variablesxi↾λi,j

for such i do not appear intr cum(DK)).
As P we takemerge(·) of the concatenation of this term and
of all tr cum(Di,λ); as we have saidmerge(trcum(D)) →S′ P .
From point 3 of Lemma 5.13 it follows thattr cum(D′) is merge-
equivalent toP , what finishes the proof.

13 2018/4/23

	1 Introduction
	2 Preliminaries
	3 The Main Result
	4 Narrowing the HORS
	5 Lowering the Order
	5.1 Type System
	5.2 Transformation
	5.3 Soundness
	5.4 Completeness

	6 Conclusions
	A Closure under linear transductions and full trio
	B Proof of Lemma ??

