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Abstract
Automata-logic connections are pillars of the theory of regular lan-
guages. Such connections are harder to obtain for transducers, but
important results have been obtained recently for word-to-word
transformations, showing that the three following models are equiv-
alent: deterministic two-way transducers, monadic second-order
(MSO) transducers, and deterministic one-way automata equipped
with a finite number of registers. Nested words are words witha
nesting structure, allowing to model unranked trees as their depth-
first-search linearisations. In this paper, we consider transforma-
tions from nested words to words, allowing in particular to produce
unranked trees if output words have a nesting structure. Themodel
of visibly pushdown transducers allows to describe such transfor-
mations, and we propose a simple deterministic extension ofthis
model with two-way moves that has the following properties:i) it is
asimple computational model, that naturally has a good evaluation
complexity; ii) it is expressive: it subsumes nested word-to-word
MSO transducers, and the exact expressiveness of MSO transduc-
ers is recovered using a simple syntactic restriction;iii) it hasgood
algorithmic/closure properties: the model is closed under composi-
tion with a unambiguous one-way letter-to-letter transducer which
gives closure under regular look-around, and has a decidable equiv-
alence problem.

Categories and Subject Descriptors F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages

Keywords Transductions, Pushdown automata, Logic.

1. Introduction
Pillars of word language theory The theory of languages is one
of the deepest and richest theory in computer science, with success-
ful applications such as, computer-aided verification and synthesis.
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A major reason for this success is the strong connections between
models of languages, with quite different flavours, that arebased
on two important pillars:computation and logic. Perhaps one of
the most famous example is the effective correspondence forreg-
ular languages of finite words between a low-level computational
model, finite state automata, and a high-level declarative formal-
ism, monadic second-order logic (MSO). Similar connections have
been obtained for other structures (e.g. infinite words, finite and
infinite trees, nested words) (Thomas 1997; Comon-Lundh et al.
2007). In some cases, it has been even possible to build a third pil-
lar based on algebra. The class of regular languages for instance is
known to be the class of languages with finite syntactic congruence.

The logic/two-way/one-way trinity of word transductions To
model functions from (input) words to (output) words, i.e.word
transductions, and more generally word binary relations, automata
have been extended totransducers, i.e. automata with outputs.
Whenever a transducer reads an input symbol, it can produce on
the output a finite word, the final output word being the right
concatenation of all the finite words produced along the way.
To capture functions mirroring or copying twice the input word,
transducers need to read the input word in both directions: this
yields the class oftwo-way finite state transducers(2FST). Two-
way transducers have appealing properties: they are closedunder
composition (Chytil and Jákl 1977) and if they are deterministic,
their equivalence problem is decidable (inPSpace) (Gurari 1982;
Culik and Karhumaki 1987) and the transduction can be evaluated
in constant space (for a fixed transducer), the output being produced
on-the-fly.

Impressively, in the late 90s, deterministic two-way transduc-
ers have been shown in (Engelfriet and Hoogeboom 2001) to cor-
respond to monadic second-order transducers (MSOT), a powerful
logical formalism introduced in (Courcelle 1994) in a more gen-
eral context, with independent motivations. It was the firstlogic-
transducer connection obtained for a class of transductions with
high and desirable expressiveness. This correspondence has been
extended to finite tree transductions (Engelfriet and Maneth 1999,
2003; Bloem and Engelfriet 2000).

Recently, an MSOT-expressive one-way model,streaming string
transducers(SST), has been introduced in (Alur andČerný 2010,
2011): it uses registers that can store output words and can be com-
bined and updated along the run in a linear (copyless) mannerThe
main advantage of this model is its one-wayness, but the price to
pay is the space complexity of evaluation: it depends also onthe
size of the register contents.

The models MSOT, deterministic 2FST and deterministic SST
have the same expressive power, and we refer to this correspon-
dence asthe logic/two-way/one-way trinity. This trinity has been
extended to transductions of infinite words (Alur et al. 2012) and
ranked trees (Courcelle and Engelfriet 2012; Alur and D’Antoni
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2012). For trees, bi-directionality is replaced by a tree walking
ability: the transducer can move along the edges of the tree in any
direction. However, to capture MSOT, the transducer needs to have
regular look-around, i.e. needs to be able to test regular properties
of the context of the tree node in which it is currently positioned
(Courcelle and Engelfriet 2012). Look-arounds can be removed at
the price of adding a pushdown store (Courcelle and Engelfriet
2012). For one-way machines, uni-directionality is modeled by
fixing the traversal of the tree to be a depth-first left-to-right traver-
sal and, as for words, to capture MSOT, the transducer needs
to have registers (Alur and D’Antoni 2012). Tree-walking trans-
ducers with look-around, and tree transducers with registers are
strictly more expressive than MSOT, but restrictions have been
defined that capture exactly MSOT. Finally, let us mention the
macro tree transducers, the first computational model shownto
capture, with suitable restrictions, MSOT ranked tree transductions
(Engelfriet and Maneth 1999, 2003; Bloem and Engelfriet 2000).
This model has parallel computations, like a top-down tree au-
tomaton, and registers.

Nested words In this paper, we consider transductions of nested
words to words.Nested wordsare words with a nesting struc-
ture, built over symbols of two kinds: call and return symbols1.
In particular, nested words can model ordered unranked trees,
viewed as their depth-first, left-to-right, linearisation, and in turn
are a natural model of tree-structured documents, such as XML
documents.Visibly pushdown automata(VPA) have been intro-
duced in (Alur and Madhusudan 2009) as a model of regularity
for languages of nested words. They are pushdown automata with
a constrained stack policy: whenever a call symbol is read, ex-
actly one symbol is pushed onto the stack, and when reading
a return symbol, exactly one symbol is popped from the stack.
Therefore, at any point, the height of the stack correspondsto
the nesting level (call depth) of the word. Roughly,VPA are tree
automata over linearised trees, and as such they inherit allthe
good closure and algorithmic properties of tree automata. How-
ever, viewing trees as nested words has raised motivating questions
in the context of tree streams, such as streaming XML valida-
tion (Picalausa et al. 2011; Segoufin and Sirangelo 2007), stream-
ing XML queries (Kumar et al. 2007; Gauwin et al. 2011), as well
as streaming XML transformations (Filiot et al. 2011) (see also
(Alur 2016) for other applications ofVPA).

By using a matching predicateM(x, y) that holds true ifx is
a call symbol,y is a return symbol and is the matching return
of x, MSO logic can be extended from words to nested words,
and it is known to correspond to regular nested word languages
(Alur and Madhusudan 2009).

Nested word to word transductions Besides the motivations
given before for considering nested words instead of unranked
trees, we argue that seeing unranked trees as nested word yields
a natural and simple two-way model for transductions of nested
words, presented later. On the output, we do not require the words
to have a particular structure. It is not a weakness: nested words
are words, and the model we introduce in this paper can as well
produce output words that are nested.

VPA have been extended with output, yielding the class of
visibly pushdown transducers(VPT, (Filiot et al. 2010)). When
reading an input symbol, VPT can generate a word on the output.
VPT have good algorithmic and closure properties, and are well-
suited to a streaming context (Filiot et al. 2011). However,VPT
suffer from a low expressive power, as they are only one-way,
without registers.

1 Sometimes, internal symbols are also considered but in thispaper, to ease
the presentation, we omit them. This is wlog as an internal symbola can be
harmlessly replaced by a call symbolca followed by a return symbolra.

Based on MSO for nested words, one can define MSO trans-
ducersà la Courcelleto define nested word to word transductions.
From now on, we refer to such MSO transducers as MSOT. A one-
way model has already been defined in (Alur and D’Antoni 2012)
that captures exactly MSOT. They extendVPA with registers that
can store partial output words. Whenever a call symbol is read, the
contents of the registers are pushed onto the stack and all the regis-
ters reset. On reading return symbols, they can combine the content
of the current registers with the content of the registers stored on the
stack, in a copyless fashion. The space complexity of evaluation for
such transducers is linear in the length of the input nested word, and
they have decidable equivalence problem.

Objective and two-way visibly pushdown transducers Our main
goal in this paper is to establish a logic/two-way/one-way trinity
for nested word to word transductions. Since the logic/one-way
connection has already been shown in (Alur and D’Antoni 2012),
we want in particular to define atwo-way computational modelwith
the following requirements: it must beconceptually simple, at least
as expressive as MSOTand havedecidable equivalence problem.

To this aim, we introducedeterministic two-way visibly push-
down transducers(D2VPT) and show it meets the later require-
ments.D2VPT read their input in both directions, and their stack
behaviour not only depends on the type of symbols they read, but
also on the reading mode they are in, either backward or forward. In
a forward mode, they behave just like VPT. On the backward mode,
they behave like VPT where the call and return types are swapped:
when reading a return symbol backward, they push a symbol onto
the stack, and when reading a call symbol backward, they pop a
symbol from the stack. They can change their mode at any moment,
and produce words on the output.

Let us give now an illustrating example of a transductionfs of
nested words, which will be formalised in Example 1. Assume a
set of call symbols{1, . . . , n} ordered by the total order on nat-
ural numbers, and one return symbol{r}. The transductionfs
sorts an input nested word in ascending order, recursively nest-
ing level by nesting level, according to the order on calls. We
assume inputs start and end with special symbols⊲ and ⊳ (call
and return resp.). E.g.,fs maps⊲22r1rr1r3r⊳ to ⊲1r21r2rr3r⊳
and⊲23r1r2rr2r3r1r⊳ to ⊲1r21r2r3rr2r3r⊳ (see Figure 1). To
makefs a function in case the same call symbol occurs twice at the
same level,fs preserves their order of appearance. The tree repre-
sentation of this mapping is given in Figure 1 (omitting return sym-
bols). The transductionfs is easily implemented with aD2VPT
Ts. To process a sequence of siblings at levelk, Ts works as fol-
lows: for i from 0 to n, Ts performs a forward pass on the siblings
(note that a sibling is actually a tree whose linearisation is of the
form jwr wherew is again a sequence of linearised trees). During
this forward pass,Ts transforms a siblingjwr into ǫ if j 6= i, and
into iw′r otherwise, wherew′ is the result of sorting recursivelyw.
To implement the loop, whenTs has finished thei-th forward pass,
i.e. when it reads a return symbol at levelj − 1, it comes back to
its matching call and starts from there the(i+ 1)-th forward pass,
if i < n.

Contributions By linearising input trees, the simple and well-
known concept of bi-directionality can be generalised naturally
from words to trees. WhileD2VPT, as we show in this paper, allow
one to lift known results from word transductions to nested word to
word transductions, we think thatD2VPT are an appealing model
for the following reasons:

memory efficiency Regarding the complexity of evaluation, for a
fixed D2VPT, computing the output word of an input nested
word w can be done in spaceO(d(w)), whered(w) is the
depth ofw. Indeed, only the stack and current state need to
be kept in memory when processing an input nested word. It



⊲

2 2 3 1

3 1 2

⇒

⊲

1 2 2 3

1 2 3

⊲ 2 3 r 1 r 2 r r 2 r 3 r 1 r ⊳

⊲ 1 r
2 1 r

2 r
3 r r 2 r

3 r ⊳

Figure 1. On top, the transformation of the input. Between siblings
with the same labeling, the original order is preserved. Below, the
run of the transducer. Dashed lines are non producing sequences.

is an appealing property when transforming large but not deep
tree-structured documents, such as XML documents in general.

expressivenessAt the same time, we show that this efficiency does
not entail expressive power:D2VPT can express all MSOT
transductions. They are strictly more expressive than MSOT
as they can for instance express transduction ofexponential
size increase, while MSOT are only of linear size increase. By
putting a simple decidable restriction onD2VPT, calledsingle-
useness, D2VPT capture exactly MSOT transductions.

algorithmic properties Despite their high expressive power,D2VPT
still have decidable equivalence problem. We also prove that
preprocessing the input of aD2VPT by a letter-to-letter unam-
biguousVPT does not increase its expressive power, as their
composition is again aD2VPT.

The proof of expressiveness relies on an existing correspon-
dence between tree-walking and MSO transducers of ranked
trees to words (Courcelle and Engelfriet 2012), and on the clas-
sical first child-next sibling (fcns for short) encoding of un-
ranked trees into binary trees. As in (Courcelle and Engelfriet
2012), we use an intermediate automata model equipped with
MSO look-around, and then show that these look-around testscan
be removed. For the latter property, our proof differs from that
of (Courcelle and Engelfriet 2012) in which a pushdown stackis
used to update information on MSO-types. On binary trees, their
model pushes the stack while moving to the first-child, but also
while moving to the second child. This latter push corresponds,
through the fcns encoding, to pushing a symbol while moving to
the next sibling, an operation that is not allowed with a visibly push-
down stack. Hence, in order to prove that look-around tests can be
removed in our model, we need a more involved construction, that
extends a non-trivial result proven in (Hopcroft and Ullman1967)
for two-way automata on words. Decidability ofD2VPT equiva-
lence is done by reduction to deterministic top-down tree toword
transducer equivalence, a problem which was opened for longand
recently solved in (Seidl et al. 2015).

Application 1: Unranked tree to word walking transducersD2VPT
can easily be translated into a pushdown walking model of un-
ranked tree to word transductions. It works exactly as in theranked
tree case of (Courcelle and Engelfriet 2012): one stack symbol is
pushed while going downward and popped while going upward.
While moving along sibling relations, the stack is untouched. As a
consequence of our results, this model, with single-use restriction,
captures exactly MSOT. This model is discussed in the last section.

Application 2: Query 2VPA Deterministic two-wayVPA have
been introduced in (Madhusudan and Viswanathan 2009) as an
equi-expressive model for MSO-definable unary queries on nested
words. Using (Neven and Schwentick 2002; Niehren et al. 2005),
such queries can be shown to be equivalent to unambiguousVPA
with special states which select the nested word positions that are
answers to the query. As shown in (Madhusudan and Viswanathan
2009), unambiguity can be traded for determinism, at the price of
adding two-wayness. This result comes as a consequence of ours: a
one-way unambiguous selectingVPA can be seen as a deterministic
VPT with look-around, that annotates the input positions selected
by theVPA (look-around resolves nondeterminism), which can be
transformed into aD2VPT using our results. The main ingredi-
ent of the proof of (Madhusudan and Viswanathan 2009) is alsoa
Hopcroft-Ullman construction, but in a setting simpler than ours2.

Organisation of the paper In Section 2, we introduce two-way
VPA and two-wayVPA with look-around, define the notion of
transition algebra for2VPA and use this to show that they are
equivalent to one-wayVPA. As a consequence, they have decidable
(exptime-c) emptiness problem. In Section 3, we introduceD2VPT
andD2VPT with look-around, show that they are equivalent, and
study their algorithmic properties. Section 4 is devoted tothe ex-
pressiveness ofD2VPT, with a comparison to MSOT and to other
known models of nested word to word transductions. Due to lack
of space, some results are proved in Appendix. Finally, all our ex-
pressiveness equivalences are effective.

2. Two-way visibly pushdown automata
2.1 Definitions

We introduce in this section two-way visibly pushdown automata,
following the definition of (Madhusudan and Viswanathan 2009).

We consider a structured alphabetΣ defined as the disjoint
union of call symbolsΣc and return symbolsΣr. The set of words
overΣ isΣ∗. As usual,ǫ denotes the empty word. Amongst words,
the set of nested wordsN (Σ) is defined as the least set such that
ǫ ∈ N (Σ) and ifw1, w2 ∈ N (Σ) then bothw1w2 andcw1r (for
all c ∈ Σc and r ∈ Σr) belong toN (Σ). In the following, we
assume that input words of our models are always nested words.
This is not restrictive as all our models can recognize and filter
nested words.

For a wordw ∈ Σ∗, its length is denoted by|w| and we
denote byw(i) its ith symbol. Its set of positions ispos(w) =
{1, . . . , |w|}, and for i, j ∈ pos(w) such thati < j, we say
that (i, j) is a matching pairof w if w(i) ∈ Σc, w(j) ∈ Σr

andw can be decomposed intow = w1w(i)w2w(j)w3, where
w1, w3 ∈ Σ∗, w2 ∈ N (Σ) and|w1| = i − 1, |w2| = j − i − 1.
Note that ifw ∈ N (Σ), then necessarily,w1w3 ∈ N (Σ).

When dealing with two-way machines, we assume the struc-
tured alphabetΣ to be extended intoΣ by adding two special sym-
bols ⊲, ⊳ in Σc andΣr respectively, and we consider words with
left and right markers from⊲Σ∗⊳.

DEFINITION 1. A two way visibly pushdown automaton(2VPA
for short)A overΣ is given by(Q, qI , F,Γ, δ) whereQ is a finite
set of states,qI ∈ Q is the initial state,F ⊆ Q is a set of final
states andΓ is a finite stack alphabet. Given the setD = {←,→}
of directions, the transition relationδ is defined byδpush∪δpop where

• δpush⊆ ((Q×{→}×Σc)∪(Q×{←}×Σr))×((Q×D)×Γ)
• δpop⊆ ((Q×{←}×Σc×Γ)∪(Q×{→}×Σr×Γ))×(Q×D)

2 They provide a construction for the composition of a co-deterministic
VPA with an unambiguousVPA, while we study that of aD2VPA with
an unambiguousVPA.



Additionally, we require that for any statesq, q′ and any stack
symbolγ, if (q,←, ⊲, γ, q′, d) ∈ δpop thend =→ and if (q,→
, ⊳, γ, q′, d) ∈ δpop thend =←.

Informally, a2VPA has a reading head pointing between sym-
bols (and possibly on the left of⊲ and on the right of⊳). A con-
figuration of the machine is given by a state, a directiond and a
stack content. The next symbol to be read is on the right of the
head ifd =→ and on the left ifd =←. Note that when reading the
left marker from right to left← (resp. the right marker from left to
right→), the next direction can only be→ (resp.←). The structure
of the alphabet induces the behaviour of the machine regarding the
stack when reading the input word: when reading on the right,a call
symbol leads to push onto the stack while a return symbol popsa
symbol from the stack. When reading on the left, a dual behaviour
holds (hence, at a given position in the input word, the height of
the stack is always constant at each visit to that position inthe run).
Finally, the state and the direction are updated.

Let w ∈ N (Σ). We setw(0) = ⊲ andw(|w| + 1) = ⊳. For a
moved and0 ≤ i ≤ |w|, we denote by

• move(d, i) the integeri− 1 if d =← andi+ 1 if d =→.

• read(w, d, i) the symbolw(i) if d =← andw(i+1) if d =→.

Formally, a stackσ is a finite word overΓ. The empty stack/word
over Γ is denoted⊥. For a word⊲w⊳ wherew ∈ N (Σ) and
a 2VPA A = (Q, qI , F,Γ, δ), a configurationof A is a triple
(q, i, d, σ) whereq ∈ Q, 0 ≤ i ≤ |w|+ 1, d ∈ D andσ is a stack.
A run of A on a wordw is a finite non-empty sequence of config-
urations(q0, i0, d0, σ0)(q1, i1, d1, σ1) . . . (qℓ, iℓ, dℓ, σℓ) where for
all 0 ≤ j ≤ ℓ, the configuration(qj+1, ij+1, dj+1, σj+1) satisfies
ij+1 = move(ij , dj) and

• if read(w, dj , ij) ∈ Σc anddj =→ or read(w, dj , ij) ∈ Σr

and dj =← then (qj , dj , read(w, dj , ij), qj+1, dj+1, γ) ∈
δpush andσj+1 = σjγ.

• if read(w, dj , ij) ∈ Σc anddj =← or read(w, dj , ij) ∈ Σr

and dj =→ then (qj , dj , read(w, dj , ij), γ, qj+1, dj+1) ∈
δpop andσj+1γ = σj .

By the special treatment of⊲ and⊳ ensured by the definition of
2VPA, the indicesij all belong to{0, . . . , |w|+ 1}. Note also that
any configuration is actually a run on the empty wordǫ. A run on
a nested wordw is accepting wheneverq0 = qI , i0 = 0, d0 =→,
σ0 = ⊥ andqℓ ∈ F , iℓ = |w|+ 1, dℓ =→, σℓ = ⊥.

Note thatA being a visibly pushdown automaton, for any
two configurations in a run ofA at the same positioni in the
word (q, i, d, σ) and (q′, i, d′, σ′), the stackσ, σ′ have the same
height/length.

The languageL(A) defined byA is the set of nested wordsw
from Σ∗ such that there exists an accepting run ofA on⊲w⊳.

DEFINITION 2. A two-way visibly pushdown automaton is

• deterministic(D2VPA for short) if we may writeδpush, δpop as
functions from((Q × {→} × Σc) ∪ (Q × {←} × Σr)) to
(Q × D) × Γ and from((Q × {←} × Σc × Γ) ∪ (Q × {→
} × Σr × Γ)) toQ× D respectively.
• codeterministicif we may writeδpush, δpop as injective applica-

tions, with the same type as in the previous item.
• unambiguousiff for any wordw, there exists at most one ac-

cepting run onw.

Obviously, if A is (co)deterministic, for any wordw from
N (Σ̄), there exists a unique run onw in A from any fixed con-
figuration. Hence, any (co)deterministic2VPA is unambiguous.
Note also that the determinism ofA implies that any configuration

can occur only once in some accepting run (otherwise, the machine
would loop without reaching a final configuration).

A two-way visibly pushdown automaton is a(one-way) visibly
pushdown automaton(VPA for short) wheneverd′ = d =→ for
all (q, d, α, q′, d′, γ′) in δpush and for all(q, d, α, γ, q′, d′) in δpop.

For VPA, we may omit directions in the transition relation,
configurations and runs.

Finally, we will denoteDVPA the class of deterministicVPA.
In this case, the transition relation is defined as a functionomitting
directions.

2.2 Transition algebra for 2VPA

Nested words fromN (Σ) (or N (Σ)) induce a natural algebra
W = (N (Σ), ., {fc,r | c ∈ Σc, r ∈ Σr}, ǫ) where ’.’ is a binary
operation, thefc,r form a family of unary operations andǫ is a
constant. The semantics ofǫ is the empty word, of. is concatenation
and for anyw in N (Σ), fc,r(w) = cwr. Obviously, the operators
finitely generatesN (Σ) which can be seen as the free generated
algebra over this signature quotiented by the associativity of ’ .’ and
the neutrality ofǫ wrt the concatenation ’.’.

The traversal congruence ∼ Inspired by works on two-way au-
tomata on words (Pécuchet 1985; Shepherdson 1959), we study
traversals of a2VPA A. A traversal of some nested wordw ab-
stracts a run ofA keeping track only of the fact that it starts read-
ing the word from the left or from the right (depending on the ini-
tial direction) in some statep and leaves it in some stateq. Now,
formally, for any statesp, q, and any two directionsd1, d2 ∈ D,
((p, d1), (q, d2)) belongs to the traversal ofw if there exists a run
ofA onw starting in the configuration(p, pos(d1), d1,⊥) and end-
ing in (q, pos(d2), d2,⊥), where
{

pos(d1) = 0 if d1 =→ and pos(d1) = |w| otherwise
pos(d2) = |w| if d2 =→ and pos(d2) = 0 otherwise

Note that the reading starts either at the beginning or at theend
of w depending on the initial current direction and that the final
direction indeed leads to leave the word. One may associate with
a nested word the set of its traversals and define a relation∼ on
nested words such thatu ∼ v if u andv have the same traversals.

Obviously,∼ is an equivalence relation overN (Σ) and we
denote by[w]∼ the set of traversals of a nested wordw. We prove
that∼ is actually a congruence, that is ifw1 ∼ w2 andw′1 ∼ w′2
thenfc,r(w1) = cw1r ∼ cw2r = fc,r(w2) andw1.w

′
1 ∼ w2.w

′
2

for any nested wordsw1, w
′
1, w2, w

′
2 inN (Σ).

PROPOSITION1. The relation∼ is a congruence of finite index.

The transition algebra TA Based on Proposition 1, the congru-
ence relation∼ induces a finite algebraTA = (TravA, .TA , {fTA

c,r |
c ∈ Σc, r ∈ Σr}, ǫ

TA ) where the support is TravA the set of all
traversals induced byA, .TA is a binary operation which is asso-
ciative, eachfTA

c,r is a unary operation andǫTA is a constant from
TravA and a neutral element for.TA . More specifically,ǫTA = [ǫ]∼,
[u]∼.

TA [v]∼ = [uv]∼ andfTA
c,r ([u]∼) = [cur]∼. These operations

are well-defined since∼ is a congruence.
Hence, there exists a unique and canonical morphismµTA

from
W, the algebra of nested words, ontoTA, that satisfiesµTA

(w) =
[w]∼. We also denote[w]∼ aswTA since it can be considered as
the interpretation ofw (which is an elementW) in TA.

The correction of this morphismµTA
directly implies:

PROPOSITION2. LetA = (Q, qI , F,Γ, δ) be a2VPA. L(A) =
µ−1
TA

({m ∈ TravA | m ∩ ({(qI ,→)} × F × {→}) 6= ∅}).

Note that this statement corresponds to the classical notion of
recognizability by some finite algebra.



2.3 From two-way visibly pushdown automata to visibly
pushdown automata

In this subsection we give a reduction from2VPA to VPA. While
this result can be inferred from (Madhusudan and Viswanathan
2009), our Shepherdson-inspired approach gives an upper bound
on the complexity of the procedure. We first recall the notionof
recognizability by finite algebra and show that this notion is equiv-
alent to recognazibility byDVPA. Then we prove the main result
of this section appealing to the transition algebraTA.

Let A = (DA, .
A, (fA

c,r)(c,r)∈Σc×Σr
, ǫA) be a finite algebra

such that.A is associative havingǫA as neutral element. There exists
a unique morphismµA from the algebra of nested wordsW ontoA.

DEFINITION 3. A languageL ⊆ N (Σ) is recognized byA if there
exists a setLA ⊆ DA such thatL = µ−1

A (LA).

As an example, as shown in Proposion 2, a languageL defined
by a 2VPA is recognized by the transition algebraTA. We show
that recognability by finite algebra impliesDVPA recognizability.

LEMMA 1. If L is recognized by a finite algebraA then it is recog-
nizable by aDVPA BA. Moreover, the size ofBA is polynomial in
the size ofDA, the support ofA.

Proof. For A and the setLA ⊆ DA, we define theDVPA
BA = (DA, ǫ

A,LA,Σc × DA, δBA
) whereδBA

= δ
push
BA
∪ δpop

BA

andδpush
BA

(mA, c) = (ǫA, (c,mA)), δpop
BA

(m′A, r, (c,mA)) = mA ◦

fA
c,r(m

′A). Obviously,BA is deterministic. Its correctness can be
proved by induction on nested words showing for allw ∈ N (Σ),
there exists a run inBA on w from (mA, 0,⊥) to (m′A, |w|,⊥)
iff m′A = mA.AµA(w). And so, for an accepting run onw from
(ǫA, 0,⊥) to (m′A, |w|,⊥) withm′A ∈ LA,m′A = µA(w). Hence,
L(BA) = µ−1

A
(LA). Finally, note that the number of states ofBA

is precisely the cardinality of the support ofA. �

We can now come to the main result of this section.

THEOREM 1. For any2VPA A, one can compute (in exponential
time) aDVPA B such thatL(A) = L(B) and the size ofB is
exponential in the size ofA.

Proof. One can build from the2VPA A the elements of{[w]∼ |
w ∈ N (Σ)} and thus, the transition algebraTA, in exponential
time. Then, by Lemma 1, aVPA BTA

is built from TA. The
correctness follows from Proposition 2 forLTA

= {mTA ∈
TravA | mTA ∩ ({(qI ,→)} × F × {→}) 6= ∅}. �

COROLLARY 1. For any2VPA A, deciding the emptiness ofA (ie
L(A) = ∅) is EXPTIME -C. The same result holds forD2VPA.

Proof.We prove the upper-bound for2VPA and the lower bound
for D2VPA. For the upper-bound, it suffices to build fromA in ex-
ponential time a equivalentDVPA B possibly exponentially larger
thanA (Theorem 1). Then, emptiness ofB can be tested in poly-
nomial time (Alur and Madhusudan 2009).

The proof of the lower bound proceeds by a reduction of the
emptiness problem of intersection ofk deterministic top-down tree
automata, that is known to be EXPTIME -C.

2.4 2VPA with look-around

As we will later on need the notion of look-around for transducers,
we introduce it first for automata to ease the presentation. Hence,
we extend the model of2VPA with look-around. The feature will
add a guard to each transition of the machine. This guard will
require to be satisfied for the transition to be applied.

DEFINITION 4. A 2VPA with look-around (2VPALA for short) is
given by a triple(A, λ,B) such thatA is a 2VPA andB a unam-
biguousVPA andλ is a mapping from the transitions ofA to the
states ofB.

The notion of runs is adapted to take into account look-around
as follows: in any run on some nested wordw, for any two suc-
cessive configurations(qj , ij , dj , σj)(qj+1, ij+1, dj+1, σj+1) ob-
tained by a transitiont, we require that there exists a unique accept-
ing run onw in B and that this run contains a configuration of the
form (λ(t), read(w, dj , ij), σ).

The definition of accepting runs remains the same and the lan-
guage defined by such machines is defined accordingly.

The notion of one-wayness extends trivially to2VPA with look-
around. For determinism, we ask the look-around to be disjoint
on transitions with the same left hand-side: for any two different
transitions ofA, t1 = (q, d, a, q′1, d

′
1, γ1), t2 = (q, d, a, q′2, d

′
2, γ2)

in δc (resp.t1 = (q, d, a, γ, q′1, d
′
1), t2 = (q, d, a, γ, q′2, d

′
2) in δr),

it holds thatλ(t1) 6= λ(t2).
Non-surprisingly,2VPA are closed under look-around:

THEOREM2. Given a2VPALA (A, λ,B), there exists aVPA A′

such thatL((A, λ,B)) = L(A′).

3. Two-way visibly pushdown transducers
3.1 Definitions

LetΣ,∆ be two finite alphabets such thatΣ is structured. Two-way
visibly pushdown transducers (2VPT) from Σ to ∆ extend2VPA
overΣ with a one-way-left-to-right output tape. They are defined as
a pairT = (A,O) whereA is a2VPA overΣ andO is a morphism
from the set of rules ofA to words in∆∗.

A run of a 2VPT T = (A,O) on an input wordw ∈ N (Σ)
is a runρ of A onw. We say the run is accepting if it is inA. A
run ρ may be simultaneously a run on a wordw and on a word
w′ 6= w, however, when the underlying input wordw is given,
there is a unique sequence of transitionst1t2 . . . tn associated with
ρ andw. In this case, the output produced by the runρ on w is
defined as the wordv = O(t1)O(t2) . . .O(tn) ∈ ∆∗. This word is
denoted byoutw(ρ). If ρ contains a single configuration, then we
let outw(ρ) = ǫ. The transduction defined byT is the relation

JT K = {(w, outw(ρ)) ∈ N (Σ)×∆∗ | ρ is an accepting run ofT onw}.

We say thatT is functional if JT K is a function, and thatT is
deterministic(resp.unambiguous) if A is deterministic (resp. un-
ambiguous). The class of deterministic two-way visibly pushdown
transducers is denotedD2VPT. Observe that ifT is determinis-
tic or unambiguous, then it is trivially functional. Last, whenT is
functional, we may interpret the relationJT K as a partial function
onN (Σ): given a wordw ∈ N (Σ), denote byJT K(w) the unique
word v ∈ Σ∗ such that(w, v) ∈ JT K, whenever it exists. To ease
readability, we may simply writeT to denoteJT K when it is clear
from the context, for example when considering compositionof
functions.

We consider classes of one-way visibly pushdown transduc-
ers, obtained by considering the corresponding classes of one-way
visibly pushdown automata. The notions of functional, determin-
istic and unambiguous transducers are naturally defined forthese
transducers, and we denote by (D)VPT the class of (deterministic)
one-way visibly pushdown transducers. Last, we say that aVPT
T = (A,O) from Σ to ∆ is letter-to-letterif ∆ is a structured al-
phabet and ifO maps every call transition ofA to an element of∆c

and every return transition ofA to an element of∆r.
2VPT (resp.D2VPT) can be extended with look-around, as we

did for 2VPA. Formally, a two-way visibly pushdown transducer
with look-around (2VPTLA for short) is a pairT = (A′,O) where



A′ = (A,λ,B) is a 2VPALA andO is a morphism from the set
of rules of A to words in∆∗. We say that such a machine is
deterministic if the2VPALA A is deterministic, the resulting class
being denoted byD2VPTLA.

EXAMPLE 1. We now formally express the transduction given in
the introduction (see Figure 1). LetQ = {q1, . . . , qn} ∪ {qi,j |
1 ≤ i, j ≤ n or i = ⊲} ∪ {qf} be the set of states with initial state
q1 and final stateqf , a set of stack symbolsΓ = {⊥} ∪ {i | i =
1, . . . , n}, and for alli, j, k ∈ {⊲, 1, . . . , n}, we have the rules:

qi,→
i|i,+i
−−−−→ q1,→ qn,→

r|r,−j
−−−−→ qj ,→

qi,→
(j,r)
−−−→ qi,→ if j 6= i qi,j ,←

(j,r)
−−−→ qi,j ,→

qi,→
r|ǫ,−j
−−−−→ qi,j ,← if i < n qi,j ,→

k|ǫ,+j
−−−−→ qi+1,→

The markers are treated as letters, except that they push⊥ in-
stead of⊲ and upon popping⊥ in stateqn, the transducer goes to
qf and accepts. The transitions labeled by(j, r) are macros cor-
responding to moves along matching relation, which can easily be
implemented.

Evaluation Observe here that if a transformation is given as a
D2VPT T , then one can evaluate it using a memory linear in the
depth of the input wordw (we assumew can be accessed as we
want on some media). Indeed, one simply needs to store the current
configuration ofT , given as a state and a stack content.

3.2 Closure under composition

We prove in this subsection that2VPT are closed by composition
with a letter-to-letter unambiguousVPT, extending a similar result
for transducers on words (Hopcroft and Ullman 1967). This will
reveal useful to show thatD2VPT are closed under look-around.
First, we extend to nested words a result that was known for finite
transducers:

LEMMA 2. Any unambiguousVPT T can be written as the com-
position of twoVPT T1 ◦ T2, whereT1 is deterministic andT2 is
letter-to-letter and co-deterministic. Furthermore, ifT is letter-to-
letter, so isT1.

THEOREM 3. Given a letter-to-letterDVPTA and a2VPT B, we
can construct a2VPT C that realizes the compositionC = B ◦A.

If furthermoreB is deterministic, then so isC.

Proof.We first notice that since we are considering visibly push-
down machines and the first machine is letter-to-letter, thestacks
of both machines are always synchronized, meaning that theyhave
the same height on each position. Then, let us remark that when the
2VPT moves to the right, we can do the simulation in a straight
forward fashion by simulating it on the production of the one-
way. It becomes more involved when it moves to the left. We
then need to rewind the run of the one-way, and nondeterminism
can arise. To bypass this, let us recall that a similar construction
from (Hopcroft and Ullman 1967) exists for classical transducers,
and that the rewinding is done through a back and forth reading of
the input, backtracking the run up to a position where the nonde-
terminism is cleared, and then moving back to the current position.
The method is to compute the set of possible candidates for the pre-
vious state, and keep moving to the left until we reach a position
i where there is only one path left leading to the starting position
j. Afterward, we simply follow this path along another one from
positioni + 1. As we know that they will merge at positionj, we
can stop at positionj − 1 with the correct state. If we reach the
beginning of the word with multiple candidates, we do the same
procedure, the correct path being the one starting from the initial
state.

c • r

c1 • r1
w1

c2 • r2
w2

cn • rn
wn

· · ·
u :

Figure 2. The nested wordcc1w1r1c2w2r2 . . . cnwnrnr is ab-
stracted as a wordu over letters(ci, Si, ri) whereSi is the sum-
mary ofwi. The position labelled byc serves as initial position of
the word and the corresponding state was pushed to the stack upon
reading it.

This cannot be done as such on pushdown transducers since
rewinding the run might lead to popping the stack, and losingin-
formation. However, if at each push position, we push not only the
stack symbols but also the current state, we are able, when rewind-
ing the run, to clear the nondeterminism as soon as we pop this
information by using it as alocal initial state, limiting the back and
forth reading to the current subhedge. The overall construction can
be seen as a classical Hopcroft-Ullman construction on hedges, ab-
stracted as words over the left-to-right traversals of their subhedges,
which are called summaries in (Alur and Madhusudan 2009) (see
Figure 2). These summaries can be computed on-demand by a one-
way automaton.

Finally, note that to apply this construction, we need to push
this local initial state each time we enter a subhedge, whether we
enter from the right or from the left. This can be maintained since
when entering from the left, it simply corresponds to the current
state and when entering from the right, this state is computed by
the Hopcroft-Ullman construction. Note also that the Hopcroft-
Ullman routine is deterministic, and consequently the construction
preserves determinism. �

THEOREM4. LetA be aD2VPT and relab be an unambiguous
letter-to-letterVPT. Then the compositionA◦relab can be defined
by aD2VPT.

Proof.The proof is straightforward using previous results. First,
Lemma 2 states thatrelab can be decomposed inT1 ◦T2, whereT1

is a deterministicVPT andT2 is a co-deterministic one, and both
are letter-to-letter, i.eA ◦ relab = A ◦ T1 ◦ T2. Now Theorem 3
states that we can construct aD2VPT A′ that realizes the compo-
sitionA ◦ T1. Finally, as a co-deterministicVPT can be seen as a
deterministic one going right-to-left, a symmetric construction of
Theorem 3 onA′ ◦ T2 gives aD2VPT that realizesA ◦ relab. �

A look-around can be viewed as anMSO formula with one free
variable, and it is satisfied iff the formula is satisfied at this posi-
tion. In (Madhusudan and Viswanathan 2009), the authors consider
MSO queries on nested words. AnMSO query is anMSO formula
with one free variable that annotates the positions of the input word
that satisfies it. They proved, using a Hopcroft-Ullman argument,
thatMSO queries were also implemented byD2VPA. Theorem 4
proves that looks-around can be done on the fly while following the
run of an otherD2VPA. Since a look-around can be encoded as an
unambiguous letter-to-letterVPT, we get the following corollary,
that subsumes the result by (Madhusudan and Viswanathan 2009).

COROLLARY 2. D2VPT = D2VPTLA.

3.3 Decision problems

We consider the following type-checking problem: given aVPA
A1 onΣ, a finite-state automatonA2 on∆, and aD2VPT T from
N (Σ) to∆∗, decide whether for every wordw ∈ L(A1), JT K(w)



belongs toL(A2). This property is denoted byT (A1) ⊆ A2
3. The

equivalence problem asks whether given twoD2VPT as input, they
define the same transduction. We prove the following result:

THEOREM 5. 1. The inverse image of a regular language of words
by aD2VPT is recognizable by aVPA.

2. The type-checking problem forD2VPT is EXPTIME-complete.
3. The equivalence problem forD2VPT is decidable.

Proof.We prove the three results independently.
(1) Given aD2VPT T = (A,O) and an automaton on words

B, we can define a2VPA A′ as a product construction ofA and
B which simulatesB on the production byO. States ofA′ are
simply pairs of states ofA andB, andA′ recognizes{w ∈ N (Σ) |
JT K(w) ∈ L(B)} = JT K−1(L(B)). Observe that the construction
is linear in the sizes ofA andB, and that asB may be non-
deterministic,A′ may also be non-deterministic.

(2) EXPTIME membership: as in the proof of the previous item,
we can build a2VPA A whose size is linear in the sizes ofT and
A2, and such thatL(A) = JT K−1(L(A2)). Thus,T (A1) ⊆ A2

holds iff L(A1) ⊆ L(A) holds. This can be checked in EXPTIME
thanks to Theorem 1.

EXPTIME hardness: we reduce the problem of emptiness of a
D2VPA A. FromA, we build aD2VPT T = (A,O) such thatO
maps every transition ofA to the empty wordǫ. Then, we letA1

be aVPA such thatL(A1) = N (Σ) andA2 such thatL(A2) = ∅.
ThenT (A1) ⊆ A2 holds iffL(A) = ∅.

(3) As proved in Section 4,D2VPT are included in the class
of deterministic hedge-to-string transducers with look-ahead,i.e.
deterministic top-down tree-to-string transducers with look-ahead,
run on the first-child-next-sibling encoding of the input hedge. The
equivalence problem for these machines has recently been proven
decidable in (Seidl et al. 2015). �

4. Expressiveness of Two-Way Visibly Pushdown
Transducers

In this section, we study the expressiveness ofD2VPT by com-
paring them with Courcelle’s MSO-transductions casted to nested
words, the one-way model of (Alur and D’Antoni 2012), and a top-
down model for hedges, inspired by top-down tree-to-stringtrans-
ducers.

4.1 MSO-definable Transductions

We first define MSO for nested words and words, as done in
(Alur and Madhusudan 2009), and then MSO-transductions from
nested words to words, based on Courcelle’s MSO-definable graph
transductions (Courcelle 1994).

MSO on nested words and words LetΣ be a structured alphabet.
A nested wordw ∈ N (Σ) is viewed as a structure withpos(w) as
domain, over the successor predicateS(x, y) interpreted as pairs
(i, i + 1) for i ∈ pos(w)\{|w|}, the label predicatesσ(x) for
σ ∈ Σ, interpreted by the positions labeled byσ, and the matching
predicateM(x, y) interpreted as the set of matching pairs inw.

Monadic second-order logic (MSO) extends first-order logic
with quantification overs sets. First-order variablesx, y, . . . are
interpreted by positions of words, while second-order variables
X,Y, . . . are interpreted by sets of positions.MSO formulas for
nested words overΣ are defined by the following grammar:

ϕ ::= σ(x) | x ∈ X | S(x, y) |M(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

whereσ ∈ Σ. The semantics of an MSO formula is defined
in a classical way, and forϕ an MSO formula,w ∈ N (Σ), ν

3 If A2 is aVPA, the problem is known to be undecidable even forT a
DVPT (Raskin and Servais 2008).

a valuation of the free variables ofϕ into positions and sets of
positions ofw, we writew, ν |= ϕ to mean thatw is a model
of ϕ under the valuationν. Whenϕ is a sentence, we just write
w |= ϕ. We denote byMSOnw[Σ] the set of MSO formulas
for nested words overΣ (and justMSOnw whenΣ is clear from
the context). Since we are interested in transductions fromnested
words to words, we also define MSO for words. Similarly as nested
words, words are seen as structures but in that case we do not have
the matching pair predicateM(x, y). MSO formulas on words are
defined accordingly to this smaller signature.

EXAMPLE 2. We interpretMSOnw[Σ] on nested words rather that
on words inΣ∗. It is not a restriction since checking whether a
given relationM(x, y) is a valid matching relation is definable by
an MSO formulaφwn. This formula expresses thatM is a bijection
between call and return symbols, and that it is well-nested (there is
no crossing), as follows:
¬∃xc, xr, yc, yr .M(xc, xr) ∧M(yc, yr) ∧ xc ≺ yc ≺ xr ≺ yr
∧ bij(M) ∧ ∀x, y.M(x, y)→ x ≺ y

where≺ is the transitive closure ofS (well-known to be MSO-
definable) and bij(M) expresses thatM maps bijectively call and
return symbols (it is trivially MSO-definable).

MSO transducers from nested words to words MSO-transducers
define (partial) functions from nested words to word structures. The
output word structure is defined by taking a fixed numberk of
copies of the input structure domain. Nodes of these copies can be
filtered out byMSOnw formulas with one free first-order variable.
In particular, the nodes of thec-th copy are the input positions that
satisfy some givenMSOnw formulaφc

pos(x). The label predicates
σ(x) and the successor predicateS(x, y) of the output structure
are defined byMSOnw formulas with respectively one and two free
first-order variables, interpreted over the input structure. Formally,
an MSO-transducer from nested words to wordsis a tupleT =

(k, φdom, (φ
c
pos(x))1≤c≤k, (φ

c
σ(x))1≤c≤k

σ∈Σ

, (φc,d
S (x, y))1≤c,d≤k)

wherek ∈ N and the formulasφdom,φc
pos,φ

c
a andφc,d

S areMSOnw

formulas. We denote byMSO[nw2w] the class of MSO-transducers
from nested words to words.

An MSO-transducerT defines a function from nested word
structures overΣ to word structures overΣ, denoted byJT K.
The domain ofJT K consists of all nested word structuresu such
that u |= φdom. Given a nested word structureu ∈ dom(JT K),
the output structurev such that(u, v) ∈ JT K is defined by the
domainDv ⊆ pos(u) × {1, . . . , k} such thatDv = {(i, c) | i ∈
pos(u), c ∈ {1, . . . , k}, u |= φc

pos(i)}, a node(i, c) ∈ Dv

of the output structure is labeleda ∈ Σ if u |= φc
a(i), and a

node (j, d) ∈ Dv is the successor of a node(i, c) ∈ Dv if
u |= φ

c,d
S (i, j). Note that the output structure is not necessarily a

word, because for instance, nothing guarantees that an output node
is labeled by a unique symbol, or that the successor relationforms a
linear order on the positions. However, it is not difficult tosee that
it is decidable whether anMSO[nw2w] transducer produces only
words (see for instance (Filiot 2015)).

We say that a functionf from nested words to words is MSO-
definable if there exists anT ∈ MSO[nw2w] such thatJT K = f .
By definition ofMSO[nw2w] transducers, for any MSO-definable
function f there existsk ∈ N such that for allu ∈ Dom(f),
|f(v)| ≤ k.|u| (by taking k as the number of copies of the
MSO[nw2w] transducer definingf ). We say in that case thatf
is of linear-size increase.

EXAMPLE 3. This example transforms a nested word into the se-
quence of calls of maximal depth (the leaves). E.g.,c1c2r2c3c4r4r3r1
is mapped toc2c4. This transformation is MSO-definable. The do-
main is defined by the formulaφwn (see Example 2). One needs



only one copy of the input word, whose positions are filtered out
by the formulaφ1

pos(x) = ∃y.M(x, y)∧ S(x, y) which holds true
iff x is a call position and its successor positiony is its matching
return position. The labels are preserved:φ1

a(x) = a(x) for all
a ∈ Σ. Finally, the successor relation is defined byφ1,1

S (x, y) =
φ1
pos(x) ∧ φ

1
pos(y) ∧ x ≺ y ∧ ¬∃z.φ

1
pos(z) ∧ x ≺ z ≺ y.

4.2 Logical equivalences

An MSO[nw2w] T is said to beorder-preservingif for any wordu
of the domain ofT , any positionsi, j of u and any copiesc, d of T ,
if u |= φ

c,d
S (i, j) theni ≤ j. This means that the output arrows can

not point to the right. It is emphasized by the next theorem, which
echoes a similar result on words proved in (Bojanczyk 2014; Filiot
2015).

THEOREM 6. An order-preserving transduction is definable in
MSO[nw2w] if, and only if, it is definable by a functional4 VPT.

In the following, we show thatD2VPT are strictly more ex-
pressive thanMSO[nw2w], and define a restriction that capture
exactlyMSO[nw2w]. The fact thatD2VPT are more expressive
thanMSO[nw2w] can be easily shown, based on a similar result
for ranked trees established in (Courcelle and Engelfriet 2012).
Since D2VPT can, using their stack, express transductions of
exponential-size increase, while MSO-transductions are of linear-
size increase, they are strictly more expressive thanMSO[nw2w].

To capture exactlyMSO[nw2w], one defines thesingle-use re-
striction for D2VPT (andD2VPTLA). Intuitively, this restriction
requires that when aD2VPT passes twice at the same position
with the same state, then necessarily the transitions fired from these
states producesǫ.

DEFINITION 5 (Single-use restriction).AD2VPT (resp.D2VPTLA)
T = (A,O) with A = (Q, qI , F,Γ, δ) a 2VPA (resp.2VPALA)
is single-usewith respect to a setP ⊆ Q if any transition t
from a stateq 6∈ P satisfiesO(t) = ǫ, and if for all runs
r = (q0, i0, d0, σ0) . . . (qℓ, iℓ, dℓ, σℓ) of T on a wordw and all
statesp ∈ P , r does not visit twice the same position in statep, i.e.
if (qα, iα) = (qβ, iβ) for α 6= β, thenqα = qβ 6∈ P .

AD2VPT (resp.D2VPTLA) is single-useif it is single-use w.r.t.
some setP ⊆ Q, andstrongly single-useif it is single-use w.r.t.Q.

We denote byD2VPTsu (resp.D2VPTLA
su ) the class of single-

useD2VPT (resp.D2VPTLA). By reduction to theD2VPA empti-
ness, we get:

PROPOSITION3. Deciding the single use property on a2VPT is
EXPTIME -C.

In (Courcelle and Engelfriet 2012), a single-use restriction was
already defined for deterministic tree-walking transducers with
look-around to capture MSO-transductions from trees to trees (and
words). It requires that in any accepting run, every node is visited
at most once by a state. It is therefore more restrictive thanour
single-restriction and, as a matter of fact, corresponds towhat we
call the strongly single-use restriction. However, the following re-
sult shows that the strongly single-use restriction is not powerful
enough, in our context, to capture all MSO-definable transductions,
even with regular look-arounds.

LEMMA 3. There is an MSO-definable nested word to word trans-
ductionf which is not definable by strongly single-useD2VPTLA.

4 Within the class ofVPT, the class of functionalVPT is decidable in
PTime (Filiot et al. 2010)

We now proceed to the first logical equivalence, between our
model and MSO-transductions, which is mainly a consequenceof
results from (Courcelle and Engelfriet 2012).

THEOREM7. Letf be a transduction from nested words to words.
Then f is MSO-definable iff it is definable by a (look-around)
D2VPTsu, i.e.,

MSO[nw2w] = D2VPTLA
su = D2VPTsu.

Sketch of proof.We show that both other models are equiva-
lent toD2VPTLA

su . We have already seen that look-around can be
removed fromD2VPTLA (Theorem 2), while preserving their ex-
pressive power. Our Hopcroft-Ullman’s construction can add expo-
nentially more visits to the same positions, but these visits are only
ǫ-producing. In other words, our Hopcroft-Ullman’s construction
does not preserve the strongly single-use restriction, butit preserves
the single-use restriction. As a consequence of this observation and
Corollary 2, we obtain thatD2VPTsu = D2VPTLA

su .
To showMSO[nw2w] ⊆ D2VPTLA

su , we rely on the equiva-
lence of (Courcelle and Engelfriet 2012) between deterministic bi-
nary tree to word walking transducers with look-around (DTWTla)
and MSO-transductions from binary trees to words (MSO[b2w]).
Informally, DTWTla can follow the directions of binary trees (1st
child, 2nd child and parent) and take their transitions based on reg-
ular look-around information. Due to determinism, they arealways
strongly single-use, in the sense that any position is not visited
twice by the same state. Such a machine, running on first-child
next-sibling encoding of nested words, is easily encoded into an
equivalentD2VPTLA

su . In this encoding, a nested word overΣ is en-
coded as a binary tree over(Σc×Σr)∪{⊥}, inductively defined as
fcns(cw1rw2) = (c, r)(fcns(w1), fcns(w2)) andfcns(ǫ) = ⊥. In
this encoding, moving to a 1st child corresponds to moving from
c to w1, which can be done by aD2VPTLA

su , and moving to a
2nd child corresponds to moving fromc to w2. This can be done
also by aD2VPTLA

su , but it needs to traverse all the wordcw1r,
while producingǫ only. Similarly, one can encode moves to par-
ent nodes. The two latter moves implies that theD2VPTLA

su is not
strongly single-use anymore, but it remains single-use: the extra
moves are allǫ-producing. The result follows asMSO[nw2w] =
MSO[b2w] ◦ fcns.

To showD2VPTLA
su ⊆ MSO[nw2w], we rely on another cor-

respondence shown in (Courcelle and Engelfriet 2012), between
MSO[b2w] and deterministic (visibly) pushdown binary tree to
word walking transducers with look-around of linear-size increase
(DPTWTla

lsi). These transducers extend DTWTla with a pushdown
store with a visibly condition: when moving to a child, they push
one symbol, and moving up, they pop one symbol. The lsi restric-
tion is semantical: they restrict the class to transducers that define
lsi transductions. AnyD2VPTLA

su defines an lsi transduction, and
can be easily encoded into a DPTWTla

lsi running onfcns encod-
ings, which mimics the moves of theD2VPTLA

su . Again, the result
follows by the equalityMSO[nw2w] = MSO[b2w] ◦ fcns. �

4.3 Comparison with other transducer models

In this section, we relateD2VPT to two other transducer mod-
els, namely streaming tree-to-string transducers and determinis-
tic hedge-to-string transducers with look-ahead. Streaming tree-to-
string transducers with a simple copyless restriction of updates will
serve as the third edge of our trinity. Deterministic hedge-to-string
transducers with look-ahead is a natural model for which equiva-
lence is known to be decidable.

Streaming tree-to-string transducers are deterministic one-way
machines (Alur and D’Antoni 2012) equipped with registers stor-
ing words. We fix a finite alphabet∆ and, given two finite setsX
andY, denote byU(X ,Y) the set of mappings fromX to (∆∪Y)∗.



DEFINITION 6. A streaming tree-to-string transducerS (STST for
short) is a deterministic machine defined over a structured alphabet
Σ and given by the tuple(Q, qI ,Γ,X , δ, µF ) whereQ is a finite set
of states,qI ∈ Q is the initial state,Γ is a finite set of stack symbols
andX is a finite set of registers. Finally,µF is a partial mapping
fromQ to (∆∪X )∗ andδ = δpush⊎δpop whereδpush : Q×Σc →
Q×Γ×U(X ,X ) andδpop : Q×Σr×Γ→ Q×U(X ,X ∪X ′),
X ′ being a disjoint copy ofX .

Let V∆
X be the set of mappings from fromX to ∆∗. These

mappings are extended to(X∪∆)∗ by considering them as identity
over ∆. An accepting run of aSTST S on a nested wordw
is a (non-empty) sequence(q0, θ0, σ0, w0) . . . (qℓ, θℓ, σℓ, wℓ) of
quadruples fromQ × V∆

X × (Γ × V∆
X )
∗ × Σ∗ such thatq0 = qI ,

w0 = w,wℓ = ǫ, θ0 is the mappingθǫ which associatesǫ to anyX
in X , σ0, σℓ are equal to⊥ the empty stack and for all0 ≤ i < ℓ,
one has either

• wi = cwi+1 and there exists(qi, c, qi+1, γ, ν) ∈ δpush,
θi+1 = θǫ andσi+1 = σi(γ, θi ◦ ν),

• wi = rwi+1 and there exists(qi, r, γ, qi+1, ν) ∈ δpop, σi =
σi+1(γ, θ) andθi+1 = θ′ ◦ θi ◦ ν, whereθ′ ∈ V∆

X ′ is defined
by θ′(X ′) = θ(X) for all X ∈ X .

The semantics[[S]] of the STST S is a partial mapping from
N (Σ) to ∆∗ such that[[S]](w) = v if there exists an accepting
run on w in S ending in some configuration(qℓ, θℓ,⊥, ǫ) and
v = θℓ(µF (qℓ)).

Using a restriction on the updatesU used inSTST (so-called
copyless updates), (Alur and D’Antoni 2012) proved that copyless
STST andMSO[nw2w] are expressively equivalent. As a conse-
quence, we obtain the logic/two-way/one-way trinity announced in
the introduction:

THEOREM 8. MSO[nw2w] = D2VPTsu = copylessSTST

A well-known class of transducers running on ranked trees is
the class of deterministic top-down tree transducers with look-
ahead. This class can be defined to output strings. We consider
now the extension of this class to unranked trees, or more precisely
sequences of unranked trees, that is, hedges.

DEFINITION 7. Anhedge automaton(HA for short) over the struc-
tured alphabetΣ 5 is a tuple(Q,F, δ) whereQ is a finite set of
states,F ⊆ Q is a set of final states andδ is a transition relation
such thatδ ⊆ Q× Σc ×Σr ×Q×Q.

An hedge automaton is said to be bottom-up deterministic if
whenever(q, c, r, q1, q2) and(q′, c, r, q1, q2) belongs toδ, it holds
thatq = q′. The semantics of anHA B is given by means of sets
LB

q ⊆ N (Σ) defined for eachq ∈ Q inductively as follows:(i)
ǫ ∈ LB

q for all q and(ii) cwrw′ ∈ LB
q if (q, c, r, q1, q2) ∈ δ and

w ∈ LB
q1 , w′ ∈ LB

q2 . The language defined by anHA B is then
⋃

q∈F L
B
q . Note that whenB is bottom-up deterministic whenever

q1 6= q2, it holds thatLB
q1 ∩ L

B
q2 = ∅.

DEFINITION 8. A deterministichedge-to-string transducerwith
look-ahead (dH2SLA) H over the structured alphabetΣ and the
output alphabet∆ is given by a tuple(Q, I, F, δ,B) whereQ is a
finite set of states,qI ∈ Q is an initial state,F ⊆ Q is a set of final
states,B is a deterministic bottom-up hedge automaton with states
Q′, andδ is a transition relation given by a partial mapping

δ : Q× Σc × Σr ×Q
′ ×Q′ → ∆∗Q

5 Usually, such automata are given over a classical unstructured but unary
alphabet. However, for having a uniform presentation, we choose wlog this
definition which corresponds somehow to consider a pair fromΣc ×Σr as
single symbol.

∆Q is the finite set of symbols(∆∪{q(xi) | 1 ≤ i ≤ 2, q ∈ Q})∗.

The semantics of adH2SLA is first given by a partial map-
ping [[H ]] from N (Σ) × Q onto ∆∗ defined inductively as:(i)
[[H ]](ǫ, q) = ǫ if q ∈ F , and (ii) for w = cw1rw2 with
w1, w2 ∈ N (Σ), [[H ]](w, q) = ω[qi(xij ) ← [[H ]](wij , qi)]
whereω[qi(xij ) ← [[H ]](wij , qi)] denotes the wordω in which
each occurrence ofqi(xij ) has been replaced by[[H ]](wij , qi) if

δ(q, c, r, q′, q′′) = ω, w1 ∈ L
q′

B andw2 ∈ L
q′′

B and undefined
otherwise.

Then, the transduction[[H ]] defined byH is given by{(w, s) |
w ∈ N (Σ), s = [[H ]](w, qI)}.

THEOREM9. D2VPT ( STST andD2VPT ( dH2SLA

Sketch of proof.The two results rely on a same intermediate
model that extends the transition algebra described in Section 2.
This algebra allows to describe the possible traversals of aD2VPA.
One can extend it toD2VPT by storing in matrices the words
produced by traversals. This yields an infinite algebra, realized by a
finite set of operations. We use this to describe effective translations
into STST anddH2SLA.

As an illustration, in order to build of an equivalentSTST,
the set of variables considered is the setΞ = {x(p,d),(p′,d′) |
(p, d), (p′, d′) ∈ Q× D}, i.e. one variable for each traversal. This
generalizes the construction described in (Alur andČerný 2010;
Alur et al. 2012) in order to translate a deterministic two-way trans-
ducer (on words) into a streaming string transducer.

The fact that the inclusions are strict relies on a simple argument
based on size increase: on nested words of bounded depth,D2VPT

are linear-size increase, whileSTST anddH2SLA are not. �

5. Discussion
Unranked tree to word transductions Since unranked treest
can be linearised into nested wordslin(t), our result also gives
a model for unranked tree to word transductions. If one denotes
by MSO[u2w] the transductions from unranked trees to words
definable by an MSO transducer (over the signature of unranked
trees that has the child and next-sibling predicates), it iseasy to
show thatMSO[u2w] = D2VPTsu ◦ lin.

One could argue thatD2VPT for realising transductions of un-
ranked trees is not an adequate model, because it performs unnec-
essaryǫ-producing moves to navigate, for instance, from a noden
to its next-sibling. Indeed, theD2VPT needs to walk through the
whole subtree rooted atn.

First, while it is true from an operational point of view, we think
that the simplicity ofD2VPT makes them a good candidate as
a specification model of unranked tree transductions, and tothis
aim, it is easy to define, as we did for next-sibling moves (rules

q
(c,r)
−−−→ p), macros that realise moves given by the predicates

of unranked trees (and their inverse). Second, for instancein the
context of stream processing of XML documents, it cannot be
always assumed that the input document is given by its DOM (with
the unranked tree predicates) as sometimes, it is just stored as plain
text, i.e. as its linearisation.

Finally and most importantly, our result allows one to get anex-
tension of a known model of ranked tree to word transductions, to
unranked tree to word transductions, namely,deterministic push-
down unranked tree to word walking transducers(DPUWT). To
avoid technical details, we define formally this model only in Ap-
pendix, and rather give intuitions here. DPUWT can walk through
the unranked tree following the next-sibling and first-child pred-
icates (and their inverse), while producing words on the output.
They are also equipped with a pushdown store with a visibly con-
dition: whenever they go down the tree by one level, they haveto



push one symbol onto the stack, and going up, they pop one sym-
bol. They let the stack unchanged when moving horizontally be-
tween siblings. With the single-use restriction, defined similarly as
for D2VPT, we get thatMSO[u2w] = DPUWTsu. Therefore, if
the input is given by an unranked tree, one can rather use a DPUWT
or aD2VPT on the linearisation.

Nested word to nested word transductions As we claimed earlier,
D2VPTsu can be used to define unranked tree transformations
represented as nested word to nested word transducers, thatis, as
nested word to word tranduscers with a structured output alphabet.

On the logical side,MSO[nw2w] transductions can be extended
with binary formulasϕc,d

M (x, y) aiming at representing the match-
ing relation existing on output nested words. As checking whether
a relation denotes a matching relation isMSO definable (see Ex-
ample 2), one can decide whether any input nested word is indeed
transformed by theMSO[nw2w] transducer into a nested word by
testing the validity of the sentence obtained from the logical defi-
nition of the matchingM (Example 2) by replacing the predicate
M with

∨

c,d ϕ
c,d
M . So, starting from anMSO[nw2w] transducer

with a matching relation defined on its output, one may forgetthis
matching and view this transducer as an ordinaryMSO[nw2w]
transducer; this machine turns out to be equivalent in the sense
that remaining call and returns symbols induce uniquely theerased
matching. Finally, by the results presented in this paper, one can
from this MSO[nw2w] transducer build an equivalentD2VPTsu

whose range will indeed contain only nested words and thus, de-
fines an unranked tree transformation.

Let us point out that our results do not entail the trinity fortree-
to-tree transformations: the class of D2VPT which produce only
nested words/trees as output may be a good candidate to complete
the missing part (the equivalence between MSO transformations
and streaming tree transducers has already been established in
(Alur and D’Antoni 2012)). Nonetheless, deciding this class seems
to be challenging and moreover, there is actually no guarantee that
it corresponds to the other two cited members of this trinity.

Input streaming In an input streaming scenario, one assumes
that the input nested word is given as a stream of call and return
symbols. In such a scenario, one wants to transform the input
stream as soon as possible, on-the-fly, and it is not reasonable
to load the whole stream in memory. An interesting question is
whether a givenD2VPT really needs its two-way ability ? In other
words, can we decide whether a givenD2VPT is equivalent to a
(one-way)VPT? For words and two-way finite transducers, this
question has been shown to be decidable in (Filiot et al. 2013). As
future work, we want to extend this result toD2VPT.
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A. Appendix
A.1 Two-way visibly pushdown automata

PROPOSITION1. The relation∼ is a congruence of finite index.

Proof. We considerR the set of binary relations overQ × D.
Obviously,R is finite. As traversals are subsets ofR,∼ is of finite
index. Let us now prove that∼ is a congruence relation for the
binary operation. and the unary ones,fc,r (for c ∈ Σc, r ∈ Σr).

From∼, we define four equivalence relations∼ll,∼lr,∼rl,∼rr

onQ×Q such that for(α, β ∈ {l, r}), we haveu ∼αβ v if

[u]∼ ∩ (Q× {bdir(α)} ×Q× {edir(β)}) =

[v]∼ ∩ (Q× {bdir(α)} ×Q× {edir(β)})

wherebdir(l) = edir(r) =→ andbdir(r) = edir(l) =←.
Intuitively, (p, q) belongs to[w]∼ll

(respectively to[w]∼lr
) if

there exists a run ofA onw starting readingw from the left side,
ie, with direction→ in statep and leaves the word on theleft, ie,
with direction← (resp. on theright, ie, with direction→) in state
q.

The relation∼ is uniquely determined by the four relations
∼ll,∼lr,∼rl,∼rr and in particular,∼ is a congruence iff all the
∼ll,∼lr,∼rl,∼rr are congruences.

Let us first notice that forǫ, one has[ǫ]∼ll
= [ǫ]∼rr

= ∅ whereas
[ǫ]∼lr

, [ǫ]∼rl
are the identity relation.

Let us consideru, u′, v, v′ in N (Σ) and assume thatu ∼ u′

(and thus,u ∼ll u
′, u ∼lr u

′, u ∼rl u
′, u ∼rr u

′) andv ∼ v′. We
consideru.v andu.′v′ and prove thatu.v ∼ u.′v′.

From the definition of runs and traversals, one has

[u.v]∼ll
= [u]∼ll

∪ [u]∼lr
◦ ([v]∼ll

◦ [u]∼rr
)∗ ◦ [v]∼ll

◦ [u]∼rl

[u.v]∼lr
= [u]∼lr

◦ ([v]∼ll
◦ [u]∼rr

)∗ ◦ [v]∼lr

[u.v]∼rl
= [v]∼rl

◦ ([u]∼rr
◦ [v]∼ll

)∗ ◦ [u]∼rl

[u.v]∼rr
= [v]∼rr

∪ [v]∼rl
◦ ([u]∼rr

◦ [v]∼ll
)∗ ◦ [u]∼rr

◦ [v]∼lr

Hence,[u.v]∼αβ
= [u′.v′]∼αβ

for all α, β ∈ {l, r} and so,
u.v ∼ u′.v′. Let us point out that these definition are similar to
those defined for words in the case of two-way finite state automata
(Shepherdson 1959) and that[(u.v).w]∼αβ

= [u.(v.w)]∼αβ
and

[u.ǫ]∼αβ
= [ǫ.u]∼αβ

for all α, β ∈ {l, r}.
Now, let us consideru, u′ in N (Σ) and assume thatu ∼ u′.

We considercur = fc,r(u) and cu′r = fc,r(u
′) and show

that cur ∼ cu′r. Expressing traversals oncur is much more
intricate. To ensure that traversals abstract properly runs, we need
to forget about stack contents and thus, reason again only onnested
words when composing sub-runs ofcwr. Hence, new notations are
needed: we let ford in {←,→} andw ∈ N (Σ)

Zc
ll,d =

{

(p, q) | (p,→, c, p′,←, γ) ∈ δpush , (p′,←, γ, c, q, d) ∈ δpop
}

Zcw
ll,d =

⋃

γ∈Γ









⋃

(−→p
c,+γ
−−−→−→p′)

{(p, p′)} ◦ [w]∼ll
◦

⋃

(
←−
q′

c,−γ
−−−→(q,d))

{(q′, q)}









Zr
rr,d =

{

(p, q) | (p,←, r, p′,→, γ) ∈ δpush , (p′,→, r, γ, q, d) ∈ δpop
}

Zcw
rr,d =

⋃

γ∈Γ









⋃

(←−p
r,+γ
−−−→←−p′)

{(p, p′)} ◦ [w]∼rr
◦

⋃

(
−→
q′

r,−γ
−−−→(q,d))

{(q′, q)}









The expressionsZc
ll,d andZcw

ll,d stands both for left-to-left traver-
sal reading twice the initial letterc; the former one represents a
back-and-forth move onc whereasZcw

ll,d implies that between the
readings ofc a left-to-left traversal ofw is performed. If the last
directiond is← then the reading head leaves the word, otherwise



the next reading will bec again. The expressionsZr
rr,d andZwr

rr,d are
defined dually.

T
cwr
lr,d =

⋃

γ∈Γ







⋃

(−→p
c,+γ
−−−→−→q

{(p, q)}






◦[w]∼lr

◦







⋃

(−→p
r,−γ
−−−→(q,d))

{(p, q)}







T
cwr
rl,d =

⋃

γ∈Γ







⋃

(←−p
r,+γ
−−−→←−q

{(p, q)}






◦[w]∼rl

◦







⋃

(←−p
c,−γ
−−−→(q,d)

{(p, q)}







The expressionT cwr
lr,d represents a direct traversal from left-to-

right, going once throughc andr.
Finally, the classes[cwr]∼ll

, [cwr]∼lr
, [cwr]∼rl

and[cwr]∼rr
are

defined in Figure 3.
Hence, we indeed have that[fc,r(u)]∼αβ

= [cur]∼αβ
=

[cu′r]∼αβ
= [fc,r(u

′)]∼αβ
for all α, β ∈ {l, r}. �

COROLLARY 1. For any2VPA A, deciding the emptiness ofA (ie
L(A) = ∅) is EXPTIME -C. The same result holds forD2VPA.

Proof. We detail the hardness proof by reduction from the
emptiness ofk DVPA. The latter problem can be shown to be
EXPTIME-hard from the EXPTIME-hardness of intersection empti-
ness ofk deterministic top-down tree automata and a polyno-
mial translation of deterministic top-down tree automata into
DVPA (Alur and Madhusudan 2009). We can then encode this
problem as emptiness of aD2VPA as follows: theD2VPA sim-
ulates one after the other theDVPA’s A1, . . . , Ak; once the word
is read from left to right simulatingAi, if a final state ofAi is
reached, one enters a state that move the reading head at the be-
ginning of the word and then switches to the initial state ofAi+1

to read the input word once again. Hence, starting initiallyin the
initial state ofA1, if the final state ofAk is reached then the input
nested word belongs to all theAi’s. �

A.2 Two-way visibly pushdown transducers

LEMMA 2. Any unambiguousVPT T can be written as the com-
position of twoVPT T1 ◦ T2, whereT1 is deterministic andT2 is
letter-to-letter and co-deterministic. Furthermore, ifT is letter-to-
letter, so isT1.

Proof. It has been proved in (Filiot and Servais 2012) that every
unambiguousVPT can be transformed into aDVPT equipped
with a look-ahead limited to the current hedge. Formally, such a
transducer is defined as a triple(T,A, λ) whereT is a DVPT,
A is a VPA with no initial states, andλ is a mapping from call
transitions ofT to states ofA. Given a statep of A, we denote
by Ap theVPA defined fromA by letting{p} be the set of initial
states. A call transitiont of T can then be fired at some position of
an input wordw only if the longest nested subword ofw from this
position belongs toL(Ap).

Intuitively, the decomposition of aDVPT with look-ahead
works as follows: the co-deterministic letter-to-letterVPT does
a first pass enriching the alphabet with the results of the look-ahead
tests. Then the deterministicVPT simulates theDVPT with look-
ahead using this additional information.

Formally, let(T,A, λ) be aDVPT with look-ahead fromΣ to
∆, with A = (Q,F,Γ, δ). We first define the structured alphabet
Σ′ as the disjoint union of the set of call symbolsΣc × 2Q, and the
set of return symbolsΣr. We define the co-deterministic letter-to-
letterVPT T2 = (A2,O2) from Σ to Σ′, whereA2 is defined as
the co-determinisation ofA. Formally, let us denote byidX the set
{(q, q) | q ∈ X}. We defineA2 = (2Q×Q, I2, idF ,Σr×2

Q×Q, α)

p′′ q′′
S′′

p q

c,+γ r,−γ

Update(c, S, r)

whereI2 = {S ⊆ Q×Q | S ∩ I × F 6= ∅} and the transitions of
A2 are defined as follows:

• Return transitions:idQ
r,−(r,S)
−−−−−→ S, with r ∈ Σr andS ⊆

Q×Q

• Call transitions:S
c,+(r,S′)
−−−−−−→ S′′ with c ∈ Σc, r ∈ Σr and

S, S′, S′′ ⊆ Q × Q, iff S = update(c, S′′, r) ◦ S′ where
update(c, S′′, r) = {(p, q) ∈ Q × Q | ∃γ ∈ Γ.∃(p′′, q′′) ∈

S′′.p
c,+γ
−−−→ p′′ andq′′

r,−γ
−−−→ q}

The mappingO2 associatesǫ to every return transition, and as-
sociates{p ∈ Q | ∃q ∈ F.(p, q) ∈ S} to the call transition

S
c,+(r,S′)
−−−−−−→ S′′. This set corresponds to the set of statesp such

that the look-ahead constraintp is satisfied.
TheDVPT T1 fromΣ′ to∆ can then easily be derived from the

DVPT with look-aheadT as the look-aheads tests can be checked
on the enriched alphabetΣ′. �

THEOREM3. Given a letter-to-letterDVPTA and a2VPT B, we
can construct a2VPT C that realizes the compositionC = B ◦A.

If furthermoreB is deterministic, then so isC.

Proof.We first notice that since we’re considering visibly push-
down machines, the stacks of both machines are always synchro-
nized, meaning that they have the same height on each position.
Then, let us remark that when the2VPT moves to the right, we can
do the simulation in a straight forward fashion by simulating it on
the production of the one-way, which we can compute. It becomes
more involved when it moves to the left. We then need to rewindthe
run of the one-way, and nondeterminism can arise. To bypass this,
let us recall that a similar construction from (Hopcroft andUllman
1967) exists for classical transducers, and that the rewinding is
done through a back and forth reading of the input, backtracking
the run up to a position where the nondeterminism is cleared,and
then moving back to the current position.

The main idea is that if we were to consider a hedge as a
word over subhedges (see Figure 4), we can use the Hopcroft-
Ullman construction, given that we know the initial state, i.d. the
state in which the one-way enters the hedge. To overcome this, we
will ensure the invariant that the stack contains not only the stack
symbols from the two transducers, but also at each step it contains
the state in which the one-way enters a hedge. Remark that thanks
to this, upon moving to the left of a call letter, the state of the one-
way is directly given by the information in the stack.

We now explain how we can treat subhedges as letters. First,
while the subhedge alphabet is infinite, we are actually interested in
their behaviour in the one-way. Thus we consider an automaton not
over the subhedge, but over their summaries, which are finite. We
can thus compute a finite automaton of the summaries, and apply
the Hopcroft-Ullman construction on it. Consequently, we need to
be able to compute the summaries of a given subhedge. This is eas-
ily done on the fly using the determinisation procedure of theVPAs.
Finally, note that applying the Hopcroft-Ullman construction to the
automaton of summaries gives the state in which the one-way en-
ters the previous subhedge (when rewinding a run). This allows us
to maintain the invariant, and by reading this subhedge we can com-
pute the state of the one-way at the previous position (from where
we started).



[cwr]∼ll
=

(

Z
c/cw
ll,→ ∪

(

T cwr
lr,← ◦ (Z

r/wr
rr,← )∗ ◦ T cwr

rl,→

))∗ (

Z
c/cw
ll,← ∪

(

T cwr
lr,← ◦ (Z

w/wr
rr,← )∗ ◦ T cwr

rl,←

))

[cwr]∼lr
=

(

Z
r/wr
ll,→ ∪

(

T cwr
lr,← ◦ (Z

r/wr
rr,← )∗ ◦ T cwr

rl,→

))∗ (

T cwr
lr,→ ∪

(

T cwr
lr,← ◦ (Z

r/wr
rr,← )∗ ◦ Zr/wr

rr,→

))

[cwr]∼rl
=

(

Z
r/wr
rr,← ∪

(

T cwr
rl,→ ◦ (Z

c/cw
ll,→ )∗ ◦ T cwr

lr,←

))∗ (

T cwr
rl,← ∪

(

T cwr
rl,→ ◦ (Z

c/cw
ll,→ )∗ ◦ Zc/cw

ll,←

))

[cwr]∼rr
=

(

Z
c/cw
rr,← ∪

(

T cwr
rl,→ ◦ (Z

c/cw
ll,→ )∗ ◦ T cwr

lr,←

))∗ (

Z
r/wr
rr,→ ∪

(

T cwr
rl,→ ◦ (Z

c/cw
ll,→ )∗ ◦ T cwr

lr,→

))

Figure 3. Relations of the transition congruence oncwr, whereZc/cw
ll,d andZr/wr

ll,d are defined respectively byZc
ll,d ∪ Z

cw
ll,d andZr

ll,d ∪ Z
wr
ll,d .

c • r

c1 • r1
w1

c2 • r2
w2

cn • rn
wn

· · ·
u :

Figure 4. The well nested wordcc1w1r1c2w2r2 . . . cnwnrn can
be seen as a wordu over letters(ci, Si, ri)whereSi is the summary
of wi. The position labelled byc serves as initial position of the
word.

Note that the Hopcroft-Ullman routine is deterministic, and
consequently the construction preserves determinism.

Formal construction. Let A = ((Q, i, F,Γ, δ),O1) be a letter-
to-letterDVPT andB = ((P, j, G,Θ, α),O2) be a2VPT that
can be composed withA. We assume thatA works on the alphabet
equipped with left and right markers and preserves them. Note that
it can easily be extended if it is not the case.

We constructC = ((N, k,H,Ω, β),O3) a 2VPT that realizes
the composition.

• N = Nm ⊎Nb ⊎Nf ⊎Ns whereNm,Nb andNf correspond
to the classical sets of the Hopcroft-Ullman construction,and
Ns is used to compute the summary of a subhedge. We have the
main modeNm = P×Q, the back modeNb = P×Q⊎P×QQ

and the further modeNf = P × Q2, while Ns = QQ.
Note that there are also other states likeread or states from
P ×Q×{end} that were omitted. The total size of the omitted
states is linear inP andQ.

• k = (i, j) is the initial state.

• H = F ×G is the set of final state.

• Ω can similarly toN be written as the disjoint union of stack
alphabets for the different modes. We haveΩm = Q× Γ×Θ,
Ωb = P × (QQ ⊎Q)×Σr, Ωf = P × ((Q×Γ)⊎ (Q×Γ)2)
andΩs = QQ ×Σr.

We now give the transition functionβ. Lowercase letters denote
element of its uppercase counterpart. The direction of a transition
is given by the sense of an arrow, and the resulting directionis
omitted if it doesn’t change. Push transitions are denoted with a
+ symbol while pop transitions are denoted by a− symbol. For

example, we write(q,←, r, q′,←, γ) in δpush asq′
r,+γ
←−−− q and

(q,→, r, q′,←, γ) in δpop asq
r,−γ
−−−→ q′,←.

• The first three items describe the cases when we are able to di-
rectly advance in the two runs. These are the simpler cases. The
fourth corresponds to the end of the Hopcroft-Ullman construc-
tion, where all the needed information was computed. In these
cases, the production ofO3 is the one of the corresponding tran-

sition ofO2. Note that in all other cases, the production ofO3

will be empty and thus omitted.

(p, q)
c,+(q,γ,θ)
−−−−−−→ (p′, q′), d if O1(q

c,+γ
−−−→ q′) = c′ and

p
c′,+θ
−−−→ p′, d.

(p, q)
r,−(q,γ,θ)
−−−−−−→ (p′, q′), d if O1(q

r,−γ
−−−→ q′) = r′ and

p
r′,−θ
−−−→ p′, d.

(p′, q′), d
c,−(q′,γ,θ)
←−−−−−−− (p, q) if O1(q

′ c,+γ
−−−→ q) = c′ and

p′, d
c′,−θ
←−−− p.

(p′, q′), d
r,+(q,γ,θ)
←−−−−−− (p, q, q′, γ) where there existsq′′

such thatO1(q
′ r,−γ
−−−→ q′′) = r′ andp′, d

r′,+θ
←−−− p.

• WhenB moves to the left on a recall letter, we engage in the
Hopcroft-Ullman construction. In order to do that, we need to
compute the summary of the subhedge we are about to read.
Note that a similar transition happens when the automaton on
summaries rewinds one more step. Thus we have the following
transitions:

idQ
r,+(p,q,r)
←−−−−−− (p, q).

idQ
r,+(p,R,r)
←−−−−−−− (p,R).

• Computing a summary amounts to determining aVPA. Note
that we stop when we reach the height we are interested in,
which is where the stack first contains a state ofB, which is
handle by the next item. Given a summaryS and c, r a call
and return letter respectively, we defineUpdate(c, S, r) =

{(q, q′) | ∃(q1, q2) ∈ S andγ q
c,+γ
−−−→ q1 andq2

r,−γ
−−−→ q′}.

This will reveal to be useful in the remainder of the construc-
tion.

idQ
r,+(S,r)
←−−−−− S.

S′′
c,−(S′,r)
←−−−−−− S whereS′′ = S′ ◦ Update(c, S, r).

• After reading the first subhedge, we get to the point where
the top stack symbol is of the form(p, q, r). If there is only
one candidate, then there is no ambiguity. Otherwise, we start
rewinding the runs.

(p, q′, end),→
c,−(p,q,r)
←−−−−−− S if q′ is the only state such that

(q′, q) belongs toUpdate(c, S, r).

(p,R)
c,−(p,q,r)
←−−−−−− S whereR = {(q′, q′) | (q′, q) ∈

Update(c, S, r)}.

• After reading the following subhedges, similar subcases appear,
depending on whether the nondeterminism is cleared or not.
If there is only one candidate left, we store a state leading to
from the next subhedge, as well as a state leading to another
candidate. They will be used to know when we got to the correct
position. Otherwise we just update the set of partial runs.



(p, q, q′),→
c,−(p,R,r)
←−−−−−−− S if R(q) is defined,R◦Update(c, S, r) ⊆

Q×{R(q)} and ifR(q′) is defined and different fromR(q).

(p,R′)
c,−(p,R,r)
←−−−−−−− S whereR′ = R◦Update(c, S, r) and

R′ 6⊆ Q× {q} for anyq.

• It can happen that the nondeterminism has not been cleared
until we reach the beginning of the hedge. In the same way
that the Hopcroft-Ullman uses the initial state, we then usethe
information on the top of the stack to decide the candidate.

(p, q, θ, q′),→
c,−(q,γ,θ)
←−−−−−− (p,R) where if q′′ is such that

q
c,+γ
−−−→ q′′, bothR(q′) andR(q′′) are defined and different.

• Due to the definition, the model of2VPT does not allow for di-
rect u-turns. Consequently, the u-turns have been parametrized
by specific states in the previous cases. We know explicit how
we handle them:

(p, q, end)
c,+(p,q,γ)
−−−−−−→ q′ whereq

c,+γ
−−−→ q′. We also have

a subroutine that follows run ofA on this subhedge until it
ends.

(p, q, q′)
c,+(p,q,q′)
−−−−−−−→ read where the stateread is a sub-

routine that only reads the subhedge until it pops the stacked
information.

read
r,−(p,q,q′)
−−−−−−−→ (p, q, q′). At the end of theread subrou-

tine, we start following two runs in parallel, in the same way
as in the next subcase.

(p, q, θ, q′)
c,+(q,γ,θ)
−−−−−−→ (p, q′′, q′) whereq

c,+γ
−−−→ q′′.

• When we are in states ofNf , i.d. states of the form(p, q, q′), we
simply follow the two runs in parallel, stackingp and the current
states on the current height and the stack letters of both runs
at each step nonetheless. This subroutine ends upon poppinga
stack letter that containsp where the two runs collide, meaning
we reached the original position. We now explicit what happens
on this position:

q
r,−(p,q′,γ)
−−−−−−−→ (p, q′, q, γ),←.

(q, q′)
r,−(p,q1,γ,q2 ,γ

′)
−−−−−−−−−−−→ (p, q1, q, γ),← if there existsq′′

such thatq
r,−γ
−−−→ q′′ andq′

r,−γ′

−−−→ q′′.

�

A.3 Expressiveness of Two-Way Visibly Pushdown
Transducers

THEOREM 6. An order-preserving transduction is definable in
MSO[nw2w] if, and only if, it is definable by a functional6 VPT.

Proof. The proof relies on the similar result for finite words
from (Filiot 2015) and the equivalence betweenVPA andMSOnw

from (Alur and Madhusudan 2004). LetT be a functionalVPT.
From (Filiot and Servais 2012), we know that we can construct
an equivalent unambiguousVPT T ′ realizing the same function.
Using (Alur and Madhusudan 2004), we can construct anMSOnw

formulaϕ of the form∃X1 . . .∃X|Q| ψ(X1, . . . , X|Q|) that rec-
ognizesdom(T ′). Moreover, givenu in dom(T ′), there exists a
unique assignment of the variablesXi satisfyingψ, such that a
variablex ∈ Xi if, and only if, x quantify a positionj such
that the unique accepting run ofT ′ on u is in stateqi on po-
sition j. Usingϕ, we can then easily construct anMSO[nw2w]

6 Within the class ofVPT, the class of functionalVPT is decidable in
PTime (Filiot et al. 2010)

transductionT ′′ using|Q| copies. The domain formula isϕ, posi-
tion formulas areφq

pos(x) = ϕ ∧ x ∈ Xq . The successor tran-

sition is given byφq,q′

S (x, y) = S(x, y) ∧ φq
pos(x) ∧ φ

q′

pos(y)
and we label theq copy of a node by the possibly empty pro-
duction of the transducer in stateq reading the label of the node.
We have, forv a production ofT , φq

v(x) =
∨

a∈Aq,v
a(x) where

Aq,v = {a ∈ A | ∃q′ q
a|v
−−→ q′}. Note that labeling by possibly

empty words is not restrictive as MSO transductions are closed un-
der composition, and a simple transduction can extend wordsinto
linear graphs and compress theǫ-labeled paths.

Now given an order-preservingMSO[nw2w] T , we construct
an unambiguousVPT that recognizes the same function. AsT is
order-preserving, for everyu = u1 . . . un in dom(T ), we can de-
composeT (u) in v1 . . . vn wherevi corresponds to the production
from positioni. Let us callB the finite set of all possiblevi appear-
ing in a such decomposition. For anyv in B, we use the formulas
of T to construct a formulaφv(x) that holds on an input wordu
and a positioni if in the decomposition ofT (u), vi = v. For any
sequenceI = (c1, . . . , ck) of |v| different copies ofT , we de-
fine φv

I (x) =
∧

i<k φ
ci,ci+1

S (x, x) ∧
∧

i≤k φ
ci
pos(x) ∧ φ

ci
vi(x) ∧

∧

x/∈I ¬φ
c
pos(x). The formulaφv(x) is simply defined as the dis-

junction of the formulasφv
I(x) on all possible sequencesI .

Then using these formulas, we construct a formulaψ over the fi-
nite alphabetΣ×B that recognizes the languageL = {(u, T (u)) |
u ∈ dom(T )}. We defineψ = φ′dom ∧ ∀x (a, v)(x) → φv(x)
whereφ′dom is obtained fromφdom by replacing every predicate
a(x) by

∨

v∈B(a, v)(x). Now thanks to (Alur and Madhusudan
2004), we can construct aDVPA that recognizesL = L(ψ). Fi-
nally, we transform it into aVPT by replacing transitions reading
(a, v) into transitions readinga and producingv. SinceT realizes
a function, we obtain a functionalVPT, concluding the proof. �

PROPOSITION3. Deciding the single use property on a2VPT is
EXPTIME -C.

Proof. We prove that this problem is equivalent to deciding
the emptiness of aD2VPA, which concludes the proof thanks to
Corollary 1.

Let us first remark that ifA is single use, it is single use with
respect to the set of all states that can produce a non empty word.
Let A be a2VPT on an input alphabetΣ. We define a2VPA B
on the marked alphabetΣ × {0, 1} as follows. The transducerB
first reads its input to ensure that there is exactly one position with
a 1. It then nondeterministically chooses a producing stateq and
simulatesA on its input. It finally accepts if it visits the marked
position twice in stateq. ThenA is single use if, and only if, the
language recognised byB is empty. Since the size ofB is linear in
the size ofA, deciding the single use property is Exptime.

Conversely, letB be a 2VPA. We construct a2VPT A as
follows. All existing transitions ofB are set to produce the empty
word, and every accepting transition is replaced by a back and
forth move on the last position, producing a single letter. Then
the producing transitions can only be fired inA if there is a run
of B that fires an accepting transition. If it is the case, then the
corresponding run onA will visit the stateq twice in the last
position while producing non empty words. Thus the language
recognised byB is empty if, and only if,A is single-use. As the
size ofA is linear in the size ofB, we get the Exptime-hardness of
the single use problem. �

LEMMA 3. There is an MSO-definable nested word to word trans-
ductionf which is not definable by strongly single-useD2VPTLA.

Proof. We explicit a transformation that is definable by an
MSO[nw2w] transduction but not by a strongly single-useD2VPTLA.



w0 w′0

w1 w′1

wn−1 w′n−1

c r

c r

c r

c r

· · · · · ·

wn

Figure 5. The transformationf alternsn times between positions
left and right ofwn. Thus it has to readwn at least2n times.

Consider an alphabetΣ with some special lettersc andr from
Σc andΣr respectively. We define the transformationf which as-
sociates to a wordw0cw1cw2 . . . wn−1cwnrw

′
n−1 . . . w

′
2rw

′
1rw0

where allwi, w′i are non empty nested words and do not any con-
tain c, for 0 ≤ i ≤ n, the wordw0w

′
0w1w

′
1 . . . wn−1w

′
n−1wn. Its

domain is then the set of nested words where anyc is matched by
anr, and all lettersc appear successively nested on a given branch.
The transformation is illustrated in Figure 5.

Before giving theMSO[nw2w] that definesf , we explain how
it is not definable by a strongly single useD2VPTLA. As thewi and
w′i are unbounded, they cannot be guessed by look-around. Thus a
machine realizing it has to visit these subwords in the orderthey
are output. But each walk fromwi tow′i has to crosswn. Thuswn

is read at least2n times. Asn is not bounded,f cannot be realized
by a strongly single useD2VPTLA.

Now we define aMSO[nw2w] T that realizesf . In order to do
that, we define a binary predicateH(x, y) which holds isx andy
are call or return positions of a same hedge. LetHtc(X) be defined
by the formula:

∀x ∈ X Σc(x)→
(

∀y M(x, y) ∨ (S(y, x) ∧ Σr(y))→ y ∈ X
)

∧ Σr(x)→
(

∀y M(y, x) ∨ (S(x, y) ∧ Σc(y))→ y ∈ X
)

with Σl(x) =
∨

σ∈Σl
σ(x) for l = c, r. Then a setX satisfies

Htc(X) if, and only if, it is closed by the relationbelong to the
same hedge. We then simply setH(x, y) = ∀X x ∈ X ∧
Htc(X) → y ∈ X. We also define the parent relationP (x, y) =
∃z H(x, z)∧ (∀z′ H(z, z′)→ z ≤ z′)∧S(y, z) which holds ify
is the call corresponding to the parent ofx.

We can now define the domain formulaφdom = ∀x c(x) →
(∀y (M(x, y) → r(y)) ∧ (P (x, y) → c(y)) ∧ (H(x, y) ∧
c(y) → x = y) stating exactly what was mentioned earlier. The
transducerT uses1 copy, the position formulaφpos(x) = ¬(c(x)∨
(∃y M(y, x) ∧ c(y))) simply erases thec labeled positions and
their matching, the labeling formulas simply maintain the labels,
and finally the successor formulaφS(x, y) is defined by:

∃z S(x, z) ∧ ¬(c(z) ∨ (∃w M(w, z) ∧ c(w))) ∧ y = z)

∨
(

c(z) ∧ ∃z′ M(z, z′) ∧ S(z′, y)
)

∨
(

∃z′, z′′ M(z′, z) ∧ c(z′) ∧Nextc(z
′
, z
′′) ∧ S(z′′, y)

)

whereNextc(x, y) = x < y ∧ c(y)∧∀z x < z < y → ¬c(z). �

THEOREM 7. Letf be a transduction from nested words to words.
Then f is MSO-definable iff it is definable by a (look-around)
D2VPTsu, i.e.,

MSO[nw2w] = D2VPTLA
su = D2VPTsu.

Proof.We prove the equivalenceMSO[nw2w] = D2VPTLA
su .

Proof overviewThis result is based on several results from
(Courcelle and Engelfriet 2012), on the class of deterministic tree-
to-word walking transducers (DTWT), possibly augmented with

visibly pushdown stack (then denoted DPTWT) and a regular look-
around ability (denoted by an exponentla), and possibly restricted
to linear-size increase the class of linear-size increase transductions
(denoted by subscriptlsi), or to strongly single-use (denoted by
subscriptssu). We will define the most general model formally in
the sequel.

Let us also denote byMSO[b2w] the class of MSO-definable
transductions from (ranked) trees to words. Then, it is shown in
(Courcelle and Engelfriet 2012) that

MSO[b2w] = DTWTla = DPTWTla
lsi

The inclusionMSO[nw2w] ⊆ D2VPTLA
su is proved using the

equalityMSO[b2w] = DTWTla. Due to determinism, DTWTla

are always strongly single-use (otherwise they could be stuck in a
loop), i.e., DTWTla = DTWTla

ssu (see (Courcelle and Engelfriet
2012), in which it is just called single-use). Using a first-child next-
sibling encoding of nested wordsw into binary treesfcns(w), we
haveMSO[nw2w] = MSO[b2w]◦fcns, and thereforeMSO[nw2w] =
DTWTla

ssu◦fcns. Then, we show that DTWTlassu◦fcns ⊆ D2VPTLA
su

by simulating DTWTlassu that runs onfcns encoding of nested
words byD2VPTLA

su . In particular, when simulating tree walking
moves, one do not preserve the strong single-use restriction, but the
resultingD2VPTLA

su is single-use.
To show inclusionD2VPTLA

su ⊆ MSO[nw2w], we use the
equalityMSO[b2w] = DPTWTlalsi. Using fcns encoding, we get
thatMSO[nw2w] = DPTWTlalsi◦fcns = (DPTWTla ◦ fcns)∩ LSI,
where LSI denotes the class of linear-size increase transductions.
Then, we establish the inclusionD2VPTLA

su ⊆ (DPTWTla ◦
fcns) ∩ LSI . The single-use restriction ofD2VPTLA

su ensures that
they define only transductions in LSI. Then, aD2VPTLA

su can be
simulated by a DPTWTla running on fcns encodings of nested
words. Due to the encoding, pushdown moves of theD2VPT are
simulated by pushdown moves to the 1st child by theDPTWT
and the look-around are translated in a straightforward fashion.
The resulting DPTWT does not use the stack while moving to 2nd
children.

As a matter of fact, putting things altogether, our result also
shows that DPTWTla could be strengthen when they run on binary
trees, to the following pushdown behaviour, while retaining MSO-
expressiveness: they only need to push a symbol when moving to
left children, and not when moving to right children.

To summarize, we show the following chain of inclusions:

D2VPT
LA
su ⊆ (1) (DPTWTla ◦ fcns) ∩ LSI

⊆ (5) ⊇ (2)
DTWTla

su ◦ fcns ⊇ (4) MSO[b2w] ◦ fcns = MSO[nw2w] (3)

where (1) and (5) are shown in this paper, (3) is immediate, (2) and
(4) come from (Courcelle and Engelfriet 2012). We now proceed to
the detailed proof.

Tree Walking TransducersLetΛ be a ranked alphabet of binary
and constant symbols (i.e.Λ is partitioned intoΛ2 andΛ0). A tree
t of Λ is a term inductively defined byt ::= f(t, t) | a, where
f ∈ Λ2 anda ∈ Λ0. We denote by TreesΛ the set of trees over
Λ. The set of nodes, denoted byNt of a treet ∈ TreesΛ, is a
prefix-closed subset of{1, 2}∗ inductively defined asNa = {ǫ}
andNf(t1,t2) = {ǫ} ∪ {i.π | π ∈ Nti , i ∈ {1, 2}}. For a node
n ∈ Nt, we denote byt(n) the label of noden in t. LetΣ be a finite
(unranked) alphabet. A tree to word transduction is a function from
TreesΛ intoΣ∗.

Let us explain informally the different classes of tree walking
transducers we consider in this proof. A deterministic treeto word
walking transducer walks through the edges of a binary tree (start-
ing from the root node), and writes a word from left to right on
some output tape. In a stateq of a treet and at a noden, depending
on the label ofn, and the stateq, the transducer can move either



to the father ofn (if it exists, otherwise the run rejects), the first or
second child ofn (if it exists, otherwise the run rejects), change its
internal state to a new state, and produces some partial wordon the
output. It can also decide to stop the walk by going to a stopping
stateqs.

Such transducers can be augmented with look-around. We de-
fine look-around by an unambiguous bottom-up tree automaton.
Prior to starting the computation of the tree walking transducer,
the tree, if accepted by the look-around automaton, is labeled by
the states of the accepting run of the automaton. Then, transitions
are taken depending also on the look-around states.

Finally, walking transducers can be augmented by a (visibly)
pushdown store. Initially at the root the pushdown stack contains
an initial symbolγ0, and whenever the transducer goes one step
downward, it has to push one symbol on the stack. If it moves one
step upward, it has to pop one symbol. At any moment, it can also
read the top symbol of the stack.

Formally, adeterministic pushdown tree to word walking trans-
ducer with look-aroundfrom TreesΛ to Σ∗ is a tuple T =
(L,Q, q0, qs,Γ, γ0, R) whereL is an unambiguous bottom-up tree
automaton7 over a finite set of statesP (the look-around automa-
ton),Q is a finite set of states,q0 is the initial state,qs the stopping
state,Γ is a finite stack alphabet with initial symbolγ0, R is a
transition function such that

R : Q×P ×Λ×Γ→ Σ∗×({qs}∪Γ×Q×{1, 2}∪Q×{−1})

A configuration ofT on a treet is a triple (q, n, β, u) ∈ Q ×
Nt × Γ+ × Σ∗. For all treest ∈ TreesΛ, if t is accepted by the
look-around automaton, we define→t a binary relation between
consecutive configurations as follows: for allq, q′ ∈ Q, all n, n′ ∈
Nt, all β, β′ ∈ Γ∗, all γ ∈ Γ, all u, v ∈ Σ∗, (q, n, βγ, u) →t

(q′, n′, β′, uv) if the accepting run ofL labelsn by a statep ∈ P
such that(q, p, t(n), γ) ∈ Dom(R) and either

• (stopping move) R(q, p, t(n), γ) = (v, qs) andq′ = qs, n′ =
n, β′ = βγ, or

• (downward move) R(q, p, t(n), γ) = (v, γ′, q′, i) for i ∈
{1, 2} andβ′ = βγγ′, t(n) ∈ Λ2, andn′ is the i-th child
of n, or

• (upward move) R(q, p, t(n), γ) = (v, q′,−1) andn 6= ǫ (i.e.
n is not the root node),β′ = β, andn′ is the father ofn.

A run of T on a treet is a finite sequence of configurations
c0c1 . . . cm such thatci →t ci+1 for all i = 0, . . . ,m − 1. It is
accepting ifc0 = (q0, ǫ, γ0, ǫ) andcm = (qs, n, β, u) for some
n ∈ Nt, β ∈ Γ+, u ∈ Σ∗. SinceR is a function andL is
unambiguous, there exists at most one accepting run per input tree
t, and we callu the output oft. The transduction realized byT
is the set of pairs(t, u) such thatt is accepted by the look-around
automaton, and there exists an accepting run ofT ontwhose output
is u. The class of deterministic pushdown tree to word walking
transducers8 is denoted by DPTWTla.

7 We refer the reader to (Comon-Lundh et al. 2007) for a definition of
bottom-up tree automata
8 We have slightly changed the definition of (Courcelle and Engelfriet 2012)
to simplify our presentation, but in an equivalent way, and have special-
ized it to the tree-to-word setting. In (Courcelle and Engelfriet 2012), look-
around are MSO-formulas on trees, with one free first-order variable, at-
tached to the transitions of the transducer: a transition can be fired only if
its look-around formula holds at the current node. It is known that such an
MSO formulaφ(x) is equivalent to an unambiguous bottom-up tree au-
tomatonAφ (Niehren et al. 2005; Neven and Schwentick 2002) in the fol-
lowing sense: the automaton as a special set of selecting statesS, such that
on a treet accepted by the automaton, a noden is such thatt |= φ(n)
iff this node is labeled by a state ofS in the accepting run of the automa-

The class DTWTla denotes the class of deterministic tree to
word walking transducers with look-around (without pushdown
store), defined similarly as DPTWTla but with a pushdown alpha-
betΓ that consists of one symbol{γ0} only. In that case, we can
omit the pushdown symbols in the transitions, except the initial
pushdown symbolγ0 that allows to know whether the current node
is the root of the tree or not. Instead of keeping the symbolγ0 in
the transitions, we use a boolean value which is true if the current
node is the root, and false otherwise. Therefore, in DTWTla, the
transitions function has the following type:

R : Q× P × Λ→ Σ∗ × ({qs} ∪ Q× {−1, 1, 2})

We say that a DTWTla is strongly single-useif one any accepting
run c0 . . . cn on a tree, a noden ∈ Nt is not visited twice in the
same state. As a matter of fact, it turns out that DTWTla are always
strongly single-use (Courcelle and Engelfriet 2012).

MSO[b2w] is defined similarly asMSO[nw2w], except that
MSO formulas over the signature{S1(x, y), S2(x, y), (a(x))a∈Λ}
are used to define the transduction, whereSi(x, y) holds ify is the
i-th child ofx. It is easy to show thatMSO[nw2w] andMSO[b2w]
are equivalent, modulo suitable encodings. In particular,we will
need the following equality:

MSO[nw2w] = MSO[b2w] ◦ fcns (1)

wherefcns encodes nested words into binary trees. Let us describe
this encoding formally: LetΣ = Σc ⊎Σr be a structured alphabet.
We define the binary alphabetΛ2 = Σc × Σr, and the unary
alphabetΛ0 = {⊥}. We definefcns the encoding of nested words
to binary trees inductively as follows, for allw,w′ ∈ N ([)Σ],
c ∈ Σc, r ∈ Σr:

fcns(cwrw′) = (c, r)(fcns(w), fcns(w′)) fcns(ǫ) = ⊥

We are now equipped to show the following two inclusions, which
will prove the desired result:

(2) DTWTla ◦ fcns ⊆ D2VPT
LA

su

(3) D2VPT
LA

su ⊆ (DPTWTla ◦ fcns) ∩ LSI

Proof of inclusion (2)Let T = (L,Q, q0, qs, R) be DTWTla.
We construct aD2VPTLA

su T
′ such thatJT K ◦ fcns = JT ′K.

Transitions ofT are simulated only on call symbols, i.e. the
moves ofT are simulated by moves inT ′ between call symbols.
For instance, letc1c2r2c3c4r4r3c5r5r1 be a nested word, whose
fcns encoding is the tree

(c1, r1)((c2, r2)(⊥, (c3, r3)((c4, r4), (c5, r5)(⊥,⊥))))

If T moves from(c3, r3) to its father(c2, r2), thenT ′ will move
from c3 to c2. If T moves from(c3, r3) to its first child(c4, r4),
thenT ′ will move from c3 to c4. If T moves from(c3, r3) to its
second-child(c5, r5), thenT ′ will move from c3 to c5.

ton ont. If φ1(x), . . . , φn(x) are the look-around formulas appearing on
the transitions of the tree walking transducer, then by taking the product of
the unambiguous automataAφi

, one obtains an unambiguous automaton
Ala such that, on a treet accepted byAla, the state label of a noden of
t in the accepting run ofAla contains enough information to decide which
look-aroundsφi(x) hold at that node or not.
Another modification of the definition of (Courcelle and Engelfriet 2012) is
that we do not have0-moves, i.e. transitions that stay at the same node. This
is circumvented by adding the possibility of producing several symbols by
a single transition, in contrast to (Courcelle and Engelfriet 2012).
Finally, our transducers produce words overΣ∗, while in
(Courcelle and Engelfriet 2012), they produce unary trees,i.e. a sequence
of unary symbols followed by a constant symbol. As a consequence, when
a constant is produced, the transducers of (Courcelle and Engelfriet 2012)
stop. In our definition, we rather have added a stopping state.



Therefore, one-step moves ofT in a binary encodingtw of a
nested wordw are simulated by sequences of moves ofT ′ inw. It is
easy to see however that those sequences of moves can be achieved
by aD2VPT. The trivial case is a first-child move: it suffices to
move one-step to the right inw. For the second-child move,T ′

has to move to the next call symbol at the right of current one,at
the same nesting depth: this is done by pushing one special symbol
γ2 when reading the first call, and moving to the right, untilγ2 is
popped. For a father move, it suffices to move left: if the previous
symbol is a call, thenT ′ has arrived to the call corresponding to
the father node. Otherwise, the left symbol is a return symbol:
again, a special symbolγf is pushed, to know, whenT ′ walks left,
whenever it is at the same depth as the initial call symbol. Ifafter
poppingγf , a call symbol is read again, then it corresponds to the
father. Note that these walks do not produce anything on the output.

The look-aroundL of T is transformed into a look-around of
T ′ such that, ifL labels a tree node labelled(c, r) by a statep, then
T ′ will label the call symbolc by the statep, as well as the call
symbol r. It is possible, since bottom-up tree automata and visi-
bly pushdown automata correspond modulo first-child next-sibling
encodings, while preserving unambiguity (Alur and Madhusudan
2009). Therefore, ifP is the set of states ofL, then the set of states
of the look-around automaton ofT ′ is P ×Σr .

Then, a transition(q, p, (c, r), u, (q′, d)) whered ∈ {−1, 1, 2}
is simulated byT ′ by a sequence of transitions (depending on
whetherd = −1, d = 1 or d = 2) that starts in stateq (with
look-around state(p, r)) and ends in stateq′, and performs moves
as explained before.

There is a last additional technical difficulty:fcns encodings
contain the symbol⊥, unlike the encoded nested words. Therefore,
T ′ may move to⊥, while T cannot. Moves to nodes labeled⊥
can be simulated easily byT ′ by addingǫ-transitions, which can
in turn be removed while preserving determinism. It is not difficult
but unnecessarily technical.

Finally, sinceT is necessarily single-use (due to non-determinism),
T ′ is also single-use (the extra states added to simulate one-step
moves ofT by several moves ofT ′ may be used several times at
the same tree node, but the transitions fired from those states are
ǫ-producing).

Proof of inclusion (3)Due to the single-use restriction, any
D2VPTLA

su transduction is LSI. It remains to show that aD2VPTLA
su

can be simulated by a DPTWTla. By using again the correspon-
dence between (unambiguous) visibly pushdown automata and(un-
ambiguous) bottom-up tree automata, one can simulate theirlook-
arounds. Since DPTWTla have the ability to push stack symbols in
both directions (first-child or second-child), it is not difficult to con-
struct a DPTWTla that simulates aD2VPTLA

su . As a matter of fact,
pushing symbols when moving to the second-child is not necessary
to simulateD2VPTLA

su : indeed, a second-child in afcns encoding
correspond to a next-sibling in the nested word, andD2VPTLA

su do
not use their stack for processing symbols that are at the same depth
(they do not push “horizontally”). �

A.4 Inclusion into streaming transducers and
hedge-to-string transducers

THEOREM 9. D2VPT ( STST andD2VPT ( dH2SLA

Proof. The proofs of these two inclusions share a same inter-
mediate formal description of transformation. It turns outthat this
representation will be an extension of the finite transitionalgebra
TA for someD2VPA A.

We recall that elements from the algebraTA are binary relations
overQ × D whereQ is the set of states ofA and can thus be
depicted as Boolean square matricesMTA

overQ×D. Hence, the
morphismµTA

associates with each wordw fromN (Σ) a matrix

from MTA
such thatµTA

(w)((p1, d1), (p2, d2)) is true if there
exists a run onw from (p1, d1) to (p2, d2) in A.

One may extend this notion to transducers as follows. For a
D2VPT A, we consider square matricesNA overQ × D whose
values range over subsets of∆∗. One can define a mappingµ
from N (Σ) to NA such that for all wordsw from N (Σ), µ(w)
is a matrixNA satisfying thatNA((p1, d1), (p2, d2)) is equal
to L if for each v in L, there exists a run onw from (p1, d1)
to (p2, d2) in A producing v. Note in fact thatA being de-
terministic, L is either a singleton or the empty set. One can
actually prove that one can define an (infinite) algebraNA =
(NA, .

NA , (fc,r)(c,r)∈Σc×Σr
, ǫNA ) such that.NA is associative and

ǫNA is its neutral element. Moreover, the considered mappingµ
turns out toµNA be the canonical morphism fromW to NA. It is
worth noticing that for all(p, d), (p′, d′), µTA

(w)((p, d), (p′, d′))
is false iffµNA

(w)((p, d), (p′, d′)) 6= ∅.
The operationsǫNA , .NA andfNA

c,r can be represented as matri-
ces as well. To do so, let us first consider the two sets of symbols
Ξα = {x(p,d),(p′,d′)

α | (p, d), (p′, d′) ∈ Q × D} for α ∈ {1, 2}.
Then, letN̂A be the set of matrices defined overQ × D such that
for N̂A in N̂A, for all (p1, d1), (p2, d2), N̂A((p1, d1), (p2, d2))
is either the empty set∅ or a singleton set included into the set
of words(∆ ∪ Ξ1 ∪ Ξ2)∗. Moreover, forǫNA , the matrix is pre-
cisely the one with{ǫ} on its main diagonal and∅ everywhere
else. ForfNA

c,r , the elements of the matrix are actually included into
(∆ ∪ Ξ1)∗. The operation.NA deals with two matriceŝN1

A and
N̂2

A and produces the matrix̂N ′′A satisfying that for all(p1, d1),
(p2, d2), N̂ ′′A((p1, d1), (p2, d2)) is obtained fromN̂

′.′

A the ma-
trix of .NA by replacing everywhere in̂N

′.′

A ((p1, d1), (p2, d2)) the

symbolx(p,d),(p′,d′)
α by N̂α

A((p, d), (p′, d′)) for α ∈ {1, 2}. The
application forfNA

c,r represented by some matrix̂N
fc,r
A is similar

with a single matrix as operand.
The matricesN̂

′.′

A andN̂
fc,r
A can be defined by means of ex-

pressions similar to the ones defining recursively the equivalence
classes of traversals. Hence, these matrices are defined by means of
unions, concatenations and Kleene star entrywise; the factthat en-
tries of the matrices contain at most singletons and that Kleene star
can be expressed as finite concatenations relies on the determinism
of A.

From the infinite algebraNA and more specifically the matrices
representation of the operatorŝN

′.′

A andN̂
fc,r
A from this algebra,

we are going now to build a streaming tree-to-string transducer on
the one side and adH2S on this other side.

For streaming tree-to-string transducers, the idea is to define
from aD2VPT A such a machineSA to simulate the computation
of µNA(w) for any wordw or more precisely to compute the value
associated to((qI ,→), (qf ,→)) in this matrix,qI being the initial
state of theD2VPT A andqf the (final) state reached byA after
readingw from qI .

We recall that we can define fromA the finite algebraTA

whose domain is TravA and we considerΞα = {x(p,d),(p′,d′)
α |

(p, d), (p′, d′) ∈ Q× D} for α ∈ {1, 2}.
For aD2VPAA, theSTST SA is defined by(TravA, ǫTA ,Σc×

TravA,Ξ1, δSA , µ
SA
F ) where

• δ
push
SA

(mTA , c) = (ǫTA , (c,mTA), νId)

• δ
pop
SA

= (m′TA , r, (c,mTA)) = (mTA .TAf
TA
c,r (m

′TA), νc,r)

where νId is the identity onΞ1 and νc,r associate with each
x(p,d),(p′,d′) the expression fromN((p, d), (p′, d′)) where the
matrix N is defined asN1

Id.
NAf

NA
c,r (N

2
Id), the matricesNα

Id



satisfying for all (p1, d1), (p2, d2), Nα
Id((p1, d1), (p2, d2)) =

x
(p1,d1),(p2,d2)
α (for all α ∈ {1, 2}).

Let us now consider the case of deterministic hedge-to-string
transducer. We first define the bottom-up deterministic look-ahead
automatonBA as (TravA, {ǫTA}, δBA) where δBA is the set of
rules of the form{(mTA .TAf

TA
c,r (m

′TA), c, r,mTA , m′TA) with
mTA ,m′TA ∈ TravA.

Now, we define thedH2SHA as follows: the set of statesQHA

is {qI} ∪ TravA × (Q × D)2, qI is the initial state, and the set of
final states isQHA . Now, for the transition function, we define

δ(qI , c, r, n
TA
1 , n

TA
2 ) =

ω[x(q1,d1),(q2,d2)
α ← (nTA

α , ((q1, d1), (q2, d2)))(xα)]

δ((mTA , ((p, d), (p′, d′))), c, r,mTA) =

ω[x(q1,d1),(q2,d2)
α ← (mTA

α , ((q1, d1), (q2, d2)))(xα)]

where

• for anynTA
1 ,nTA

2 such that(fTA
c,r (n

TA
1 ).TAn

TA
2 )((qI ,→), (qf ,←

)) is true for someqf ∈ F .

• for anymTA
1 , mTA

2 such thatfTA
c,r (m

TA
1 ).TAm

TA
2 = mTA and

((p, d), (p′, d′)) ∈ mTA and

• ω is equal to the wordN((p, d), (p′, d′)), N being the matrix
f
NA
c,r (N

1
Id).

NAN2
Id, where the matrixNα

Id satisfies for allα ∈
{1, 2}, for all (p1, d1), (p2, d2), Nα

Id((p1, d1), (p2, d2)) =

x
(p1,d1),(p2,d2)
α .

Let us prove now that the inclusions are strict. The transforma-
tion serving as a counter-example is the same for the two classes.
We consider a transformationT over the input alphabetΣc = {c}
andΣr = {r} and the output alphabet{a}. This transformation
takes as an input words such as(cr)n for any naturaln and outputs
a2

n−1. T is given by thedH2S with a single stateq and with a
universal look-ahead automaton withq′ as unique state by

δ(q, c, r, q′) = aq(x1)q(x1)

The transformationT can also be defined by aSTST with a single
stateq, a unique register variableX and a unique stack symbolγ.
The transitions are given by

• δpush(q, c) = (q, γ, {X 7→ aXX})

• δpop(q, r, γ) = (q, {X 7→ X})

The transformationT cannot be realized by someD2VPT;
indeed, for such a machine with stack alphabetΓ on the shallow
inputs of the domain, the possible stacks occurring in runs are either
⊥ or the formγ for γ ∈ Γ. Hence, the possible behaviours of
suchD2VPT are similar to the ones of a deterministic finite state
transducer. It is known that deterministic finite state transducers
realize only functions that are linear-size increase; thisis not the
case of the transformationT . �

A.5 Unranked Tree Walking Transducers

Unranked Trees LetΛ be a finite set of symbols.Unranked trees
t over Λ are defined inductively ast ::= a | a(t1, . . . , tn), for
all a ∈ Λ, all n ≥ 1. Unranked trees overΛ can be identified
(modulo renaming of nodes) with structures over the signatureUΛ

that consists of thefirst-child predicatefc(x, y) that relates a node
x to its first-childy, thenext-siblingpredicatens(x, y) that relates
a nodex to its next-siblingy in a sequence of unranked trees, and
a(x), for all a ∈ Λ, that holds true in nodex if it is labeleda. In
addition, we also add aparentpredicateparent(x, y) that relates
a node to its parent.

For instance, the unranked treea(b, c(a), c) is identified with
the structure whose set of nodes is{ǫ, 1, 2, 3, 21}, where the first-
child predicate is{(ǫ, 1), (2, 21)}, the next-sibling predicate is
{(1, 2), (2, 3)}, thea predicate is{ǫ, 21}, the b predicate is{1}
and thec predicate is{2, 3}. The parent predicate is given by
{(1, ǫ), (2, ǫ), (3, ǫ), (21, 2)}.

Unranked Tree Walking Transducers They are defined similarly
as ranked tree walking transducers, except that they move along
the next-sibling and first-child predicates. They are equipped with
a (visibly) pushdown store such that whenever they go down the
first-child, they have to push some symbol, whenever they go up
to the parent of a node, they have pop one symbol from the stack.
However, when they move horizontally along next-sibling predi-
cates, they do not touch the stack. Before applying a transition,
they can test whether the current node is the root, is the first-child
of some node, the last-child, or a leaf. Their move have to be con-
sistent with the result of such a test. They are also equippedwith
staymoves that stay at the same tree node.

Formally, a deterministic pushdown unranked tree to word
walking transducer(DPTuWT) from unranked trees overΛ to
Σ∗ is a tupleT = (Q, q0, qs,Γ, γ0, R) whereQ is a finite set of
states,q0 is the initial state,qs the stopping state,Γ is a finite stack
alphabet with initial symbolγ0,R is a transition function such that

R : Q×Λ×Γ×{0, 1}4 → Σ∗×({qs}∪Γ×Q×{↓}∪Q×{→,←, ↑,	})

A configuration ofT on a treet with set of nodesNt is a triple
(q, n, β, u) ∈ Q×Nt×Γ+×Σ∗. We define→t a binary relation
between consecutive configurations as follows: Letn ∈ Nt labeled
a ∈ Λ. Let b = (bfc, blc, br, bl) ∈ {0, 1}

4 such thatbfc = 1 iff n
is a first-child,blc = 1 iff n is a last-child,br = 1 iff n is the root,
bl = 1 iff n is a leaf. Then, for allq, q′ ∈ Q, alln′ ∈ Nt, allβ, β′ ∈
Γ∗, all γ ∈ Γ, all u, v ∈ Σ∗, (q, n, βγ, u)→t (q

′, n′, β′, uv) if

• (stopping move) R(q, a, γ, b) = (v, qs) andq′ = qs, n′ = n,
β′ = βγ, or

• (downward move) R(q, a, γ, b) = (v, γ′, q′, ↓), β′ = βγγ′,
andfc(n, n′), or,

• (upward move) R(q, a, γ, b) = (v, q′, ↑) and β′ = β, and
parent(n,n′), or,

• (left sibling move) R(q, a, γ, b) = (v, q′,←) andβ′ = β, and
ns(n′, n), or,

• (right sibling move)R(q, a, γ, b) = (v, q′,→) andβ′ = β, and
ns(n, n′).

• (stay move) R(q, a, γ, b) = (v, q′,	) andβ′ = β, andn = n′.

A run ofT on an unranked treet is a finite sequence of configu-
rationsc0c1 . . . cm such thatci →t ci+1 for all i = 0, . . . ,m− 1.
It is accepting ifc0 = (q0, r, γ0, ǫ), wherer is the root node oft,
andcm = (qs, n, β, u) for some noden of t, β ∈ Γ+, andu ∈ Σ∗.
SinceR is function, there exists at most one accepting run per input
treet, and we callu the output oft. The transduction realized byT
is the set of pairs(t, u) such that there exists an accepting run ofT
on t whose output isu.

Equivalence between D2VPT and DPTuWT Modulo nested
word linearisation of unranked trees, the two models are equiva-
lent. Let us briefly sketch why.

AssumeT is a DPTuWT and let us construct an equivalent
D2VPT T ′. First notice that whenT is positioned at some node
n, its stack height is exactly the depth of noden in the tree, as
well as the depth of the call and return symbols corresponding
to n in the linearisation. Also note thatT can always read the
top symbol of the stack, whileT ′ only reads it when it pops a
symbol. This issue can be overcome by always keeping in the



state ofT ′ the top stack symbol. It remains to see howT ′ can
simulate the moves ofT and its tests (root, leaf, etc.). We assume
that if T is positioned at some tree noden, thenT ′ is positioned
at the call positioncn corresponding ton in the linearisation of
the input tree. Then, ifT moves fromn to its next-siblingn′, T ′

has to traverse the whole linearisation of the subtree rooted atn. It
can be easily done by pushing a special symbol when readingcn
forward, which is popped once the matching return position of cn
is met. Simulating previous-sibling moves is done symmetrically.
Suppose now that a tree noden′ is the parent of a tree noden. In
the linearisation, it means that there is a (sub) nested wordof the
form cn′w1cnw2rnw3rn′ , wherew1, w2, w3 are nested words. To
simulate a move ofT ′ fromn ton′, T ′ has to move backward from
cn to cn′ , traversingw1. Again, by using a special stack symbol
when traversingw1, T ′ can detect when it readscn′ : It is the first
time it does not popped the special stack symbol. To simulatea stay
move,T ′ just move one-step forward and one-step backward.

Finally, we have to show howT ′ can simulate the tests (root,
leaf, etc.). By using a special bottom stack symbol,T ′ can know
when it is at the root. The other tests can easily be performedby
T ′: For instance, to detect thatT ′ is positioned at a call position
that corresponds to a first-child, it suffices to go one-step backward
and check whether the previous symbol is call.

Conversely, let T be aD2VPT whose input are assumed to
be linearisations of unranked trees. To construct an equivalent
DPTuWT T ′, one again has to show how the moves ofT are
simulated by moves ofT ′.

If T moves forward by reading a call symbolcn, then its next
position can be either that of a call symbolcn′ (which means that
n′ is the first-child ofn), or that of return symbolrn (which means
thatn is a leaf). Using a test,T can decide whether it is at a leaf or
not. In the first case, it uses a stay transition and in the second case,
it uses a first-child transition.

Other cases are treated similarly: For instance, ifT moves
forward by reading a return symbolrn, then if the next symbol
is a call symbolcn′ , it means thatn′ is the next-sibling ofn, and if
the next symbol is a return symbolrn′ , it means thatn′ is a parent
of n. Using tests,T can decide what moves to perform, either next-
sibling or parent.

References
Rajeev Alur and P. Madhusudan. Visibly pushdown languages.In Pro-

ceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 202–211 (electronic). ACM, New York, 2004.

Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J.
ACM, 56(3), 2009.

Hubert Comon-Lundh, Max Dauchet, Rémi Gilleron, Cristof Löding, Flo-
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