
MACSAD: Multi-Architecture Compiler System for
Abstract Dataplanes (aka Partnering P4 with ODP)

P Gyanesh Patra, Christian Rothenberg
University of Campinas (UNICAMP)

Campinas, Sao Paulo, Brazil
gyanesh,chesteve@dca.fee.unicamp.br

Gergely Pongrácz
TrafficLab, Ericsson Research

Budapest, Hungary
gergely.pongracz@ericsson.com

ABSTRACT
Software Defined Networking (SDN) strives for deep
programmable hardware and software dataplanes with-
out giving up on performance. Domain Specific Lan-
guages (DSL) such as P4 seek to provide top-down high-
level capabilities to define the datapath pipeline agnos-
tic to the network platform and independent from any
network protocols. At the crossroads, bottom-up in-
dustry efforts at the OpenDataPlane (ODP) initiative
are pursuing open-source multi-architecture APIs for
dataplane programmability across various networking
platforms. Towards P4 code reuse for various targets
(portability), we propose MACSAD as a compiler sys-
tem that brings together the higher-level P4 language
and the abstract, target-independent ODP APIs. The
demo showcases two P4 applications compiled into het-
erogeneous datapath platforms supporting ODP.

CCS Concepts
•Software and its engineering→ Domain specific
languages; •Hardware→Emerging languages and
compilers;

Keywords
Software Defined Networking; P4; OpenDataPlane

1. INTRODUCTION
The evolution of SDN is driving research and product

developments on protocol independent abstract data
planes. Approaching the challenge top-down, enabling
advances on Domain Specific Languages (DSL) include

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2959077

P4 and POF. Bottom-up from the datapath perspec-
tive, so-called Protocol Independent Switch Architec-
tures (PISA) chips are entering the programmable net-
working hardware scene. While P4 [2] is well-known for
providing high-level abstractions that allow dataplane
programmability agnostic to the hardware target, the
backend compilation tasks are still very much open and
less understood, pushing the complexity down the stack
to be solved on a per-target basis.

OpenDataPlane (ODP) [1] is a less-known, recent ini-
tiative working on an abstract API specification cover-
ing functional needs of data plane applications. The
vendor and platform neutral APIs span common fea-
tures across multiple targets turning application writ-
ten with ODP APIs portable. Vendors can implement
ODP APIs in an optimized manner according to their
targets while abstracting the hardware acceleration fea-
tures (e.g., Crypto). ODP is supported by multiple
platforms comprising of x86, ARM and various other
SoC architectures.1 ODP can be viewed2 as a set of
common, unifying APIs of higher abstraction than DPDK,
which becomes a specific API implementation.

Towards code portability and in line with the P4 evo-
lution roadmap on architecture-language separation to
reuse the same compiler for new targets, We devel-
oped MACSAD3 with the main goal of bringing P4
and ODP together to enable developers to write P4
programs seamlessly portable across network platforms
while transparently leveraging hardware acceleration ca-
pabilities. By translating P4 into ODP APIs, which are
high-enough level to allow platform abstraction without
imposing strict models and overheads, we overcome the
hazards of developing and maintaining target-specific
heterogeneous backends without compromising perfor-
mance and hardware-acceleration options.

Demo contributions. We show the ability of MAC-
SAD to compile two P4 programs (L2-FWD and VxLAN-
GW) into portable dataplane applications using ODP

1http://www.opendataplane.org/downloads/
2A useful analogy is comparing ODP to OpenGL, but
for networking instead of video graphics.
3It is pronounced as ‘Maksad’ which means purpose or
motive in Hindi. It is also simply referred as “MAC”.

623

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2934872.2959077&domain=pdf&date_stamp=2016-08-22

VM(x86)

CORE
COMPILER

1001101
1000001
1000011

?

Server(x86)

SoC(ARM)

Auxiliary Frontend Auxiliary Backend

M
A

CS
A

D
 C

O
M

P
IL

ER
 S

YS
TE

M
On-Site @ SIGCOMM
Remote @UNICAMP

Select Use-Case Select Dataplane Target
1

3

4 Observe Functionality & Performance

Rpi(ARM)

L2-FWD

VxLAN-GW

DATAPATH LOGIC

TRANSPILER

2

COMPILER

Figure 1: MACSAD Architecture & Use Case Demonstration Workflow.

APIs over different targets (x86, x86+DPDK, ARM-
SoC). Demo attendants can select the use case and dat-
apath target, learn about the compilation process, and
observe the functional and performance behavior.

2. MACSAD
The Multi-Architecture Compiler System for Abstract

Dataplanes is architected to achieve seamless portablity
of dataplane applications written in a DSL (P4 being
our starting focus) and implementable on a wide range
of platforms efficiently. The following design objectives
are guiding our efforts on MACSAD: (1) Fast and easy
development environment of dataplane applications by
using P4; (2) Portability of dataplane application across
different network platforms by leveraging ODP APIs;
(3) Dynamic, flexible pipeline by supporting protocol
independent DSL (P4) in programmable targets (ODP).

Targeted to programming network datapath pipelines,
MACSAD (Figure 1) is based on 3 main modules:
Auxiliary Frontend: A plugin framework to include/im-
port different frontend DSLs –with P4 language being
the initial choice and focus of this demo.
Auxiliary Backend: Binds target-specific SDKs in or-
der to support different platforms –with ODP being the
premier choice because of its cross-platform nature.
Core Compiler: A Transpiler component acts as a
source-to-source compiler from the Auxilary Frontend
plugin (standard P4 compiler and HLIR) into the Dat-
apath Logic (our IR choice implemented in plain C)
defining how the GCC-based compiler generates the the
dataplane target binary code using ODP APIs.

3. DEMONSTRATION
Workflow. The demo is divided into 4 steps (see Fig. 1):
(1) User selects the P4 dataplane application (L2-FWD,
VxLAN) and the target platform (on/off-site, x86, ARM).
(2) The Transpiler automatically generates the Datap-
ath Logic IR from the P4 program.
(3) The Compiler module compiles the Datapath Logic

IR using the ODP APIs for the selected target.
(4) Finally, the user interacts with the dataplane appli-
cation to verify its functionality and performance.
Dataplane Target Platforms. Portability will be
showcased using the following platforms: (i) Virtual
Machine (x86) on commodity laptop and (ii) Rasp-
berry Pi 3 (ARM) at SIGCOMM location, (iii) high-
end server (x86 w/DPDK).
Experimental evaluation. The two use cases are
evaluated using a two host topology connected to the
MACSAD-compiled datapath DUT. The Network Func-
tion Performance Analyzer (NFPA)4 is used for consis-
tent benchmarking purposes and results are displayed
in a Web GUI. User specified arguments include the list
of interfaces and the number of CPUs to be used.

4. CONCLUDING REMARKS
Our ongoing work on MACSAD represents a promis-

ing approach towards dataplane program portability by
transparently compiling the high-level P4 language into
just enough low-level platform-independent code using
the ODP APIs. Future work includes supporting addi-
tional DSL (e.g. POF, ONF PIF), exploiting multi-core
and hardware acceleration capabilities of chips. We ex-
pect to contribute to missing pieces in ODP as well as
the P4 evolution as needed while implementing more
complex use cases (e.g., BNG, vEPC).

Acknowledgments
This work was supported by the Innovation Center, Er-
icsson Telecomunicações S.A., Brazil.

5. REFERENCES
[1] Opendataplane [Online]. Available:

http://opendataplane.org.

[2] P. Bosshart et a. P4: Programming
Protocol-independent Packet Processors.
SIGCOMM CCR., 44(3):87–95, July 2014.

4http://ios.tmit.bme.hu/nfpa/

624

