
4

Boosting Neural POS Tagger for Farsi Using Morphological
Information

PEYMAN PASSBAN, QUN LIU, and ANDY WAY, ADAPT Centre,
School of Computing, Dublin City University, Ireland

Farsi (Persian) is a low-resource language that suffers from the data sparsity problem and a lack of efficient
processing tools. Due to their broad application in natural language processing tasks, part-of-speech (POS)
taggers are one of those important tools that should be considered in this respect. Despite recent work on
Farsi tagging, there is still room for improvement. The best reported accuracy so far is 96%, which in special
cases can rise to 96.9%. The main problem with existing taggers is their inefficiency in coping with out-
of-vocabulary (OOV) words. Addressing both problems of accuracy and OOV words, we developed a neural
network-based POS tagger (NPT) that performs efficiently on Farsi. Despite using less data, NPT provides
better results in comparison to state-of-the-art systems. Our proposed tagger performs with an accuracy of
97.4%, with performance highly influenced by morphological features. We carry out a shallow morphological
analysis and show considerable improvement over the baseline configuration.

CCS Concepts: � Computing methodologies → Natural language processing; Neural networks;
Artificial intelligence;

Additional Key Words and Phrases: POS tagging, Farsi, morphological analysis

ACM Reference Format:
Peyman Passban, Qun Liu, and Andy Way. 2016. Boosting neural POS tagger for Farsi using morphological
information. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 16, 1, Article 4 (July 2016), 15 pages.
DOI: http://dx.doi.org/10.1145/2934676

1. INTRODUCTION

Part-of-speech (POS) tagging1 can be viewed as a crucial step for many natural lan-
guage processing (NLP) tasks. Tags are frequently used in many applications (Machine
Translation, Information Retrieval, Semantic Parsing, etc.), so having a precise and
robust tagger is essential. For some languages, such as English and German, tagging
accuracy is about 98%, but tagging is still not a solved problem [Giesbrecht and Evert
2009]. Despite the existence of many solutions, there remain several unanswered
questions. Manning [2011] tried to address some of those challenges. Size of training
data, tagging mechanism, language type, and even implementation method are all
parameters that can affect a tagger’s performance.

HunPos [Halácsy et al. 2007] is a reimplementation of the TnT tagger [Brants 2000]
that works more precisely and quickly just because of a more efficient implementation.

1Wherever we use tagging/tagger/tag in this article, it refers to POS tagging/tagger/tag.

This research was supported by Science Foundation Ireland through the CNGL Programme (Grant
12/CE/I2267) in the ADAPT Centre (http://www.adaptcentre.ie) at Dublin City University.
Authors’ addresses: P. Passban, Q. Liu, and A. Way, ADAPT Centre, School of Computing, Dublin City
University, Dublin, Ireland; emails: {ppassban, qliu, away}@computing.dcu.ie.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2375-4699/2016/07-ART4 $15.00
DOI: http://dx.doi.org/10.1145/2934676

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

http://dx.doi.org/10.1145/2934676
http://dx.doi.org/10.1145/2934676

4:2 P. Passban et al.

It tags English with an accuracy of 96.58%, whereas it works with an accuracy of 98.24%
for Hungarian, which is a morphologically rich language. Mohseni and Minaei-Bidgoli
[2010] used a dataset of 10M words to train a tagger, and although they benefited from
morphological features of words to improve the tagging accuracy of Farsi, their results
are not promising (detailed information in the next sections). A dataset of 10M words
is large enough to provide quite precise results, but efficient use of that data is another
issue altogether. In our case, we also use the same dataset as the state-of-the-art tagger,
but with less data we obtain better results.

In this research, we work with neural networks (NNs), which usually depend on
a set of parameters that may be very sensitive to implementation details. To obtain
accurate results, the tagging parameters should be considered carefully, and the NN
should be designed to be compatible with the tagging task. We discuss the impact of
various factors in Section 4 and show how they can affect the whole pipeline.

Applying NN to the problem of POS tagging and to any classification task in general
is not a new research topic. Many early works such as the POS tagger of Schmid [1994]
and some recent works like Collobert et al. [2011] used NNs, but recently this field
has become much more popular. In 2006, a breakthrough occurred when Hinton et al.
[2006] introduced a new training algorithm for large-scale/deep NNs and attracted
attention to NNs. Using those types of algorithms along with newly developed coding
platforms such as Theano2 [Bergstra et al. 2011], Torch3 [Collobert et al. 2012], and
Caffe4 [Jia et al. 2014] made the construction and implementation of NNs much easier.

One work that is quite similar to ours was recently reported by Fonseca et al. [2015].
They used the NN as a POS tagger and obtained very good results for Portuguese. Prior
to their work, the best reported accuracy for Portuguese was about 80%, but with their
proposed NN-based tagger, they achieved an accuracy of 97%. With regard to Farsi,
tagging performance was not very good prior to 2004. All efforts were made to develop
rule-based taggers at that time, which were unsuccessful [Megerdoomian 2004]. In
2004, the BijanKhan corpus, a collection of 2.6M manually tagged words [Oroumchian
et al. 2006], was developed. It persuaded researchers to apply data-driven models to
Farsi, but thereafter a new problem appeared. The data problem was solved to a large
extent, yet it was (and still is) difficult to fine tune existing taggers for Farsi owing
to its rich morphology and inconsistent orthography. To demonstrate this difficulty,
only Raja et al. [2007] and Seraji [2011] could achieve good results. They used TnT
and PerTag, obtaining an accuracy of 96.64% and 96%, respectively. Accordingly, data
representation is pivotal in Farsi tagging. Data should be normalized before tagging
and morphological decomposition can help to boost tagging performance. Shamsfard
et al. [2009] addressed these types of challenges with Farsi text normalization.

In this article, we describe a multilayer feed-forward perceptron (MLP), trained and
used for the purpose of tagging. It provides an internal representation of input data
by passing it through hidden layers and generates output by estimating the most
probable tag class for the target word (the word that is going to be tagged). Our main
contribution in this work is introducing an NN-based tagger that (a) is robust to out-
of-vocabulary (OOV) words and tags them better than previous taggers, (b) provides
better performance in comparison to the state-of-the-art tagger, and (c) efficiently uses
data and benefits from morphological features.

The structure of the article is as follows. Section 2 discusses the training data and
challenges with data preparation. We performed shallow morphological analysis to

2http://deeplearning.net/software/theano/.
3http://torch.ch/.
4http://caffe.berkeleyvision.org/.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

http://caffe.berkeleyvision.org/.

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:3

boost the tagging accuracy, which is also discussed in Section 2. Section 3 explains
our network. Section 4 includes experimental results. Section 5 briefly reviews other
models together with a comparison of our tagger, whereas Section 6 concludes the
article along with some avenues for future work.

2. FARSI LANGUAGE AND THE CORPUS

In terms of orthography and morphology, Farsi is one the most complicated languages
for any processing purposes. We briefly address some of the main problems with this
language, which can easily mislead any POS tagger. In addition to common problems,
such as ambiguity and disjoint constituents, Farsi has its own challenges. Light verbs
and compound verbs are quite common in this language. Farsi is written with Perso-
Arabic scripts, which by nature are problematic for coding purposes and automatic text
processing. Unlike other languages, some Farsi words include interword zero-width
nonjoiner spaces or semispaces. Semispaces are nonprinting characters and usually
are incorrectly written as regular space characters that may generate quite different
results (U+0020 and U+200c are the Unicode values for space and semispace, respec-
tively). As an example, the correct form of the word greedy in Farsi5 is āstyn•drāz, with
a semispace character (between n and d sounds). Clearly, the tag for this constituent is
an adjective. If it is written with a space as in styn◦drāz, it means “long sleeve,” which
is a completely different meaning. When the semispace is wrongly substituted/written
with a regular space character, the constituent is decomposed into two segments of
āstyn (“sleeve”) and drāz (“long”), whose tags are a noun and an adjective in this case.
This is a challenging issue in Farsi tagging.

Another problem is the presence of multiple writing forms for some characters.
Farsi characters like y and k can be written in several forms. The diacritic problem is
another issue. Words can appear both with and without diacritics. Diacritics are always
pronounced but not written in most cases. This can be confusing for automatic tools
like POS taggers that work at the word level, where multiple and inconsistent forms
of words are encountered. Problems with the Farsi writing system are not limited
to these cases only, but the cases mentioned are the most frequent. To solve these
types of problems, we use an in-house Farsi text normalizer to performs tokenization.
Using the DIN transliteration standard, it encodes Farsi letters to their corresponding
Latin forms. The Latin form is easier for automatic text processing purposes. Then the
normalizer corrects incorrect space usage and substitutes any instances with semispace
forms.

Farsi is a morphologically rich language (for more details on Farsi morphology, see
Perry and Kaye [2007]), and therefore is possible to make up different words by chang-
ing affixes. As an example, the word āmd (“(s)he came”) is a verb. If it comes with
prefix dr, the new word is dr+āmd, which means “salary” with the noun tag, and if it
comes with the prefix kār, the word is kār+āmd, meaning “efficient” with an adjective
tag. Both derivational and inflectional affixes are quite common in Farsi, and as can be
seen, there is valuable information that morphology provides for processing purposes.
For this reason, we decided to perform some morphological analysis.

2.1. Shallow Morphological Analyzer

Unfortunately, there is no reliable and publicly available morphological analyzer for
Farsi. Accordingly, we performed shallow morphological analysis. We developed an al-
gorithm to separate the stem of each word from its affixes. Our analyzer works on

5We used the DIN transliteration standard to show the Farsi alphabets. Semispace and space are shown
with the • and ◦ characters, respectively; see http://en.wikipedia.org/wiki/Persian_alphabet.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

http://en.wikipedia.org/wiki/Persian_alphabet

4:4 P. Passban et al.

top of a stemmer/lemmatizer. By use of Perstem,6 a free Farsi stemmer, first words
are stemmed and then we try to extract affixes and variations according to stems. By
affixes, we mean any prefixes and suffixes that appear before and after the stem, and
by variations, we mean any differences between the word after removing affixes and its
corresponding stem. In some cases, after removing affixes, the remaining constituents
are different from the stem form that we call a variation. To provide further clarifica-
tion, we give an example in English, although as mentioned, we applied this method
to Farsi. The stem for the word prestudies is study, where pre and es are the prefix
and suffix, respectively. What remains after elimination of the affixes is studi, which
is different from the stem form study. We call the difference between the word and its
stem a variation, and based on the definition in this example, the variation is y → i.
What the shallow morphological analyzer generates as its output is a symbolic vector:7

[prefix: pre, variation: stem− y + i, suffix: es].

All of these features (prefixes, suffixes, and variations) cause a considerable boost in
tagging, and we use them all in our tagger. To implement the shallow morphological
analyzer. the Perstem stemmer is used. After extracting the stem, we try to find a
substring in the input word that best matches the stem. By the best-matching substring,
we mean a portion of the string that shares the maximum number of characters with
the stem. What follows that substring is considered the suffix, and what appears before
is separated as the prefix. Then any variation is found. To extract the variation, we fine
tuned the edit-distance algorithm [Masek and Paterson 1980] using three fundamental
operations of delete (deleting the last character of a given string), shift (shifting one
character to the left),8 and insert (inserting a specified character to the end of a given
string) to reach the substring from the stem. For the aforementioned example, the best
substring that matches the stem is studi, as it has the same length as the stem and
covers all letters of it. Applying the sequence of [delete(), insert(i)] operations, we can
obtain studi from study.

Clearly, this type of processing would not be precise. In the last example, from a
linguistic point of view, s should be the suffix (not es). In a case where the difference
between substring and the stem is considerable, the algorithm may fail to find the
correct variation. Furthermore, many other problems may occur. Because of these
challenges, we call this process shallow analysis. As far as Farsi is concerned, it should
be mentioned that most of the affixes are inflectional, and also in almost all cases,
the stem is the same as the subword after removing affixes. Accordingly, this type
of processing can provide us with useful and approximately correct information. In
Section 4, we will see that this type of information enhances tagging accuracy quite
dramatically.

2.2. Training Corpus

There are only three tagged corpora for training any data-driven POS tagger in Farsi.
The Bijankhan corpus9 is a freely available corpus of 2.6M manually tagged words
and is used in most research work. The Bijankhan corpus has several problems in its
tagging scheme. It uses a very fine-grain tagset of 550 tags. Obviously, this makes the
tagging task difficult, but fortunately there are some smaller tagsets for the Bijankhan
corpus and some instructions on how to reduce the tagset size. In our experiments, we

6http://sourceforge.net/projects/perstem/.
7This vector is different from numerical feature vectors of NN, so we call this a symbolic vector.
8The Farsi writing system is left to right, and this command shifts characters to the left-hand side.
9https://en.wikipedia.org/wiki/Bijankhan_Corpus.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

https://en.wikipedia.org/wiki/Bijankhan_Corpus.

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:5

used a standard tagset for Bijankhan with 40 different tags, which was proposed by
the data development team.

UPC is another Farsi corpus developed by Seraji et al. [2012] and is a modified
version of Bijankhan with additional sentences including 2.7M words annotated with
32 POS tags.10 Another corpus that includes 10M tagged words is the Peykareh corpus
[Bijankhan et al. 2011], which unfortunately is not publicly available. In Farsi NLP
tasks, the Bijankhan corpus is frequently used, and to make our work comparable, we
also used this dataset.

3. NETWORK ARCHITECTURE

For the purposes of time and structural complexity, we tried to design a simple archi-
tecture for our network. There are many neural taggers [Prezortiz and Forcada 2001;
Zheng et al. 2013] that use deep architectures or complex models like recurrent net-
works; however, in our experiments, we used an MLP. As a general-purpose function
approximator, theoretically MLP is able to estimate any type of function or equiva-
lently able to find any type of mapping [Hornik et al. 1989]. Tagging obviously is a
classification task in which an input vector is mapped to a specific class. We used MLP
as our classifier. Our MLP architecture includes three main modules, which we discuss
next.

First is the representation module. Words are symbolic constituents that should
be represented numerically and efficiently. This is the most important parameter that
directly affects the network performance. There are several ways of representing words.
For this purpose, we used Word2Vec [Mikolov et al. 2013] and GloVe [Pennington et al.
2014]. We first convert our vocabulary into vectors. The dimension of word vectors also
has a considerable effect on the final accuracy.

The second module includes hidden layers. In our experiments, we used a different
number of hidden layers with various sizes. The number of hidden layers and their size
help us to control the accuracy and the convergence speed. In our hidden layers, we
used tanh units. Nonlinearity is a key feature in NNs, and there are several nonlinear
functions (sigmoid, hardtanh, tanh, qubic, etc.), of which the most compatible nonlinear
unit to our architecture was tanh. The value of the tanh function for any given input a
is computed as in (1):

tanh(h)
i (a) = ea − e−a

ea + e−a . (1)

Equation (1) describes the behavior of the i-th tanh(.) unit in the hidden layer h. In an
NN, what is taken by a hidden layer is a vector of W (h)x + b(h)

i , where W is a weight
matrix, b is the bias, and x indicates the input vector from the previous/input layer.
Figure 1 illustrates the values and computations.

The third module of our network is the prediction layer. The output of each hidden
layer is passed to each successive hidden layer, and finally the last one passes its data
to the prediction layer, which is a set of Softmax units. We calculate the probability of
an input vector x, a sample of the dataset D is a member of class i, a value of stochastic
variable Y, at the final stage. We used Softmax because we are calculating probabilities,
and it ensures that we always have a value between zero and one as an output. Based
on the definition in Equation (2),

Softmax(α)i = eαi∑
j eα j

, (2)

10http://stp.lingfil.uu.se/∼mojgan/UPC.html

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

4:6 P. Passban et al.

Fig. 1. tanh(.) function illustration.

and what the i-th unit of the prediction layer calculates is shown in Equation (3),

P(Y = i|x, W, b) = Softmaxi(Wx + b), (3)

where b again is the bias value for the i-th unit, x is a vector produced by the tanh
units of the last hidden layer, and W is a matrix of corresponding weights between the
last hidden layer and the prediction layer. The network prediction for the tag of input
vector is the class whose probability is maximum, as in Equation (4):

prediction = arg max
i

P(Y = i|x, W, b). (4)

To train the network and optimize the parameter set θ = [W, b], we used stochastic
gradient descent with mini-batches where loss function is defined by negative log
likelihood. The loss function is shown in Equation (5):

�(θ, D) = −
|D|∑
i=0

log P(Y = y(i)|x(i), θ) + ηR. (5)

To prevent overfitting, we use the L2 regulizer, which is referred to by R in (5). As can
be seen, the network has many hyperparameters, which are addressed in more detail
in the next section. The network was coded in Python using Theano [Bergstra et al.
2011].

4. EXPERIMENTAL RESULTS

In this section, we first report the performance of our tagger and then address the
impact of different factors, such as network parameters and word representations.
Several taggers have been developed for Farsi. Raja et al. [2007] trained several open-
source taggers and compared them. The best performance belongs to TnT (a Markov
model), with an accuracy of 96.86% on the Bijankhan corpus with 80.09% for unseen
words that occurred 1.94% of the time. They used 85% of the corpus for training
(≈2,200,000 tokens) and the remaining 15% as a test set (400,000). There is another
model trained using HunPos on the Bijankhan corpus [Seraji 2011]. When the dataset
is divided into three parts of training, validation and test sets including the 80%,
10%, and 10% of the Bijankhan corpus, respectively, the accuracy of the tagger is 96%;
however, when the training set is enlarged by adding the validation set, the accuracy
rises to 96.9%. In the last case, the training set includes 95% of the corpus and covers
almost all of the test set, and thus it is natural to have a higher accuracy. However,

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:7

Table I. NPT Performance

Training Test
Number of tokens 2M 200,000
Number of unique tokens 60,144 14,700
Type-token ratio 0.03 0.07
OOV percentage 5.4%
Seen word accuracy 97.85%
Unseen word accuracy 89.01%
Overall accuracy 97.376%

Table II. NPT Accuracy Over Tagset

Tag Description Percentage (%) Accuracy Tag Description Percentage (%) Accuracy
ADJ CM Adj, Comparative 0.0028 97.90 MQUA QuantifierModifier 0.0001 97.00
ADJ IN Past Participle 0.0104 48.49 MS Math. Symbol 0.0001 97.16
ADJ OR Adj, Ordinal 0.0025 97.90 NN Number 2.07e-05 96.41
ADJ SI Adj, Simple 0.0889 96.99 N PL Noun, Plural 0.06175 97.72
ADJ SU Adj, Superlative 0.0028 97.48 N SING Noun, Sing. 0.3723 97.86
ADV Adv, General 0.0005 92.31 OH Oh Interjection 0.0001 97.39
ADV EX Adv, Exemplar 0.0012 97.90 P Preposition 0.1231 99.13
ADV I Adv, Question 0.0008 86.44 PP PrepositionalPhrase 0.0003 97.29
ADV NG Adv, Negation 0.0006 89.20 PRO Pronoun 0.0238 98.03
ADV NI Adv, NotQuestion 0.0084 97.13 PS Psedo-Sentence 0.0001 97.90
ADV TM Adv, Time 0.0032 91.41 QUA Quantifier 0.0059 97.90
AR Arabic Word 0.0013 96.00 SPEC Specifier 0.0014 100
CON Conjunction 0.0809 98.91 V AUX V, Auxiliary 0.0061 98.23
DEF Default 7.39e-05 98.99 V IMP V, Imperative 0.0004 88.49
DELM Delimiter 0.0987 99.89 V PA V, Past Tense 0.0310 95.95
DET Determiner 0.0176 93.75 V PRE V, Predicative 0.0163 97.54
IF Conditional 0.0012 96.84 V PRS V, Present Tense 0.0199 93.35
INT Interjection 4.35e-05 85.57 V SUB V, Subjunctive 0.0130 95.64
MORP Morpheme 0.0011 97.91

HunPos is an open-source tagger,11 and as there is no detailed information about the
experimental setup (an exact number of tokens has been used for training or the
percentage of OOV words), we were not able to repeat that work.

Since the highest number was reported from HunPos, we consider that setting as
the state of the art and use it as a comparison. The performance of our tagger is
summarized in Table I, with detailed information provided in Table II. For the given
training and test sets in Table I, HunPos obtained 96%, where a network-based POS
tagger (NPT) works with an accuracy of 97.37%. For HunPos, unfortunately unseen
word accuracy was not reported, but the unseen accuracy of TnT on the same data set
for the 2.09% of OOV words is 77.69% [Raja et al. 2007], whereas we obtained 89.01%
accuracy for the 5.4% of OOV words.

In our experiments, we selected the first 2M words of the corpus as our training
data, the next 200,000 for the validation set, and the next 200,000 for the test set. We
also neglected the last 200,000 of the corpus, as it did not change the experimental
results when added to the training set. To make our experiments more reliable, we
also performed 10-fold cross validation on the Bijankhan corpus, on which the highest
result obtained was 97.37%, the lowest was 96.95%, and average accuracy was 97.16%.
In Table II, tags are in the first column and their brief explanations are in the second

11https://code.google.com/p/hunpos/downloads/list.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

https://code.google.com/p/hunpos/downloads/list.

4:8 P. Passban et al.

column.12 The third column shows the probability of each tag (with only four floating
points) in the corpus, and the fourth column shows the related accuracy.

4.1. Impact of Network Parameters

Our tagger basically is an NN, and the parameter setting is the most challenging part
of working with NNs. In this section, we discuss network hyperparameters and the
process of word representation. We empirically discovered that the best architecture
for our tagger is a network with four layers. One input layer simply reflects word
vectors, two hidden layers of tanh units provide internal representations, and one
output layer of Softmax units performs the prediction. A smaller network was not able
to provide precise results, and a network with more than two hidden layers did not act
very differently and only delayed the convergence time.

The size of the layers is also a very effective feature. The size of the first layer is
almost fixed, as it depends on the dimensionality of the input vectors, and the size
of the last layer has the same condition where its size is controlled by the number of
output classes. Hidden layers with a small number of units cannot represent the data
efficiently, and very large layers exponentially increase the computational complexity
and provide no gain. The number of classes in our experiments is the number of tags in
Table II, namely 37. According to experiments, when the size of the second hidden layer
is set to 100, the network provides better results. The size of 50 caused some errors
and was not representative enough, whereas a layer with more than 200 units did not
provide any further value. In the range of 50 to 200, we experimentally established
100 to be our optimal number. For the first hidden layer, the best condition is when the
layer size is set according to Equation (6):

|input| × 1.2 < |h(1)| < |input| × 2. (6)

To initialize the network parameters, bias values (b) were set to zero. We know that
weight values at each layer should be sampled uniformly from a symmetric interval.
By use of results from Glorot and Bengio [2010], the best interval for tanh units is
shown in Equation (7): ⎡

⎣−
√

6
Uin + Uout

,

√
6

Uin + Uout

⎤
⎦ , (7)

where Uin and and Uout are the number of tanh units in the (i-1)-th and (i)-th layers,
respectively. We initialized the weight matrix based on this criterion. The learning
rate was set to 0.01, and the regulizer coefficient is η = 0.001. As mentioned previously,
SGD with mini-batches was used to train the network, where the optimal batch size
was between 500 and 1,000. All experiments are reported with the batch size of 1,000.

So far, we have explained the architecture and parameter setting of the network, but
we have not yet described what the network takes as its input. The input is a vector of
training features. In our setting, we used a vector of words and morphological features.
A corresponding input vector for each target word is fi: [w−2

i , w−1
i , wi, mf (wi)]. Given

the vector fi that is a concatenation of four feature vectors, the goal is to find the most
probable tag for the target word wi, where it is followed by the two prior words w−2

i
and w−1

i . mf (wi) is a fixed size vector of morphological features of the word wi. Words
and morphological information are symbolic concepts that need to be transferred into
numerical/vector forms.

12More information about the tagset is available at http://ece.ut.ac.ir/dbrg/bijankhan.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:9

To numerically represent words, we trained GloVe and Word2Vec on our training
corpus. We tried to train both of them in the same training conditions. We set the
context window size to 10 and the initial learning rate to 0.025. We ran the models for 10
iterations. In Word2Vec, we used the continuous bag-of-words (CBOW) configuration.
In our case, CBOW uses the mean of context-word vectors. In our setting, if we are
confronted with an OOV word, we find the closest match for it and use the match’s
embedding. The closest match is found based on the edit-distance criterion. The closest
match is a word that has the minimum distance to the OOV word.

To generate vectors/embeddings of morphological features, we performed almost the
same experiment. As mentioned in Section 2, the shallow morphological analyzer gen-
erates a symbolic vector for each word that reflects its morphological features and has
considerable impact in detecting the word’s tag. Each symbolic vector can be assumed
as a morphological annotation of the corresponding word. For the Bijankhan corpus, our
analyzer generated 8,818 unique morphological annotations (with 153 unique prefixes,
8,100 unique suffixes, and 6,554 unique variations). To obtain morphological embed-
dings, we made a corpus of morphological annotations by replacing each word with its
annotation and trained Word2Vec/GloVe on it. The size of vectors directly influences
the final results.

The key point in the proposed architecture is the way we treat word and morphol-
ogy embeddings. During training, we keep word embeddings unchanged and only up-
date morphology embeddings. This means that morphology embeddings are part of
the network parameters that are updated at each iteration. They were initialized by
Word2Vec/GloVe and tuned during training. The feature set in the input layer has
four subvectors (the target word itself, two words before the target word, and the mor-
phological annotation of the target word). To show the impact of each of them, we
designed different experiments, the results of which are illustrated in the following
figures. Based on our experiments, the selected four features are the most impactful
elements in Farsi tagging. We tried other elements, such as w+1

i and w+2
i , or used stems

and lemmas instead of words (surface forms) but did not obtain better results. To train
Word2Vec/GloVe, we used the Bijankhan corpus. We explored different results with
the embedding sizes of 10, 50, 100, and 200 for words. For morphology embeddings, the
dimension was always set to 50. Figures 2 and 3 show the experimental results.

As Figure 2 shows, the size of the embeddings directly affects the network accuracy.
As the dimensionality increases, the accuracy increases correspondingly. If the word
itself is used as a feature, tagging results are not very high; however, as the other
features are added, the accuracy increases. The most effective feature apart from the
word itself is mf(wi), the morphology vector of wi. The second most effective feature is
the adjacent word just before the target word. The figures show the performance results
for 10D, 50D, and 200D word vectors, as well as the comparison between Word2Vec and
GloVe. To exhibit another comparison of Word2Vec and Glove and to better show the
impact of the word dimensionality, we depict the learning curve and its fluctuations in
the last 100 iterations in Figure 3. The results are based on all four feature sets. The
results confirm that Word2Vec works better than GloVe on our corpus and that word
embeddings with dimensionality of 200D are more efficient. The runtime of our system
for tagging 200,000 words with 200D vectors is 244 seconds, which is an acceptable
time for a tagger, considering that most of the tagging is a once-off operation. HunPos
tags this much data in 8 seconds, much faster than us, but as previously explained, its
results are considerably worse.

We performed another experiment to show the impact of each morphological subunit
(prefix, suffix, and variation) separately. As Figure 2 shows, the best configuration
is when the target word w is accompanied by w−2, w−1, and mf (w). We used different

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

4:10 P. Passban et al.

Fig. 2. NPT accuracy with 10D, 50D, and 200D word embeddings.

Fig. 3. GloVe versus Word2Vec.

feature sets based on the mf (w) vector. Table III shows the impact of each morphological
unit in the tagging process.

5. RELATED WORK AND DISCUSSION

Similar to Tseng et al. [2005], we showed that morphological features help in tagging
of OOV words and tagging in general. We performed tagging using an NN. Neural
POS tagging and neural NLP in general have become a very hot research topic. Neural
taggers generate comparable results to state-of-the-art systems and even surpass them.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:11

Table III. Accuracy of NPT With Different Morphological Features

Feature Set Accuracy Improvement
w−2, w−1, w 94.65 —
w−2, w−1, w, prefix 95.16 +0.51
w−2, w−1, w, suffix 96.48 +1.83
w−2, w−1, w, variation 95.79 +1.14
w−2, w−1, w, prefix+suffix 96.61 +1.96
w−2, w−1, w, prefix+suffix+variation 97.38 +2.73

Table IV. Accuracy of Different POS Taggers on the Bijankhan Corpus

System Knowns Unknowns Known Accuracy Unknowns Accuracy Overall
Markov 98.06 1.94 97.18 80.09 96.86
MbT 98.06 1.94 96.72 91.80 96.62
MLE 98.06 1.94 96.78 16 94.91
HunPos — — — — 96.90
NPT 94.60 5.40 97.85 89.01 97.37

The works by Ma et al. [2014], Wang et al. [2015], Zennaki et al. [2015], and Jagadeesh
et al. [2016] are some of the most recent in this field.

We use the Bijankhan corpus in our experiments. The corpus is a standard collection,
and other similar approaches use it to evaluate their systems. Table IV summarizes
reported numbers on the Bijankhan corpus.

The first column in the table indicates the system name. The first system is based
on a Markov model (TnT). The second one is a memory-based tagger, and the third
system uses maximum likelihood estimation [Raja et al. 2007]. For each system, we
selected the best reported number. The second and third columns show the percentage
of known and unknown words in the test set, respectively. Accordingly, the last two
columns show the accuracy of each tagger for known and unknown words. Based on
the reported numbers, NPT performs better than the other approaches.

We compared conventional tagging models to NPT, but to the best of our knowledge,
there is no other neural tagger for Farsi. The most related models to ours that similarly
use NNs for tagging are those of Collobert et al. [2011] and Santos and Zadrozny [2014].
The model of Santos and Zadrozny [2014] is a character-based model in which embed-
dings for word characters are trained. Embeddings are combined through a convolution
function to construct words. We do not have access to their network, so we could not
apply the character-based model to our case. The other model mentioned is one of the
most referred works in the field of neural tagging. Due to its importance, we decided
to reimplement the model and study its behavior in our setting. The proposed model
by Collobert et al. [2011] has a similar architecture to ours. We tried to exactly follow
their work and reimplement the model as close as possible to the original network. The
best accuracy that we could achieve by the reimplemented model was 95.13%.

Although the model by Collobert et al. [2011] performs well for English, NPT still
performs better for Farsi. There could be several possible reasons for this, but we
believe that the main reason is because of the network architecture. We proposed and
tuned NPT specifically for the Farsi POS tagging task, whereas their model is a general-
purpose network for different NLP tasks. They proposed two different implementations
of the word approach network (WAN) and sentence approach network (SAN).13 They
have two hidden layers in the WAN model. The first layer includes a lookup table.
Basically, the lookup table is a repository to store word vectors/embeddings whose

13Since SAN uses a convolutional architecture that is quite different from NPT, we only focus on WAN.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

4:12 P. Passban et al.

values are updated during the error back-propagation phase. This architecture is very
close to NPT, but ours is more optimal in the following ways:

—Similar to WAN, we have a lookup table in the first layer. We initialize the lookup
table with Word2Vec/GloVe embeddings. They have acceptable quality and preserve
information about their context. In WAN, embeddings are updated during training;
however, in our case, word embeddings are kept unchanged and we only update
morphology embeddings. With this technique, we try to find the most optimal config-
uration. By using pretrained embeddings, we already have contextual information,
and thus instead of tuning that part, we only focus on specific morphological infor-
mation, which is more impactful for the POS tagging task. We empirically discovered
this point. We obtained the best performance when we only changed morphological
embeddings.

—NPT benefits from the morphological information, but WAN only works with surface
form embeddings.

—We optimized the size of our hidden layers with respect to the problem, but WAN uses
fixed-size hidden layers. We also selected the best nonlinear unit for our experiments.
Moreover, hidden layers with a large number of nonlinear units can perform better
[Mikolov et al. 2013; Zheng et al. 2013]. In our case, the size of the first hidden layer
is 650, whereas this number is 300 for that of Collobert et al. [2011].

—The size of word embeddings is one of the most important features that directly affects
tagging accuracy. Our embedding size is 200, but their model uses 50D embeddings.

—WAN receives five words, with the target word in the middle as its input. This set-
ting might be suitable for English, yet in Farsi, words following the target word have
no effect on the final accuracy, and therefore we do not use them. WAN also pads
its input, with the padding size equal to half of the context window’s size. It adds
paddings both to the beginning and end of inputs. We believe that the way we prepare
our input is more representative and useful. We exclude redundant following words.
In contrast, the padding technique incorporates some extra amount of input infor-
mation that is not necessarily helpful and can even degrade the accuracy. It should
be also considered that we train word embeddings with the context window of 10
words, and thus the information that we provide for NPT is richer than that of WAN.

There could be several reasons for the difference between WAN and NPT, but we
believe that the issues mentioned are the most likely.

Another important issue about the network is its architecture. Normally, POS tag-
ging task is treated as a sequence labeling task. In such cases, recurrent networks are
preferred; however, in our case, we were able to easily solve the same problem with a
simpler model. The main advantage of recurrent models is that they can model long(er)-
distance dependencies better than feed-forward models in their input, which yields a
richer input/context. Additionally, due to the recurrency feature, they can provide in-
formation about tags of preceding words. These two features are not quite essential
for our case. With regard to the first feature, in Farsi, the target word’s tag is strongly
influenced by the target word itself and its morphological features (see Figure 2, which
clearly indicates this point). The second most impactful parameter is the preceding
word just before the target word (w−1), and the third most important factor is w−2.
Obviously, other context words have impact on the final accuracy, but their impact is
negligible. Thus, we do not need a rich context in Farsi. This property is quite language
depended, and with a very similar neural POS tagger to NPT and WAN, Zheng et al.
[2013] reported that the optimal context window size for Chinese POS tagging was 3,
but as reported in WAN, more than three words are required for English to produce
acceptable results.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:13

With regard to the second feature, to address the impact of the POS tags of the
preceding words, we directly presented the POS tags to the network (as another input
feature), but it did not provide any extra gain.

Our network choice was a trade-off between training time, accuracy, and structural
complexity, and we tried to find the best configuration for Farsi POS tagging. Usually,
POS taggers are used as modules that serve other NLP tasks, so they should perform
fast. Our in-house recurrent POS tagger performs slightly better than NPT, but its
training/running time is not comparable to NPT, so we prefer to use NPT in our NLP
experiments.

6. CONCLUSION

In this article, we discussed an NN-based POS tagger for Farsi. The exclusive feature
of the tagger is its accuracy. The main reason we preferred a neural model to other
conventional models is its ability to tag unseen words. Its performance on OOV words
is 89.01%, which is considerably better than other existing taggers. NPT is also fast in
terms of runtime.

In addition to NPT, we developed a shallow analyzer to extract morphological fea-
tures of Farsi words. In our corpus, we extracted 8,818 unique morphological annota-
tions, which is a clear indication of the rich morphology of the language. Therefore,
incorporating morphological information would appear to be essential for languages
such as Farsi. We also studied the distributional representation of words. We use
word embeddings in our tagger that provide distributed representations. Due to this
feature, neural taggers generally perform better, especially in the presence of OOVs.
Distributed representations preserve the semantic relatedness of words, as well as
contextual information, which is crucial to POS tagging.

Since NNs have a good generalization capability, we hope to try and apply NN-
based methods to other NLP tasks in low-resource languages to surpass the exist-
ing/conventional methods. There is no semantic role labeler or name-entity recognizer
for Farsi, so NNs might be used efficiently for these purposes. These applications are
examples of word-level computations with dependencies on context words. Apart from
these models, we are also interested in sequence-level computations such as parsing or
translation via NNs.

ACKNOWLEDGMENTS

We would like to thank the three anonymous reviewers for their valuable comments.

REFERENCES

James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier Delalleau,
Guillaume Desjardins, et al. 2011. Theano: Deep learning on GPUs with Python. In Proceedings of
Advances in Neural Information Processing Systems 24 (NIPS’11).

Mahmood Bijankhan, Javad Sheykhzadegan, Mohammad Bahrani, and Masood Ghayoomi. 2011. Lessons
from building a Persian written corpus: Peykare. Language Resources and Evaluation 45, 2, 143–164.

Thorsten Brants. 2000. TnT: A statistical part-of-speech tagger. In Proceedings of the 6th Conference on
Applied Natural Language Processing. 224–231.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2012. Implementing neural networks efficiently.
In Neural Networks: Tricks of the Trade. Springer, 537–557.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–
2537.

Erick R. Fonseca, João Luı́s G. Rosa, and Sandra Maria Aluı́sio. 2015. Evaluating word embeddings and a
revised corpus for part-of-speech tagging in Portuguese. Journal of the Brazilian Computer Society 21,
1, 1–14.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

4:14 P. Passban et al.

Eugenie Giesbrecht and Stefan Evert. 2009. Is part-of-speech tagging a solved task? An evaluation of POS
taggers for the German Web as corpus. In Proceedings of the 5th Web as Corpus Workshop. 27–35.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics. 249–
256.

Péter Halácsy, András Kornai, and Csaba Oravecz. 2007. HunPos: An open source trigram tagger. In Pro-
ceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions.
209–212.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets.
Neural Computation 18, 7, 1527–1554.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal
approximators. Neural Networks 2, 5, 359–366.

M. Jagadeesh, M. Anand Kumar, and K. P. Soman. 2016. Deep belief network based part-of-speech tagger for
Telugu language. In Proceedings of the 2nd International Conference on Computer and Communication
Technologies. 75–84.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Pro-
ceedings of the ACM International Conference on Multimedia (MM’14). ACM, New York, NY, 675–678.

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Tagging the Web: Building a robust Web tagger with neural
network. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
Vol. 1. 144–154.

Christopher D. Manning. 2011. Part-of-speech tagging from 97% to 100%: Is it time for some linguistics?
In Proceedings of the 12th International Conference on Computational Linguistics and Intelligent Text
Processing, Part I (CICLing’11). 171–189.

William J. Masek and Michael S. Paterson. 1980. A faster algorithm computing string edit distances. Journal
of Computer and System Sciences 20, 1, 18–31.

Karine Megerdoomian. 2004. Developing a Persian part of speech tagger. In Proceedings of the 1st Workshop
on Persian Language and Computer. 99–105.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations
in vector space. arXiv:1301.3781.

Mahdi Mohseni and Behrouz Minaei-Bidgoli. 2010. A Persian part-of-speech tagger based on morphological
analysis. In Proceedings of the 7th International Conference on Language Resources and Evaluation
(LREC’10). 1253–1257.

Farhad Oroumchian, Samira Tasharofi, Hadi Amiri, Hossein Hojjat, and Fahime Raja. 2006. Creating a
Feasible Corpus for Persian POS Tagging. Technical Report No. TR3/06. University of Wollongong, New
South Wales, Australia.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP’14). 1532–1543. http://www.aclweb.org/anthology/D14-1162.

John R. Perry and Alan S. Kaye. 2007. Persian morphology. Morphologies of Asia and Africa 2, 975–1019.
Juan Antonio Prezortiz and Mikel L. Forcada. 2001. Part-of-speech tagging with recurrent neural networks.

In Proceedings of the International Joint Conference on Neural Networks (IJCNN’01).
Fahimeh Raja, Hadi Amiri, Samira Tasharofi, Mehdi Sarmadi, Hossein Hojjat, and Farhad Oroumchian.

2007. Evaluation of part of speech tagging on Persian text. In Proceedings of the 2nd Workshop on
Computational Approaches to Arabic Script-Based Languages.

Cicero D. Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-speech
tagging. In Proceedings of the 31st International Conference on Machine Learning (ICML’14). 1818–
1826.

Helmut Schmid. 1994. Part-of-speech tagging with neural networks. In Proceedings of the 15th Conference
on Computational Linguistics, Volume 1 (COLING’94). 172–176.

Mojgan Seraji. 2011. A statistical part-of-speech tagger for Persian. In Proceedings of the 18th Nordic
Conference of Computational Linguistics (NODALIDA’11). 340–343.

Mojgan Seraji, Beáta Megyesi, and Joakim Nivre. 2012. A basic language resource kit for Persian. In
Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC’12).
2245–2252.

Mehrnoush Shamsfard, Soheila Kiani, and Yaseer Shahedi. 2009. STeP-1: Standard text preparation for
Persian language. In Proceedings of the 3rd Workshop on Computational Approaches to Arabic Script-
Based Languages.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

http://www.aclweb.org/anthology/D14-1162

Boosting Neural POS Tagger for Farsi Using Morphological Information 4:15

Huihsin Tseng, Daniel Jurafsky, and Christopher Manning. 2005. Morphological features help POS tagging
of unknown words across language varieties. In Proceedings of the 4th SIGHAN Workshop on Chinese
Language Processing. 32–39.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai Zhao. 2015. Part-of-speech tagging with bidirectional
long short-term memory recurrent neural network. arXiv:1510.06168.

Othman Zennaki, Nasredine Semmar, and Laurent Besacier. 2015. Unsupervised and Lightly Super-
vised Part-of-Speech Tagging Using Recurrent Neural Networks. Retrieved June 30, 2016, from
https://aclweb.org/anthology/Y/Y15/Y15-1016.pdf.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013. Deep learning for Chinese word segmentation and
POS tagging. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP’13). 647–657.

Received January 2016; revised March 2016; accepted April 2016

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 16, No. 1, Article 4, Publication date: July 2016.

