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Abstract

We prove near-optimal trade-offs for quantifier depth versumber of variables in first-order
logic by exhibiting pairs ofn-element structures that can be distinguished by\ariable first-
order sentence but where every such sentence requiresfauaigpth at leasi?(*/10s%)  Qur
trade-offs also apply to first-order counting logic, and I known connection to thiedimensional
Weisfeiler—Leman algorithm imply near-optimal lower bdgron the number of refinement itera-
tions.

A key component in our proof is the hardness condensatidmiguae recently introduced by
[Razborov '16] in the context of proof complexity. We apphys method to reduce the domain size
of relational structures while maintaining the minimal gtiker depth to distinguish them in finite
variable logics.

1 Introduction

The k-variable fragment of first-order logit® consists of those first-order sentences that use at most

k different variables. A simple example is thiesentence
JxIy(Exy A Jx(Eyx A Jy(Exy A JxEyx))) (1.2)

stating that there exists a directed path of lengtim a digraph. Extendindg* with counting quan-
tifiers 32z yields C*, which can be more economical in terms of variables. As astilation, the
L8 sentence

F23y1 - - 3yr(Aigj vi # 95 A N\i Bxyi) (1.2)

stating the existence of a vertex of degree at least 7 in ahgrap be written more succinctly as the
C? sentence

3232y Exy . (1.3)

Bounded variable fragments of first order logic have founsh@rous applications in finite model theory
and related areas (se81f09§ for a survey). Their importance stems from the fact thattfoelel check-
ing problem (given a finite relational structureand a sentencg, doesA satisfyp?) can be decided in
polynomial time [mm82, Var95. Moreover, the equivalence problem (given two finite rielal struc-
tures.A and 3, do they satisfy the same sentences?)fcand C* can be decided in time®*) [1L90],
i.e., polynomial for constari.

*This is the full-length version of a paper with the same titlich appeared iRroceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS.'16)
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1.1 Quantifier Depth

If A andB are not equivalent i* or C¥, then there exists a sentengethat defines a distinguishing
property, i.e., such thatl = ¢ andB [~ ¢, which certifies that the structures are non-isomorphict Bu
how complex can such a sentence be? In particular, what imthienal quantifier depth of at* or

C* sentence that distinguishes tweelement relational structure4 and3? The best upper bound for
the quantifier depth df* andC* is n*~! [IL90], while to the best of our knowledge the strongest lower
bounds have been only linearin[CFI92, Gro99 FU01]. In this paper we present a near-optimal lower
bound ofn(k/logk)

Theorem 1.1. There exist > 0, Ky € N such that for allk, n with Ky < k < n!/12 there is a pair
of n-elementk — 1)-ary relational structuresA,,, B,, that can be distinguished ik+-variable first-order
logic but satisfy the samie’ and C* sentences up to quantifier depth/ gk,

Note that any two non-isomorphic-elements-structures4 and53 can always be distinguished by a
simplen-variable first-order sentence of quantifier deptmamely

Hxl---ﬂmn</\xi7éxj A /\ Rxiy,...,xzi, A /\ ﬂRmil,...,mir> . (1.4)

1#] Reo, Reo,
(Viy y-erVi JERA (Viy e Vip )ERA

Since oum(¥/1ogk) Jower bound fork-variable logics grows significantly faster than this @ivipper
boundn on the quantifier depth as the number of variables incredgesireml.1also describes a trade-
off in the super-critical regime above worst-case invedtid by Razborovijaz1§: If one reduces one
complexity measure (the number of variables), then ther atbrmplexity parameter (the quantifier depth)
increases sharply even beyond its worst-case upper bound.

The equivalence problem f@**! is known to be closely related to ttiedimensional Weisfeiler—
Leman algorithm(k-WL) for testing non-isomorphism of graphs and, more gdhenalational struc-
tures. It was shown by Cai, Furer, and Immerm@rIP2 that two structures are distinguished byVL
if and only if there exists £**! sentence that differentiates between them. Moreover, thatiier
depth of such a sentence also relates to the complexity afithalgorithm in that the number of itera-
tions k-WL needs to telld and B apart coincides with the minimal quantifier depth of a diptiishing
Ck+1 sentence. Therefore, Theoreirll also implies a near-optimal lower bound on the number of
refinement steps required in the Weisfeiler—Leman algorittWe discuss this next.

1.2 The Weisfeiler—Leman Algorithm

The Weisfeiler-Leman algorithm, independently introduity Babai in 1979 and by Immerman and
Lander in JL90] (cf. [CFI92 and [Babl1g for historic notes), is a hierarchy of methods for isomadspi
testing that iteratively refine a partition (or colourind)tbe vertex set, ending with stable colouring
that classifiesimilar vertices Since no isomorphism can map non-similar vertices to e#iodrothis
reduces the search space. Moreover, if two structures emndthpifferent stable colourings, then we
can immediately deduce that the structures are non-isdrworg he 1-dimensional Weisfeiler—Leman
algorithm, better known asolour refinementinitially colours the vertices according to their degree
(clearly, no isomorphism identifies vertices of differemigcee). The vertex colouring is then refined
based on the colour classes of the neighbours. For exammeldgrees vertices get different colours
in the next step if they have a different number of degremighbours. This refinement step is repeated
until the colouring stays stable (i.e., every pair of equabloured vertices have the same number of
neighbours in every other colour class). This algorithmirisaaly quite strong and is extensively used in
practical graph isomorphism algorithms.

In k-dimensional WL this idea is generalized to colouringsketuples of vertices. Initially the
k-tuples are coloured by their isomorphism type, i.e., twidss = (v, ..., vx) andw = (wy, ..., wg)
get different colours if the mapping — w; is not an isomorphism on the substructures induced on
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{v1,..., v} and{wy,...,wx}. In the refinement step, we consider for eaetuple v = (vy,...,vx)
and every vertex the colours of the tuples; := (v1,...,vj-1,v,vj41,...,v;), Wherev is substituted
at thejth position in the tuplei. We refer to the tupléc(,), ..., c(0))) of thesek colours as theolour
typet(v, v) and letv be at-neighbour ofi' if t = t(7, v). Now two tuplesi and« get different colours if
they are already coloured differently, or if there existobouar typet such that’ and«w have a different
number oft-neighbours. The refinement step is repeated until the dolpgtays stable. Since in every
round the number of colour classes grows, the process sttgpsaamostn” steps. The colour names
can be chosen in such a way that the stable colouring is czadpmihich means that two isomorphic
structures end up with the same colouring, and such a caaicstable colouring can be computed in
time n©®*),

This simple combinatorial algorithm is surprisingly pofutr Grohe [Gro12 showed that for every
nontrivial graph class that excludes some minor (such amplgraphs or graphs of bounded treewidth)
there exists somg such thatk-WL computes a different colouring for all non-isomorphi@aghs, and
hence solves graph isomorphism in polynomial time on theglgclass. Weisfeiler—Leman has also been
used as a subroutine in algorithms that solve graph isonspbn all graphs. As one part of his very
recent graph isomorphism algorithm, BabBap1q appliesk-WL for polylogarithmic & to relational
(k-ary) structures and makes use of the quasi-polynomialimgriime of this algorithm.

Given the importance of the Weisfeiler—-Leman proceduris,atnatural question to ask whether the
trivial n* upper bound on the number of refinement steps is tight. By dhespondence between the
number of refinement steps bfWL and the quantifier depth @f**+! [CFI192], our main result implies
a near-optimal lower bound even up to polynomial, but stiblgear, values of (i.e., k = n° for small
enough constarnt).

Theorem 1.2. There exist > 0, K, € N such that for allk,n with K, < k < n!'/!2 there is an
n-element:-ary relational structureA,, for which thek-dimensional Weisfeiler-Leman algorithm needs
nek/logk refinement steps to compute the stable colouring.

In addition to the near-optimal lower bounds for a specifimelision (or number of variables)
we also obtain the following trade-off between the dimensand the number of refinement steps: If
we fix two parameterg; and/, (possibly depending on) satisfying?; < ¢, < n'/%/¢;, then there
aren-element structures such thatWL needsnf2(é1/108¢2) refinement steps for all, < k < 4. A
particularly interesting choice of parameterg;is= log® n for some constant > 1 and/, = n'/7. This
implies the following quasi-polynomial lower bound on thenmber of refinement steps for Weisfeiler—
Leman from polylogarithmic dimension all the way up to dirsiemn!/7.

Theorem 1.3. For everyc > 1 there is a sequence afelement relational structuregl,, for which
the k-dimensional Weisfeiler—Leman algorithm needéoe "' ») refinement steps to compute the stable
colouring for all & with log®n < k < nl/7.

1.3 Previous Lower Bounds

In their seminal work €CF192, Cai, Furer and Immerman established the existence ofismmorphic
n-vertex graphs that cannot be distinguished by any firstrocdunting sentence with(n) variables.
Since every pair of non-isomorphiec-element structures can be distinguished bg"a(or evenl™)
sentence (as shown if.4) above), this result also implies a linear lower bound ongihentifier depth
of C¥ if k = Q(n). For all constan > 2, a linearQ2(n) lower bound on the quantifier depth 6f
follows implicitly from an intricate construction of GroH&ro99, which was used to show that the
equivalence problems fdf andC* are complete for polynomial time. An explicit linear lowssund
based on a simplified construction was subsequently pebdéytFirer FU01].

For the special case G, Krebs and Verbitsky{V15] recently obtained an improved — o(1))n
lower bound on the quantifier depth, nearly matching the uoaindn. In contrast, Kiefer and
Schweitzer KS16 showed that if twon-vertex graphs can be distinguished by sentence, then
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there is always a distinguishing sentence of quantifierrd€gt?/ log n). Hence, the triviah? upper
bound is not tight in this case.

As far as we are aware, the current paper presents the first lmounds that are super-linear in the
domain sizen.

1.4 Discussion of Techniques

The hard instances we construct are based on propositicd& gxclusive or) formulas, which can
alternatively be viewed as systems of linear equations 6\éf2). There is a long history of using
XOR formulas for proving lower bounds in different areashafdretical computer science such as, e.g.,
finite model theory, proof complexity, and combinatoriatiopzation/hardness of approximation. Our
main technical insight is to combine two methods that, tadst of our knowledge, have not been used
together before, namely Ehrenfeucht-Fraissé gameswuetigtes based on XOR formulas and hardness
amplification by variable substitution.

More than three decades ago, Immermamfi81] presented a way to encode an XOR formula into
two graphs that are isomorphic if and only if the formula iisf&ble. This can then be used to show
that the two graphs cannot be distinguished by a sententefait variables or low quantifier depth
using Ehrenfeucht-Fraissé games. Arguably the mostiitapbapplication of this method is the result
in [CF192 establishing that a linear number of variables is needelistonguish two graphs in first-order
counting logic. Graph constructions based on XOR formutaglalso been used to prove lower bounds
on the quantifier depth of* [Imm81, Fi0]. We remark that for our result we have to use a slightly
different encoding of XOR formulas into relational struetsi rather than graphs.

In proof complexity, various flavours of XOR formulas (udyadalled Tseitin formulasvhen used
to encode thédandshaking lemmsaying that the sum of all vertex degrees in an undirectephgihas
to be an even number) have been employed to obtain lower bdangroof systems such as resolu-
tion [Urg87], polynomial calculus BGIP0]], and bounded-depth FregBdn024. Such formulas have
also played an important role in many lower bounds for thétRetellensatz/sums-of-squares proof sys-
tem [Gri01, K106, Sch0§ corresponding to the Lasserre semidefinite programmiagahihy, which has
been the focus of much recent interest in the context of coatbiial optimizatiort. Another use of
XOR in proof complexity has been for hardness amplificatishere one takes a (typically non-XOR)
formula that is moderately hard with respect to some conilglexeasure, substitutes all variables by ex-
clusive ors over pairwise distinct sets of variables, aed tthows that the nedORifiedformula must be
very hard with respect to some other (more important) coxifgleneasure. This technique was perhaps
first made explicit in Ben02f (attributed there to personal communication with Michaktkhnovich
and Alexander Razborov, with a note that it is also very simii spirit to an approach used iB\V01])
and has later appeared in, e.PP7, BNO8, BN11, BNT13, FLM*13].

An even more crucial role in proof complexity is played by laannected so-calleéxpander
graphs For instance, given a formula in conjunctive normal fornNE& one can look at its bipartite
clause-variable incidence graph (CVIG), or some variarthefCVIG derived from the combinatorial
structure of the formula, and prove that if this graph is apaexier, then this implies that the formula
must be hard for proof systems such as resolut®dw(1] and polynomial calculusAR03, MN15].

In a striking recent papeRjaz16, Razborov combines XORification and expansion in a simpléh(
hindsight) but amazingly powerful way. Namely, instead eflacing every variable by an XOR over
new, fresh variables, he recycles variables from a muchlenpol, thus decreasing the total number of
variables. This means that the hardness amplification promfonger work, since they crucially use that
all new substitution variables are distinct. But here esgamcome into play. If the pattern of variable
substitutions is described by a strong enough bipartiteeder, it turns out that locally there is enough
“freshness” even among the recycled variables to make thdnbss amplification go through over a
fairly wide range of the parameter space. And since the famas not only become harder but has also

'No proof complexity is needed in this paper, and so readefesmiliar with these proof systems need not worry—this is
just an informal overview.
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had the number of variables decreased, this can be viewekirad af hardness compressiar hardness
condensation

What we do in this paper is to first revisit Immerman’s old difear depth lower bound for first-
order counting logiclinm81] and observe that the construction can be used to obtain prowed scal-
able lower bound for thé&-variable fragment. We then translate Razborov's hardeesslensation
technique Raz1§ into the language of finite variable logics and use it—ppehaomewhat amusingly
applied to XORification of XOR formulas, which is usually rnibe case in proof complexity—to re-
duce the domain size of relational structures while maiiagi the minimal quantifier depth required to
distinguish them.

1.5 Outline of This Paper

The rest of this paper is organized as follows. In Sectiove describe how to translate XOR formulas
to relational structures and play combinatorial games esdlstructures. This then allows us to state our
main technical lemmas in Secti@and show how these lemmas yield our results. Turning to thefgr

of these technical lemmas, in Sectidnve present a version of Immerman’s quantifier depth lower
bound for XOR formulas, and in Sectidhwe apply Razborov's hardness condensation technigue to
these formulas. Finally, in Sectighwe make some concluding remarks and discuss possibleidirect
for future research. Some proofs of technical results reb@dthe paper are deferred to Appendix

2 From XOR Formulas to Relational Structures

In this paper all structures are finite and defined over aioglakt signatures. We use the letterX, F,
and R for unary, binary, and-ary relation symbols, respectively, and &t*, E4, and R be their
interpretation in a structurd. We write V' (A) to denote the domain of the structude The k-variable
fragment of first-order logit”* consists of all first-order formulas that use at mbslifferent variables
(possibly re-quantifying them as in Equatich1)). We also considek-variable first-order counting
logic C*, which is the extension df by counting quantifier§=zy (), stating that there exist at least
elements: € V(A) such thal( A4, v) = ¢(z). For a survey of finite variable logics and their applicasion
we refer the reader to, e.gGfo9§.

An (-XOR clauses a tuple(zy, ..., z¢,a) consisting of¢ Boolean variables and a Boolean value
a € {0,1}. We refer to/ as thewidth of the clause. An assignment satisfies(z, ...,z a) if
a(x1) + -+ a(zy) = a (mod 2). An ¢-XOR formula F is a conjunction of XOR clauses of width at
most/ and is satisfied by an assignmenif « satisfies all clauses iR

For every/-XOR formulaF' onn variables we can define a pair df-element structures = A(F')
andB = B(F) that are isomorphic if and only if is satisfiable. The domain of the structures contains
two elements? andx} for each Boolean variable;. There is one unary predicafé; for every vari-
ablex; identifying the corresponding two elemenfsandz}. Hence these unary relations partition the
domain of the structures into two-element sets, X&', = X5 = {2¥, ! }. To encode the XOR clauses,

177

we introduce onen-ary relationR,, for everyl < m < ¢ and set

R = {(afr,. . afm) |(2iy, ..., @ip,a) €F, Y ,a; =0 (mod 2)} (2.1a)

and
RB = {(z8, .. i) | (@i, @iy 0) €F, Y ;a;=a  (mod 2)} . (2.1b)

110" > Mim
Every bijectiong between the domains of(F') andB(F) that preserves the unary relatioNs can be
translated to an assignmemntfor the XOR formula via the correspondence
ofzi) =0 B(z7) = 2 & Bla;) = ; (2.2a)
and
afz) =1 B =z < Bz}) =) . (2.2b)
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Figure 1: Structure encoding of F = {(x7,zs,1)}.

Moreover, it is not hard to show that such a bijection defimesamorphism betweed (F') and B(F)
if and only if the corresponding assignment satisfiesSee Figurel for a small example illustrating the
construction.

This kind of encodings of XOR formulas into relational stures have been very useful for proving
lower bounds for finite variable logics in the past. Our tfarmsation of XOR clauses of width into
f-ary relational structures resembles the way Gurevich dralaf [5S96 encode XOR formulas as
hypergraphs. It is also closely related to the way Cai, Eimed ImmermanFI1927 obtain two non-
isomorphic graphg/ and?# from an unsatisfiabl8-XOR formula F’ in the sense thaf and? can be
seen to be the incidence graphs of our structutés) and B(F).

In order to prove our main result, we make use of the combiigtoharacterization of quantifier
depth of finite-variable logics in terms of pebble gameslfoand C*, which are played on two given
relational structures. Since in our case the structurebased on XOR formulas, for convenience we
will consider a simplified combinatorial game that is playtaectly on the XOR formulas rather than
on their structure encodings. We first describe this gamdtmrshow in Lemma.1that this yields an
equivalent characterization.

The r-round k-pebble games played on an XOR formul&’ by two players, whom we will refer
to as Player 1 and Player 2. A position in the game is a parsisigamenty of at mostk variables
of F' and the game starts with the empty assignment. In each r@lager 1 can delete some variable
assignments from the current position (he chooses sdnie ). If the current position assigns values
to exactlyk variables, then Player 1 has to delete at least one variabigranent. Afterwards, Player 1
chooses some currently unassigned variabéand asks for its value. Player 2 answers by either 1
(independently of any previous answers to the same quéstimhadds this variable assignment to the
current position.

A winning position for Player 1 is an assignment falsifyingnee clause from¥. Player 1 wins
the r-round k-pebble game if he has a strategy to win every play ofttipebble game within at most
r rounds. Otherwise, we say that Player 2 wins (or survives)#found k-pebble game. Playerwins
the k-pebble gaméf he wins ther-round k-pebble game within a finite number of roundsNote that
if Player 1 wins thek-pebble game, then he can always win tagebble within2*»n**! rounds, because
there are at mosf.¥_, 2/ (%) < 2*n**1 different positions with at most pebbles om-variable XOR
formulas. We say that Playercan reach a positior8 from a positiona within r rounds if he has a
strategy such that in every play of theoundk-pebble game starting from positienhe either wins or
ends up with positiors.

As a side remark, we note that if we expand the XOR formula té-QNen our pebble game is the
same as the so-call®bolean existential pebble gamtayed on this CNF encoding and therefore also
characterizes the resolution width required for the cpwading CNF formula as shown iAPO08]. In-
tuitively, it is this correspondence that enables us toafiy@ proof complexity techniques frorRfz16
in our setting. We will not need to use any concepts from pomwhiplexity in this paper, however, but
will present a self-contained proof, and so we do not elagkdtather on this connection.

Let us now show that the game described above is equivalghetpebble game fdr* and to the
bijective pebble game fat* played on the structured(F) andB(F).

Lemma 2.1. Letk, p, r be integers such that > 0 andk > p and letF' be ap-XOR formula giving rise
to structuresA = A(F) and B = B(F) as described in the paragraph precedi(®y19—2.1b. Then
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the following statements are equivalent:
() Player 1 wins the-round k-pebble game off'.

(b) There is ak-variable first-order sentencg < L* of quantifier depth such thatA(F) = ¢ and
B(F) ¥ .

(c) There is a-variable sentence in first-order counting logice C* of quantifier depth- such that
A(F) E ¢ andB(F) £ ¢.

(d) The(k — 1)-dimensional Weisfeiler—Leman procedure can distingbistweenA(F) and B(F)
within r refinement steps.

Proof sketch.Let us start by briefly recalling known characterizationgemms of Ehrenfeucht-Fraissé
games ofl* [Bar77, Imm82 and C* [CF192, Hel96. In both cases the game is played by two players,
called Spoiler and Duplicator, on the two structureand3. Positions in the games are partial mappings
p = {(u1,v1),..., (uj,v;)} from V(A) to V(B) of size at mosk. The games start from the empty
position and proceed in rounds. At the beginning of eachdanrboth games, Spoiler choosgsC p
with [p/] < k.

e In the L*-game, Spoiler then selects either some V (A) or somev € V(B) and Duplicator
responds by choosing an element V' (B) oru € V(.A) in the other structure.

e In the C*-game, Duplicator first selects a global bijectipn V' (A) — V(B) and Spoiler chooses
some pair(u, v) € f. (If [V(A)| # |V (B)|, Spoiler wins theC*-game immediately.)

The new position i$’ U {(u,v)}. Spoiler wins the-round* / C* game if he has a strategy to reach
within » rounds a positiorp that does not define an isomorphism on the induced substesgctiBoth
games characterize equivalence in the correspondingstoipoiler wins the--roundL* / C* game if
and only if there is a sentengec ¥ / C* of quantifier depthr such that4 |= ¢ andB = ¢.

When these games are played on the two structdi@s) and B(F') obtained from an XOR for-
mulaF, itis not hard to verify that both games are equivalent toktpebble game oft'. To see this, we
identify Spoiler with Player 1, Duplicator with Player 2,capartial mapping® = {(x?i,m?i) | i < 0}
with partial assignments = {z; — a; ® b; | i < ¢}. Because of theX;-relations, we can assume that
partial assignments of any other form will not occur as theylasing positions for Duplicator.

If Spoiler asks for some! or x} in the L*-game, which corresponds to a choice by Player 1 of
z; € Vars(F), the only meaningful action for Duplicator is to choose eith) or =} in the other
structure, corresponding to an assignmenttdy Player 2. With any other choice Duplicator would
lose immediately because of the unary relatidfis Thus, there is a natural correspondence between
strategies in th&*-game and thé-pebble game.

The players in thé:-pebble game can be assumed to have perfect knowledge dfategy of the
other player. This means that at any given position in theggamithout loss of generality we can think
of Player 1 as being given a complete truth value assignnoetiitet remaining variables, out of which
he can pick one variable assignment. By the corresponden(®2g—(2.2b) we see that this can be
translated to a bijectiori chosen by Duplicator in th€*-game (which has to preserve thg relations).
Therefore, Spoiler picking some pair of the fofaf, z%) from f can be viewed as Player 1 asking about
the assignment te; and getting a response from Player 2 in the gaméd dfagain using the above-
mentioned correspondence between partial mappiraged partial assignmentg). Finally, we observe
that by design a partial mapping that preservesXheelations defines a local isomorphism if and only
if the correspondingr does not falsify any XOR clause.

Formalizing the proof sketch above, it is not hard to show #i@ementsa)—(c) in the lemma are
all equivalent. The equivalence betwdeihand(d) was proven inCFI92. The lemma follows. O
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3 Technical Lemmas and Proofs of Main Theorems

To prove our lower bounds of the quantifier depth of finite afalé logics in Theorerfi.1and the number
of refinement steps of the Weisfeiler—Leman algorithm indrkens1.2 and 1.3, we utilize the charac-
terization in Lemma.1 and show that there arevariable XOR formulas on which Player 1 is able to
win the k-pebble game but cannot do so in significantly less ##r°e ¥ rounds. The next lemma states
this formally and also provides a trade-off as the numbereblbes increases.

Lemma 3.1 (Main technical lemma). There is an absolute constaif, € N such that for inte-
gers ki, kpi, andn satisfying Ky < ki, < ky < n'/%/ky, there is an XOR formula with n vari-

ables such that Player 1 wins thg,-pebble game o, but does not win théy;-pebble game within
nklo/(lolog kni)—1/5 rounds.

Note that there is a limit to how fak;, and k; can be from each other for the lemma to make
sense—the statement becomes vacuokg i 2 log ky;. Let us see how this lemma yields the theorems
in Sectionl.

Proof of Theorem..1. This theorem follows immediately from Lemmasl and 3.1, but let us write
out the details for clarity. By setting,, = kn; = k& in Lemma3.1, we can find XOR formulas with

n variables such that Player 1 wins thepebble game ot but needs more thant*/1°¢* rounds in
order to do so (provided we choose< 1/10 and K large enough). We can then plug these XOR
formulas into Lemma2.1 to obtainn-element structurest,, = A(F,,) andB,, = B(F,,) that can be
distinguished in the:-variable fragments of first-order logic® and first-order counting logi€*, but
where this requires sentences of quantifier depth at {45t ”. O

Proof of Theoreni.2. If we let F,, be the XOR formula from Lemma.1for k), = ky; = k + 1, then
by Lemma2.1it holds that the structured(F;,) andB(F,,) will be distinguished by thé&-dimensional
Weisfeiler-Leman algorithm, but only aftef(k+1)/log(k+1) > pek/logk refinement steps. Hence, com-
puting the stable colouring of either of these structuresires at least<*/1°¢* refinement steps (since
they would be distinguished earlier if at least one of the potations terminated earlier). O

Proof of Theoreni.3. This is similar to the proof of Theorerh.2, but settingk), = |logn®]| + 1 and
kni = [nY7] 4+ 1in Lemma3.1 0

The proof of the trade-off between the number of pebblesugensimber of rounds in Lemntal
splits into two steps. We first establish a rather weak loveemnio on the number of rounds in the pebble
game played on suitably chosemvariable XOR formulas forn > n. We then transform this into a
much stronger lower bound for formulas overvariables using hardness condensation. To help the
reader keep track of which results are proven in which gettmwhat follows we will writed,, and/y,;
to denote parameters dependingrmoerandk,, andk;,; to denote parameters dependingron

To implement the first step in our proof plan, we use tools iger by Immermaniinm81] to
establish a lower bound as stated in the next lemma.

Lemma 3.2. For all £,,;, m > 3 there is anm-variable 3-XOR formuld ‘i on which Player 1
(a) wins the3-pebble game, but

(b) does not win thé;-pebble game Withimax(3, nog—lm

m1/ (Mg i) _ 2) rounds.

We defer the proof of Lemma.2to Sectiord, but at this point an expert reader might wonder why
we would need to prove this lower bound at all, since a muanggr((m) bound on the number of
rounds in the pebble game drAXOR formulas was already obtained by Fureiéip1. The reason is that
in Flrer's construction Player 1 cannot win the game with pebbles. However, it is crucial for the
second step of our proof, where we boost the lower bound batsagnificantly increase the number of
pebbles that are needed to win the game, that Player 1 is@bletthe original game with very few
pebbles.



3 Technical Lemmas and Proofs of Main Theorems

The second step in the proof of our main technical lemma igethout by using the techniques
developed by RazboroRjaz16 and applying them to the XOR formulas in Lem@&. Roughly speak-
ing, if we setk;, = ky; = k for simplicity, then the number of variables decreases frotto n ~ ml/k,
whereas then!/!°¢% round lower bound for thé&-pebble game stays essentially the same and hence
becomes:*/1°g¥ in terms of the new number of variables The properties of hardness condensation
are summarized in the next lemma, which we prove in Sediofo demonstrate the flexibility of this
tool we state the lemma in its most general form—readers wdnat ¥o see an example of how to apply
it to the XOR formulas in Lemma.2 can mentally fixp = 3, fio = 3, fpi = kni, r ~ m!/1°8kui and
A =~ ky;/3 when reading the statement of the lemma below.

Lemma 3.3 (Hardness condensation lemma)There exists an absolute constaky € N* such that
the following holds. Lef" be anm-variable p-XOR formula and suppose that we can choose parameters
b > 0, by > Agll, andr such that Player 1

(a) has a winning strategy for th&,-pebble game o', but
(b) does not win thé;-pebble game o’ within r rounds.

Then for anyA satisfyingAg < A < £/, and (26,;A)%2 < m there is an(Ap)-XOR formulaH
with [m?®2] variables such that Player 1

(@) has a winning strategy for theA),)-pebble game o/, but
(b) does not win the),;-pebble game o/ within r/(2¢y;) rounds.

Taking Lemmas3.2 and 3.3 on faith for now, we are ready to prove our main technical lemm
yielding annf2(¥/1egk) [ower bound on the number of rounds in thgebble game.

Proof of Lemma&.1 Let Aj be the constant in Lemnfa3. We let
Ky >3A0+9 (3.2)

be an absolute constant, the precise value of which will beraened by calculations later in the proof.
We are giverky;, ki, andn satisfying the conditions

Ko < kio < ki < n'%/ky, (3.2)
in Lemma3.1 Let us set
lni = kni (333.)
and
m = nF10/9) (3.3b)

and apply Lemma.2 (which is in order sinceé), > 3 andm > 3 by (3.1) and @.2). This yields an
m-variable3-XOR formula on which Player 1 wins th&pebble game but cannot win tlig-pebble
game within

. /(14 Nlog ]) _ o (3.3c)

rounds. As a side remark we note that this lower bound termhimignish ifk,, and ky,; were to far

apart from each othek(, < 2log ky;), but recall that in this case the statement of Len#ricbecomes
vacuous anyway. Now we can apply hardness condensatior_asima3.3to the formula provided by
Lemma3.2, where we fix parameters

p:=3, (3.4a)
b :=3 (3.4b)
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and
A :=3lko/9] . (3.4¢)

To verify that our choice of parameters is legal, note thatddition tor > 1 we also have;, > 0 and
by = kpy > Ko > 3A0 = Aol - (3.5)

Thus, the assumptions needed(fmrand(b) are satisfied by the XOR formula obtained from Lenria
To confirm thatA chosen as in3 40 satisfies the conditions in Lemn3a3, observe that

Ao <3|Ko/9] <3lkio/9] = A < ko /3 < kpi/3 = i /byo (3.6)

Furthermore, since < k;,/3 andfy; = ky; < n'/%/ky, we get
5 2A
(20, A)?A < <§n1/6> <nAB=m. (3.7)

Note, finally, thatn = nlk1e/913/A — 13/A  Now Lemma3.3 provides us with am-variablek;,-XOR
formula on which according t@’) Player 1 has a winning strategy for tf&\)-pebble game and hence
also for the game witlk), > 9|k,/9| = 3A pebbles. Moreover, bgb’) it holds that Player 1 needs

more thanr/(2ky;) rounds to win theky,;-pebble game. To complete the proof, we observe that if we
chooseK large enough, then for > ky; > ki, > Kj it holds that

r 1 1
— [k16/9)/(1+[log k1) _ =
2kni  2kni[log kil " Fni [by (33 and €.30)
1/5
6n/ o lki0/9) /(14 Tlog k) —1/5 _ 1 [sinceky; < n'/f] (3.8)
~ nl/6logn Fni B
> phkio/(10log kni)—1/5 [for large enough, kv, andk,. |

We now choose the constahf, large so that all conditions encountered in the calculatianove are
valid. This establishes the lemma. O

4 XOR Formulas over High-Dimensional Pyramids

We now proceed to establish thepebble game lower bound stated in Lem&a Our XOR formulas
will be constructed over directed acyclic graphs (DAGs) escdbed in the following definition.

Definition 4.1. Let G be a DAG with source$ and a unique sink. The XOR formulazor(G) contains
one variablev for every vertexo € V(G) and consists of the following clauses:

(@) (s,0) for every source € S,
(b) (v,wr,...,wy,0) for all non-sources € V(G) \ S with in-neighboursV —(v) = {wx, ..., we},
(€) (z,1) for the unique sink.

Note that the formulacor(G) is always unsatisfiable, since all source vertices are fot@é by (a),
which forces all other vertices tbin topological order byb), contradicting(c) for the sink. Incidentally,
these formulas are somewhat similar to gedbling formulasiefined in BWO01], which have been very
useful in proof complexity (see the surveMdrl3 for more details). The difference is that pebbling
formulas state that a vertexis true if and only if all of its in-neighbours are true, whaseor(G) states
thatv is true if and only if the parity of the number of true in-nelighurs is odd.

Itis clear that one winning strategy for Player 1 is to ask &twout the sink, for which Player 2 has
to answerl (or lose immediately) and then about all the in-neighbodrthe sink until the answer for

10
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one vertex is 1 (if there is no such vertex, Player 2 again loses immediatéliythis point Player 1 can
forget all other vertices and then ask about the in-neigrdbotiv until a 1-labelled vertexw is found,
and then continue in this way to trace a pathldabelled vertices backwards through the DAG until
some source is reached, which contradicts the requirement thettould be labelled. Formalizing this
as an induction proof on the depth@fhows that if the in-degree is bounded, then Player 1 canhgin t
pebble game omor(G) with few pebbles as stated in the next lemma.

Lemma 4.2. Let G be a DAG with a unique sink and maximal in-degree Then Player 1 wins the
(d + 1)-pebble game omor(G).

As a warm-up for the proof of Lemma 2, let us describe a very weak lower bound froimifn81]
for the complete binary tree of height (with edges directed from the leaves to the root), which we
will denote 7,,. By the lemma above, Player 1 wins thgebble game omor(7;) in O(h) steps by
propagatingl from the root down to some leaf. On the other hand, Player 2Hefreedom to decide
on which path she answets Hence, she can safely respobdor a vertexv as long as there is some
leaf with a pebble-free path leading to the lowest pebblellat 1 without passing. In particular, if
Player 2 is asked about vertices at le@kstyers below the lowest pebbled vertex for which the answer
was given, then she can ansvidior 2¢ — 1 queries. It follows that the heiglit provides a lower bound
on the number of rounds Player 1 needs to win the game, evenhiff an infinite amount of pebbles.
We remark that this proof in terms of pebble-free paths ises@hat reminiscent of an argument by
Cook [Coo74 for the so-called black pebble game corresponding to thblpey formulas in BWO01]
briefly discussed above.

The downside of this lower bound is that the height is onhakithmic in the number of vertices and
thus too weak for us as we are shooting for a lower bound of itler@frn !/ 1°2#, To get a better bound
for the black pebble game Cook instead considered so-cpyleinid graphs as in Figur&a). These
will not be sufficient to obtain strong enough lower boundsdar pebble game, howevéerlnstead,
following Immerman we consider a kind of high-dimensionahgralization of these graphs, for which
the lower bound on the number of rounds in theebble game is still linear in the heightwhile the
number of vertices is roughly'©s *.

Definition 4.3 (Imm81]). Ford > 1 we define thdd + 1)-dimensional pyramid of heiglit, denoted
by P,Cf, to be the following layered DAG. We let, 0 < L < h be thelayer numberand sety;(L) :=

|L/d| andry(L) := L (mod d). Hence, for any. we havelL = q,(L) - d + rq(L). For integers; > 0

the vertex set is

V(P,‘f) = {(mo, ceyxqg_1, L) ‘ L<h;x <qL)+1ifi<ry(L); x; < qq(L) if ind(L)} , (4.1a)

where we say thak is thelayer of the vertex(zo,...,z4—1, L). The edge seE(P,‘f) consists of the
pair of edges

((x(]a sy Lpg(L)y - g1, L+ 1)7 ('1"07‘ sy Lrg(L)s -+ axd—laL)) >

(4.1b)
((.%'0,... » Try(L) + 1,...,2q4.1, L+ 1)7('%'07"'7'%'7"4(L)7"' ,I'dfl,L))

for all vertices(xq, ...,x4-1,L) € V(P,Cf) and layersl < h, so that every vertex in laydr has exactly
two in-neighbours from layefk + 1.

It might be easier to parse Definitigh3 by noting that the kd)th layer ofPff is ad-dimensional
cube of side lengtlk. Intuitively, we then want to have incoming edges to eaclexer at the (kd)th

2For readers knowledgeable in pebbling, we comment thatritislgm is that the open-path argument@op74 does not
work in a DAG-like setting for the XOR pebble game. To see,tbasider a pyramid with a vertex row v, w and a second
row p, ¢, r, s immediately below such that the edges @seu), (¢, u), (g, v), (r,v), (r,w), (s,w). Then if the values ofi, w
on the upper row ang, s on the lower row are known, there is still an open path(vigv) or (r,v), which is enough for the
black pebbling lower bound for pyramids i€§o74. But in the XOR pebble game this means thatndq are already fixed
because of the XOR constraints, and so there is no “open patihUnconstrained vertices.

11
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(a) 2D pyramid (b) 3D pyramid

Figure 2: Examples of high-dimensional pyramids.

layer from all verticesv in the d-dimensional cube of side length+ 1 such that all coordinates af
are at distance or +1 from the coordinates ai. This would give a fan-in larger tha?y however, and

to avoid this we expand in one dimension at a time to obtaingaeyece of multidimensional cuboids
where in each consecutive cuboid the side length increaseadin one dimension, unti layers later
we have a complete cube with side length- 1. We refer the reader to Figugda) for an illustration

of a 2-dimensional pyramid generated by stackingimensional cubes on top of one another and to
Figure2(b) for a 3-dimensional pyramid generated fraxdimensional cuboids (where all the edges in
the figures are assumed to be directed upwards). The v@rtex ,0) at the top of the pyramid is the
unique sink and all vertices at the bottom lajieare sources. Observe that it follows from the definition
that|V (Pg)| < (h +1)*.

As high-dimensional pyramids have in-degied. emmad.2implies that Player 1 wins th&pebble
game onP{. Recall that, as discussed in the proof sketch of the lemrageP1 starts his winning
strategy in the3-pebble game by pebbling the sink of the pyramid and its twodighbours. One of
them has to be labellel Then he picks up the two other pebbles and pebbles the tweigihbours of
the vertex marked with and so on. Continuing this strategy, he is able to “move”ita# the way to the
bottom, reaching a contradiction, in a number of roundsithlear in the height of the pyramid. This
strategy turns out to be nearly optimal in the sense thatderaio move d from the top to the bottom
in P,Cf, as long as the total number of available pebbles is at Bfoktmakes no sense for Player 1 at
any point in the game to pebble a vertex that & more levels away from the lowest level containing a
pebble.

The next lemma states a key property of pyramids in this tedarorder to state it, we need to make
a definition.

Definition 4.4. We refer to a partial assignmentt of Boolean values to the vertices of a DAGas
a labelling or markingof G. We say thatM is consistentif no clause of typgb) or (c) in the XOR
formulazor(G) in Definition4.1is falsified by M. We also say that1’ is consistent with\ if M UM’
is a consistent labelling @f.

That is, a consistent labelling does not violate any comgtan any non-source vertex, but source
vertex constraintéa) may be falsified. Such labellings are easy to find for highetigional pyramids.

Lemma 4.5 (Imm8L1]). Let M be any consistent labelling of all vertices in a pyrarfiifl from layer0
to layer L. Then for every se$ of 2¢ — 1 vertices on or below layek + d there is a consistent labelling

12
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of the entire pyramid that extendgl and labels all vertices ir% with 0.

To get some intuition why Lemm@5holds, note that thé-dimensional pyramids are constructed in
such a way that they locally look like binary trees. In partde, every vertex € V(PZ) together with
all its predecessors at distance at mb&irm a complete binary tree. By the same argument as for the
binary trees above, it follows thatifis labelled withl, Player 2 can safely answeup to2¢ — 1 times
when asked about verticedayers belowy. However, the full proof of Lemma4.5is more challenging
and requires some quite subtle reasoning. For the convanigithe reader we now present a slightly
modified version of the proof infnm81] with notation and terminology adapted to this paper.

To formalize the intuitive argument above, we need sometiaddi notation and technical defini-
tions. Let us use the shorthamd= (o, ..., z4_1). For a pyramidP{, a coordinatg € {0,...,d — 1},
and a layerl, we let

slen(j, L) := max{z; | (%, L) € V (P} 4.2)

be the side length in thgth dimension of the cuboid in layek, i.e., the maximal value that can be
achieved in theth coordinate in layef., and forL’ > L we write

Agen(§, L, L) := slen(j, L") — slen(j, L) (4.3)

to denote how much the cuboidsmf grow in thejth dimension in betwen layeis and L’.

We define thefrustumP{ , to be the subgraph P induced on the sef (7, L') L' > L} of all
vertices on layetr, and below. We say that theedgeW(j, a, L) is the subgraph o‘P,Cf induced on
the vertices(zo, ..., zj_1,a,z11,...,24-1, L) with fixed jth coordinatez; = a together with all
predecessors of these vertices. That is, the vertex 38t(¢fa, L) is

VW(j,a,L)) = {(Z,.L)) e V(P}) |L' > L,a < zj < a+ Agen (5, L, L) } . (4.4)

An important part in our proof will be played by subgraphsaited by deleting wedges from frustums.
We define these subgraphs next.

Fix a frustumPg’h, two disjoint subsets of coordinatdg, Inj € {0,...,d — 1}, and a mapping
a: Ip U Ini — Ny such thata(j) < slen(j, L). We let therestricted frustunﬂDg,h[Lo,Ihi,a] be the
subgraph of the frusturﬁg,h induced on the vertex set

{(@ L) e V(PL,) | Vi€lo : x> a(f) + Dgen(d, L, L'); Vi€ Ini : j < a(j) } (4.5)

where no coordinates if, U I, are expanded, i.e., the cuboids will not grow in size in digi@ms i, U I

as we move down the layers. For dimensiongjrthe coordinate set stays the same, and for dimensions
in 1), the coordinate set shifts by an additivd every time the pyramid graph grows in this direction.
We say that a layered directed graph iglag)-frustumif it is a restricted frustun‘Pg, p o, Ini, o) where

q coordinates are restricted, i.ej, U Ini| = q.

To see how restricted frustums are obtained by deleting aefigm frustums, note that after re-
moving the wedgeé/V(j, a, L) from the frustumPgh, the remaining graph is the disjoint union of the
restricted frustum®¢ , [({j3},0, {j — a}] andP¢ , [0, {j},{j — a}]. Figure3 shows a 3D pyramid with
awedgeo and a restricted frustuns. ’

We prove Lemmat.5 by inductively cutting the pyramid into a wedge and restdcfrustums to
the left and right of this wedge. It will be convenient to fecan (d, ¢)-frustums which grow in the
dimensions corresponding to the topmdst ¢ layers (as the one in Figuf®. More formally, we say
that an(d, q)-frustumngh[Ik,, Ini, ] is top-expandingf

{(L+j)modd|0<j<d—1-q}N(ToUIhi)=10 . (4.6)

As we have done for digraphs with unique sinks in Definitibf, we identify with each (restricted)
frustum P the corresponding XOR formulaor(P) containing all clauses given in Definitioh1(a)

13
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layer

L+1

L+d

L+d+1

Figure 3: Pyramid with wedge (0,2, L + 1) o and restricted frustum P7 ., ,4[0,{0}, {0 — 2}] X.

and (b). We do not include hard-coded labels on the sources at thiayep as in(c) but instead will
always provide a labelling of that layér.

We now state our inductive claim. Lemmda5 follows immediately once this claim has been es-
tablished, as the subgraph of a pyrarmg on or below layerL is an (unrestricted) top-expanding
(d,O)-frustumPg,h and, in particularzor(Pf) with all vertices on or above layel consistently la-
belled is equivalent taor (Pg,h) with the same labelling of layek.

Claim 4.6. Let P be a top-expandingd, ¢)-frustum andM , be a labelling of its top layeE. Then for
every setS of 2¢-7 — 1 vertices on or below layek + d — ¢ there is a consistent labelling of all vertices
in P that extends\ ;, and labels every vertex ifi with 0.

The following proposition summarizes the core propertiegustums that we will use when estab-
lishing Claim4.6.

Proposition 4.7. LetP = Pg 10, Ini, o] be a restricted frustum with a labelling1;, of all vertices in
the top layerL. Then the following holds:

(&) Thereis a labellingM; of all vertices in layerL + 1 of P that is consistent witb\1 .

(b) Let M1 be any labelling of layel. + 1 in P that is consistent witbM ;, and suppose thaP
expands coordinatg from layer L to layer L + 1, i.e.,j = rq(L) andj ¢ I, U Iy;. Then for any

3For readers more familiar with proof complexity languaget subgraphs correspond to formulas obtained by applying
restrictions taror (Pf).
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VaVAVAVAVAVAVAVAN VaVAVAVAVAVAVAVA AVAVAVAVAVAVAVAN

(@) j ¢ I U Ini (b) 5 € Ini (€) j € I

Figure 4: Shapes of connected component between layers L and L + 1 expanding in dimension j.

vertex(y, L + 1) in P it holds that the Iabelling/\/l%+1 defined by

M (FL41) =" — Mp (&, L+1) ifa; =y foralli# j,
e Mpi (2, L+1) otherwise

is also consistent witiM,.

Proof. We first note that the set of XOR constraints between two &afeand L + 1 can be partitioned
into several connected components. Each of the componentss fa “one-dimensional line” in the
direction of the expanding coordinage= r,(L). More formally, two vertices from layers andL + 1
are on the same line if and only if they agree on the coordinatdor all : # j. These lines form the
connected components of the graph induces on lagesad L + 1. All such lines between layers
andL + 1 isomorphic and their shape depends on whegherlo, j € Iy, Or j ¢ Ijo U Ii. See Figurel
for anillustration. We remark that in Figurégb) and4(c) the vertex with in-degreg and its predecessor
form a binary XOR clause imor(P).

If the layer is not expanding (as depicted in Figuféls) and4(c)) and the upper layek is entirely
labelled, then it is not hard to see that there is a uniqueistems labelling of the lower-level vertices
of each line (determined by propagating values from righefbin Figure 4(b) and from left to right
in Figure4(c)). As all lines are disjoint this gives a unique labelling bétentire layer + 1 that is
consistent with the labelling of layet. If the layer expands (i.e., , if ¢ I, U In as illustrated in
Figure4(a)), then we have more freedom. Indeed, if we label either tiiggmost or the leftmost vertex
at the bottom layer with 0, then we have the same situation Bgjures4(b) and4(c), respectively. This
concludes the proof of iterfa) in the proposition.

For item (b), first observe that the conditioh ¢ I, U I; means that we are in the case depicted
in Figure4(a). This means that if we have a consistent labelling of the uppd lower part of a line,
then flipping all values at the lower level yields another sistent labelling. This is so since every
XOR clause contains exactly two vertices from the lower.p&fénce, flipping both of these vertices
does not change the parity of the variables in the XOR clausdelves the clause satisfied. As all
lines between layers and L + 1 are disconnected from each other, flipping all values in oredives
another consistent labelling for the whole layer 1, which is precisely what is claimed in ite(b).
The proposition follows. O

Proof of Claim4.6. The proof is by induction over decreasing values;othe base case being= d.
As|S| = 2977 — 1 = 0if ¢ = d, in this case we only have to ensure that there is a consistieeiting
of the entire frustum that is consistent with the labellirighe top layer. This follows from inductively
applying Propositionrt.7(a)layer by layer.

For the inductive step, assume that the claim holds for alebgpanding(d, ¢ + 1)-frustums. We
want prove it for a top-expandingl, ¢)-frustum? = P¢ , [Iio, Ini, a]. Letj = r4(L) = L mod d be the
dimension that expands from layérto L + 1. AsP is tbp-expanding and < d we havej ¢ Iio U Ipy.
For some well-chosea € [0, slen(j, L + 1)] to be specified shortly, we partitidh on and below layer
L + 1 into the wedge

W(]7 a, L+ 1) (478.)

and two disjoint(d, g + 1)-frustums: the “right” frustum
Pis1nllio U{s} I U {j = a}] (4.70)
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and the “left” frustum (depicted b} in Figure3)
P 1wl Ini U {5} e U {j — a}] . (4.7¢)

We choose the positiom of the wedge so that botfi, ¢ + 1)-frustums in ¢.7b and @.7¢ contain at
most(|S| — 1)/2 < 2¢-(a+1) — 1 vertices fromS (which implies that the wedget (79 contains at least
one vertex fromS). To be more specific, we choose the largest 0 such that the left frustum4(79
contains at mosf|S| — 1)/2 verticesS, C S. Such aru exists asSy = 0.

If a reached the maximugien(j, L+ 1), then empty right frustumi(7b) clearly contains no vertices
from S. Otherwise letS,,; be the set of vertices frorf left of the wedge at position + 1. By the
choice ofa we havelS,11] > (|S| — 1)/2. Furthermore, because all verticesSrare below layet + 1
it follows that S,+1 \ S, is contained in the wedgé (79 at positiona. Hence the right frustun(7b)
contains at mostS \ S,+1| < (|S| —1)/2 vertices.

Now we proceed as follows. First we use Proposition(a)to obtain any consistent labelling of all
vertices in layerL + 1. Consider the set of all vertices= (&, L + 1) in layer L 4+ 1 with z; = q,
i.e., the topmost vertices in the wedge1d. Note that this set of vertices form a hyperplane through,
and perpendicular to, the disconnected parallel linesudsad in Propositiod.7. We go over these
verticesv one by one and flip every-labelledwv to 0. As j is the expanding coordinate from lay&r
to L + 1, after every such flip we can apply PropositiérY(b)to relabel the rest of the line through
as needed. In this way, all vertices in the top layer of thegeed.79, get labelled by, and we label
all other vertices in the wedge withalso. It follows from repeated application of Propositi®i (b)
that the end result is a labelling of layer+ 1 that is consistent witb\M ;. Note that this labels every
vertex from.S within the wedge witi) and moreover, layef. + 1 contains no vertices frorf outside
of the wedge. This is because if some vertex fr8ns on layerL + 1, then we have by the assumption
in Claim 4.6 that|S| = 1 and hence this one labelled vertex is guaranteed to be in ¢agevby the
choice ofa. In this way we obtain a labelling for the top layer of b@th ¢ + 1)-frustums, and we then
apply induction to consistently label all vertices in bathstums in such a way that every vertexSris
set to0. Now we argue that the disjoint union of the all-zero lalmgjlof the wedge and the consistent
labellings of both frustums is a consistent labellingrof Clearly, every (non-source) clauseadior(P)
that is entirely contained in the wedge is satisfied by theebd labelling of the wedge. In the same way,
every clause that is entirely contained in one of the twaidnns is satisfied by their consistent labellings.
It remains to consider clauses that contain variables frmmwtedge as well as from one of the frustums.
By construction, those clauses have the fdumw, , wo, 0), for a vertexv with in-neighboursw,, wo,
where the vertex and one of its neighbours (say;) is within the frustum and the other neighbour is
inside the wedge. As the edge,v) inside the frustum forms the binary clauge w1, 0) it follows
that the consistent labelling of the frustum guaranteesthigaparity ofv andw, is even. Because; is
labelled0 in the wedge, the merged labelling satisfiesw; , ws,0). The claim follows. O

As noted above, our proof of Claith6also establishes Lemndab.

In [Imm81] log n-dimensional pyramids (where is the number of vertices) are used to prove a
9(2\/@) lower bound on the quantifier depth of full first-order coungtlogic. The next lemma shows
that if we instead choose the dimension to be logarithmibértumber of variables (i.e., pebbles) in the
game, we get an improved quantifier depth lower bound fokthariable fragment.

Lemma 4.8. For everyd > 2 and heighth, Player 1 does not win the?-pebble game omor (P{!)
within A/(d — 1) — 1 rounds.

Proof. We show that Player 2 has a counter-strategy to answer temitysfor at leas{h/(d — 1)] — 1
rounds and therefore Player 1 needs at leastd — 1)| > h/(d — 1) — 1 rounds to win. Starting at the
top layerL; = 0, she maintains the invariant that at the start of rotstie has a consistent labelling of
all vertices from laye®f to layer L, with the property that there is no pebble on laykfs-1to L, +d—1.
Whenever Player 1 places a pebble on or above layePlayer 2 responds according to the con-
sistent labelling and whenever Player 1 puts a pebble onlowdayer L, + d, she answer8, and in
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5 Hardness Condensation

both cases sets, . ; = L,.. Note that as long as Player 1 places pebbles in this waydimegan go on
forever. Since there are never more t4n- 1 pebbles left on vertices on or below layker + d (when
Player 1 runs out of pebbles the next move must be a remolrali;dnditions needed for Lemmd&ab to
apply are never violated.

Thus, the interesting case is when Player 1 places a pebbedr layerL, + 1 and L, + d — 1.
Then Player 2 uses Lemma5 to extend her labelling to the first layér.,; > L, such that there is no
pebble on layerd.,..1 + 1to L,y + d — 1, after which she answers the query according to the new
labelling. It is worth noting that when Player 2 skips dowmev&om layerL, to layer L, ; she might
jump over a lot of layers in one go, but if so there is at least pebble for everyd — 1)th layer forcing
such a big jump. We see that following this strategy Playenrfiges for at leasth/(d—1)] — 1 rounds,
and this establishes the lemma. O

Putting the pieces together, we can now present the lowertbfou thek-pebble game in Lemma 2

Proof of Lemm&.2 Recall that we want to prove that for dl|; > 3 andm > 3 there is annm-variable
3-XOR formulaF’ on which Player 1 wins th&-pebble game but cannot win tiig-pebble game within

“Oglel']ml/(l—i—ﬂogéhi]) — 2rounds. Ifm < (5[log £, ]){Me il +1) then the round lower bound is trivial

and we letF be, for instance, the 3-variable formutar (P} ) plusm — 3 auxiliary variables on which
Player 1 needs 3 rounds to win. Otherwise, we choose the fartalbbe F' = xor(P,‘f) for parameters
d = [log ¢ni] andh = |[m'/(@+1)| — 1. Note thatP{ contains less thafh + 1)4+1 < m vertices and
we can add dummy variables to reach exaetlySince the grapﬁPff has in-degre@, Lemma4.2 says
that Player 1 wins th8-pebble game as claimed in Lemr@2(a) The lower bound for thé,;-pebble
game in Lemma.2(b)follows from Lemma4.8and the oberservation that becadise 5d — 1 we have
h/(d—1) > (h+1)/d and hence

h/(d=1)=1< (h+1)/d—1= gl WVHWogMJ 1 (4.8)
lo Z,i
< ﬂoglfhi] ml/(l—’_l— Bhnil) _ 2. (49)
The lemma follows. O

5 Hardness Condensation

In this section we establish Lemn3a3, which shows how to convert an XOR formula into a harder
formula over fewer variables. As discussed in the introdacthis part of our construction relies heavily
on Razborov’'s recent papeRfz1g. We follow his line of reasoning closely below, but translé from
proof complexity to a pebble game argument for bounded bhrigics.

A key technical concept in the proof is graph expansion. katefine the particular type of expander
graphs we need and then discuss some crucial propertieesd# tiraphs. We use standard notation,
letting G = (U U V, E) denote a bipartite graph with left vertex gétand right vertex set’. We let
NY(U") = {v|[{u,v} € E(G),u € U'} denote the set of neighbour vertices on the right of a letever
subset/’ C U (and vice versa for right vertex subsets).

Definition 5.1 (Boundary expander). A bipartite graphg = (U U V, E) is anm x n (s, ¢)-boundary
expander grapfif |U| = m, |V| = n, and for every sel/’ C U, [U’| < s, it holds that 89 (U”)| > ¢[U|,
where theboundaryd¥ (U’) is the set of alb € N9(U’) having a unique neighbour ii’, meaning that
NY9(v) N U’| = 1. An (s, A, c)-boundary expander is &8, c)-boundary expander where additionally
NYu)| < Aforallu € U, i.e., the graph has left degree boundedy

In what follows, we will omitG from the notation when the graph is clear from context.

In any (s, ¢)-boundary expander with expansiern> 0 it holds that any left vertex subsét C U of
size|U’| < s has a partial matching intd where in addition the vertices i’ can be ordered in such
a way that every vertex; € U’ is matched to a vertex outside of the neighbourhood of theegliag
verticesuy, . . . ,u;—1. The proof of this fact is sometimes referred to geealing argument
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Lemma 5.2 (Peeling lemma).LetG = (U UV, E) be an(s, c)-boundary expander wita > 1 and
¢ > 0. Then for every s/’ C U, |U’| =t < s there is an orderingu, ..., u; of its vertices and a
sequence of vertices, ...,v; € V such that; € N(u;) \ N({u1,...,ui—1}).

Proof. The proof is by induction ort. The base caseé = 1 is immediate sincg > 1 andc > 0
implies that no left vertex can be isolated. For the indecttep, suppose the lemma holds for 1.
To construct the sequeneg, . .., v; we first fix v; to be any vertex i®(U’), which has to exist since
|0(U")| > c|U’| > 0. The fact that, is in the boundary of/’ means that there is a unique € U’ such
that | N (v¢) N U’| = {u;}. Thus, for this paiu;, v;) it holds thatv, € N(u;) \ N (U \ {u}). By the
induction hypothesis we can now find sequenees . ., u;—; andvy, ..., v,y for U"\ {u;} such that
v; € N(u;) \ N({u,...,u;—1}), to which we can appeng andv; at the end. The lemma follows.CJ

For a right vertex subsét’ C V in G = (U UV, E) we define th&ernelKer(V’) C U to be the set
of all left vertices whose entire neighbourhood is contdimel”’, i.e.,

Ker(V') ={ueU|N(u) CV'} . (5.1)

We letG \ V' denote the subgraph gfinduced on(U \ Ker(V’)) U (V' \ V). In other words, we obtain
G \ V' from G by first deletingV’” and afterwards all isolated vertices frdim(assuming that there were
no isolated left vertices before, which is trugjiis expanding).

The next lemma states thatgfis an expander graph, then for any small enough right vegek’s
we can always find elosurey(V’) 2 V’ with a small kernel such that the subgraph (V') has good
boundary expansion. The proof of this lemma (albeit witgtgly different parameters) can be found
in [Raz14, but we also include it in Appendii for completeness.

Lemma 5.3 (Raz16). LetG be an(s, 2)-boundary expander. Then for evéry C V with |[V'| < s/2
there exists a subset(V') C V with v(V’) 2 V' such that|Ker(y(V’))| < |V’| and the induced
subgraphg \ (V') is an(s/2, 1)-boundary expander.

Note that Lemm&.3is a purely existential result. We do not know how the clogsreonstructed
and, in particular, if we want to choose closures of minimaé sthenl; C V5, does not necessarily
imply v(V1) € v(V2).

In order for Lemma$.2and5.3to be useful, we need to know that there exist good enoughdawyn
expanders. To prove this, one can just fix a left verteX/set sizem and a right vertex sét of sizen and
then for everyu € U chooseA neighbours fromi” uniformly and independently at random. A standard
probabilistic argument shows that with high probabilitisttandom graph is am xn (s, A, 2)-boundary
expander for appropriately chosen parameters. We statfotimally as a lemma below. A similar lemma
is proven in Raz16 but we also provide a proof in Appendix for the convenience of the reader.

Lemma 5.4. There is an absolute constant; € N* such that for all integers\, s, andm satisfying
A > Agand(sA)?A < m there existn x [m3/2] (s, A, 2)-boundary expanders.

For readers familiar with expander graphs from other cdatéixmight be worth pointing out that the
parameters above are different from what tends to be theatdrexpander graph settingssof= 2(m)
andA = O(1). Instead, in Lemma&.4we haves growing sublinearly inn and A need not be constant
(although we still need\  logm/loglogm in order to satisfy the conditions of the lemma).

In what follows, unless otherwise stat§d= (U U V, E) will be an (s, 2)-boundary expander for
s = 2k. We will use such expanders when we do XOR substitution irfaunulas as described formally
in the next definition. In words, variables in the XOR formale identified with left vertice& in G, the
pool of new variables is the right vertex déf and every variable € U in an XOR clause is replaced
by an exclusive 0P, ¢ () v Over its neighbours € N(u). We emphasize that in “standard” XOR-
ification as found in the proof complexity literature all newbstituted variables would be distinct, i.e.,
N(u1) N N(ug) = 0 for uy # ue. While this often makes formulas harder, it also increasesytmber
of variables. Here, we use the approachRaf1§ to instead recycle variables from a much smaller
setV in the substitutions, thus decreasing the total number ridivies.
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5 Hardness Condensation

Definition 5.5 (XOR substitution with recycling). Let F' be an XOR formula withVars(F') = U and
letG = (U UV, E) be a bipartite graph. For every clauSe= (uy, ..., u,a) in F we letC[G] be the
clause(vi,..., v, ... vf, ... vft, a), whereN (u;) = {v},...,v7} forall 1 <4 < ¢. Taking unions,
we let F'[G] be the XOR formulaF'[G] = {C[G] | C € F}.

When using ann x m?? (s, A, 2)-boundary expander as in Lemnda4 for substitution in an
m-variable XOR formulaF' as described in DefinitioB.5, we obtain a new XOR formul&'[G] where
the number of variables have decreased significantlyt®. The next lemma, which is at the heart of
our logic-flavoured version of hardness condensationestiat a round lower bound for tthepebble
game onF' implies a round lower bound for tHepebble game o#'[G].

Lemma 5.6. Let k be a positive integer and |€t be anm x n (2k, 2)-boundary expander. Then i
is an XOR formula ovem variables such that Player 2 wins threround k-pebble game o, she also
wins ther/(2k)-round k-pebble game oi'[G].

By way of comparison withRRaz16, we remark that a straightforward translation of Razb&rov
technique would start with formulas on which Player 1 can with few pebbles, but needs an almost
linear number of rounds to win the game, even if he has an iefarnount of pebbles.Applying this
without modification to Immerman’s construction, we woulttain very weak bounds (and, in particular,
nothing interesting for constartf). Instead, as input to our hardness condensation lemma &ea us
construction that has a round lower bounddf1°¢*, and show that for hardness condensation it is not
necessary that the original formula is hard over the fulgean

Before embarking on a formal proof of Lemrazg, which is rather technical and will take the rest
of this section, let us discuss the intuition behind it. Thenmdea to obtain a good strategy for Player 2
on the substituted formul&[G] is to think of the game as being played gnand simulate the survival
strategy there for as long as possible (which is where bayrelgansion comes into play).

LetG = (UUV, E) be an(2k, 2)-boundary expander as stated in the lemma. We have(F) = U
and Vars(F[G]) = V. Given a strategy for Player 2 in theround k-pebble game oi#’, we want to
convert this into a winning strategy for Player 2 for th&2k)-round k-pebble game oi'[G]. A first
approach (which will not quite work) is the following.

While playing on the substituted formulB[G], Player 2 simulates the game dn For every
position 3 in the game onF'[G], she maintains a corresponding positieron F', which is defined
on all variables whose entire neighbourhood in the expaigleontained in the domain of, i.e.,
Vars(a) = Ker(Vars(8)). The assignments aef should be defined in such a way that they emesis-
tent with 3, i.e., so thatv(u) = @,cn(,) B(v). It then follows from the description of XORification in
Definition 5.5that« falsifies an XOR clause af if and only if 5 falsifies an XOR clause df [G].

Now Player 2 wants to play in such a way thatdfchanges to3’ in one round of the game
on F[G], then the corresponding positian also changes ta’ in one round of the game oA. In-
tuitively, this should be done as follows. Suppose thattis@rfrom a positions, Player 1 asks for
a variablev € V. If v is not the last unassigned vertex in a neighbourhood of sene U, i.e.,
Ker(Vars(3)) = Ker(Vars(8) U {v}), then Player 2 can make an arbitrary choicevas «' is con-
sistent with both choices. If is the last free vertex in the neighbourhood of exactly orméexe,, i.e.,
{u} = Ker(Vars(B) U {v}) \ Ker(Vars(3)), then Player 2 assumes that she was asked farthe
simulated game oi'. If in her strategy for the-roundk-pebble game o’ she would answer with an
assignment. € {0, 1} which would yield the new position’ = o U {u — a}, then in the game on
F[G] she now sets to the right valueé) € {0, 1} so that the new positiof’ = 83U {v — b} satisfies the
consistency property’(u) = @UeN(u) B'(v). If Player 2 could follow this strategy, then the number
of rounds she would survive the game BifiG] would be lower-bounded by the number of rounds she
survives in the game oA.

There is a gap in this intuitive argument, however, namely tihandle the case when the queried
variablev completes the neighbourhood of two (or more) verticgsu, at the same time. If it holds that

“In terms of resolution, this corresponds to formulas thatrafutable in small width, but where every resolution rafian
has almost linear depth.
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{u1,u2} C Ker(Vars(8)U{v})\Ker(Vars(3)), then we have serious problems. Following the strategy
above foru; andus separately can yield two different and conflicting ways @igisingv, meaning that
for the new positiors’ there will be no consistent assignmeritof Ker( Vars(3')).

To circumvent this problem and implement the proof idea abaxe will use the boundary expansion
of G to ensure that this problematic case does not occur. F@mniost suppose that the gragh= G \
Vars(B), which is the induced subgraph @fonU \ Vars(«) andV'\ Vars(3), has boundary expansion
at leastl. Then the bad situation described above with two variables.; having neighbourhood
N9 (u1) = N9 (u) = {v} in G’ cannot arise, since this would impf’ ({u1, u2}) = 0, contradicting
the expansion properties ¢f. Unfortunately, we cannot ensure boundary expansio@ ©fVars([3)
for every positions, but we can apply Lemma.3 and extend the current position to a larger one that
is defined omy(Vars(3)) and has the desired expansion property. Since Lefm@ansures that the
domainKer(y( Vars(3))) of our assignment under construction is bounded py| < |3| < k, such an
extension will still be good enough.

We now proceed to present a formal proof. When doing so, litstaut to be convenient for us to
prove the contrapositive of the statement discussed alitw.is, instead of transforming a strategy for
Player 2 in the"-round k-pebble game oi” to a strategy for the /(2k)-round k-pebble game oi#'[G]
for an (2k, 2)-boundary expande¥, we will show that a winning strategy for Player 1 in the game o
the substituted formul&'[G] can be used to obtain a winning strategy for Player 1 in theegamthe
original formularF'.

Suppose thaf is any position in the-pebble game o#'[G], i.e., a partial assignment of variables
in V. Sinceg is a(2k, 2)-boundary expander angd| < k, we can apply Lemma&.3to obtain a superset
~v(Vars(B)) 2 Vars(B) having the properties thaKer(v(Vars(8)))| < |Vars(8)| and the induced
subgraphg \ v(Vars(5)) is a(k, 1)-boundary expander. For the rest of this section, fix a mihgueh
sety (V') for everyV' = Vars(3) corresponding to a positiofi in the k-pebble game. This will allow
us to define formally what we mean bgnsistenpositions in the two games driand F'[G] as described
next.

Definition 5.7 (Consistent positions).Let o be a position in the pebble game én i.e., a partial
assignment of variables iff, and letg be a partial assignment of variablesVihcorresponding to a
position in the pebble game afi[G]. We say thatx is consistent with3 if there exists an extension
Bext 2 B With Vars(Bext) = N(Vars(a)) U Vars(B) such that for allu € Vars(a) it holds that
a(u) = @vGN(u) Bext (U)

Let 3 be a position in thé-pebble game on the XOR-substituted formalgy]| and lety (V") be the
fixed, minimal closure off chosen above. Then we |ébns(3) denote the set of all positions with
Vars(a) = Ker(v(Vars(B))) in the pebble game oA that are consistent with.

Observe that forr; € « and; C S, it holds that ifas is consistent with; then so isyy, and ifay
is consistent withg, thena; is consistent also witl¥;. Furthermore, by Lemma.3we have|a| < |5
for all & € Cons(B). The next claim states the core inductive argument.

Claim 5.8. Let 5 be a position or¥'[G] for an (2k, 2)-boundary expandg¥ and suppose that Player 1
wins thei-round k-pebble game orf'[G] from position 5. Then Player 1 has a strategy to win the
k-pebble game o” within 2k rounds from every position € Cons(3).

We note that this claim is just a stronger version of (the iapusitive of) Lemma.6.

Proof of Lemm&.6assuming Clain®.8. Note that ifr/(2k) < 1, then the lemma is trivially true, as
Player 1 always needs at least one round to win the pebble famehe empty position. Otherwise,
we apply Claim5.8 with parameterg$ = () andi = r/(2k). SinceCons(0) = {0}, we directly get the
contrapositive statement of Lemrhét that if Player 1 wins the /(2k)-round k-pebble game ot#’[G],
then he wins the-roundk-pebble game ot O

All that remains for us to do now is to establish Clain®, after which the hardness condensation
lemma will follow easily.
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Proof of Claim5.8. The proof is by induction on. For the base case= 0 we have to show that i
falsifies an XOR clause if'[G], then every assignmente Cons(3) falsifies an XOR clause if'. But
if 5 falsifies a clause af'[G], which by construction has the for@i[G] for some claus€' from F', then
by Definitions5.5and5.7 it holds that everyy € Cons(3) falsifiesC.

For the induction step, suppose that the statement holds-fdr and assume that Player 1 wins the
i-roundk-pebble game o#'[G] from positions. Theith round consists of two steps:

1. Player 1 first chooses a subassignn#nt S.

2. He then asks for the value of one variables V' \ Vars (B’), to which Player 2 chooses an
assignmenb € {0, 1} yielding the new positiors’ U {v — b}.

As Player 1 has a strategy to win frgfrwithin i rounds, it follows that he can win from botiU{v — 0}
and’ U {v — 1} within ¢ — 1 rounds. By the inductive assumption we then deduce for thefse
assignments

Cons (B xv) := Cons (8 U {v + 0}) U Cons (B U {v > 1}) (5.2)

consistent with eithef’ U {v — 0} or 5’ U {v — 1} that the following statement holds.

Subclaim 5.9. Player 1 can win thé-pebble game oi’ within 2k(i — 1) rounds from all positions
in C’ons(ﬁ’ * v).

Note that a position is ifCons (' * v) if it is consistent with eithes’ U {v — 0} or 8/ U {v — 1}.
Therefore,Cons (8’ * v) is the set of all positions ovefer(v(8') U {v}) that are consistent with'.
What remains to show is that from every positianc Cons(3) Player 1 can reach some position in
Cons (ﬁ’ * v) within 2k rounds. We split the proof into two steps, correspondindnéotivo steps in the
move of Player 1 from positiofi.

Subclaim 5.10. From every positiorx € Cons(8) Player 1 can reach some positionGhns (B’) for
B’ C 8 within k& rounds.

Subclaim 5.11. From every positiony € Cons (') Player 1 can reach some positionGlans (8 * v)
within & rounds.

Let us establish Subclaints10and5.11in reverse order.

Proof of Subclain®.11. Player 1 starts with an assignment... € Cons(3’), which is defined over
the variabled/y;a: = Ker(y(Vars(8'))), and wants to reach some assignments € Cons (' * v)
defined over the variabldg,,,q = Ker(vy(Vars(8') U{v})).

If Ker(’y(Vars (ﬁ’))) = Ker(’y(Vars (5’) U {v})), then Player 1 can choo%e,q = agtart. TO
see this, note that if,¢ assigns a value to somec N (v), then sincesary € Cons (B’) it holds by
Definition 5.7 that N (u) C ~(Vars(8')), and thusas., is already consistent with’ U {v — b} for
someb € {0,1}. Hence, Player 1 need not ask any question in this case, dundluction hypothesis
immediately yields the desired conclusion.

The more interesting case is whir (y(Vars(8'))) # Ker(y(Vars(8') U {v})). Now Player 1
first deletes all assignments of variabledig.,t \ Ueng from ageart 10 getay. Sinceay C aggare @and
astart IS CONSistent with3’ by assumptionpy is also consistent witht’. Afterwards, he asks for all
variables inU’ = Ugpq \ Ustart- We need to argue that regardless of how Player 2 answerddi that
Player 1 reaches a position that is consistent WithThis is where the peeling argument in Lemmma
is needed.

As discussed above, by our choice of the closyt&ars(3')) (obtained using Lemm?a 3) we know
that the bipartite grapti’ = G \ v(Vars(3')) is a(k,1)-boundary expander and furthermore that for
U' = Uena \ Ustare it holds that|U’| < |Uena| < |Vars(8') U {v}| < k, as observed right after
Definition 5.7. Hence, we can apply Lemnia2 to G’ andU’ to get an ordered sequenae, . .., u;
satisfying N9 (u;) \ N9 ({uy, ..., ui_1}) # 0. We will think of Player 1 as querying the (at most
vertices inU” in this order, after which he ends up with a positienq defined on the variablgg, 4.
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To argue that the position.,q obtained in this way is consistent with{ independently of how
Player 2 answers, and is hence contained’ims (5’ * v), we show inductively that all positions en-
countered during the transition from..: t0 cenq are consistent withs’. As already noted, this holds
for the positiono obtained froma, by deleting all assignments of variableig ¢ \ Ueng. FOr the
induction step, lef > 0 and assume inductively that the current positigrover

Ui = (Ustart N Uend) U {uj ‘ 1< ] < Z} (53)

is consistent withs’. Now Player 1 asks about the variablg ; and Player 2 answers with a valug ;.
Sinceq; is consistent with’, there is an assignmefity; 2 3 that sets the variablese N ( Vars(«;))
to the right values such that;(u) = @,cn () Pext(v) for all u € Vars(a;). By our ordering of

U’ = {w,...,u;} chosen above we know that,, has at least one neighbour on the right-hand ide
that is neither contained iV9(U;) = NY(Vars(c;)) nor in the domain of3’. Hence, regardless of
which valuea;; Player 2 chooses for her answer we can extend the assigrniggrio the variables
NY(uip1) \ (N9 (Vars(a;)) U Vars(B')) in such a way tha€D ¢ vy, ) Pext (v) = ait1. This shows
thato; 1, defined ovelV; 1 = (Ustart NUena) U{w; | 1 < j < i+1} is consistent withg’. Subclaimb.11
now follows by the induction principle. -

Before proving Subclairs.10 we should perhaps point out why this claim is not vacuousalag
the discussion just below Lemma3, this is because the conditida C V5 does not allow us to conclude
thaty(V1) € 7(V2).

Proof of Subclainb.10 The proof is similar to that of Subclaifh.11 above. Player 1 starts with an
assignmentw,,r € Cons(f) and wants to reach some assignmentCims(3’) for 3 C S within

k rounds. By assumptionyg..¢ iS consistent with3 and therefore (sincg’ C ) is also consistent
with 8. Player 1 deletes all assignments from the dondain,; = Ker(y(Vars(8))) of asars that do

not occur in the domaif/.,q = Ker(v(Vars(3'))) of positions inCons(8’), resulting in the position

ap C agart that is consistent witls’. Next, he applies Lemma2to G’ = G \ v( Vars()) to obtain an
ordering of the remaining variablég,.q \ Ustare- IN the same way as above he can query the variables
in this order while maintaining the invariant that the cutrposition is consistent with’. -

Combining Subclaim$.9, 5.10 and 5.11, we conclude that Player 1 wins from every position
a € Cons(f) within 2k: rounds. This concludes the proof of Claig. O

We are finally in a position to give a formal proof of Lemiaa.

Proof of Lemma.3. Let Ag € N* be the constant in Lemnfa4. Suppose we are given am-variable
p-XOR formula F' and parameter§,, ¢, v, A satisfying the conditions in Lemm&3 that ¢y,; /¢, >
A > AO and(%hiA)m <m.

Fix k := f,; ands := 2/;,;. Since(sA)?* < mandA > Ay, we appeal to Lemma&.4 to obtain
anm x [m3/2] (s, A, 2)-boundary expande = (U UV, E), and applying XORification with respect
to G we construct the formulal := F[G]. Clearly, H is an(Ap)-XOR formula with [m3/4] variables.
We want to prove that Player 1 has a winning strategy for(thé,)-pebble game ot/ as guaranteed
by Lemma3.3(a’), but that he does not win thg;-pebble game o/ within r/(2¢y;) rounds as stated
in Lemma3.3(b").

For the upper bound in Lemn®a3(a’), we recall that Player 1 has a winning strategy in4epebble
game onF' by assumptiorfa) in the lemma. He can use this strategy to win the,, )-pebble game oi/
as follows. Whenever his strategy tells him to ask for a \éeia € U = Vars(F), he instead asks for
the at mostA variables inN(u) C V = Vars(H) and assigns ta the value that corresponds to the
parity of the answers Player 2 gives fdf(u). In this way, he can simulate his strategy Bruntil he
reaches an assignment that contradicts an XOR cl@usem F'. As the corresponding assignment of
the variablegv | v € N(u),u € Vars(C)} falsifies the constraint'[G] € H, at this point Player 1 wins
the (A4, )-pebble game ol .
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The lower bound in Lemma&.3(b’) follows immediately from Lemm&.6. By assumptionb) in
Lemma3.3, Player 1 does not win thg,;-pebble game o’ within » rounds. Since; is anm x n
(2k, 2)-boundary expander, Lemn3ab says that that he does not win thg-pebble game ol = F[J]
within r/(2¢y;) rounds either. This concludes the proof of LemBna O

6 Concluding Remarks

In this paper we prove an®(*/1°gk) Jower bound on the minimal quantifier depth Idf and C* sen-
tences that distinguish two finite-element relational structures, nearly matching theatixf—! upper
bound. By the known connection to thiedimensional Weisfeiler—Leman algorithm, this result im-
plies near-optimah(*/1°2%) Jower bounds also on the number of refinement steps of thisrithon.
The key technical ingredient in our proof is the hardnessdearation technique recently introduced
by Razborov Raz16 in the context of proof complexity, which we translate inb@ language of finite
variable logics and use to reduce the domain size of reltistinuctures while maintaining the minimal
quantifier depth required to distinguish them.

An obvious open problem is to improve our lower bound. One wmgchieve this would be to
strengthen the lower bound on the number of rounds inktpebble game o03-XOR formulas in
Lemma3.2 from n!/1°2% to n for somed > 1/logk. By the hardness condensation lemma this
would directly improve our lower bound from(%/108%) tg p$2(0k)

The structures on which our lower bounds hold arelement relational structures of ari€y(k)
and sizen®*). We would have liked to have this results also for structufelsounded arity, such as
graphs. However, the increase of the arity is inherent imieéhod of amplifying hardness by making
XOR substitutions. An optimal lower bound af*¥) on the quantifier depth required to distinguish
two n-vertex graphs has been obtained by the first author in aireeatnbrk [Berl for the existential-
positive fragmenof L*. Determining the quantifier rank of fulf andC* on n-vertex graphs remains an
open problem.

Another open question related to our results concerns thglexity of finite variable equivalence
for non-constank. What is the complexity of deciding, given two structured arparametek, whether
the structures are equivalent lifi or C¥? As this problem can be solved in tinggA|| + ||B]))°*),
it is in EXPTIME if & is part of the input. It has been conjectured that this probie EXPTIME-
complete GKL*07], but it is not even known whether it iNP-hard. Note that the quantifier depth is
connected to the computational complexity of the equivadeproblem by the fact that an upper bound
of the formn°(") on n-element structures would have implied that testing edeiee is inPSPACE.
Hence, our lower bounds on the quantifier depth can be seenexeasary requirement for establishing
EXPTIME-hardness of the equivalence problem.
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A Existence and Properties of Expander Graphs

In this appendix we present proofs of Lemnia8 and5.4, starting with the latter lemma. We again
remark that most of this material can already be found in dlairform in [Raz18, although the exact
parameters are somewhat different. It also seems appi®pdgpoint out that there is a significant
overlap with essentially identical technical lemmasBMN[L6].

Just to avoid ambiguity, let us state explicitly that evesuih we have the Euler numheappearing
below, we still think of all logarithms as being taken to bagghough this should not really matter).

Lemma 5.4 (restated). There is an absolute constatt, € N such that for allA, s, m satisfying
A > Agand(sA)?A < m there existn x [m*/2] (s, A, 2)-boundary expanders.

Proof. Let U and V' be two disjoint sets of vertices of siz&| = m and|V| = n = [m3/2]. For
everyu € U we chooseA times a neighbour € V' uniformly at random with repetitions. This yields a
bipartite graphg = (U U V, E) of left-degree at mosA. In the sequel we show thétis likely to be an
(s, A, 2)-boundary expander.

First note that for every séf’ C U all neighboursy € N (U’) \ 9(U’) that are not in the boundary
of U’ have at least two neighboursif. Since there are at moat|U’| — |0(U’)| edges betweedi’ and
N(U")\ o(U’), it follows that| NV (U’) \ o(U")| < (A|U'| — |8(U")])/2 and hence

< W)+ A
W) < SRR

(A.1)

If G is not an(s, A, 2)-boundary expander, then there is a Eétof size \U’\ = ¢ < s that has a
boundaryd(U") of size|d(U’)| < 2¢ and from @.1) it then follows thal AV (U’)| < (1 + A/2)(. By a
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union bound argument (and relaxing to non-strict ineqgiealitwe obtain

Pr[G is not an(s, A, 2)-boundary expander (A.2a)
< Z > Priow)) <2 (A.2b)
(=1 U'CU;|U'|=¢
<> > PrNU) < (1 +A/2) (A.2c)

(=1 U'CU;|U'|=¢

*(m n (14 A/2)0\ 2
< R A.2
—;<e><<1m/2>e>< =) #-20
S (1+A/2)Z 1 A/2)€ AL
< ; en 1+ '
<>’ (msm) (s "2
_ Zmé(en)(l—l—A/Z)E ((1 + A/Q)g)(A/Z—l)Z n—AE (AZf)
=1
< Zn(A/3)Z(en)(l+A/2)Z ((1 + A/2)€)(A/271)Z anZ (Azg)
=1
_ i n(A/g)gn}ggfL (1+A/2)en@ 1og((A/2+1)e) (A/2=1)¢, (~A/2+1)¢ (A.2h)
=1
< in(isg:;mlo;nlog<As><A/2fl>fA/6+1)f , (A.2i)
=1

where in going from £.2d) to (A.2€) we use the inequality}) < (%)k for e ~ 2.718 denoting the
Euler number, and in going fromi\(2h) to (A.2i) we assume thah > 2 and also use thdt< s.

In order to show that the expressiof.2i) is bounded away from—which implies thatG is an
(s, A, 2)-boundary expander with constant probability—it sufficestudy the exponent and prove that
there is a constant > 0 such that

1 1 A A
BN+ log(As) (S -1) -2 +1<-¢e<0, (A.3)
logn logn 2 6
which holds if there is a constaat = ¢/A such that
loge 1 1 1 1 1
log(As) [=— =) -+ =< —¢<0. A.4
logn+logn og(As) <2 A) 6+A_ © s (A-4)

Since(sA)** < m < n®/? we havesA < n'/6, and it follows that

1 log(As)(1/2 —1/A 1 1
oge | log(As)(1/2-1/A) 1 1 (A.5a)
logn logn 6 A
loge log (n1/6) 1 1
< _ 4= A.5b
~ logn 2logn 6 + A ( )
loge 1 1
_ = A.
logn 12 + A (A5¢)

where we can make the last inequality hold f6rsmall enough and. and A large enough. Fix’
satisfying0 < & < 1/12 and choosey, so that the inequality betweer .6c) and (A.5d) holds for
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anyn > ng andA > 13. Then we obtain that/.2i) is bounded by} ";_, n~¢'L. Insisting in addition
thatn > 3'/¢', we can upper-bound\(2i) by

s

ZW”Si%YS
/=1

(=1

(A.6)

N[

It remains to calculate how to sét; to make sure that all of these conditions hold. Note that by as
sumption we havésA)?2 < m, which implies thatA® < m. It follows that we will always have. =
[m3/A] > (AR)3/A = A3 > (Ag)? and hence it is sufficient to chooge, > max(ng'/3,31/3' 13).
This concludes the proof of the lemma. O

We next prove that in a good enough boundary expander it Hbltsfor any small enough right
vertex sef/’’ there is a superset(V") 2 V' with a small kernel such that the induced subgréph (V")
(obtained fromg by deletingV’’ and then all isolated vertices froff) is also a good boundary expander.
Recall that we refer to this sefV’) as theclosureof V"

Lemma 5.3 (restated). LetG be an(s, 2)-boundary expander. Then for evary C V with |[V'| < s/2
there exists a subset(V') C V with v(V’) 2 V' such that|Ker(y(V’))| < |V’| and the induced
subgraphg \ (V') is an(s/2, 1)-boundary expander.

Proof. Let G = (U UV, E) be an(s, 2)-boundary expander and 1&' C V have size|lV’| < s/2.
We construct an increasing sequerice= V) ¢ V4 C --- C V. = ~(V’) such thatG \ V; is an
(s/2,1)-boundary expander as follows.

If G\ Vb is not an(s/2,1)-boundary expander, then there exists alebf size |U;| < s/2 such
that 89\V0(U1)\ < |U,|. DeleteU; and all its neighbours frorg \ V4. If the resulting graph is not an
(s/2,1)-boundary expander, we repeat this process and iteratiledgte vertex sets that do not satisfy
the expansion condition. Formally, foe> 1 fix U; to be any set of sizg/;| < s/2 such that

A CATES A (A7)
where we set .
Vi=Wu N9 (A-8)
j=1

(and where we note that, formally speaking, what is deletetesith step is\Y (U;) together with the
kernel Ker(NY(U;)) of this right vertex set). Since all set§ constructed above are non-empty, this
process must terminate for some= 7 and the resulting grap@ \ V; is then an(s/2, 1)-boundary
expander (note that an empty graph without vertices vatu@aisfies the expansion condition). It
remains to verify that the size conditioKer(V;)| < |Vp| for the kernel of the closure df’ holds. This

is immediately implied by the following inductive claim.

Claim A.1. LetV_; = Uy = 0 and suppose that> 0. Then forU; satisfying @.7) andV; defined
by (A.8) the following properties hold:

1. For allU’ such thatKer(V;_1) UU; C U’ C Ker(V;) we have|o9(U") \ Vy| < |Ker(V;)].
2. The kernel of; has sizgKer(V;)| < |Vo|.

Fori = 0, Propertyl in Claim A.1 follows becausé/’ C Ker(V;) implies thato?(U’) C V4. For
Property2, suppose thafKer(15)| < s. Then expansion implieg|Ker (V)| < |09 (Ker(Vp))|, and
combining this withd9 (Ker(V;)) C Vi we obtain|Ker(Vp)| < 1|V4|. If instead|Ker(Vp)| > s, then
we can find a subséf’ C Ker(V}) of size|U’| = s. By expansion we hav@? (U”)| > 2s, which is a
contradiction because as argued above we should|B&\E”)| < [Vy| < s/2.

For the induction step, suppose that both properties haldfol. LetU* = Ker(V;_;) U U; and
consider anyl/’ satisfyingU* C U’ C Ker(V;). We claim that every boundary elementdfi(U’) is
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either a boundary element froﬁ‘f’(U*) or is contained ify. To see this, note that siné€ C Ker(V;)
we haved? (U') C V; = Vp U Uj= N9 (U;). Furthermore, it can be observed th@;l Uu,cu*cu’

(this is basically due to the fact thaf(Ker(V’)) C V' for anyV’). Hence, ifv € 8g(U’) \ Vo, then it
must hold thav € (J} _ N9 ;), and so the unique neighbour@bn the left is contained itJ;_, U;
and therefore also |U* |mply|ng thatv € 9(U™). This yields that

09U\ Vo C9(U)\ Vo (A.9)
as claimed, and in what follows we will show
09(U*) \ Vo| = [09(Ker(Vi—1) UT;) \ Vo| < [Ker(V3)] (A.10)

in order to prove Property.

Note that by construction every vertexiifL; \ V has at least one neighbourlifer(V;_1). It follows
that all new boundary vertices o (Ker(V;_1) U U;) \ 09 (Ker(V;_1)) are either fromi or from the
boundaryd9\Vi-1 (U;) of U; outside ofV;_,. Therefore we have

09(U*) \ Vo = 09 (Ker(Vi 1) UT;) \ Vo € (09(Ker(Vi1)) \ Vo) U9V (T) . (A1)
Since by assumptioll; does not satisfy the expansion condition we know that
|09\Vi-1 ()| < || (A.12)
and by the inductive hypothesis concerning Prop&mye have
|09 (Ker(Vi-1)) \ Vo < [Ker(Vi1)| - (A.13)
Combining A.9) with (A.11)—(A.13) we deduce that
99U\ Vo| < [09(Ker(Vier) UUN) \ Vol < [Ker(Viy)| + |Ui] < [Ker(V)] . (A14)

where the final inequality holds siné&r(V;_;) andU; are disjoint subsets dfer(V;). This concludes
the inductive step for Propertly,

To establish Propertg, assume first thaiKer(V;)| < s. Then by expansion and Propeftyapplied
to U’ = Ker(V;) we have

2[Ker(V;)| < |09(Ker(V7))| < [Vo| + |Ker(V3))| (A.15)

and hence
|Ker(V;)| < Vo (A.16)

as desired. If insteaKer(V;)| > s, then by the inductive hypothesis we know thidtr(V;_;)| < s/2
and by construction we hajé/;| < s/2. Therefore we can find a sét’ of size |U’| = s satisfying
the conditionKer(V;_1) U U; C U’ C Ker(V;) in Propertyl. From the expansion properties @fwe
conclude thato(U’)| > 2s, which is a contradiction because for sétssatisfying the conditions in
Propertyl we derived Q.14), which implies thato(U")| < |Vo| + |Ker(V;—1)| + |U;| < 3s/2. O
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