
128 February 1998/Vol. 41, No. 2 COMMUNICATIONS OF THE ACM

C losed-source proprietary software, which is seemingly
the lifeblood of computer system entrepreneurs, tends

to have associated risks:

• Unavailability of source code reduces on-site adapt-
ability and repairability.

• Inscrutability of code prohibits open peer analysis
(which otherwise might improve reliability and
security), and masks the reality that state-of-the-art
development methods do not produce adequately
robust systems.

• Lack of interoperability and composability often
induces inflexible monolithic solutions.

• Where software bloat exists, it often hinders
subsetting.

• Proprietary interface standards complicate system
integration.

A well-known (but certainly not the only) illustration
of these risk factors is Windows NT 5.0. It reportedly
will have 48 million lines of source code in the kernel
alone, plus 7.5 million lines of associated test code.
Unfortunately, the code on which security, reliability, and
survivability of system applications depend is essentially
all 48M lines plus application code. (Recall the divide-by-
zero in an NT application that brought the Yorktown
Aegis missile cruiser to a halt [Risks Forum 19, 88 (Jul.
22, 1998)].) In critical applications, an enormous amount
of untrustworthy code may have to be taken on faith.

Open-source software offers an opportunity to surmount
these risks of proprietary software. “Open Source” is regis-
tered as a certification mark, subject to the conditions of
The Open Source Definition (www.opensource.org/
osd.html), which has various explicit requirements: unre-
stricted redistribution; distributability of source code; per-
mission for derived works; constraints on integrity;
nondiscriminatory practices regarding individuals, groups,
and fields of endeavor; transitive licensing of rights; con-
text-free licensing; and noncontamination of associated soft-
ware. For background, see the opensource.org Web site,
which cites conformant examples. Additional useful sources
include the Free Software Foundation (www.gnu.org). The
Netscape browser (an example of open, but proprietary soft-
ware), Perl, Bind, the Gnu system with Linux, Gnu Emacs,
GCC, to name a few, are further examples of what can be
done. Also, Diffie-Hellman is now in the public domain.

In many critical applications, we desperately need oper-

ating systems and applications that are meaningfully
robust, where “robust” is an intentionally inclusive term
embracing meaningful security, reliability, availability, and
system survivability, in the face of a wide and realistic
range of potential adversities—which might in some cases
include hardware faults, software flaws, malicious and acci-
dental exploitation of systemic vulnerabilities, environ-
mental hazards, unfortunate animal behaviors, and so forth.

We need significant improvements on today’s software,
both open-source and proprietary, in order to overcome myriad
risks (see the RISKS archives (catless.ncl.ac.uk/Risks/) or my
Illustrative Risks document (www.csl.sri.com/~neumann/).
When commercial systems are not adequately robust, we
should consider how sound open-source components might
be composed into demonstrably robust systems. This
requires an international collaborative process, open-ended,
long-term, far-sighted, somewhat altruistic, incremental,
and with diverse participants from different disciplines and
past experiences. Pervasive adherence to good development
practice is also necessary (suggesting better teaching). The
process also needs some discipline, in order to avoid rampant
proliferation of incompatible variants. Fortunately, there are
already some very substantive efforts to develop, maintain,
and support open-source software systems, with significant
momentum. If those efforts can succeed in producing
demonstrably robust systems, they will also provide an
incentive for better commercial systems.

We need techniques that augment the robustness of
less robust components, public-key authentication, cryp-
tographic integrity seals, good cryptography, trustworthy
distribution paths, trustworthy descriptions of the prove-
nance of individual components and who has modified
them. We need detailed evaluations of components and
the effects of their composition (with interesting opportu-
nities for formal methods). Many problems must be over-
come, including defenses against Trojan horses hidden in
systems, compilers, and evaluation tools—especially when
perpetrated by insiders. We need providers who give real
support; warranties on systems today are mostly very
weak. We need serious incentives including funding for
robust open-source efforts. Despite all the challenges, the
potential benefits of robust open-source software are wor-
thy of considerable collaborative effort.

Peter G. Neumann (www.csl.sri.com/neumann/) chairs the
ACM Committee on Computers and Public Policy.

c

Robust Open-Source Software

PA
U

L
W

A
TS

O
N

Peter G. Neumann

Ins ide

http://crossmark.crossref.org/dialog/?doi=10.1145%2F293411.293491&domain=pdf&date_stamp=1999-02-01

