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Abstract

Automata-logic connections are pillars of the theory oiutaglan-
guages. Such connections are harder to obtain for trans]une
important results have been obtained recently for worduod
transformations, showing that the three following modetsemuiv-
alent: deterministic two-way transducers, monadic seander
(MSO) transducers, and deterministic one-way automatgopegd
with a finite number of registers. Nested words are words with
nesting structure, allowing to model unranked trees as thegith-
first-search linearisations. In this paper, we considansfiama-
tions from nested words to words, allowing in particular toguce
unranked trees if output words have a nesting structure nidael

of visibly pushdown transducers allows to describe suchsfa-
mations, and we propose a simple deterministic extensiahisf
model with two-way moves that has the following propertieg:is
asimple computational modehat naturally has a good evaluation
complexity;ii) it is expressiveit subsumes nested word-to-word
MSO transducers, and the exact expressiveness of MSO transd
ers is recovered using a simple syntactic restrictiignit hasgood
algorithmic/closure propertieshe model is closed under composi-
tion with a unambiguous one-way letter-to-letter transsiwehich
gives closure under regular look-around, and has a de€&idajliv-
alence problem.

Categories and Subject Descriptors  F.4.3 Mathematical Logic
and Formal LanguagdsFormal Languages

Keywords Transductions, Pushdown automata, Logic.

1. Introduction

Pillars of word language theory  The theory of languages is one
of the deepest and richest theory in computer science, wittess-
ful applications such as, computer-aided verification gmdhesis.
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A major reason for this success is the strong connectiongeeet
models of languages, with quite different flavours, thatlzased
on two important pillarscomputation and logicPerhaps one of
the most famous example is the effective correspondenceefpr
ular languages of finite words between a low-level comporzti
model, finite state automata, and a high-level declaratvendl-
ism, monadic second-order logic (MSO). Similar connectibave
been obtained for other structures (e.g. infinite wordsteinnd
infinite trees, nested words) (Thornas 1997; Comon-Lundhl et a
2007). In some cases, it has been even possible to buildcapihir
lar based on algebra. The class of regular languages fanicests
known to be the class of languages with finite syntactic cosigee.

The logic/two-way/one-way trinity of word transductions To
model functions from (input) words to (output) words, iveord
transductionsand more generally word binary relations, automata
have been extended twansducers i.e. automata with outputs.
Whenever a transducer reads an input symbol, it can produce o
the output a finite word, the final output word being the right
concatenation of all the finite words produced along the way.
To capture functions mirroring or copying twice the inputrdo
transducers need to read the input word in both directidmis: t
yields the class ofwo-way finite state transduce(@FST). Two-
way transducers have appealing properties: they are closger
composition |(Chytil and Jgkl 1977) and if they are deteistiq,
their equivalence problem is decidable BSpace) (Guraril1982;
Culik and Karhumaki 1987) and the transduction can be etedua
in constant space (for a fixed transducer), the output beirdyced
on-the-fly.

Impressively, in the late 90s, deterministic two-way tdus
ers have been shown in (Engelfriet and Hoogeboom|2001) to cor
respond to monadic second-order transducers (MSOT), arfidwe
logical formalism introduced in_(Courcelle 1994) in a moeng
eral context, with independent motivations. It was the fiogic-
transducer connection obtained for a class of transdugtiath
high and desirable expressiveness. This corresponderscbelaa
extended to finite tree transductions (Engelfriet and Mai&99,
2003; Bloem and Engelfriet 2000).

Recently, an MSOT-expressive one-way modtkaming string
transducerg(SST), has been introduced In (Alur aGérny 2010,
2011): it uses registers that can store output words andeanrh-
bined and updated along the run in a linear (copyless) marimer
main advantage of this model is its one-wayness, but the poic
pay is the space complexity of evaluation: it depends alsthen
size of the register contents.

The models MSOT, deterministic 2FST and deterministic SST
have the same expressive power, and we refer to this comespo
dence aghe logic/two-way/one-way trinityThis trinity has been
extended to transductions of infinite words (Alur et al. 20aad
ranked trees| (Courcelle and Engeliriet 2012; Alur and Dot
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2012). For trees, bi-directionality is replaced by a tredking
ability: the transducer can move along the edges of the tre@y
direction. However, to capture MSOT, the transducer neztiaye
regular look-aroundi.e. needs to be able to test regular properties
of the context of the tree node in which it is currently pasitd
(Courcelle and Engelfriet 2012). Look-arounds can be rexdat
the price of adding a pushdown store (Courcelle and Engelfri
2012). For one-way machines, uni-directionality is modebs/
fixing the traversal of the tree to be a depth-first left-ghtitraver-

Based on MSO for nested words, one can define MSO trans-
ducersa la Courcelleto define nested word to word transductions.
From now on, we refer to such MSO transducers as MSOT. A one-
way model has already been defined.in (Alur and D’Antoni 2012)
that captures exactly MSOT. They extei®A with registers that
can store partial output words. Whenever a call symbol ig,réee
contents of the registers are pushed onto the stack ancakgis-
ters reset. On reading return symbols, they can combineotiteiat
of the current registers with the content of the registeneston the

sal and, as for words, to capture MSOT, the transducer needsstack, in a copyless fashion. The space complexity of etiatuéor

to have registers_(Alur and D’Antoni 2012). Tree-walkinguts-
ducers with look-around, and tree transducers with regisiee
strictly more expressive than MSOT, but restrictions haeerb
defined that capture exactly MSOT. Finally, let us mentioa th
macro tree transducers, the first computational model shiown
capture, with suitable restrictions, MSOT ranked treeddaictions
(Engelfriet and Maneth 1999, 2003; Bloem and Engelfriet(300
This model has parallel computations, like a top-down tree a
tomaton, and registers.

Nested words In this paper, we consider transductions of nested
words to words.Nested wordsare words with a nesting struc-
ture, built over symbols of two kinds: call and return synifiol

In particular, nested words can model ordered unrankeds,tree
viewed as their depth-first, left-to-right, linearisatiand in turn

are a natural model of tree-structured documents, such ak XM
documents.Visibly pushdown automaté/PA) have been intro-
duced in |[(Alur and Madhusudan 2009) as a model of regularity
for languages of nested words. They are pushdown autométia wi
a constrained stack policy: whenever a call symbol is read, e

such transducers is linear in the length of the input nested yvand
they have decidable equivalence problem.

Objective and two-way visibly pushdown transducers Our main
goal in this paper is to establish a logic/two-way/one-wayitly
for nested word to word transductions. Since the logicloag-
connection has already been shownlin (Alur and D’Antoni 2012
we want in particular to definetavo-way computational modeiith
the following requirements: it must lm@nceptually simpleat least
as expressive as MSGihd havelecidable equivalence problem

To this aim, we introduc@eterministic two-way visibly push-
down transducer¢D2VPT) and show it meets the later require-
ments.D2VPT read their input in both directions, and their stack
behaviour not only depends on the type of symbols they ras#d, b
also on the reading mode they are in, either backward or fokviia
a forward mode, they behave just like VPT. On the backwardenod
they behave like VPT where the call and return types are sedipp
when reading a return symbol backward, they push a symbol ont
the stack, and when reading a call symbol backward, they pop a
symbol from the stack. They can change their mode at any mpmen

actly one symbol is pushed onto the stack, and when reading and produce words on the output.

a return symbol, exactly one symbol is popped from the stack.
Therefore, at any point, the height of the stack correspdods
the nesting level (call depth) of the word. RoughPA are tree
automata over linearised trees, and as such they inherthall
good closure and algorithmic properties of tree automataw-H
ever, viewing trees as nested words has raised motivatiegtigns
in the context of tree streams, such as streaming XML valida-
tion (Picalausa et al. 20111; Segoufin and Sirangelo |200/Barsi-
ing XML queries (Kumar et al. 2007; Gauwin etlal. 2011), aslwel
as streaming XML transformations_(Filiot et al. 2011) (sé®0a
(Alur2016) for other applications 6fPA).

By using a matching predicat®/ (x, y) that holds true ifz is
a call symbol,y is a return symbol and is the matching return
of z, MSO logic can be extended from words to nested words,
and it is known to correspond to regular nested word langaiage
(Alur and Madhusudan 2009).

Nested word to word transductions Besides the motivations
given before for considering nested words instead of urgdnk
trees, we argue that seeing unranked trees as nested wéid yie
a natural and simple two-way model for transductions of ewst
words, presented later. On the output, we do not require trdsv

to have a particular structure. It is not a weakness: nestadsy
are words, and the model we introduce in this paper can as well
produce output words that are nested.

VPA have been extended with output, yielding the class of
visibly pushdown transduce®/PT, (Filiot et al.| 2010)). When
reading an input symbol, VPT can generate a word on the autput
VPT have good algorithmic and closure properties, and ate we
suited to a streaming context (Filiot et al. 2011). HoweY4?,T
suffer from a low expressive power, as they are only one-way,
without registers.

1Sometimes, internal symbols are also considered but irptper, to ease
the presentation, we omit them. This is wlog as an internal®} a can be
harmlessly replaced by a call symhgl followed by a return symbat,, .

Let us give now an illustrating example of a transductfgrof
nested words, which will be formalised in Example 1. Assume a
set of call symbol<{1,...,n} ordered by the total order on nat-
ural numbers, and one return symbgl}. The transductionf,
sorts an input nested word in ascending order, recursivest-n
ing level by nesting level, according to the order on calle W
assume inputs start and end with special symbolnd < (call
and return resp.). E.gfs maps>22rlrrlr3r< to p1lr21r2rr3rd
and>23r1r2rr2r3rlr< to p1r21r2r3rr2r3r< (see Figur€ll). To
makef a function in case the same call symbol occurs twice at the
same levelf; preserves their order of appearance. The tree repre-
sentation of this mapping is given in Figlide 1 (omitting ratsym-
bols). The transductiorfs is easily implemented with 82VPT
Ts. To process a sequence of siblings at lewel’s works as fol-
lows: fori from 0 to n, T performs a forward pass on the siblings
(note that a sibling is actually a tree whose linearisat®onfithe
form jwr wherew is again a sequence of linearised trees). During
this forward passTs transforms a siblingwr into ¢ if 5 # ¢, and
intoiw’r otherwise, where' is the result of sorting recursively.

To implement the loop, whel; has finished theé-th forward pass,
i.e. when it reads a return symbol at leyel 1, it comes back to
its matching call and starts from there tfiet+ 1)-th forward pass,
ifi <n.

Contributions By linearising input trees, the simple and well-
known concept of bi-directionality can be generalised raly
from words to trees. WhilB2VPT, as we show in this paper, allow
one to lift known results from word transductions to nesteddito
word transductions, we think thB2VPT are an appealing model
for the following reasons:

memory efficiency Regarding the complexity of evaluation, for a
fixed D2VPT, computing the output word of an input nested
word w can be done in spac@(d(w)), whered(w) is the
depth ofw. Indeed, only the stack and current state need to
be kept in memory when processing an input nested word. It



Application 2: Query 2VPA Deterministic two-wayVPA have
been introduced inl_(Madhusudan and Viswanathan |2009) as an
equi-expressive model for MSO-definable unary queries astede
words. Using[(Neven and Schwentick 2002; Niehren gt al. [005
such queries can be shown to be equivalent to unambiguBis
with special states which select the nested word positioatsare
7777777777777777777777777777 N answers to the query. As shown in (Madhusudan and Viswanatha
2009), unambiguity can be traded for determinism, at theepof
adding two-wayness. This result comes as a consequencesobou
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, one-way unambiguous selectiW@A can be seen as a deterministic
-~ VPT with look-around, that annotates the input positions $etec

< by theVPA (look-around resolves nondeterminism), which can be
transformed into @2VPT using our results. The main ingredi-
ent of the proof of[(Madhusudan and Viswanathan 2009) is @lso
Figure 1. On top, the transformation of the input. Between siblings Hopcroft-Ullman construction, but in a setting simplerrtraurs.
with the same labeling, the original order is preservedoB®ethe
run of the transducer. Dashed lines are non producing segsaen

Organisation of the paper In Sectio 2, we introduce two-way
VPA and two-wayVPA with look-around, define the notion of
transition algebra fo2VPA and use this to show that they are
equivalent to one-wayPA. As a consequence, they have decidable

is an appealing property when transforming large but nopdee (exptime-c) emptiness problem. In Secfign 3, we introdd2¥PT
tree-structured documents, such as XML documents in genera andD2VPT with look-around, show that they are equivalent, and
study their algorithmic properties. Sectioh 4 is devotetht® ex-

pressiveness d2VPT, with a comparison to MSOT and to other
known models of nested word to word transductions. Due th lac
of space, some results are proved in Appendix. Finally, @lex-
pressiveness equivalences are effective.

expressivenesdt the same time, we show that this efficiency does
not entail expressive powebB2VPT can express all MSOT
transductions. They are strictly more expressive than MSOT
as they can for instance express transductiomxgfonential
size increasgwhile MSOT are only of linear size increase. By
putting a simple decidable restriction D2VPT, calledsingle- .
usenessD2VPT capture exactly MSOT transductions. 2. Two-way visibly pushdown automata

algorithmic properties Despite their high expressive powBVPT 2.1 Definitions

still have decidable equivalence problende also prove that  \we introduce in this section two-way visibly pushdown auteay
preprocessing the input of2VPT by a letter-to-letter unam-  following the definition of (Madhusudan and Viswanathan%00
biguousVPT does not increase its expressive power, as their  \we consider a structured alphab®tdefined as the disjoint
composition is again B2VPT. union of call symbol<Z, and return symbolE,.. The set of words
overX is X*. As usual¢ denotes the empty word. Amongst words,
the set of nested words' (%) is defined as the least set such that
e € N(X) and ifwy, w2 € N(X) then bothw, w2 andcw,r (for

all c € ¥, andr € X,) belong toA/(X). In the following, we
assume that input words of our models are always nested words
This is not restrictive as all our models can recognize ardrfil
nested words.

For a wordw € X7, its length is denoted byw| and we
denote byw(i) its ith symbol. Its set of positions iBogw) =
{1,...,|w|}, and fori,j € pow) such thati < j, we say
that (¢, j) is a matching pairof w if w(i) € ., w(j) € =
andw can be decomposed into = wyw(i)waw(j)ws, where
wi, w3z € w2 € N(E)and|wi] =4 — 1, |we| =5 — ¢ — 1.
Note that ifw € M (X), then necessarilypws € N ().

When dealing with two-way machines, we assume the struc-
tured alphabeE to be extended int& by adding two special sym-
bolsw, < in . and X, respectively, and we consider words with
left and right markers fromX*«.

The proof of expressiveness relies on an existing correspon
dence between tree-walking and MSO transducers of ranked
trees to words| (Courcelle and Engeliriet 2012), and on ths-cl
sical first child-next sibling(fcns for short) encoding of un-
ranked trees into binary trees. As in_(Courcelle and Enigelfr
2012), we use an intermediate automata model equipped with
MSO look-around, and then show that these look-around tests
be removed. For the latter property, our proof differs framtt
of (Courcelle and Engelfriet 2012) in which a pushdown stick
used to update information on MSO-types. On binary treesr th
model pushes the stack while moving to the first-child, bsbal
while moving to the second child. This latter push corresison
through the fcns encoding, to pushing a symbol while moving t
the next sibling, an operation that is not allowed with ablispush-
down stack. Hence, in order to prove that look-around testshe
removed in our model, we need a more involved constructlaat, t
extends a non-trivial result proven in (Hopcroft and UlIniA67)
for two-way automata on words. Decidability BRVPT equiva-
lence is done by reduction to deterministic top-down trew/ood
transducer equivalence, a problem which was opened fordadg
recently solved in (Seidl et al. 2015).

DEFINITION 1. A two way visibly pushdown automatof2VPA
for short) A over¥. is given by(Q, g1, F, T, §) whereQ is a finite
set of statesq; € @ is the initial state,FF C @ is a set of final
states and” is a finite stack alphabet. Given the &t {+, —}

Application 1: Unranked treeto word walking transducersD2VPT of directions, the transition relatiofiis defined byP'"UsP*° where

can easily be translated into a pushdown walking model of un-
ranked tree to word transductions. It works exactly as irrdiméed o PN C (Qx{=IXT)U(Q X {<} %)) x ((QxD)xI)
tree case of_(Courcelle and Engelfiiet 2012): one stack syiisb * PP C ((Qx{+}xTxTHU(QXx{—=}xT,-xT)) x (QxD)
pushed while going downward and popped while going upward.

While moving along sibling relations, the stack is untouth&s a 2They provide a construction for the composition of a co-debeistic
consequence of our results, this model, with single-useicgsn, VPA with an unambiguoud/PA, while we study that of ©2VPA with
captures exactly MSOT. This model is discussed in the lasiose an unambiguou¥/PA.




Additionally, we require that for any stategq’ and any stack
symboly, if (g, <+,>,7,q¢',d) € 6P thend =— and if (¢, —
<4, 7,4, d) € 6PPthend =«.

Informally, a2VPA has a reading head pointing between sym-
bols (and possibly on the left of and on the right ok). A con-
figuration of the machine is given by a state, a directoand a

stack content. The next symbol to be read is on the right of the

head ifd =— and on the left il =<. Note that when reading the
left marker from right to lef&— (resp. the right marker from left to
right —), the next direction can only be (resp.<—). The structure
of the alphabet induces the behaviour of the machine regatte
stack when reading the input word: when reading on the ragta)l
symbol leads to push onto the stack while a return symbol pops
symbol from the stack. When reading on the left, a dual betavi
holds (hence, at a given position in the input word, the heigh
the stack is always constant at each visit to that positiaghémun).
Finally, the state and the direction are updated.

Letw € N(X). We setw(0) = > andw(|w| + 1) = «. For a
moved and0 < ¢ < |w|, we denote by

e move(d, 7) the integeri — 1 if d =< andi + 1 if d =—.
e read(w, d, 7) the symboku(?) if d =« andw(i+1) if d =—.

Formally, a stack is a finite word ovef". The empty stack/word
overI' is denotedL. For a word>w< wherew € N(X) and
a2VPA A = (Q,q1,F,T,¢), aconfigurationof A is a triple
(g,%,d,0) whereq € Q,0 < i < |w|+ 1, d € D ando is a stack.
A run of A on a wordw is a finite non-empty sequence of config-
urations(qo, 0, do, 00)(q1,%1,d1,01) - .. (qe, ¢, de, o¢) Where for
all 0 < j < ¢, the configuration(q;+1, %j+1, dj+1, 0j+1) satisfies
11 = I“IIOVEE(’L']'7 dj) and

o if read(w7dj,ij) [SIIR anddj =— or read(w7dj,ij) € X
and d; =« then (q;,d;,read(w,d;,%;),q5+1,dj+1,7) €
6"“Shandaj+1 = 0;7.

o if read(w7dj,ij) c X anddj =< or read(w7dj,ij) € X
and d; =— then (g¢;,d;,read(w,d;,%;),7, ¢j+1,dj+1) €
§PoP andajﬂfy =0j.

By the special treatment of and < ensured by the definition of
2VPA, the indices; all belong to{0, . .., |w| 4+ 1}. Note also that
any configuration is actually a run on the empty werd\ run on
a nested wordv is accepting whenevep = qr, io = 0, do =—,
oo :J_andqg e F,i = |w| +1,dy =—,00 = L.

Note that A being a visibly pushdown automaton, for any
two configurations in a run ofA at the same position in the
word (q,1,d,0) and(¢’,,d’, o), the stacks, o’ have the same
height/length.

The languageC(A) defined byA is the set of nested words
from X* such that there exists an accepting rumadn >w<.

DEFINITION 2. A two-way visibly pushdown automaton is

e deterministic(D2VPA for short) if we may writef®*s", 6*°F as
functions from((Q x {—} x 3.) U (Q x {+} x 3,)) to
(Q xD) x I'and from((Q x {+} x . x U (Q x {—

} x X, xT)) toQ x D respectively.

e codeterministidf we may writes®“", 5°°P as injective applica-
tions, with the same type as in the previous item.

e unambiguousff for any wordw, there exists at most one ac-
cepting run onw.

Obviously, if A is (co)deterministic, for any wordv from
N (%), there exists a unique run an in A from any fixed con-
figuration. Hence, any (co)determinist®/PA is unambiguous.
Note also that the determinism dfimplies that any configuration

can occur only once in some accepting run (otherwise, théimac
would loop without reaching a final configuration).

A two-way visibly pushdown automaton is(ene-way) visibly
pushdown automato(VPA for short) whenevet!’ = d =— for
all (¢,d, o, q',d',~'") in 6" "and for all(q, d, o, v, ¢', d’) in 6.

For VPA, we may omit directions in the transition relation,
configurations and runs.

Finally, we will denoteDVPA the class of deterministigPA.

In this case, the transition relation is defined as a funatioitting
directions.

2.2 Transition algebra for 2VPA

Nested words from\V'(X) (or A/(X)) induce a natural algebra
W= (N(X),.,{fer | c € X¢, r € X}, ¢) where " is a binary
operation, thef., form a family of unary operations andis a
constant. The semanticsois the empty word, ofis concatenation
and for anyw in N'(X), fe,»(w) = cwr. Obviously, the operators
finitely generatesV'(32) which can be seen as the free generated
algebra over this signature quotiented by the associat¥it.’ and

the neutrality ofe wrt the concatenation’.

The traversal congruence ~ Inspired by works on two-way au-
tomata on words (Pécuchet 1985; Shepherdson| 1959), wg stud
traversals of 2VPA A. A traversal of some nested woid ab-
stracts a run ofd keeping track only of the fact that it starts read-
ing the word from the left or from the right (depending on the i

tial direction) in some statg and leaves it in some state Now,
formally, for any state®, ¢, and any two directiond;,d> € D,
((p,d1), (g, d2)) belongs to the traversal af if there exists a run

of A onw starting in the configuratiotp, pos(d1), d1, L) and end-

ing in (g, pos(dz2),d2, L), where

pos(di) =0 if dy =—
pos(dz) = |w| if do =—

and pos(di) = |w| otherwise
and pos(dz2) = 0 otherwise

Note that the reading starts either at the beginning or atitide
of w depending on the initial current direction and that the final
direction indeed leads to leave the word. One may associiite w
a nested word the set of its traversals and define a relatiom
nested words such that~ v if u andv have the same traversals.

Obviously, ~ is an equivalence relation ovey () and we
denote byfw]~. the set of traversals of a nested wasdWe prove
that~ is actually a congruence, that isuifi ~ w2 andw; ~ wh
thenfe,(w1) = cwir ~ cwar = fer(w2) andwy.wy ~ wa.wh
for any nested words , w} , wa, wh in N (X).

PrRopPoOsITION]. The relation~ is a congruence of finite index.

Thetransition algebra T4  Based on Propositidd 1, the congru-
ence relation induces a finite algebras = (Trava,.™, {fe4

c € Xe,r € %}, €74) where the support is Travthe set of all
traversals induced by, .T4 is a binary operation which is asso-
ciative, eacth? is a unary operation and4 is a constant from
Trav4 and a neutral element fof4 . More specificallygTA = [€]~,
[u]~."A[v]~ = [uv]~ andfi4 (Ju]~) = [cur]~. These operations
are well-defined since is a congruence.

Hence, there exists a unique and canonical morphismfrom
W, the algebra of nested words, orita, that satisfiegir, (w) =
[w]~. We also denotéw].. asw™ since it can be considered as
the interpretation ofv (which is an elemeni®) in T 4.

The correction of this morphismar, directly implies:

PROPOSITION2. Let A = (Q, qr, F,T',5) be a2VPA. L(A) =
pir, ({m € Trava [ m N ({(ar, =)} x F x {=}) # &}).

Note that this statement corresponds to the classicalmatio
recognizability by some finite algebra.



2.3 From two-way visibly pushdown automata to visibly
pushdown automata

In this subsection we give a reduction fr@%PA to VPA. While
this result can be inferred from_(Madhusudan and Viswamatha
2009), our Shepherdson-inspired approach gives an upperdbo
on the complexity of the procedure. We first recall the notdn
recognizability by finite algebra and show that this noti®eduiv-
alent to recognazibility bypVPA. Then we prove the main result
of this section appealing to the transition algebra

Let A = (Du, ., (f2.)(c.yesoxs, €") be a finite algebra
such that® is associative having* as neutral element. There exists
a unique morphism, from the algebra of nested worlig onto A.

DEFINITION 3. Alanguagel C N (X) is recognized by if there
exists aseLy C Dy such thatl = u ' (L4).

As an example, as shown in Propodion 2, a languagefined
by a2VPA is recognized by the transition algebfa,. We show
that recognability by finite algebra impli€\/PA recognizability.

LEMMA 1. If £ is recognized by a finite algebrathen it is recog-
nizable by aDVPA B,. Moreover, the size aB, is polynomial in
the size ofD,, the support of\.

Proof. For A and the sety, C D,, we define theDVPA
Ba (DA,EA\‘,EA,EC X DA75BA) WhereciBA = 5%151 U 5p50§
andof>(m*,c) = (e, (c,m")), 3%F (m*, 7, (c,m*)) = m* o
f2,.(m™). Obviously, B, is deterministic. Its correctness can be
proved by induction on nested words showing forwale N (),
there exists a run iB, on w from (m*,0, L) to (m'*, |wl|, L)
iff m'* = m*.4u,(w). And so, for an accepting run an from
(e*,0, L) to (m™, Jw|, L) withm™ € Lx, m"™ = pa(w). Hence,
L(Bxs) = p; ' (L4). Finally, note that the number of statesiBf
is precisely the cardinality of the support.df a

We can now come to the main result of this section.

THEOREM1. For any2VPA A, one can compute (in exponential
time) aDVPA B such that£(A) = £(B) and the size oB3 is
exponential in the size of.

Proof. One can build from th@VPA A the elements of [w]~ |
w € N(X)} and thus, the transition algeb®,, in exponential
time. Then, by Lemm4&ll, &PA Br, is built from Ta. The
correctness follows from Propositidd 2 fadr, = {m™ €
Trava | m™ N ({(q1,—)} x F x {=}) # 2}. O

COROLLARY 1. For any2VPA A, deciding the emptiness df (ie
L(A) = @) is EXPTIME-C. The same result holds f@2VPA.

Proof.We prove the upper-bound fak'PA and the lower bound
for D2VPA. For the upper-bound, it suffices to build framin ex-
ponential time a equivale®VPA B possibly exponentially larger
than A (Theorenl). Then, emptiness Bf can be tested in poly-
nomial time ((Alur and Madhusudan 2009).

The proof of the lower bound proceeds by a reduction of the
emptiness problem of intersection/ofleterministic top-down tree
automata, that is known to bexETIME-C.

2.4 2VPA with look-around

As we will later on need the notion of look-around for transeis,

we introduce it first for automata to ease the presentati@mckl,

we extend the model dfVPA with look-around. The feature will
add a guard to each transition of the machine. This guard will
require to be satisfied for the transition to be applied.

DEFINITION 4. A 2VPA with look-around 2VPA for short) is
given by a triple(A, A, B) such thatA is a2VPA and B a unam-
biguousVPA and )\ is a mapping from the transitions of to the
states ofB.

The notion of runs is adapted to take into account look-adoun
as follows: in any run on some nested ward for any two suc-
cessive configuration§y;, ij, d;, 0;)(qj+1,%j+1, dj+1, 0j+1) Ob-
tained by a transitiof, we require that there exists a unique accept-
ing run onw in B and that this run contains a configuration of the
form (A\(¢), read(w, d;,1;),0).

The definition of accepting runs remains the same and the lan-
guage defined by such machines is defined accordingly.

The notion of one-wayness extends trivially2dPA with look-
around. For determinism, we ask the look-around to be disjoi
on transitions with the same left hand-side: for any twoedéht
tranSitions OM' tl = (q7 d: a‘7 q{y dll: ’yl)7 t2 = (q7 d7 CL, qé7 d/27 72)
ind. (resp.t1 = (¢, d,a,7,q1,d1), t2 = (¢,d, a,7v,qs,d3) in 6,),
it holds that\(t1) # A(t2).

Non-surprisingly2VPA are closed under look-around:

THEOREM?2. Given a2VPA"* (A, \, B), there exists &/PA A’
such thatC((A, A, B)) = £(A").

3. Two-way visibly pushdown transducers
3.1 Definitions

Let3, A be two finite alphabets such thatis structured. Two-way
visibly pushdown transducer@\{PT) from X to A extend2VPA
overX with a one-way-left-to-right output tape. They are defingd a
apairl’ = (A, O) whereA is a2VPA overX andO is a morphism
from the set of rules ofi to words inA*.

Arun of a2VPT T = (A, 0O) on an input wordw € N (%)
is a runp of A onw. We say the run is accepting if it is iA. A
run p may be simultaneously a run on a woxdand on a word
w’ # w, however, when the underlying input wotd is given,
there is a unique sequence of transitiofs . . . t,, associated with
p andw. In this case, the output produced by the won w is
defined as the word = O(¢1)O(t2) ... O(tn) € A™. Thisword is
denoted byout™(p). If p contains a single configuration, then we
letout™(p) = e. The transduction defined 13y is the relation

[T] = {(w,0out”(p)) € N(Z)xA™ | pis an accepting run ¢f onw}.

We say thatT is functional if [T is a function, and thaf" is
deterministic(resp.unambiguoukif A is deterministic (resp. un-
ambiguous). The class of deterministic two-way visibly plsvn
transducers is denotdd2VPT. Observe that ifl" is determinis-
tic or unambiguous, then it is trivially functional. LasthenT" is
functional, we may interpret the relatidfi’] as a partial function
on N (X): given a wordw € N (X), denote by[T](w) the unique
word v € X* such that(w,v) € [T7], whenever it exists. To ease
readability, we may simply writd” to denote[7] when it is clear
from the context, for example when considering compositébn
functions.

We consider classes of one-way visibly pushdown transduc-
ers, obtained by considering the corresponding classesesfvay
visibly pushdown automata. The notions of functional, chte-
istic and unambiguous transducers are naturally definethése
transducers, and we denote by YIP)T the class of (deterministic)
one-way Vvisibly pushdown transducers. Last, we say thdPa&

T = (A, 0O) from X to A is letter-to-letterif A is a structured al-
phabet and iD maps every call transition of to an element of\.
and every return transition of to an element of\,..

2VPT (resp.D2VPT) can be extended with look-around, as we
did for 2VPA. Formally, a two-way visibly pushdown transducer
with look-around 2VP T for short) is a paifl’ = (A’, O) where



A" = (A, )\, B) is a2VPA™ and O is a morphism from the set
of rules of A to words in A*. We say that such a machine is
deterministic if the2VPA"* A is deterministic, the resulting class
being denoted b{p2VPTA,

ExampPLE 1. We now formally express the transduction given in
the introduction (see Figurel1). L& = {q1,...,qn} U {q,; |
1<14,j <nori=>p}U{qr} bethe set of states with initial state
¢1 and final statey;, a set of stack symbols = {L} U {i | i =
1,...,n},andforalli, j, k € {>,1,...,n}, we have the rules:

ili,+i rlr,—j

qi,— ———  q1,— qn,— ——— qj, —
(5,r) o, (4,m)

qi,—~ — g, ifj#i Qi —  Qij,—
rle,—j . kle,+j

G, — ——= g, fi<n g j— — 41,

The markers are treated as letters, except that they push-
stead of> and upon poppingL in stateq,,, the transducer goes to
gy and accepts. The transitions labeled @yr) are macros cor-
responding to moves along matching relation, which canlgas
implemented.

Evaluation Observe here that if a transformation is given as a
D2VPT T, then one can evaluate it using a memory linear in the
depth of the input wordv (we assumev can be accessed as we
want on some media). Indeed, one simply needs to store thentur
configuration ofT", given as a state and a stack content.

3.2 Closure under composition

We prove in this subsection tha¥VPT are closed by composition
with a letter-to-letter unambiguod&P T, extending a similar result
for transducers on word$s _(Hopcroft and Ullrman 1967). Thill wi
reveal useful to show thdd2VPT are closed under look-around.
First, we extend to nested words a result that was known fite fin
transducers:

LEMMA 2. Any unambiguou¥PT T can be written as the com-
position of twoVPT T; o T», whereT; is deterministic andl is
letter-to-letter and co-deterministic. Furthermoreifis letter-to-
letter, so isTh.

THEOREM 3. Given a letter-to-letteDVPT A and a2VPT B, we
can construct 2VPT C that realizes the compositiati = Bo A.
If furthermoreB is deterministic, then so i§'.

Proof.We first notice that since we are considering visibly push-
down machines and the first machine is letter-to-letter stheks
of both machines are always synchronized, meaning thattéey
the same height on each position. Then, let us remark that thiee
2VPT moves to the right, we can do the simulation in a straight
forward fashion by simulating it on the production of the one
way. It becomes more involved when it moves to the left. We
then need to rewind the run of the one-way, and nondeterminis
can arise. To bypass this, let us recall that a similar coogtn
from (Hopcroft and Ullman 1967) exists for classical tramsgts,
and that the rewinding is done through a back and forth regofin
the input, backtracking the run up to a position where thedeen
terminism is cleared, and then moving back to the curreritipos
The method is to compute the set of possible candidatesdqrt
vious state, and keep moving to the left until we reach a jposit
i where there is only one path left leading to the startingtjusi
j. Afterward, we simply follow this path along another onenfro
positioni 4+ 1. As we know that they will merge at positigh we
can stop at positiop — 1 with the correct state. If we reach the
beginning of the word with multiple candidates, we do the sam
procedure, the correct path being the one starting fromrttiali
state.

Cn ®Tn

Figure 2. The nested wordciwiricowars . .. cpwnryr IS ab-
stracted as a word over letters(c;, S;, ;) whereS; is the sum-
mary ofw;. The position labelled by serves as initial position of
the word and the corresponding state was pushed to the gtack u
reading it.

This cannot be done as such on pushdown transducers since
rewinding the run might lead to popping the stack, and losiRg
formation. However, if at each push position, we push noy timé
stack symbols but also the current state, we are able, wkende
ing the run, to clear the nondeterminism as soon as we pop this
information by using it as bbcal initial statg limiting the back and
forth reading to the current subhedge. The overall congtnucan
be seen as a classical Hopcroft-Ullman construction onédedip-
stracted as words over the left-to-right traversals ofrthabhedges,
which are called summaries in_(Alur and Madhusudan 2009 (se
Figure2). These summaries can be computed on-demand by a one
way automaton.

Finally, note that to apply this construction, we need tohpus
this local initial state each time we enter a subhedge, venetle
enter from the right or from the left. This can be maintaineadtes
when entering from the left, it simply corresponds to therent
state and when entering from the right, this state is contphte
the Hopcroft-Ullman construction. Note also that the Hoyfer
Ulliman routine is deterministic, and consequently the troietion
preserves determinism. a

THEOREM4. Let A be aD2VPT andrelab be an unambiguous
letter-to-letterVPT. Then the compositioA orelab can be defined
by aD2VPT.

Proof. The proof is straightforward using previous results. First
Lemmd2 states thatlab can be decomposed i o T, whereT}
is a deterministid/PT and T is a co-deterministic one, and both
are letter-to-letter, i.el o relab = A o T1 o T>. Now Theoreni B
states that we can construcb@VPT A’ that realizes the compo-
sition A o T1. Finally, as a co-deterministdPT can be seen as a
deterministic one going right-to-left, a symmetric constion of
Theoreni B o4’ o T: gives aD2VPT that realizesd o relab. O

A look-around can be viewed as M50 formula with one free
variable, and it is satisfied iff the formula is satisfied as thosi-
tion. In (Madhusudan and Viswanathan 2009), the authorsiden
MSO queries on nested words. AtSO query is arMSO formula
with one free variable that annotates the positions of thetimord
that satisfies it. They proved, using a Hopcroft-Ullman amngut,
thatMSO queries were also implemented BRVPA. Theoreni %
proves that looks-around can be done on the fly while follgvtire
run of an otheD2VPA. Since a look-around can be encoded as an
unambiguous letter-to-lett&fPT, we get the following corollary,
that subsumes the result by (Madhusudan and Viswanath#).200

COROLLARY 2. D2VPT = D2VPT"A,

3.3 Decision problems

We consider the following type-checking problem: givelvBA
A1 onX, afinite-state automatadz on A, and aD2VPT 7' from
N(X) to A*, decide whether for every word € L( A1), [T](w)



belongs tol(A»). This property is denoted §(A;) C AJfl. The
equivalence problem asks whether given ®@VPT as input, they
define the same transduction. We prove the following result:

THEOREMS5. 1. The inverse image of a regular language of words
by aD2VPT is recognizable by &PA.

2. The type-checking problem fD2VPT is ExPTIME-complete.

3. The equivalence problem f2VPT is decidable.

Proof. We prove the three results independently.

(1) Given aD2VPT T' = (A, O) and an automaton on words
B, we can define &VPA A’ as a product construction of and
B which simulatesB on the production byD. States ofA’ are
simply pairs of states ofl andB, and A’ recognizedw € N (X) |
[T](w) € £(B)} = [T]*(£(B)). Observe that the construction
is linear in the sizes ofA and B, and that asB may be non-
deterministic,A’ may also be non-deterministic.

(2) ExPTIME membership: as in the proof of the previous item,
we can build 2VPA A whose size is linear in the sizes Bfand
Az, and such that(A) = [T]'(£(A2)). Thus, T(A1) C A
holds iff £L(A1) C L(A) holds. This can be checked irxETIME
thanks to Theoreifn 1.

ExPTIME hardness: we reduce the problem of emptiness of a
D2VPA A. From A, we build aD2VPT T' = (A, O) such thatO
maps every transition ofl to the empty worct. Then, we letd;
be aVPA such thatC(A;) = V() and A; such thatC(A42) = 0.
ThenT' (A1) C A, holds iff L(A) = 0.

(3) As proved in Sectiohl4D2VPT are included in the class
of deterministic hedge-to-string transducers with loblead,i.e.
deterministic top-down tree-to-string transducers witbk-ahead,
run on the first-child-next-sibling encoding of the inputige. The
equivalence problem for these machines has recently besempr
decidable in/(Seidl et &l. 2015). a

4. Expressiveness of Two-Way Visibly Pushdown
Transducers

In this section, we study the expressivenes®aVPT by com-
paring them with Courcelle’s MSO-transductions castedested
words, the one-way model of (Alur and D’Antoni 2012), and jgrto
down model for hedges, inspired by top-down tree-to-sttings-
ducers.

4.1 MSO-definable Transductions

We first define MSO for nested words and words, as done in
(Alur and Madhusudah 2009), and then MSO-transductions fro
nested words to words, based on Courcelle’s MSO-definabfghgr
transductions (Courcelle 1994).

MSO on nested wordsand words Let X be a structured alphabet.
A nested wordw € N(X) is viewed as a structure withogw) as
domain, over the successor predicater, y) interpreted as pairs
(i, + 1) for i € pogw)\{|w|}, the label predicates(x) for
o € %, interpreted by the positions labeled dyand the matching
predicateM (x,y) interpreted as the set of matching pairsdn
Monadic second-order logic (MSO) extends first-order logic
with quantification overs sets. First-order variables,, ... are
interpreted by positions of words, while second-order alalgs
X,Y,... are interpreted by sets of positiondSO formulas for
nested words ovex are defined by the following grammar:

o u=o@) |veX|S@y) | My)l~pleVe|dre|IXe

whereo € 3. The semantics of an MSO formula is defined
in a classical way, and fop an MSO formulaw € N (X), v

31f As is aVPA, the problem is known to be undecidable evenTom
DVPT (Raskin and Servais 2008).

a valuation of the free variables qof into positions and sets of
positions ofw, we writew,v = ¢ to mean thatw is a model
of ¢ under the valuationn. When ¢ is a sentence, we just write
w | ¢. We denote byMSO,.[X] the set of MSO formulas
for nested words oveE (and justMSO,,, whenX is clear from
the context). Since we are interested in transductions frested
words to words, we also define MSO for words. Similarly asest
words, words are seen as structures but in that case we davet h
the matching pair predicate/ (x, y). MSO formulas on words are
defined accordingly to this smaller signature.

ExAMPLE 2. We interpretMSO, %] on nested words rather that
on words inX*. It is not a restriction since checking whether a
given relationM (z, y) is a valid matching relation is definable by
an MSO formulap.,.. This formula expresses thaf is a bijection
between call and return symbols, and that it is well-nestieer¢ is
no crossing), as follows:
—3z¢, Tr, Ye, yr-M(xm x'r) A M(yc,y'r) NZe < Ye < Tr < Yr
ADbij(M) AVz,y.M(z,y) >z <y
where < is the transitive closure of (well-known to be MSO-
definable) and bijA/) expresses that/ maps bijectively call and
return symbols (it is trivially MSO-definable).

MSO transducers from nested wordstowords MSO-transducers
define (partial) functions from nested words to word streesguThe
output word structure is defined by taking a fixed numbeof
copies of the input structure domain. Nodes of these copirde
filtered out byMSO,,, formulas with one free first-order variable.
In particular, the nodes of theth copy are the input positions that
satisfy some giveMSO,,, formula ¢;,s(x). The label predicates
o(z) and the successor prediceiéz, y) of the output structure
are defined byvSO,,, formulas with respectively one and two free
first-order variables, interpreted over the input struetiormally,
an MSO-transducer from nested words to wdsla tupleT” =

(k, Paom; (Ppos () 1<c<h, (aﬁi(z))lécgk i (
wherek € N and the formula®aom, ¢pos: Pa andgzsg"d areMSO,y,
formulas. We denote byISO[nw2w] the class of MSO-transducers
from nested words to words.

An MSO-transducerl’ defines a function from nested word
structures overX to word structures ovek, denoted by[T7].
The domain of[T] consists of all nested word structuresuch
thatu = ¢aom. Given a nested word structute € dom([T7]),
the output structurev such that(u,v) € [T7] is defined by the
domainD" C poqu) x {1,...,k} such thatD® = {(i,c) | i €
posu), ¢ € {1,...,k}, u = ¢p0s(9)}, a node(i,c) € D"
of the output structure is labeled € X if u = ¢5(3), and a
node (j,d) € D" is the successor of a nodé,c) € D" if
u = qbg’d(@ J). Note that the output structure is not necessarily a
word, because for instance, nothing guarantees that aotoutpe
is labeled by a unique symbol, or that the successor reltdioms a
linear order on the positions. However, it is not difficultsee that
it is decidable whether amMSO[nw2w] transducer produces only
words (see for instance (Filiot 2015)).

We say that a functiorf from nested words to words is MSO-
definable if there exists afi € MSO[nw2w] such thaf[T] = f.
By definition of MSO[nw2w]| transducers, for any MSO-definable
function f there existsk € N such that for allu € Dom(f),
[f(v)] < k.u| (by taking k& as the number of copies of the
MSO[nw2w] transducer defining’). We say in that case that
is of linear-size increase

c,d

§° (%, y))1<e,d<k)

ExXAMPLE 3. This example transforms a nested word into the se-
guence of calls of maximal depth (the leaves). Ei@aracscararsr:

is mapped t@zc4. This transformation is MSO-definable. The do-
main is defined by the formula,, (see Examplg]2). One needs



only one copy of the input word, whose positions are filtered o
by the formulag,,,.(z) = Jy.M(z,y) A S(x,y) which holds true
iff z is a call position and its successor positigris its matching
return position. The labels are preserved.(z) = a(zx) for all

a € ¥. Finally, the successor relation is defined b’ (z,y) =

Dpos(T) A Gpos(Y) A <y A =Fz.dpos(2) AN < 2 < y.

4.2 Logical equivalences

An MSO[nw2w]| T is said to beorder-preservingf for any wordu

of the domain off’, any positions, j of » and any copies, d of T,

if u = $%%(4, §) theni < j. This means that the output arrows can
not point to the right. It is emphasized by the next theorelmictv
echoes a similar result on words proved.in (Bojanczyk 201ltF
2015).

THEOREMG6. An order-preserving transduction is definable in
MSO[nw2w] if, and only if, it is definable by a functioffaVPT.

In the following, we show thaD2VPT are strictly more ex-
pressive tharMSO[nw2w], and define a restriction that capture
exactly MSO[nw2w]. The fact thatD2VPT are more expressive
than MSO[nw2w] can be easily shown, based on a similar result
for ranked trees established in_(Courcelle and Engelfrzt22.
Since D2VPT can, using their stack, express transductions of
exponential-size increase, while MSO-transductions atmear-
size increase, they are strictly more expressive M0 [nw2w].

To capture exactlSO[nw2w], one defines theingle-use re-
striction for D2VPT (and D2VPT™*). Intuitively, this restriction
requires that when ®2VPT passes twice at the same position
with the same state, then necessarily the transitions fioead these
states produces

DEFINITION 5 (Single-use restrictionAD2VPT (resp.D2VPT)
T = (A,0) with A = (Q,q1, F,T,8) a 2VPA (resp.2VPA*)
is single-usewith respect to a se? C Q if any transitiont
from a stateq ¢ P satisfiesO(t) = ¢, and if for all runs
r = (qo,%0,do,00) ...(qe,%¢,de,00) Of T on a wordw and all
stategp € P, r does not visit twice the same position in statee.
AD2VPT (resp.D2VPT"") is single-usef it is single-use w.r.t.
some seP C @, andstrongly single-uséd it is single-use w.r.tQ.

We denote byD2VPT., (resp.D2VPTLY) the class of single-
useD2VPT (resp.D2VPT). By reduction to thd2VPA empti-
ness, we get:

ProposITION3. Deciding the single use property on2¥PT is
EXPTIME-C.

In (Courcelle and Engelfriet 2012), a single-use restiittivas
already defined for deterministic tree-walking transdsceith
look-around to capture MSO-transductions from trees testand
words). It requires that in any accepting run, every nodasied
at most once by a state. It is therefore more restrictive than
single-restriction and, as a matter of fact, correspondshiat we
call the strongly single-use restriction. However, thédiging re-
sult shows that the strongly single-use restriction is rawexful
enough, in our context, to capture all MSO-definable tractdnos,
even with regular look-arounds.

LEMMA 3. There is an MSO-definable nested word to word trans-
duction f which is not definable by strongly single-Uusa2vPT"*,

4Within the class ofVPT, the class of functionaVPT is decidable in
PTime (Filiot et all[201D)

We now proceed to the first logical equivalence, between our
model and MSO-transductions, which is mainly a consequehce
results from|(Courcelle and Engelfriet 2012).

THEOREM7. Let f be a transduction from nested words to words.
Then f is MSO-definable iff it is definable by a (look-around)
D2VPT, i.e.,

MSO[nw2w] = D2VPTL} = D2VPT.,.

Sketch of proofWe show that both other models are equiva-
lent to D2VPTLA. We have already seen that look-around can be
removed fromD2VPT"* (Theoreni®), while preserving their ex-
pressive power. Our Hopcroft-Ullman’s construction cad exipo-
nentially more visits to the same positions, but theses/aié only
e-producing. In other words, our Hopcroft-Ullman’s constian
does not preserve the strongly single-use restrictionit pteserves
the single-use restriction. As a consequence of this ohiervand
Corollary[2, we obtain thaD2VPT,, = D2VPTA,

To showMSO[nw2w] C D2VPTL!, we rely on the equiva-
lence of (Courcelle and Engelfriet 2012) between detestinbi-
nary tree to word walking transducers with look-around (DY
and MSO-transductions from binary trees to worlSQ[b2w]).
Informally, DTWT' can follow the directions of binary trees (1st
child, 2nd child and parent) and take their transitions Basereg-
ular look-around information. Due to determinism, they alveays
strongly single-use, in the sense that any position is ngited
twice by the same state. Such a machine, running on first-chil
next-sibling encoding of nested words, is easily encodéal am
equivalentD2VPTLA. In this encoding, a nested word ov®iis en-
coded as a binary tree ov€x. x 3, ) U{_L}, inductively defined as
fens(cwirws) = (e, 7)(fens(wy ), fens(we)) andfens(e) = L. In
this encoding, moving to a 1st child corresponds to movitgnfr
¢ to w1, which can be done by ®2VPTL:, and moving to a
2nd child corresponds to moving fromto w,. This can be done
also by aD2VPTL?, but it needs to traverse all the woeb: 7,
while producinge only. Similarly, one can encode moves to par-
ent nodes. The two latter moves implies that B®/PTL} is not
strongly single-use anymore, but it remains single-use:extra
moves are alk-producing. The result follows dg1ISO[nw2w] =
MSO[b2w] o fens.

To showD2VPTL} C MSO[nw2w], we rely on another cor-
respondence shown in_(Courcelle and Engeliriet 2012), éetw
MSO[b2w] and deterministic (visibly) pushdown binary tree to
word walking transducers with look-around of linear-sigerease
(DPTWT%,). These transducers extend DTWTvith a pushdown
store with a visibly condition: when moving to a child, theysh
one symbol, and moving up, they pop one symbol. The Isi stri
tion is semantical: they restrict the class to transdudeatdefine
Isi transductions. AmyD2VP T} defines an Isi transduction, and
can be easily encoded into a DPTV¥;Trunning onfcns encod-
ings, which mimics the moves of tHa2VPTL?. Again, the result
follows by the equalityMSO [nw2w] = MSO[b2w] o fcns. O

4.3 Comparison with other transducer models

In this section, we relat®2VPT to two other transducer mod-
els, namely streaming tree-to-string transducers andrrdetis-
tic hedge-to-string transducers with look-ahead. Stragriree-to-
string transducers with a simple copyless restriction ofases will
serve as the third edge of our trinity. Deterministic hetlystring
transducers with look-ahead is a natural model for whichvegu
lence is known to be decidable.

Streaming tree-to-string transducers are deterministe\way
machines| (Alur and D’Antoni 2012) equipped with registeisrs
ing words. We fix a finite alphabek and, given two finite set&’
and), denote by/(X, ) the set of mappings fromt to (AUY)*.



DEFINITION 6. A streaming tree-to-string transduce(STST for
short) is a deterministic machine defined over a structutptabet
3> and given by the tupl@?, ¢, T, X, §, ur) whereQ is afinite set
of statesg; € Q is the initial state[ is a finite set of stack symbols
and X is a finite set of registers. Finally;» is a partial mapping
fromQ to (AUX)* ands = §P**hwsPoP wheres?*s" : Qx . —
QxTxUX,X)andéP? : Q x T, xT' — Q xU(X, X UX"),
X’ being a disjoint copy of.

Let V4 be the set of mappings from frodr to A*. These
mappings are extended (& UA)* by considering them as identity
over A. An accepting run of &TST S on a nested wordv
is a (non-empty) sequendgo, o, o0, wo) - - . (qe, O¢, o, we) Of
quadruples fronQ x V¢ x (I' x V§)* x ©* such thatyo = ¢,
wo = w, we = €, g is the mappind. which associatesto any X
in X, 0o, o¢ are equal tal. the empty stack and for &l < i < /,
one has either

e w; = cwiy1 and there exist<q;, ¢, qiy1,7,v) € °*",
9i+1 = 0. and0'7;+1 = O'i(’y, 0; o IJ),

e w; = rw;4+1 and there exist$q;, r,v, gi+1,v) € 6P, 05 =
oi+1(7,0) and@i1 = 0’ 0 6; o v, whered’ € V%, is defined
by¢'(X') = 6(X) forall X € X.

The semanticgS] of the STST S is a partial mapping from
N(X) to A* such that[S](w) = v if there exists an accepting
run onw in S ending in some configuratiofye, 6., L,¢) and
v = 0¢(pr(qe))-

Using a restriction on the updatésused inSTST (so-called
copyless updates), (Alur and D’Antani 2012) proved thatybegs
STST and MSO[nw2w] are expressively equivalent. As a conse-
guence, we obtain the logic/two-way/one-way trinity anmeed in
the introduction:

THEOREM8. MSO[nw2w| = D2VPT,, = copylessSTST

A well-known class of transducers running on ranked trees is
the class of deterministic top-down tree transducers wotik

Ag is the finite set of symbo[@\ U {q(z;) | 1 <i <2, € Q})™.

The semantics of aH2S" is first given by a partial map-
ping [H] from () x @ onto A* defined inductively as(i)
[H](e,q) = €eif ¢ € F, and (i7) for w = cwirws with
wi,we € N(X), [H](w,q) = wlgi(zi;) < [H](wi;, q)]
wherewlqi(zi;) < [H](w:;,q:)] denotes the word in which
each occurrence af;(z;,;) has been replaced ] (w;, ;) if

5(g,erq'q") = w,wi € L% andws € £% and undefined
otherwise.

Then, the transductiof | defined byH is given by{(w, s) |
weN(E), s = [H](w,qr)}.

THEOREM9. D2VPT C STST andD2VPT C dH2S**

Sketch of proofThe two results rely on a same intermediate
model that extends the transition algebra described inic®egt
This algebra allows to describe the possible traversalD\aPA.
One can extend it t®2VPT by storing in matrices the words
produced by traversals. This yields an infinite algebrdizedby a
finite set of operations. We use this to describe effectaediations
into STST anddH2S™*.

As an illustration, in order to build of an equivale®T ST,
the set of variables considered is the Set= {z®®®")
(p,d), (p',d") € @ x D}, i.e.one variable for each traversal. This
generalizes the construction describedlin (Alur @einy| 2010;
Alur et all|201?) in order to translate a deterministic twayrans-
ducer (on words) into a streaming string transducer.

The fact that the inclusions are strict relies on a simplement
based on size increase: on nested words of bounded dxpih T
are linear-size increase, wh8&'ST anddH2S™ are not. O

5. Discussion

Unranked tree to word transductions Since unranked trees
can be linearised into nested worls.(¢), our result also gives
a model for unranked tree to word transductions. If one denot

ahead. This class can be defined to output strings. We conside by MSO[u2w] the transductions from unranked trees to words

now the extension of this class to unranked trees, or mosalg
sequences of unranked trees, that is, hedges.

DEFINITION 7. Anhedge automatofHA for short) over the struc-
tured alphabet= [{ is a tuple(Q, F, §) whereQ is a finite set of
states,F' C Q is a set of final states andlis a transition relation
suchthaty C Q x . x X, x Q x Q.

An hedge automaton is said to be bottom-up deterministic if
whenever(q, c, 7, q1,q2) and(q’, ¢, 7, q1, g2) belongs taj, it holds
thatq = ¢'. The semantics of aHA B is given by means of sets
LE C N(2) defined for eacly € @ inductively as follows:(i)

e € LF forall g and (i) cwrw’ € LE if (q,¢,7,q1,¢2) € 6 and
w € Eﬁ, w' € Llfz. The language defined by &A B is then
Uger L% . Note that whers is bottom-up deterministic whenever

q1 # g2, itholds thatc? NP = o.

DEFINITION 8. A deterministichedge-to-string transducewith
look-ahead §H2S"*) H over the structured alphabét and the
output alphabetA is given by a tupléQ, I, F, ¢, B) whereQ is a
finite set of stategy; € @ is an initial state,F’ C Q is a set of final
states,B is a deterministic bottom-up hedge automaton with states
@', andé is a transition relation given by a partial mapping

§:QXTex T xQ' xQ — A)

5Usually, such automata are given over a classical unstedtout unary
alphabet. However, for having a uniform presentation, waosk wlog this
definition which corresponds somehow to consider a pair fignx 33, as
single symbol.

definable by an MSO transducer (over the signature of uncanke
trees that has the child and next-sibling predicates), &asy to
show thatMSO[u2w] = D2VPTg, o lin.

One could argue th&@2VPT for realising transductions of un-
ranked trees is not an adequate model, because it perfomes-un
essarye-producing moves to navigate, for instance, from a nede
to its next-sibling. Indeed, thB2VPT needs to walk through the
whole subtree rooted at

First, while it is true from an operational point of view, wertk
that the simplicity ofD2VPT makes them a good candidate as
a specification model of unranked tree transductions, arttiso
aim, it is easy to define, as we did for next-sibling movesesul

q Lo, p), macros that realise moves given by the predicates
of unranked trees (and their inverse). Second, for instamt¢ee
context of stream processing of XML documents, it cannot be
always assumed that the input document is given by its DONh(wi
the unranked tree predicates) as sometimes, it is justséarplain
text, i.e. as its linearisation.

Finally and most importantly, our result allows one to geean
tension of a known model of ranked tree to word transductit;ms
unranked tree to word transductions, namelgterministic push-
down unranked tree to word walking transducéBPUWT). To
avoid technical details, we define formally this model omyAp-
pendix, and rather give intuitions here. DPUWT can walk tigto
the unranked tree following the next-sibling and first-dhpred-
icates (and their inverse), while producing words on thepatut
They are also equipped with a pushdown store with a visibiy co
dition: whenever they go down the tree by one level, they have



push one symbol onto the stack, and going up, they pop one sym-Mikolaj Bojanczyk.

bol. They let the stack unchanged when moving horizontadly b
tween siblings. With the single-use restriction, definedilsirly as
for D2VPT, we get thatMSO[u2w] = DPUWTS,,. Therefore, if
the input is given by an unranked tree, one can rather use A\DPU
or aD2VPT on the linearisation.

Nested word to nested word transductions  As we claimed earlier,

D2VPTs, can be used to define unranked tree transformations

represented as nested word to nested word transducerss,that
nested word to word tranduscers with a structured outpinadigt.

On the logical sideMSO[nw2w] transductions can be extended
with binary formulaspmd(m, y) aiming at representing the match-
ing relation existing on output nested words. As checkingtivar
a relation denotes a matching relationM$O definable (see Ex-
amplel2), one can decide whether any input nested word igihde
transformed by th&1SO[nw2w] transducer into a nested word by
testing the validity of the sentence obtained from the laliefi-
nition of the matchingV/ (Exampld2) by replacing the predicate
M with \/_ d<p§'g{d. So, starting from aMSO[nw2w] transducer
with a matching relation defined on its output, one may fotgist
matching and view this transducer as an ordinBt$O[nw2w]
transducer; this machine turns out to be equivalent in timsese
that remaining call and returns symbols induce uniquelyetiased
matching. Finally, by the results presented in this papee, can
from this MSO[nw2w] transducer build an equivale@2VPT,,
whose range will indeed contain only nested words and thes, d
fines an unranked tree transformation.

Let us point out that our results do not entail the trinity tiare-
to-tree transformations: the class of D2VPT which producly o
nested words/trees as output may be a good candidate to etempl
the missing part (the equivalence between MSO transfoomsti
and streaming tree transducers has already been establishe
(Alur and D’Antonil2012)). Nonetheless, deciding this slasems
to be challenging and moreover, there is actually no gueestfiat
it corresponds to the other two cited members of this trinity

Input streaming
that the input nested word is given as a stream of call andrretu

symbols. In such a scenario, one wants to transform the inputo'

stream as soon as possible, on-the-fly, and it is not realonab
to load the whole stream in memory. An interesting quest®n i
whether a giveiD2VPT really needs its two-way ability ? In other
words, can we decide whether a givBaVPT is equivalent to a
(one-way)VPT? For words and two-way finite transducers, this
question has been shown to be decidablé in (Filiotlet al. PN
future work, we want to extend this resultD2VPT.

References

R. Alur and P.Cerny. Expressiveness of streaming string transducers. |
FSTTCSvolume 8, pages 1-12, 2010.

R. Alur and P.éerny. Streaming transducers for algorithmic verifioatd
single-pass list-processing programsP@PL, pages 599-610, 2011.

Rajeev  Alur. Nested  words, 2016. URL
https://www.cis.upenn.edu/~alur/nw.html.

Rajeev Alur and Loris D’Antoni. Streaming tree transducéndCALP (2),
volume 7392 oLNCS pages 42-53. Springer, 2012.

Rajeev Alur and P. Madhusudan. Adding nesting structure dads: J.
ACM, 56(3), 2009.

Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regutansforma-
tions of infinite strings. IrLICS, pages 65-74, 2012.

Roderick Bloem and Joost Engelfriet. A comparison of treegductions

defined by monadic second order logic and by attribute grasma
Comput. Syst. S¢i61(1):1-50, 2000.

In an input streaming scenario, one assumes

Transducers with origin information. n ICALP,
volume 8573 oLLNCS pages 26-37. Springer, 2014.

Michal Chytil and Vojtech Jakl. Serial composition of 2yvnite-state
transducers and simple programs on strings.ICALP, volume 52 of
LNCS pages 135-147. Springer, 1977.

Hubert Comon-Lundh, Max Dauchet, Rémi Gilleron, Cristdgfding, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, and Marc T@himiee
Automata Techniques and Applicationsnline, November 2007. URL
http://www.grappa.univ-1ille3.fr/tata/|

B. Courcelle. Monadic second-order definable graph trastszhs: a sur-
vey. Theoretical Computer Scienc&26(1):53—75, 1994.

Bruno Courcelle and Joost Engelfriet. Book: Graph striecamd monadic
second-order logic. A language-theoretic approacBulletin of the
EATCS108:179, 2012.

K. Culik and J. Karhumaki. The equivalence problem for strghlued
two-way transducers (on NPDTOL languages) is decidaBl&M J. on
Computing 16(2):221-230, 1987.

Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definabilegstrans-
ductions and two-way finite-state transduceCM Transactions on
Computational Logic2(2):216-254, 2001.

Joost Engelfriet and Sebastian Maneth. Macro tree traessluattribute
grammars, and mso definable tree translatibm®rmation and Compu-
tation, 154(1):34-91, 1999.

Joost Engelfriet and Sebastian Maneth. Macro tree tramistabf linear
size increase are MSO definabl&IAM J. of Computing32(4):950—
1006, 2003.

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Strehilita of nested
word transductions. IFSTTCSvolume 13 ofLIPIcs, pages 312-324,
2011.

Emmanuel Filiot. Logic-automata connections for transfations. In
ICLA, volume 8923 oLNCS pages 30-57. Springer, 2015.

Emmanuel Filiot, Jean-Frangois Raskin, Pierre-Alainiey Frédéric Ser-
vais, and Jean-Marc Talbot. Properties of visibly pushdtramsducers.
In MFCS volume 6281 of NCS pages 355-367. Springer, 2010.

Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier,caRrédéric Ser-
vais. From two-way to one-way finite state transducerd.I@S pages
468-477. |IEEE, 2013.

Gauwin, J. Niehren, and S. Tison. Queries on XML streanth wi
bounded delay and concurrendgformation and Computatiqr209(3):
409-442, 2011.

Eitan Gurari. The equivalence problem for deterministio-tway sequen-
tial transducers is decidabl&IAM J. on Computingll, 1982.

J. E. Hopcroft and J. D. Ullman. An approach to a unified thewiry
automata.BELLTJ: The Bell System Technical Journd:1793-1829,
1967.

Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Vigiashdown
automata for streaming XML. IWWW pages 1053-1062. ACM, 2007.

P. Madhusudan and Mahesh Viswanathan. Query automata $beche
words. INMFCS volume 5734 o£NCS pages 561-573. Springer, 2009.

Franck Neven and Thomas Schwentick. Query automata oveer fiees.
Theoretical Computer Scienc275, 2002.

Joachim Niehren, Laurent Planque, Jean-Marc Talbot, anpdi8drison.
N-ary queries by tree automata. IMBLP, volume 3774 o£ NCS pages
217-231. Springer, 2005.

Jean-Pierre Pécuchet. Automates boustrophedon, senpede Birget et
monoide inversif libre RAIRO - ITA 19(1):71-100, 1985.

Francois Picalausa, Frédéric Servais, and Estebamrgim XEvolve: an
XML schema evolution framework. IBAG pages 1645-1650. ACM,
2011.

Jean-Frangois Raskin and Frédéric Servais. Visiblyhgasn trans-
ducers. In ICALP, volume 5126 of LNCS pages 386-397.
Springer, 2008. doi: 10.1007/978-3-540-705833& URL
http://dx.doi.org/10.1007/978-3-540-70583-3_32.


https://www.cis.upenn.edu/~alur/nw.html
http://www.grappa.univ-lille3.fr/tata/
http://dx.doi.org/10.1007/978-3-540-70583-3_32

L. Segoufin and C. Sirangelo. Constant-memory validatiostafaming
XML documents against DTDs. /CDT, volume 4353 of.NCS pages
299-313. Springer, 2007.

Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Earical of
deterministic top-down tree-to-string transducers isddde. INFOCS
pages 943-962. IEEE, 2015.

J. C. Shepherdson. The reduction of two-way automata ton@yeau-
tomata. IBM Journal of Research and DevelopmeB{2):198—-200,
1959.

W. Thomas. Languages, automata and logic. In A. Salomaa aRbz&n-
berg, editors,Handbook of Formal Languages/olume 3, Beyond
Words. Springer, Berlin, 1997.

A. Appendix
A.1 Two-way visibly pushdown automata
PrRoPOSITIONL. The relation~ is a congruence of finite index.

Proof. We considerR the set of binary relations ovep x D.
Obviously, R is finite. As traversals are subsetsRf~ is of finite
index. Let us now prove that is a congruence relation for the
binary operation and the unary oneg. . (for c € ¥.,r € %,).

From ~, we define four equivalence relations, ~i,, ~, ~
on@ x @ such that fore, 8 € {l,r}), we haveu ~qp v if

[ul~ N (Q x {bdir(a)} x Q x {edir(B)}) =
[v]~ N (@ x {bdir(a)} x @ x {edir(5)})

wherebdir(l) = edir(r) =— andbdir(r) = edir(l) =«.
Intuitively, (p,q) belongs to[w]., (respectively to[w]~, ) if
there exists a run ofl on w starting readingev from theleft side,
ie, with direction— in statep and leaves the word on theft, ig,
with direction<« (resp. on theight, ie, with direction—) in state

q.

The relation~ is uniquely determined by the four relations
~d,~y and in particular~ is a congruence iff all the
~, ~pe @re congruences.

Let us first notice that fot, one hage] ., = [¢]~
[€]~,+ [€]~, are the identity relation.

Let us considem, v, v,v" in N'(X) and assume that ~ v’
(and thusgu ~y v/, u ~i ', u ~q v/, u ~p v') andv ~ v'. We
considern:.v andu.’v’” and prove thati.v ~ u.'v’.

From the definition of runs and traversals, one has

Ny Nry
My Nlry

. = @ whereas

[wv]y = [l U fu]n, 0 ([0] g © [u] )" 0 [0]~y 0 [t~y
[w-)~y, = [~ 0 ([U]~y 0[]~y )™ 0 [0],

[wv]~y = [V]~y © ([l © [V]ny)" 0 U]y

[wtln = [V]~y U 0]y 0 ([u] vy © [0]0)" © [t~y 0[],
Hence,[u.v]~,, = [u'.v]~,, forall o, € {I,r} and so,

u.v ~ u'.v'. Let us point out that these definition are similar to
those defined for words in the case of two-way finite stateraata
(Shepherdson 1959) and thét.v).w]~ , = [u.(v.w)]~,, and
[t-€]npy = [et]n,, TOralla, 8 e {l,r}.

Now, let us consider, ' in A'(X) and assume that ~ v'.
We considercur = f.,.(u) andcu’'r = f.,.(u’) and show
that cur ~ cu'r. Expressing traversals orur is much more
intricate. To ensure that traversals abstract properlg,rare need
to forget about stack contents and thus, reason again omgsted
words when composing sub-runs@fr. Hence, new notations are
needed: we let fod in {+, —} andw € N (X)

d = El ) » &y /7<_7PY) € 6DUSh7 (p/7<_777 ¢ q, d) € 6p0p
Zy, (p,a) | (0, —,cp

zi = U @)oo U {(dh0}

TR\ B (57225 (q,0))

Ziea= {(p, qQ) | (p, <=7 p's—,7) € ™", (b, —,71,7,0,d) € 5”‘"’}

cw
er,d

Ui U

el T4y
(5———p")

{(pvp,)}o [w]wrr ° U

(@ ——L5(q,d))

{(d, )}

The expressiong)j , andZj’; stands both for left-to-left traver-
sal reading twice the initial letter; the former one represents a
back-and-forth move on whereasZ;’; implies that between the
readings ofc a left-to-left traversal ofw is performed. If the last
directiond is + then the reading head leaves the word, otherwise



the next reading will be again. The expressiori, , andZ;"; are Update(c, S, r)
defined dually. [ D S G s q

=1 U {®.a)}|olw]~,o U {@eo}

T \@ (P (@) wherel, = {S C Q x Q | SN I x F # (} and the transitions of
A, are defined as follows:
= U {®a} |olwlo U {wg@}| o Retun transitionsidg 2208, g with r € B, and S C
N\ Dy (7= (q.d) @xe ,
The expressiod|*" represents a direct traversal from left-to- ¢ Call transitions:S ), g7 with ¢ € S, 7 € 3, and
right, going once through andr. S,8',8" C Q x Q, iff S = update(c,S”,r) o S” where
Finally, the classegwr]~,, [cwr]~,, [cwr]~, and]cwr].,, are update(c, S”,r) = {(p,q) € @ x Q | Iy € T 3(p",¢") €
defined in Figurél3. S p 2T o andg” 22 q}
Hence, we indeed have thf. .(u)l~., = [cur]~,, = ) ) N
[cw'r]nyy = [fer(u)]~,, foralla, g e {l,r}. O The mappingO- associates to every return transition, and as-
sociates{p € Q | 3¢ € F.(p,q) € S} to the call transition
COROLLARY 1. For any2VPA A, deciding the emptiness df (ie g &S e This set corresponds to the set of statesich
L(A) = @) is EXPTIME-C. The same result holds f@2VPA. that the look-ahead constraipis satisfied.

TheDVPT Ty from X’ to A can then easily be derived from the
DVPT with look-aheadI” as the look-aheads tests can be checked
on the enriched alphab#&t . O

Proof. We detail the hardness proof by reduction from the
emptiness oft DVPA. The latter problem can be shown to be
ExpPTIME-hard from the EPTIME-hardness of intersection empti-

ness ofk deterministic top-down tree automata and a polyno- T.,-orem3. Given a letter-to-letteDVPT A and a2VPT B. we

mial translation of deterministic top-down tree automatdoi : o
. can construct 2VPT C that realizes the compositiati = B o A.
DVPA (Alur and Madhusudan 2009). We can then encode this If furthermore B is deterministic. then so g, °

problem as emptiness of B2VPA as follows: theD2VPA sim-

ulates one after the other ti&VPA's A, ..., A; once the word Proof. We first notice that since we're considering visibly push-
is read from left to right simulatingi;, if a final state ofA; is down machines, the stacks of both machines are always synchr
reached, one enters a state that move the reading head a-the b nized, meaning that they have the same height on each positio
ginning of the word and then switches to the initial statedof , Then, let us remark that when tB¥ PT moves to the right, we can
to read the input word once again. Hence, starting initiadlshe do the simulation in a straight forward fashion by simulgtiton
initial state of Ay, if the final state of4,, is reached then the input  he production of the one-way, which we can compute. It bezom
nested word belongs to all thé;’s. more involved when it moves to the left. We then need to reitied

- run of the one-way, and nondeterminism can arise. To byhéss t
A.2 Two-way visibly pushdown transducers let us recall that a similar construction from (Hopcroft asitar
LEMMA 2. Any unambiguou¥PT T can be written as the com-  [1967) exists for classical transducers, and that the remgni

position of twoVPT T; o T», whereT; is deterministic andl: is done through a back and forth reading of the input, backingck
letter-to-letter and co-deterministic. Furthermoreifis letter-to- the run up to a position where the nondeterminism is cleared,
letter, so isT. then moving back to the current position.

The main idea is that if we were to consider a hedge as a
Proof. It has been proved in (Filiot and Servais 2012) that every word over subhedges (see Figlide 4), we can use the Hopcroft-

unambiguousVPT can be transformed into BVPT equipped Ullman construction, given that we know the initial statel, the
with a look-ahead limited to the current hedge. Formallghsa state in which the one-way enters the hedge. To overcomenthis
transducer is defined as a trip(é, A, \) whereT is a DVPT, will ensure the invariant that the stack contains not ony gtack
A is a VPA with no initial states, and\ is a mapping from call symbols from the two transducers, but also at each step fiairen

transitions of7" to states ofd. Given a statey of A, we denote the state in which the one-way enters a hedge. Remark thatgha
by A, the VPA defined fromA by letting {p} be the set of initial to this, upon moving to the left of a call letter, the statetwf bne-
states. A call transition of 7" can then be fired at some position of  way is directly given by the information in the stack.

an input wordw only if the longest nested subword @ffrom this We now explain how we can treat subhedges as letters. First,

position belongs t&£(A;). while the subhedge alphabet is infinite, we are actually@sted in
Intuitively, the decomposition of &VPT with look-ahead their behaviour in the one-way. Thus we consider an autamvaabd

works as follows: the co-deterministic letter-to-letd¢PT does over the subhedge, but over their summaries, which are .fiiee

a first pass enriching the alphabet with the results of thie-bdwead can thus compute a finite automaton of the summaries, angt appl

tests. Then the deterministiéPT simulates thdVPT with look- the Hopcroft-Ullman construction on it. Consequently, veed to

ahead using this additional information. be able to compute the summaries of a given subhedge. Tlas-is e
Formally, let(T', A, ) be aDVPT with look-ahead fronk to ily done on the fly using the determinisation procedure oftRas.

A, with A = (Q, F,T, §). We first define the structured alphabet  Finally, note that applying the Hopcroft-Ullman constiaatto the

¥’ as the disjoint union of the set of call symbals x 2%, and the automaton of summaries gives the state in which the one-way e

set of return symbol&,. We define the co-deterministic letter-to-  ters the previous subhedge (when rewinding a run). Thisvalles
letter VPT T> = (A2, 02) from ¥ to ', where A, is defined as to maintain the invariant, and by reading this subhedge weom-
the co-determinisation od. Formally, let us denote biy x the set pute the state of the one-way at the previous position (frdrarey
{(¢,9) | ¢ € X}. We defineds = (2979, I1,idr, B, x29%%  a) we started).



lewrly = (2570 (T2 0 (227 0 T2 ) ) (24120 (T o (27 o T ) )
fewr]~, = (2570 (T o (Z7) o i) ) (e o (T o (2220 o 22
lewrly = (2227 0 (175 o (27157 o T2r) ) (T2 U (T2 0 (5157 0 227 )
fewr)ey = (22 U (152 0 (Z5/5) 0 T ) ) (2w U (157 0 (Z/5)" 0 T ) )

Figure 3. Relations of the transition congruence @nr, whereZﬁ’/jw anlef’{iW are defined respectively 5 , U Z%g and Zjj , U Z\’7.

cer

/

C1 77 C2 ® T2 .. Cn ®Tnp
Figure 4. The well nested wor@ciwiricawars . .. chwnry Can
be seen as a wordover letterg ¢;, S;, ;) whereS; is the summary

of w;. The position labelled by serves as initial position of the
word.

Note that the Hopcroft-Ullman routine is deterministic,dan
consequently the construction preserves determinism.

Formal construction. Let A = ((Q,4, F,T',9),01) be a letter-
to-letter DVPT and B = ((P,j,G,0,«),02) be a2VPT that
can be composed with. We assume that works on the alphabet
equipped with left and right markers and preserves theme Mhatt
it can easily be extended if it is not the case.

We construcC' = ((N, k, H,Q, 8), 03) a2VPT that realizes
the composition.

e N = Ny, W Ny W Ny & Ns; whereN,,,, N, and Ny correspond
to the classical sets of the Hopcroft-Ullman constructismnd

N is used to compute the summary of a subhedge. We have the

main modeV,, = PxQ, the back mod&, = PxQuWPx Q%
and the further modeV; = P x Q?, while N, = QY.
Note that there are also other states liked or states from
P x Q x {end} that were omitted. The total size of the omitted
states is linear i® and@.

® k= (3, 7) is the initial state.

e H = F x G is the set of final state.

e () can similarly toN be written as the disjoint union of stack
alphabets for the different modes. We h&¥g = Q x I' x ©,
W =Px(QVQ)x%,, Q2 =Px ((QxT)W(Q xT)?)
andQ, = Q% x %,

We now give the transition functiofl. Lowercase letters denote
element of its uppercase counterpart. The direction ofrsitian
is given by the sense of an arrow, and the resulting diredson
omitted if it doesn't change. Push transitions are denotéd a
+ symbol while pop transitions are denoted by-asymbol. For

example, we writd g, <, 7, ¢, +, ) in ***" asq’ <L ¢ and
(¢,—,7,q',+,7)in 7P asq — ¢/, .

e The first three items describe the cases when we are able to di-

rectly advance in the two runs. These are the simpler cabes. T
fourth corresponds to the end of the Hopcroft-Ullman carestr
tion, where all the needed information was computed. Inghes
cases, the production 6f; is the one of the corresponding tran-

sition of O3. Note that in all other cases, the productionOaf
will be empty and thus omitted.

c,+(q,7,0)

" (pg) D (g, dif Oi(g <2 ¢') = ¢ and
p < 4,

) ﬂ W.q),dif O1(¢ =2 ¢) = + and

p—>p d.

* (), d LD (g )it On(g <X g) = ¢ and
p’7d<’—p

r,+(a,7,0)

*(p',q),d «——= (p,q,q',~) where there existg”

such thal0, (¢’ == ¢’) =+ andp’,d ateil .

* When B moves to the left on a recall letter, we engage in the
Hopcroft-Ullman construction. In order to do that, we need t
compute the summary of the subhedge we are about to read.
Note that a similar transition happens when the automaton on
summaries rewinds one more step. Thus we have the following
transitions:

r+(p,q,7) (

v idg «———— (p,q).

e Computing a summary amounts to determininy/RA. Note
that we stop when we reach the height we are interested in,
which is where the stack first contains a stateByfwhich is
handle by the next item. Given a summayand ¢, r a call
and return letter respectively, we defib&date(c, S,r) =

{(a.) | 3(a1,42) € Sandy ¢ =% ¢y andgo = ¢'}.
This will reveal to be useful in the remainder of the construc
tion.

. r,+(S,r
[ |dQ (L

S.

. g & S whereS” = S’ o Update(c, S, ).

After reading the first subhedge, we get to the point where
the top stack symbol is of the forrfp, ¢, r). If there is only
one candidate, then there is no ambiguity. Otherwise, wi¢ sta
rewinding the runs.

« (p,q', end), — <=7 gif ¢/ is the only state such that

(¢, q) belongs tdUpdate(c, S, r).
—(p,q:7)

" (pR)
Update(c, S, r)}.

After reading the following subhedges, similar subcasegap
depending on whether the nondeterminism is cleared or not.
If there is only one candidate left, we store a state leading t
from the next subhedge, as well as a state leading to another
candidate. They will be used to know when we got to the correct
position. Otherwise we just update the set of partial runs.

S whereR = {(¢,¢) | (¢',q9) €



' (p,q,q),— LR g R(q) is defined RoUpdate(c, S, )

Q x{R(q)}andif R(q') is defined and different fromR(q).
c,—(p,R,r

* (p, R) S @R SwhereR’ = RoUpdate(c,S,r) and
R Z Q x {q} for anyq.

e It can happen that the nondeterminism has not been clearedVe have, for a production off’, ¢ (z) =

until we reach the beginning of the hedge. In the same way
that the Hopcroft-Ullman uses the initial state, we thenthse
information on the top of the stack to decide the candidate.

s (9,q,0,¢), — <=2 (5, R) where if¢” is such that

q = ¢, bothR(¢') andR(q") are defined and different.

Due to the definition, the model @VPT does not allow for di-
rect u-turns. Consequently, the u-turns have been pariaecktr
by specific states in the previous cases. We know explicit how
we handle them:

s (p,q,end) 2Py 0 whereq <1 ¢/, We also have

a subroutine that follows run ol on this subhedge until it
ends.

« (p,q,q") ST eqd where the stateead is a sub-

routine that only reads the subhedge until it pops the sthcke
information.

v read Z—0L) (p,q,q'). At the end of theread subrou-

tine, we start following two runs in parallel, in the same way
as in the next subcase.

c,+(q,7,0)
* (p,q,0,4) (p,q",q') whereg

5
When we are in states of, i.d. states of the fornfp, ¢, ¢’), we
simply follow the two runs in parallel, stackingand the current
states on the current height and the stack letters of both run
at each step nonetheless. This subroutine ends upon papping
stack letter that containswhere the two runs collide, meaning
we reached the original position. We now explicit what haygpe
on this position:

c,+
2 q//.

r—(p,a' )
"q —q> (p7 ql7q7’Y)7<_'

r,—(p,q1,7,92:7")

" (q,d) ———"="5 (p,q1,q,7), < if there existsg”

such thay == ¢’ andqg’ ==L ¢".

A.3 Expressiveness of Two-Way Visibly Pushdown
Transducers

THEOREMG6. An order-preserving transduction is definable in
MSO[nw2w] if, and only if, it is definable by a functioffV/PT.

Proof. The proof relies on the similar result for finite words
from (Filiot 2015) and the equivalence betweéBA andMSO,,
from (Alur and Madhusudan 2004). L& be a functionalVPT.
From [(Filiot and Servais 2012), we know that we can construct
an equivalent unambiguousPT 7" realizing the same function.
Using (Alur and Madhusudsn 2004), we can construchiO,,,
formula ¢ of the form3X, ... 3X g ¥(Xy,...,X|q|) that rec-
ognizesdom/(T"). Moreover, givenu in dom(T"), there exists a
unique assignment of the variablé§ satisfying+, such that a
variablexz € X; if, and only if, z quantify a position;j such
that the unique accepting run G on u is in stateq; on po-
sition j. Using ¢, we can then easily construct &MSO[nw2w]

Swithin the class ofVPT, the class of functionaVPT is decidable in
PTime (Filiot et all[201D)

#ransductioril™”’ using|Q| copies. The domain formula is, posi-
tion formulas arepy, () = ¢ Az € X,. The successor tran-
sition is given byo%? (w,y) = S(z,y) A ¢fos(®) A Dlos(y)
and we label the; copy of a node by the possibly empty pro-
duction of the transducer in stagereading the label of the node.

VaeAw a(z) where
alv

Agv = {a € A| 3¢ ¢ — ¢'}. Note that labeling by possibly
empty words is not restrictive as MSO transductions areeclasm-
der composition, and a simple transduction can extend wiatds
linear graphs and compress tabeled paths.

Now given an order-preserving1SO[nw2w] T', we construct
an unambiguou¥PT that recognizes the same function. Bds
order-preserving, for every = w1 ... u, in dom(T"), we can de-
composel’(u) inv1 ... v, Wherev; corresponds to the production
from position:. Let us callB the finite set of all possible; appear-
ing in a such decomposition. For anyin B, we use the formulas
of T' to construct a formula. (z) that holds on an input word
and a position if in the decomposition of"(u), v; = v. For any
sequence = (ci,...,c) Of |v| different copies ofl", we de-
fine ¢7(z) = /\z‘<k ¢,C5‘“61+1(x:x) A /\igk bpbs(T) A Pt (x) A
Nogr ~Ppos(x). The formulag, (x) is simply defined as the dis-
junction of the formulag7?(x) on all possible sequencés

Then using these formulas, we construct a formutaver the fi-
nite alphabek x B that recognizes the language= {(u, T'(u)) |
u € dom(T)}. We definey = @om AV (a,v)(z) — ¢o(x)
where ¢y, is obtained frompa,m by replacing every predicate
a(z) by V,cp(a,v)(z). Now thanks tol(Alur and Madhusudan
2004), we can construct BVPA that recognizes = L(v). Fi-
nally, we transform it into &/PT by replacing transitions reading
(a,v) into transitions reading and producing. SinceT realizes
a function, we obtain a function&PT, concluding the proof. O

PropPosITION3. Deciding the single use property on2¥PT is
EXPTIME-C.

Proof. We prove that this problem is equivalent to deciding
the emptiness of ®2VPA, which concludes the proof thanks to
Corollary(d.

Let us first remark that ifA is single use, it is single use with
respect to the set of all states that can produce a non empt) wo
Let A be a2VPT on an input alphabet. We define 2VPA B
on the marked alphabét x {0, 1} as follows. The transduces
first reads its input to ensure that there is exactly one ipositith
a 1. It then nondeterministically chooses a producing stated
simulatesA on its input. It finally accepts if it visits the marked
position twice in state;. Then A is single use if, and only if, the
language recognised ly is empty. Since the size @ is linear in
the size ofA, deciding the single use property is Exptime.

Conversely, letB be a2VPA. We construct 2VPT A as
follows. All existing transitions ofB are set to produce the empty
word, and every accepting transition is replaced by a back an
forth move on the last position, producing a single lettére
the producing transitions can only be fired 4nif there is a run
of B that fires an accepting transition. If it is the case, then the
corresponding run oM will visit the stateq twice in the last
position while producing non empty words. Thus the language
recognised byB is empty if, and only if,A is single-use. As the
size of A is linear in the size o3, we get the Exptime-hardness of
the single use problem. a

LEMMA 3. There is an MSO-definable nested word to word trans-
duction f which is not definable by strongly single-U3gvP T,

Proof. We explicit a transformation that is definable by an
MSO[nw2w] transduction but not by a strongly single-IB2VP T,



Figure 5. The transformatiory alternsn times between positions
left and right ofw,,. Thus it has to read,, at leastn times.

Consider an alphabét with some special lettersandr from
Y. andX, respectively. We define the transformatinvhich as-
sociates to a Woraigcw, cws . . . Wy 1CWRTWh_1 - . . Whrwirwo
where allw;, w; are non empty nested words and do not any con-
tainc, for 0 < i < n, the wordwowiwiw . . . wWp—1ws, 1wy, ItS
domain is then the set of nested words where aisymatched by
anr, and all letters: appear successively nested on a given branch.
The transformation is illustrated in Figurk 5.

Before giving theMSO[nw2w] that definesf, we explain how
itis not definable by a strongly single UBRVPT"*. As thew; and
w} are unbounded, they cannot be guessed by look-around. Thus
machine realizing it has to visit these subwords in the otdey
are output. But each walk from; to w} has to crossv,,. Thusw,,
is read at leastn times. Asn is not boundedf cannot be realized
by a strongly single usB2VPT"A,

Now we define aSO[nw2w] T that realizesf. In order to do
that, we define a binary predicaté(z, y) which holds isz andy
are call or return positions of a same hedge. Het( X ) be defined
by the formula:

Vo € X ¥e(z) — (Vy M(z,y)V (S(y,z) NXr(y)) >y € X)
A Zr(x) — (Vy M(y,z) vV (S(z,y) NEc(y)) = y € X)

with Xi(z) =V, ¢y, o(z) for i = ¢,r. Then a sefX satisfies
H..(X) if, and only if, it is closed by the relatiobelong to the
same hedgeWe then simply setd(z,y) = VX =z € X A
H:.(X) — y € X. We also define the parent relatiéf(z,y) =
3z H(z,2) A (V2" H(z,2") = z < 2") A S(y, z) which holds ify
is the call corresponding to the parentiof

We can now define the domain formula,,, = Vz c(z) —
(Fy (M(z,y) = r(y) A (Plz,y) — cy) A (Hz,y) A
c(y) — = = y) stating exactly what was mentioned earlier. The
transducefl” usesl copy, the position formulé,.s(z) = —(c(x)V
(Jy M(y,z) A c(y))) simply erases the labeled positions and
their matching, the labeling formulas simply maintain thbdls,
and finally the successor formuta (z, y) is defined by:

3z S(z,2z) A—(c(z) V (Fw M(w,z) Ac(w))) Ny = 2)

V (c(z) A32" M(z,2') ANS(Z,y))

V (32,2 M(2',2) Ae(2') A Neate(2',2") N S(2",y))
whereNext.(z,y) =z < yAc(y) AVzz < z <y — —c(z).0

THEOREM?7. Let f be a transduction from nested words to words.
Then f is MSO-definable iff it is definable by a (look-around)
D2VPT, i.e.,

MSO[nw2w] = D2VPTL} = D2VPT.,.

Proof. We prove the equivalenddSO[nw2w] = D2VPTL..

Proof overviewThis result is based on several results from
(Courcelle and Engelfriet 2012), on the class of deterrintsee-
to-word walking transducers (DTWT), possibly augmentethwi

a

visibly pushdown stack (then denoted DPTWT) and a regutzt-lo
around ability (denoted by an exponéaj, and possibly restricted
to linear-size increase the class of linear-size increassductions
(denoted by subscrigtsi), or to strongly single-use (denoted by
subscriptssu). We will define the most general model formally in
the sequel.

Let us also denote biSO[b2w] the class of MSO-definable
transductions from (ranked) trees to words. Then, it is shaw
(Courcelle and Engelfriet 2012) that

MSO[b2w] = DTWT'® = DPTWT/,

The inclusionMSO[nw2w] C D2VPTL} is proved using the
equality MSO[b2w] = DTWT'“. Due to determinism, DTWT
are always strongly single-use (otherwise they could bekstua
loop), i.e., DTWT® = DTWTY, (see [(Courcelle and Engelftiet
2012), in which itis just called single-use). Using a firbtld next-
sibling encoding of nested words into binary treedcns(w), we
haveMSO[nw2w] = MSO[b2w]ofcns, and thereford1SO [nw2w] =
DTWT!%, ofcns. Then, we show that DTWAE, ofcns C D2VPTLY
by simulating DTW12, that runs onfcns encoding of nested
words byD2VPTLR. In particular, when simulating tree walking
moves, one do not preserve the strong single-use restr;ttin the
resultingD2VPTL is single-use.

To show inclusionD2VPTL} C MSO[nw2w], we use the
equality MSO[b2w] = DPTWT;%;. Using fcns encoding, we get
thatMSO[nw2w] = DPTWT,%; ofcns = (DPTWT® o fcns)N LS,
where LS| denotes the class of linear-size increase tratisds.
Then, we establish the inclusioR2VPTL C (DPTWT® o
fens) N LSI. The single-use restriction @2VP T, ensures that
they define only transductions in LSI. ThenD2VPT:? can be
simulated by a DPTW running onfcns encodings of nested
words. Due to the encoding, pushdown moves of i3/PT are
simulated by pushdown moves to the 1st child by In8@TW T
and the look-around are translated in a straightforwardides
The resulting DPTWT does not use the stack while moving to 2nd
children.

As a matter of fact, putting things altogether, our resubal
shows that DPTW could be strengthen when they run on binary
trees, to the following pushdown behaviour, while retainmMSO-
expressiveness: they only need to push a symbol when mowing t

left children, and not when moving to right children.
To summarize, we show the following chain of inclusions:

D2VPTS} c ) (DPTWT" o fens) M LS
Ul (5) Nl (2)
DTWT ofcns D (4)  MSO[b2w] o fens = MSO[nw2w] (3)

where (1) and (5) are shown in this paper, (3) is immedia)eard
(4) come froml(Courcelle and Engelfriet 2012). We now prodee
the detailed proof.

Tree Walking Transducetset A be a ranked alphabet of binary
and constant symbols (ifis partitioned intoA, andAy). A tree
t of A is a term inductively defined by ::= f(¢,t) | a, where
f € Ar anda € Ao. We denote by Treasthe set of trees over
A. The set of nodes, denoted by; of a treet € Trees, is a
prefix-closed subset of1,2}* inductively defined asV, = {e}
and Ny, ¢,) = {e} U{i.mr | m € Ny,,4 € {1,2}}. For a node
n € N, we denote by(n) the label of node: in t. Let be afinite
(unranked) alphabet. A tree to word transduction is a famdtiom
Trees, into X*.

Let us explain informally the different classes of tree viradk
transducers we consider in this proof. A deterministic tceeord
walking transducer walks through the edges of a binary stet(
ing from the root node), and writes a word from left to right on
some output tape. In a stajef a treet and at a node, depending
on the label ofn, and the stat@, the transducer can move either



to the father ofn (if it exists, otherwise the run rejects), the first or
second child of: (if it exists, otherwise the run rejects), change its
internal state to a new state, and produces some partial evottae
output. It can also decide to stop the walk by going to a stuppi
stategs.

The class DTW1 denotes the class of deterministic tree to
word walking transducers with look-around (without pushkdo
store), defined similarly as DPTWTbut with a pushdown alpha-
betI" that consists of one symbého} only. In that case, we can
omit the pushdown symbols in the transitions, except thgaini

Such transducers can be augmented with look-around. We de-pushdown symbal, that allows to know whether the current node
fine look-around by an unambiguous bottom-up tree automaton is the root of the tree or not. Instead of keeping the symjgdh

Prior to starting the computation of the tree walking trarcst,
the tree, if accepted by the look-around automaton, is ¢éabbl
the states of the accepting run of the automaton. Then,itiars
are taken depending also on the look-around states.

Finally, walking transducers can be augmented by a (vigibly
pushdown store. Initially at the root the pushdown stackaios

the transitions, we use a boolean value which is true if threeot
node is the root, and false otherwise. Therefore, in DT%Wihe
transitions function has the following type:

R:QxPxA—-Y x({g}UQx{-1,1,2})
We say that a DTWH is strongly single-usé one any accepting

an initial symbolyo, and whenever the transducer goes one step ryn¢,...c, on a tree, a node € N; is not visited twice in the

downward, it has to push one symbol on the stack. If it moves on
step upward, it has to pop one symbol. At any moment, it cam als
read the top symbol of the stack.

Formally, adeterministic pushdown tree to word walking trans-
ducer with look-aroundfrom Treeg to X* is a tupleT =
(L,Q, qo,9s, T, 70, R) whereL is an unambiguous bottom-up tree
automatdlf} over a finite set of stateB (the look-around automa-
ton), Q is a finite set of stategy is the initial stateg, the stopping
state,I" is a finite stack alphabet with initial symbet, R is a
transition function such that

R:QxPxAXT =Y x({gs}UT xQ x {1,2}u@Q x {—1})

A configuration ofT" on a treet is a triple (¢, n, 8,u) € Q %
Ny x M x ¥*. For all treest € Trees,, if ¢ is accepted by the
look-around automaton, we defire; a binary relation between
consecutive configurations as follows: for@liy’ € Q, alln,n’ €
N, all 3,8 € T*, ally € T, all u,v € ¥, (g,n, By,u) —
(¢’,n’, B, uv) if the accepting run of labelsn by a statep € P
such thatg, p, t(n),y) € Dom(R) and either

e (stopping moveR(q, p,t(n),y) = (v,qs) andq’ = gs, n’ =
n, B’ = By, or

e (downward move R(q,p,t(n),y) = (v,v,q’,i) for i €
{1,2} and 8’ = Bv7, t(n) € Az, andn’ is thei-th child
of n, or

e (upward movg R(q, p,t(n),v) = (v,q’,—1) andn # ¢ (i.e.
n is not the root node)3’ = 3, andn’ is the father ofn.

A run of T on a treet is a finite sequence of configurations
coc1 . ..cm SUch thate; —¢ c¢i41 foralli = 0,...,m — 1. ltis
accepting ifco = (qo, €,70,€) andemn = (gs, n, 8, u) for some

n € Ny, B € TT,u € ©*. SinceR is a function andL is
unambiguous, there exists at most one accepting run pet tirgau

t, and we callu the output oft. The transduction realized by

is the set of pairg¢, ) such that is accepted by the look-around
automaton, and there exists an accepting rufi ofi ¢t whose output

is u. The class of deterministic pushdown tree to word walking
transducer8 is denoted by DPTWT.

7We refer the reader td_(Comon-Lundh et/al._2007) for a dedimitbf
bottom-up tree automata

8We have slightly changed the definition lof (Courcelle_andéfinigt[2012)

to simplify our presentation, but in an equivalent way, aasehspecial-
ized it to the tree-to-word setting. In (Courcelle and Efrgedl2012), look-
around are MSO-formulas on trees, with one free first-ordeiable, at-
tached to the transitions of the transducer: a transitionbeafired only if

its look-around formula holds at the current node. It is knahat such an
MSO formula¢(z) is equivalent to an unambiguous bottom-up tree au-
tomatonAy (Niehren et &l. 2005; Neven and Schwentick 2002) in the fol-
lowing sense: the automaton as a special set of selectiteg Stasuch that

on a treet accepted by the automaton, a nadés such thatt = ¢(n)

iff this node is labeled by a state 6fin the accepting run of the automa-

same state. As a matter of fact, it turns out that DTW\are always
strongly single-use (Courcelle and Engelfriet 2012).

MSO[b2w] is defined similarly asMSO[nw2w], except that
MSO formulas over the signatufes (z, y), S2(z,y), (a(z))aca }
are used to define the transduction, whe&rér, y) holds ify is the
i-th child of z. It is easy to show tha¥1SO[nw2w] andMSO[b2w]
are equivalent, modulo suitable encodings. In particwier,will
need the following equality:

MSO[nw2w] = MSO[b2w] o fcns (1)

wherefcns encodes nested words into binary trees. Let us describe
this encoding formally: LeE = . & X, be a structured alphabet.
We define the binary alphabét, = X, x X, and the unary
alphabetAo, = {L}. We definefcns the encoding of nested words

to binary trees inductively as follows, for alb,w’ ¢ N([)Y],

CE e, € Xy

fens(cwrw”) = (¢, 7)(fens(w), fens(w’))  fens(e) = L

We are now equipped to show the following two inclusions,akhi
will prove the desired result:

(2) DTWT™ o fens C D2VPTER

(3) D2VPTL} C (DPTWT“ o fens) N LST

Proof of inclusion (2)Let T = (L, Q, qo, ¢s, R) be DTWT®.
We construct D2VPTL 17 such thaf|T] o fens = [17].

Transitions ofT" are simulated only on call symbols, i.e. the
moves of 1" are simulated by moves i’ between call symbols.
For instance, leticaracscararsesrsra be a nested word, whose
fcns encoding is the tree

(C1, 7”1)((62, TQ)(J-v (037 7"3)((647 7‘4)7 (057 7"’J)(J-v J—))))

If T moves from(cs,r3) to its father(cz, r2), thenT’ will move
from cs to c2. If T"moves from(cs, 3) to its first child (c4, 74),
thenT” will move from c3 to c4. If T moves from(cs, r3) to its
second-childcs, 7s), thenT” will move fromcs to cs.

ton ont. If ¢1(x),...,¢n(x) are the look-around formulas appearing on
the transitions of the tree walking transducer, then byniakine product of
the unambiguous automatdy,, one obtains an unambiguous automaton
A, such that, on a treeaccepted by4,,, the state label of a node of

t in the accepting run afi;, contains enough information to decide which
look-aroundsp; (=) hold at that node or not.

Another modification of the definition af (Courcelle and Elfiget 2012) is
that we do not have-moves, i.e. transitions that stay at the same node. This
is circumvented by adding the possibility of producing saleymbols by

a single transition, in contrast to (Courcelle and Engelf2012).

Finally, our transducers produce words over*, while in
(Courcelle and Engelfriet 2012), they produce unary treesa sequence
of unary symbols followed by a constant symbol. As a consecgiewvhen

a constant is produced, the transducers _of (Courcelle agdlfiet|2012)
stop. In our definition, we rather have added a stopping.state



Therefore, one-step moves @fin a binary encoding,, of a
nested wordy are simulated by sequences of moveg'oin w. Itis
easy to see however that those sequences of moves can besdchie
by aD2VPT. The trivial case is a first-child move: it suffices to
move one-step to the right im. For the second-child movéd,’
has to move to the next call symbol at the right of current ate,
the same nesting depth: this is done by pushing one specidiay
~v2 when reading the first call, and moving to the right, untilis
popped. For a father move, it suffices to move left: if the ey
symbol is a call, thed” has arrived to the call corresponding to
the father node. Otherwise, the left symbol is a return symbo
again, a special symbel is pushed, to know, whef’ walks left,
whenever it is at the same depth as the initial call symbaiftdr
popping~¢, a call symbol is read again, then it corresponds to the
father. Note that these walks do not produce anything onutpib.

The look-aroundL of T is transformed into a look-around of
T’ such that, ifL labels a tree node labelléd, r) by a state, then
T’ will label the call symbolc by the statep, as well as the call
symbolr. It is possible, since bottom-up tree automata and visi-
bly pushdown automata correspond modulo first-child nittrg
encodings, while preserving unambiguity (Alur and Madtuzsu
2009). Therefore, i is the set of states df, then the set of states
of the look-around automaton @f is P x %,..

Then, a transitiorig, p, (¢, 7),u, (¢, d)) whered € {—1, 1, 2}
is simulated byT” by a sequence of transitions (depending on
whetherd = —1,d = 1 or d = 2) that starts in statg (with
look-around statép, r)) and ends in stat¢’, and performs moves
as explained before.

There is a last additional technical difficultfens encodings
contain the symbal , unlike the encoded nested words. Therefore,
T’ may move tol, while T' cannot. Moves to nodes labeled
can be simulated easily B’ by addinge-transitions, which can
in turn be removed while preserving determinism. It is néfialilt
but unnecessarily technical.

Finally, sinceT is necessarily single-use (due to non-determinism),

T’ is also single-use (the extra states added to simulatetepe-s
moves ofT" by several moves df” may be used several times at
the same tree node, but the transitions fired from thosesssaige
e-producing).

Proof of inclusion (3)Due to the single-use restriction, any
D2VPTA transduction is LSI. It remains to show thabavPT:?
can be simulated by a DPTWAT By using again the correspon-
dence between (unambiguous) visibly pushdown automatéuand
ambiguous) bottom-up tree automata, one can simulateltuir
arounds. Since DPTWT have the ability to push stack symbols in
both directions (first-child or second-child), it is notfiifilt to con-
struct a DPTWT® that simulates ®2VPTLA. As a matter of fact,
pushing symbols when moving to the second-child is not rezags
to simulateD2VPTL}: indeed, a second-child infans encoding
correspond to a next-sibling in the nested word, BAYPTA do
not use their stack for processing symbols that are at the septh
(they do not push “horizontally”). a
A.4 Inclusion into streaming transducers and
hedge-to-string transducers

THEOREM9. D2VPT ¢ STST andD2VPT ¢ dH2S**

Proof. The proofs of these two inclusions share a same inter-
mediate formal description of transformation. It turns that this
representation will be an extension of the finite transitidgebra
T 4 for someD2VPA A.

We recall that elements from the algefita are binary relations
over Q x D where( is the set of states aofl and can thus be
depicted as Boolean square matridels:, over@ x D. Hence, the
morphismur, associates with each word from A/(X) a matrix

from My, such thatur , (w)((p1,d1), (p2,dz)) is true if there
exists a run onw from (p1,d1) to (p2,dz) in A.

One may extend this notion to transducers as follows. For a
D2VPT A, we consider square matricdss over Q x D whose
values range over subsets &f. One can define a mapping
from A/ (X) to N4 such that for all wordsy from N (3), p(w)
is a matrix N4 satisfying thatNa((p1,d1), (p2,dz2)) is equal
to L if for eachwv in L, there exists a run o from (p1,d1)
to (p2,d2) in A producingv. Note in fact thatA being de-
terministic, L is either a singleton or the empty set. One can
actually prove that one can define an (infinite) algebra =
(Na, M4, (fer) (emyesowm, s € 4) such that'4 is associative and
V4 is its neutral element. Moreover, the considered mapping
turns out tox™4 be the canonical morphism frofi to N4. It is
worth noticing that for allp, d), (p’, d’), ur, (w)((p,d), (p’,d"))
is false iff ju , (w) ((p, d), (¢, d')) # 0.

The operationsg™4, N4 and fffﬁ.‘ can be represented as matri-
ces as well. To do so, let us first consider the two sets of sisnbo
= = {0 | (p ), (0, d) € Q x D} for a € {1,2}.
Ther], Iet./\74 be the set of matrices defingd overx D such that
for Na in NA, for all (pl,dl), (p27d2), NA((pl,dl), (p27d2))
is either the empty sep or a singleton set included into the set
of words (A U 2! U 22)*. Moreover, fore'4, the matrix is pre-
cisely the one with{e} on its main diagonal ands everywhere
else. Forfﬁ;‘, the elements of the matrix are actually included into
(A U EY*. The operation™4 deals with two matricesV} and
N?% and produces the matri%’ satisfying that for all(p1, d1),
(p2,da), N4 ((p1,d1), (p2,d2)) is obtained fromN;' the ma-
trix of .N4 by replacing everywhere iﬁ;,"((ph d1), (p2,dz2)) the
symbol z D@4 py N2 ((p,d), (p',d')) for a € {1,2}. The
application forfﬁ;* represented by some matr&ff’r is similar
with a single matrix as operand.

The matricesN;’ and N/*" can be defined by means of ex-
pressions similar to the ones defining recursively the edeince
classes of traversals. Hence, these matrices are defineddnsrof
unions, concatenations and Kleene star entrywise; thetaten-
tries of the matrices contain at most singletons and thagidestar
can be expressed as finite concatenations relies on thenileiem

of A.

From the infinite algebr& 4 and more specifically the matrices
representation of the operatdﬁs;{, and Nf‘” from this algebra,
we are going now to build a streaming tree-to-string tranedon
the one side and &H2S on this other side.

For streaming tree-to-string transducers, the idea is fmele
from aD2VPT A such a machiné& 4 to simulate the computation
of N4 (w) for any wordw or more precisely to compute the value
associated t¢(qr, —), (g5, —)) in this matrix,q; being the initial
state of theD2VPT A andg; the (final) state reached by after
readingw from ¢;.

We recall that we can define from the finite algebral 4
whose domain is Tray and we consideE® = {z@¥-@"4) |
(p,d), (p',d) € Q x D} for a € {1,2}.

For aD2VPA A, theSTST S is defined by(Trava, €4, ¥, x
Trava, 2', 85, u3?) where

o GE ("4, 0) = (€74, (¢, m™), v1a)

o S8 = (m A, (e, m"4)) = (mTATA f (mTA), ve,)
where v, is the identity onZ' and v, associate with each
D) the expression fromN((p,d), (p’,d’)) where the
matrix N is defined asN},.N4 24 (N?,), the matricesNy,



SatiSfying for all (p17 dl)' (p27 d2)1 NFd((plv d1)7 (p27 d2)) =
gPrd)2.42) (for gl o € {1,2}).

Let us now consider the case of deterministic hedge-taegtri
transducer. We first define the bottom-up deterministic lab&ad
automatonB. as (Trava, {¢4},05,) wheredg, is the set of
rules of the form{(m™4.m4 fo4 (m'™4), ¢, r,m™, m'™4) with
mT m'T4 € Trava.

Now, we define thelH2S H 4 as follows: the set of stat€gr ,
is {qr} U Trava x (Q x D)?, ¢z is the initial state, and the set of
final states i), . Now, for the transition function, we define

Ta T
0(qr,c,rymy ™ nyt) =

wlah @292 (nZA (g1, d1), (g2, d2)))(wa)]
5((m™, ((p,d), (¢, d))), c;r,m"™) =
wlat @292 (A (g1, d1), (g2, d2))) (wa)]
where

o foranyn;*, ny* suchthat fc (ny*)."Any* ) (a1, =), (a5,
)) is true for someyy € F.

o for anym] 4, m34 such thatfe 4 (mj4)."am34 = m™ and
((p,d), (p',d")) € m"+ and
e w is equal to the wordV ((p, d), (p’,d’)), N being the matrix
YA (N} N4 N2, where the matrixV, satisfies for alle €
{17 2}' for all (p17 dl)' (p27 d2)1 N?d((ph d1)7 (p27 d2)) =

,d1),(p2,d
w((ym 1),(p2 2)_

Let us prove now that the inclusions are strict. The tramséor
tion serving as a counter-example is the same for the tweetas
We consider a transformatidh over the input alphabet. = {c}
andX, = {r} and the output alphabdt}. This transformation
takes as an input words such(as)™ for any naturah and outputs
a®"~1. T is given by thedH2S with a single state; and with a
universal look-ahead automaton withas unique state by

8(q, ¢, q") = aq(z1)q(z1)

The transformatiol” can also be defined bySTST with a single
stateq, a unique register variabl& and a unique stack symbel
The transitions are given by

* 7" (g,) = (2,7, {X > aX X))
* 57(q,17) = (g, {X = X})

The transformatioril” cannot be realized by somie2VPT;
indeed, for such a machine with stack alphabein the shallow
inputs of the domain, the possible stacks occurring in ru@gigher
L or the form~ for v € T'. Hence, the possible behaviours of
suchD2VPT are similar to the ones of a deterministic finite state
transducer. It is known that deterministic finite state schurcers
realize only functions that are linear-size increase; ihisot the
case of the transformatidh. a

A.5 Unranked Tree Walking Transducers

Unranked Trees Let A be a finite set of symbol&/nranked trees

t over A are defined inductively as ::= a | a(t1,...,tn), for
alla € A, alln > 1. Unranked trees ovek can be identified
(modulo renaming of nodes) with structures over the sigeaiu
that consists of thérst-child predicatefc(z, y) that relates a node
z to its first-childy, thenext-siblingpredicatens(x, y) that relates

a noder to its next-siblingy in a sequence of unranked trees, and
a(z), for all a € A, that holds true in node if it is labeleda. In
addition, we also add parentpredicateparent(x,y) that relates

a node to its parent.

For instance, the unranked treéb, c(a), ) is identified with
the structure whose set of nodegis1, 2, 3, 21}, where the first-
child predicate is{(e, 1), (2,21)}, the next-sibling predicate is
{(1,2),(2,3)}, thea predicate is{e, 21}, the b predicate is{1}
and thec predicate is{2,3}. The parent predicate is given by

{(1,€),(2,¢),(3,¢),(21,2)}.

Unranked Tree Walking Transducers They are defined similarly
as ranked tree walking transducers, except that they marey al
the next-sibling and first-child predicates. They are egedbwith
a (visibly) pushdown store such that whenever they go down th
first-child, they have to push some symbol, whenever theymo u
to the parent of a node, they have pop one symbol from the .stack
However, when they move horizontally along next-siblingdif
cates, they do not touch the stack. Before applying a tiansit
they can test whether the current node is the root, is thedfiisd
of some node, the last-child, or a leaf. Their move have todve c
sistent with the result of such a test. They are also equipptd
staymoves that stay at the same tree node.

Formally, a deterministic pushdown unranked tree to word
walking transducer(DPT,WT) from unranked trees ovef to
" isatupleT = (Q, qo,¢s, ', v0, R) whereQ is a finite set of
statesyy is the initial stateg; the stopping statd; is a finite stack
alphabet with initial symbol, R is a transition function such that

R : QxAXI'x{0,1}* = " x ({gs JUI'x Qx {{}UQx {—, +, 1, O})

A configuration ofT on a treet with set of nodesV; is a triple
(g,n, B,u) € Q x N; x 't x ©*. We define—, a binary relation
between consecutive configurations as follows:Let N, labeled
a € A. Leth = (bge, bic, br, bi) € {0,1}* such thaby. = 1iff n

is a first-child,b;. = 1 iff n is a last-childp,, = 1 iff n is the root,
b, = 1iff nisaleaf. Then,foralf,¢’ € Q,alln’ € N;,all3,8 €

r*aly el alu,v e X* (g,n,By,u) = (¢,n, 8, uv) if

o (Stopplng mOVPR(q7a777Z_)) = (qus) andql = (s, nl =n,
B = By, or

e (downward moveR(q,a,v,b) = (v,7',q¢',1), B = Bvy,
andfc(n,n’), or,

e (upward movg R(q,a,~,b) =
parent(n,n’), of,

(7‘)7 qu/l\) and /Bl = 57 and

o (left sibling move R(q, a,~,b) = (v,q¢’,+) andg’ = 3, and
ns(n’,n), or,

o (right sibling mov¢ R(q, a,~,b) =
ns(n,n’).

(v,q’,—)andp’ = 8, and

o (stay moveR(q,a,v,b) = (v,q’,0) ands’ = 3, andn = n’.
Arun of T on an unranked trefeis a finite sequence of configu-

rationscocy . .. cm Such that; —; ¢;41 foralle =0,...,m — 1.
It is accepting ifco = (go, r, Y0, €), Wherer is the root node of,
andc,, = (gs,n, 8, u) for some nodex of t, 3 € I't, andu € X*.
SinceR is function, there exists at most one accepting run per input
treet, and we call: the output oft. The transduction realized by
is the set of pairgt, ) such that there exists an accepting rufof
ont whose output is:.

Equivalence between D2VPT and DPT,WT Modulo nested
word linearisation of unranked trees, the two models arévagu
lent. Let us briefly sketch why.

AssumeT is a DPT,WT and let us construct an equivalent
D2VPT T". First notice that whed is positioned at some node
n, its stack height is exactly the depth of noden the tree, as
well as the depth of the call and return symbols correspandin
to n in the linearisation. Also note thaf' can always read the
top symbol of the stack, whil@” only reads it when it pops a
symbol. This issue can be overcome by always keeping in the



state of 7" the top stack symbol. It remains to see h@W can
simulate the moves df and its tests (root, leaf, etc.). We assume
that if T is positioned at some tree node thenT” is positioned
at the call positiorc,, corresponding to: in the linearisation of
the input tree. Then, ii" moves fromn to its next-siblingn’, T”
has to traverse the whole linearisation of the subtree doate. It
can be easily done by pushing a special symbol when reaging
forward, which is popped once the matching return positibn,0
is met. Simulating previous-sibling moves is done symmatiy.
Suppose now that a tree nodéis the parent of a tree node In
the linearisation, it means that there is a (sub) nested wbtde
form c,,y w1 chwernwsr,, Wherew:, wa, ws are nested words. To
simulate a move dt” fromn ton’, T’ has to move backward from
cn t0 ¢,/ traversingw;. Again, by using a special stack symbol
when traversinguv;, 7" can detect when it reads, : It is the first
time it does not popped the special stack symbol. To simalatay
move,T” just move one-step forward and one-step backward.

Finally, we have to show ho@W” can simulate the tests (root,
leaf, etc.). By using a special bottom stack symidl,can know
when it is at the root. The other tests can easily be perforoyed
T': For instance, to detect thdt’ is positioned at a call position
that corresponds to a first-child, it suffices to go one-stggkvard
and check whether the previous symbol is call.

Conversely let T be aD2VPT whose input are assumed to
be linearisations of unranked trees. To construct an elguita
DPT,WT T’, one again has to show how the movesTofare
simulated by moves df”.

If T"moves forward by reading a call symhbg], then its next
position can be either that of a call symhg} (which means that
n' is the first-child ofr), or that of return symbat,, (which means
thatn is a leaf). Using a tesf’ can decide whether itis at a leaf or
not. In the first case, it uses a stay transition and in thergbcase,
it uses a first-child transition.

Other cases are treated similarly: For instance] iimoves
forward by reading a return symbel},, then if the next symbol
is a call symbok,,., it means that’ is the next-sibling of., and if
the next symbol is a return symbnl,, it means that. is a parent
of n. Using tests7" can decide what moves to perform, either next-
sibling or parent.
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