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A metric tree embedding of expected stretch α ≥ 1 maps a weighted n-node graph G = (V ,E,ω) to a

weighted tree T = (VT ,ET ,ωT ) with V ⊆ VT such that, for all v,w ∈ V , dist(v,w,G ) ≤ dist(v,w,T ), and

E[dist(v,w,T )] ≤ α dist(v,w,G ). Such embeddings are highly useful for designing fast approximation al-

gorithms as many hard problems are easy to solve on tree instances. However, to date, the best parallel

(polylogn)-depth algorithm that achieves an asymptotically optimal expected stretch ofα ∈ O(logn) requires

Ω(n2) work and a metric as input.

In this article, we show how to achieve the same guarantees using polylogn depth and Õ(m1+ε ) work,

where m = |E | and ε > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to

Õ(m + n1+ε ) at the expense of increasing the expected stretch to O(ε−1 logn).
Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization

of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of

previous “Moore-Bellman-Ford-like” algorithms, to be of independent interest and discuss it in depth. In our

tree embedding algorithm, we leverage it to provide efficient query access to an approximate metric that

allows sampling the tree using polylogn depth and Õ(m) work.

We illustrate the generality and versatility of our techniques by various examples and a number of addi-

tional results. Specifically, we (1) improve the state of the art for determining metric tree embeddings in the

Congest model, (2) determine a (1 + ε̂ )-approximate metric regarding the distances in a graph G in polylog-

arithmic depth and Õ(n(m + n1+ε )) work, and (3) improve upon the state of the art regarding the k-median

and the buy-at-bulk network design problems.
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1 INTRODUCTION

In many graph problems the objective is closely related to distances in the graph. Prominent ex-
amples are shortest path problems, minimum weight spanning trees, a plethora of Steiner-type
problems [27], the traveling salesman, finding a longest simple path, and many more.

If approximation is viable or mandatory, a successful strategy is to approximate the distance
structure of the weighted graph G by a simpler graph G ′, where “simpler” can mean fewer edges,
smaller degrees, being from a specific family of graphs, or any other constraint making the consid-
ered problem easier to solve. One then proceeds to solve a related instance of the problem onG ′ and
map the solution back to G, yielding an approximate solution to the original instance. Naturally,
this requires a mapping with bounded impact on the objective value.

A standard tool is metric embedding, mappingG = (V ,E,ω) toG ′ = (V ′,E ′,ω ′), such thatV ⊆ V ′

and dist(v,w,G ) ≤ dist(v,w,G ′) ≤ α dist(v,w,G ) for some α ≥ 1, referred to as stretch.1 An espe-
cially convenient class of metric embeddings are metric tree embeddings, plainly because very few
problems are hard to solve on tree instances. The utility of tree embeddings originates in the fact
that, despite their extremely simple topology, it is possible to randomly construct an embedding
of any graph G into a tree T so that the expected stretch α = max{ET [dist(v,w,T )]/ dist(v,w,G ) |
v,w ∈ V } satisfies α ∈ O(logn) [23]. By linearity of expectation, this ensures an expected approx-
imation ratio of O(logn) for most problems; repeating the process log(ε−1) times and taking the
best result, one obtains an O(logn)-approximation with probability at least 1 − ε .

A substantial advantage of tree embeddings lies in the simplicity of applying the machinery
once they are computed: Translating the instance onG to one onT , solving the instance onT , and
translating the solution back tends to be extremely efficient and highly parallelizable; we demon-
strate this in Sections 9 and 10. Note also that the embedding can be computed as a preprocessing
step, which is highly useful for online approximation algorithms [23]. Hence, a low-depth small-
work parallel algorithm in the vein of Fakcharoenphol, Rao, and Talwar [23] (FRT) gives rise to
fast and efficient parallel approximations for a large class of graph problems. Unfortunately, the
tradeoff between depth and work achieved by state-of-the-art parallel algorithms for this purpose
is suboptimal. Concretely, all algorithms of polylogn depth use Ω(n2) work, whereas we are not
aware of any stronger lower bound than the trivial Ω(m) work bound.2

Our Contribution. Our main contribution is to reduce the amount of work for sampling from

the FRT distribution—a random distribution of tree embeddings—to Õ(m1+ε ) while maintaining
polylogn depth. This article is organized in two parts. The first establishes the required techniques:

—Our key tool is an algebraic interpretation of Moore-Bellman-Ford-like (MBF-like) algo-
rithms described in Section 2. As our framework subsumes a large class of known algorithms
and explains them from a different perspective—we demonstrate this using numerous ex-
amples in Section 3—we consider it to be of independent interest.

1dist( ·, ·, G ) denotes the distance in G and defines a metric space. See definitions in Section 1.2.
2Partition V = A ∪̇ B evenly and add spanning trees of A and B consisting of edges of weight 1. Connect A and B with

m − n + 2 edges, all of weight W � n log n, but with probability of 1/2, pick one of the connecting edges uniformly at

random and set its weight to 1. To approximate the distance between a ∈ A and b ∈ B better than factor W /n � log n

with probability substantially larger than 1/2, any algorithm must examine Ω(m) edges in expectation.
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—Section 4 proposes a sampling technique for embedding a graphG in which d-hop distances
(1 + ε̂ ) approximate exact distances into a complete graph H , where H has polylogarithmic

Shortest Path Diameter (SPD) and preserves G-distances (1 + ε̂ )O(log n) approximately.
—We devise an oracle that answers MBF-like queries by efficiently simulating an iteration of

an MBF-like algorithm on H in Section 5. It uses only the edges of G and polylogarithmic

overhead, resulting in Õ(dm) work with respect toG (i.e., subquadratic work) per iteration;
We use d ∈ polylogn.

The second part applies our techniques and establishes our results:

—A first consequence of our techniques is that we can query the oracle with All-Pairs Shortest

Paths (APSP) to determine w.h.p.3 a (1 + o(1))-approximate metric on G using Õ(nm1+ε )
work and polylogn depth. We discuss this in Section 6.

Theorem 6.2 ((1 + o(1))-Approximate Metric). Given a weighted graphG = (V ,E,ω) and

a constant ε > 0, we can w.h.p. compute, using Õ(n(m + n1+ε )) work and polylogn depth, a

(1 + 1/ polylogn)-approximate metric of dist(·, ·,G ) on V .

Preprocessing the graph by computing a sparse spanner, one can get close to quadratic work
at the expense of a constant approximation ratio.

Theorem 6.3 (O(1)-Approximate Metric). For a weighted graph G = (V ,E,ω) and a con-

stant ε > 0, we can w.h.p. compute an O(1)-approximate metric of dist(·, ·,G ) on V using

Õ(n2+ε ) work and polylogn depth.

—In Section 7, we show that, for any constant ε > 0, there is a randomized parallel algorithm

of depth polylogn and work Õ(m1+ε ) (w.h.p.) that samples from a metric tree embedding
of expected stretch O(logn). This follows from the preceding techniques and the fact that
sampling from the FRT distribution is MBF-like.

Corollary 7.10. Given the weighted incidence list of a graph G and an arbitrary constant

ε > 0, we can w.h.p. sample from a tree embedding of expected stretch O(logn) using depth

polylogn and work Õ(m1+ε ).

Applying the spanner construction of Baswana and Sen [9] as a preprocessing step, the

work can be reduced to Õ(m + n1+ε ) at the expense of stretch O(ε−1 logn).

Corollary 7.11. Suppose we are given the weighted incidence list of a graphG. Then, for any

constant ε > 0 and any k ∈ N, we can w.h.p. sample from a tree embedding of G of expected

stretch O(k logn) using depth polylogn and work Õ(m + n1+1/k+ε ).

—Our techniques allow us to improve over previous distributed algorithms computing tree
embeddings in the Congest [41] model. We reduce the best-known round complexity for

sampling from a tree embedding of expected stretch O(logn) from Õ(n1/2+ε + D(G )), where
ε > 0 is an arbitrary constant and D(G ) is the unweighted hop diameter of G, to (n1/2 +

D(G ))no(1) . This is detailed in Section 8.

Theorem 8.1. There is a randomized distributed algorithm that w.h.p. samples from a metric

tree embedding of expected stretch O(logn) in min{(
√
n + D(G ))no (1), Õ(SPD(G ))} rounds of

the Congest model.

3With high probability, see Section 1.2.
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—We illustrate the utility of our main results by providing efficient approximation algorithms
for the k-median and buy-at-bulk network design problems. Blelloch et al. [14] devise poly-
logarithmic depth parallel algorithms based on FRT embeddings for these problems assum-
ing a metric as input. We provide polylogarithmic depth parallel algorithms for the more
general case where the metric is given implicitly by G, obtaining more work-efficient solu-
tions for a wide range of parameters. The details are given in Sections 9 and 10, respectively.

Theorem 9.2. For any fixed constant ε > 0, w.h.p., an expected O(logk )-approximation to k-

median on a weighted graph can be computed using polylogn depth and Õ(m1+ε + k3) work.

Theorem 10.2. For any constant ε > 0, w.h.p., an expected O(logn)-approximation to the buy-

at-bulk network design problem can be computed using polylogn depth and Õ(min{m + n(k +
nε ),n2}) ⊆ Õ(n2) work.

Section 11 concludes this article.

Our Approach. The algorithm of Khan et al. [30], formulated for the Congest model [41], gives

rise to an Õ(SPD(G ))-depth parallel algorithm sampling from the FRT distribution. The SPD
is the maximum, over all v,w ∈ V , of the minimum hop-length of a shortest v-w-path. Intu-
itively, SPD(G ) captures the number of iterations of MBF-like algorithms in G: Each iteration up-
dates distances until the (SPD(G ) + 1)-th iteration does not yield new information. Unfortunately,
SPD(G ) = n − 1 is possible, so a naive application of this algorithm results in poor performance.

A natural idea is to reduce the number of iterations by adding “shortcuts” to the graph.

Cohen [17] provides an algorithm of depth polylogn and work Õ(m1+ε ) that computes a (d, ε̂ )-hop

set withd ∈ polylogn: This is a set E ′ of additional edges such that dist(v,w,G ) ≤ distd (v,w,G ′) ≤
(1 + ε̂ ) dist(v,w,G ) for all v,w ∈ V , where ε̂ ∈ 1/ polylogn and distd (v,w,G ′) is the minimum
weight of a v-w-path with at most d edges in G augmented with E ′. Note carefully that ε is differ-
ent from ε̂ . In other words, Cohen computes a metric embedding with the additional property that
polylogarithmically many MBF-like iterations suffice to determine (1 + 1/ polylogn)-approximate
distances.

The course of action might now seem obvious: Run Cohen’s algorithm, then run the algorithm
by Khan et al. on the resulting graph for d ∈ polylogn rounds and conclude that the resulting out-
put corresponds to a tree embedding of the original graphG of stretch O((1 + 1/ polylogn) logn) =
O(logn). Alas, this reasoning is flawed: Constructing FRT trees crucially relies on the fact that the
distances form a metric (i.e., satisfy the triangle inequality). An approximate triangle inequality for
approximate distances is insufficient since the FRT construction relies on the subtractive form of the
triangle inequality; that is, dist(v,w,G ′) − dist(v,u,G ′) ≤ dist(w,u,G ′) for arbitrary u,v,w ∈ V .

Choosing a different hop set does not solve the problem. Hop sets guarantee thatd-hop distances
approximate distances, but any hop set that fulfills the triangle inequality on d-hop distances has
to reduce the SPD to at most d (i.e., yield exact distances):

Observation 1.1. Let G be a graph augmented with a (d, ε̂ )-hop set.4 If distd (·, ·,G ) is a metric,

then distd (·, ·,G ) = dist(·, ·,G ), i.e., SPD(G ) ≤ d .

Proof. Let π be a shortest u-v-path in G. Since distd (·, ·,G ) fulfills the triangle inequality,

dist(u,v,G ) ≤ distd (u,v,G ) ≤
∑

{u1,u2 }∈π

distd (u1,u2,G ) ≤
∑

{u1,u2 }∈π

ω (u1,u2) = dist(u,v,G ). (1)

�

4By the definitions in Section 1.2.
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We overcome this obstacle by embedding G ′ into a complete graph H on the same node set
that (1 + o(1))-approximates distances inG and fulfills SPD(H ) ∈ polylogn. In other words, where
Cohen preserves distances exactly and ensures existence of approximately shortest paths with few
hops, we preserve distances approximately but guarantee that we obtain exact shortest paths with
few hops. This yields a sequence of embeddings:

(1) Start with the original graph G,
(2) augment G with a (d, 1/ polylogn)-hop set [17], yielding G ′, and
(3) modify G ′ to ensure a small SPD, resulting in H (Section 4).

Unfortunately, this introduces a new obstacle: As H is complete, we cannot explicitly compute H
without incurring Ω(n2) work.

MBF-like Algorithms. This is where our novel perspective on MBF-like algorithms comes into
play. We can simulate an iteration of any MBF-like algorithm on H using only the edges of G ′

and polylogarithmic overhead, resulting in an oracle for MBF-like queries on H . Since SPD(H ) ∈
polylogn, the entire algorithm runs in polylogarithmic time and with a polylogarithmic work
overhead with respect to G ′.

In an iteration of an MBF-like algorithm,

—the information stored at each node is propagated to its neighbors,
—each node aggregates the received information, and
—optionally filters out irrelevant parts.

For example, in order for each node to determine the k nodes closest to it, each node stores node–
distance pairs (initially only themselves at distance 0) and then iterates the following steps:

—communicate the node–distance pairs to the neighbors (distances uniformly increased by
the corresponding edge weight),

—aggregate the received values by picking the node-wise minimum, and
—discard all but the pairs corresponding to the k closest sources.

It is well-known [3, 39, 43] that distance computations can be performed by multiplication with
the (weighted) adjacency matrix A over the min-plus semiring Smin,+ = (R≥0 ∪ {∞},min,+) (see

Definition A.2 in Appendix A). For instance, if B = Ah with h ≥ SPD(G ), then bvw = dist(v,w,G ).
In terms of Smin,+, propagation is the “multiplication” with an edge weight and aggregation is

“summation.” The (i + 1)-th iteration results in x (i+1) = rVAx (i ) , where rV is the (node-wise) filter
and x ∈ MV the node values. Both M and MV form semimodules: A semimodule supports scalar
multiplication (propagation) and provides a semigroup (representing aggregation). Compare Defi-
nition A.3 in Appendix A—over Smin,+.

In other words, in an h-iteration MBF-like algorithm, each node determines its part of the out-
put based on its h-hop distances to all other nodes. However, for efficiency reasons, various algo-
rithms [4, 7, 8, 29, 33–35] compute only a subset of these distances. The role of the filter is to remove
the remaining values to allow for better efficiency. The core feature of an MBF-like algorithm is
that filtering is compatible with propagation and aggregation: If a node discards information and
then propagates it, the discarded parts must be “uninteresting” at the receiving node as well. We
model this using a congruence relation on the node states; filters pick a suitable (efficiently encod-
able) representative of the node state’s equivalence class.

Constructing FRT Trees. This helps us to sample from the FRT distribution as follows. First,
we observe that an MBF-like algorithm can acquire the information needed to represent an FRT
tree. Second, we can simulate any MBF-like algorithm on H—without explicitly storing H—using
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polylogarithmic overhead and MBF-like iterations onG ′. The previously mentioned sampling tech-
nique decomposes the vertices and edges of H into Λ ∈ O(logn) levels. We may rewrite the adja-

cency matrix of H as AH =
⊕Λ

λ=0 PλA
d
λ
Pλ , where ⊕ is the “addition” of functions induced by the

semimodule, Pλ is a projection on nodes of at least level λ, andAλ is a (slightly stretched) adjacency

matrix ofG ′. We are interested in rVAh
H
x (0)—h iterations on the graph H followed by applying the

node-wise filter rV . The key insight is that the congruence relation allows us to apply intermedi-
ate filtering steps without changing the outcome as filtering does not change the equivalence class

of a state. Hence, we may compute (rV
⊕Λ

λ=0 Pλ (rVAλ )dPλ )hx (0) instead. This repeated applica-

tion of rV keeps the intermediate results small, ensuring that we can perform multiplication with

Aλ with Õ( |E | + |E ′ |) ⊆ Õ(m1+ε ) work. Since d ∈ polylogn, Λ ∈ O(logn), and each Aλ accounts
for |E | + |E ′ | edges, this induces only polylogarithmic overhead with respect to iterations in G ′,
yielding a highly efficient parallel algorithm of depth polylogn and work Õ(m1+ε ).

1.1 Related Work

We confine the discussion to undirected graphs.

Classical Distance Computations. The earliest—and possibly also most basic—algorithms for
Single-Source Shortest Paths (SSSP) computations are Dijkstra’s algorithm [21] and the MBF al-
gorithm [11, 24, 40]. From the perspective of parallel algorithms, Dijkstra’s algorithm performs

excellently in terms of work, requiring Õ(m) computational steps, but suffers from being inher-
ently sequential, processing one vertex at a time.

Algebraic Distance Computations. The MBF algorithm can be interpreted as a fixed-point iter-

ation Ax (i+1) = Ax (i ) , where A is the adjacency matrix of the graph G and “addition” and “mul-
tiplication” are replaced by min and +, respectively. This structure is known as the min-plus
semiring (a.k.a. tropical semiring) Smin,+ = (R≥0 ∪ {∞},min,+) (compare Section 1.2), which is
a well-established tool for distance computations [3, 39, 43]. From this point of view, SPD(G ) is

the number of iterations until a fixed point is reached. MBF thus has depth Õ(SPD(G )) and work

Õ(m SPD(G )), where small SPD(G ) are possible.
One may overcome the issue of large depth entirely by performing the fixed-point iteration on

the matrix by setting A(0) := A and iterating A(i+1) := A(i )A(i ) ; after �log SPD(G )
 ≤ �logn
 itera-
tions, a fixed point is reached [19]. The final matrix then has as entries exactly the pairwise node
distances and the computation has polylogarithmic depth. This comes at the cost of Ω(n3) work
(even ifm � n2) but is as work-efficient as n instances of Dijkstra’s algorithm for solving APSP in
dense graphs without incurring depth Ω(n).

Mohri [39] solved various shortest-distance problems using the Smin,+ semiring and variants
thereof. While Mohri’s framework is quite general, our approach is different in crucial aspects:

(1) Mohri uses an individual semiring for each problem and then solves it by a general algo-
rithm. Our approach, on the other hand, is more generic as well as easier to use: We use
off-the-shelf semirings—usually just Smin,+—and combine them with appropriate semi-
modules carrying problem-specific information. Further problem-specific customization
happens in the definition of a congruence relation on the semi-ring; it specifies which
parts of a node’s state can be discarded because they are irrelevant for the problem. We
demonstrate the modularity and flexibility of the approach by various examples in Sec-
tion 3, which cover a large variety of distance problems.

(2) In our framework, node states are semimodule elements and edge weights are semiring el-
ements; hence, there is no multiplication of node states. Mohri’s approach, however, does

Journal of the ACM, Vol. 65, No. 6, Article 43. Publication date: November 2018.



Parallel Metric Tree Embedding Based on an Algebraic View on Moore-Bellman-Ford 43:7

not make this distinction and hence requires the introduction of an artificial “multiplica-
tion” of node states.

(3) Mohri’s algorithm can be interpreted as a generalization of Dijkstra’s algorithm [21] be-
cause it maintains a queue and, in each iteration, applies a relaxation technique to the
dequeued element and its neighbors. This strategy is inherently sequential; to the best
of our knowledge, we are the first to present a general algebraic framework for distance
computations that exploits the implicit parallelism of the MBF algorithm.

(4) In Mohri’s approach, choosing the global queueing strategy is not only an integral part of
an algorithm, but it also simplifies the construction of the underlying semirings as one may
rule that elements are processed in a “convenient” order. Our framework is flexible enough
to achieve counterparts even of Mohri’s more involved results without such assumptions;
concretely, we propose a suitable semiring for solving the k-Shortest Distance Problem
(k-SDP) and the k-Distinct-Shortest Distance Problem (k-DSDP) in Section 3.3.

Approximate Distance Computations. As metric embeddings reproduce distances only approx-
imately, we may base them on approximate distance computation in the original graph. Using
rounding techniques and embedding Smin,+ into a polynomial ring, this enables us to use fast

matrix multiplication to speed up the aforementioned fixed-point iteration A(i+1) := A(i )A(i ) [43].

This reduces the work to Õ(nω ) at the expense of only (1 + o(1))-approximating distances, where
ω < 2.3729 [32] denotes the fast matrix-multiplication exponent. However, even if the conjecture
that ω = 2 holds true, this technique must result in Ω(n2) work simply because Ω(n2) pairwise
distances are computed.

Regarding SSSP, there was no work-efficient low-depth parallel algorithm for a long time, even
when allowing approximation. This was referred to as the “sequential bottleneck”: Matrix-matrix
multiplication was inefficient in terms of work, while sequentially exploring (shortest) paths re-

sulted in depth Ω(SPD(G )). Klein and Subramanian [31] showed that depth Õ(
√
n) can be achieved

with Õ(m
√
n) work, beating then2 work barrier with sublinear depth in sparse graphs. As an aside,

similar bounds were later achieved for exact SSSP computations by Shi and Spencer [42].
In a seminal paper, Cohen [17] proved that SSSP can be (1 + o(1))-approximated with depth

polylogn and near-optimal Õ(m1+ε ) work for any constant choice of ε > 0; her approach is based
on the aforementioned hop set construction. Similar guarantees can be achieved deterministically.
Henziger et al. [29] focus on Congest algorithms, which can be interpreted in our framework

to yield hop sets (1 + 1/ polylogn)-approximating distances for d ∈ 2O(
√

log n) ⊂ no(1) and can be

computed using depth 2O(
√

log n) ⊂ no(1) and workm2O(
√

log n) ⊂ m1+o(1) . In a recent breakthrough,
Elkin and Neiman obtained hop sets with substantially improved tradeoffs [22], both for the par-
allel setting and the Congest model. On the negative side, Abboud et al. [1] proved principal limi-
tations of hop sets by providing lower bounds on the tradeoffs between the parameters.

Our embedding technique is formulated independently from the underlying hop set construc-
tion, whose performance is reflected in the depth and work bounds of our algorithms. While the

improvements by Elkin and Neiman do not enable us to achieve a work bound of m1+o(1) when
sticking to our goals of depth polylogn and expected stretch O(logn), they can be used to obtain
better tradeoffs between the parameters.

Metric Tree Embeddings. When metrically embedding into a tree, it is, in general, impossible to
guarantee a small stretch. For instance, when the graph is a cycle with unit edge weights, it is
impossible to embed it into a tree without having at least one edge with stretch Ω(n). However,
on average, the edges in this example are stretched by a constant factor only, justifying the hope
that one may be able to randomly embed into a tree such that, for each pair of nodes, the expected
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stretch is small. A number of elegant algorithms [4, 7, 8, 23] compute tree embeddings, culminat-
ing in the one by Fakcharoenphol, Rao, and Talwar [23] (FRT) that achieves stretch O(logn) in
expectation. This stretch bound is optimal in the worst case, as illustrated by expander graphs [8].
Mendel and Schwob show how to sample from the FRT distribution in O(m log3 n) steps [37].
This upper bound has recently been improved: Blelloch et al. present an algorithm that requires
time O(m logn) w.h.p. Both algorithms match the trivial Ω(m) lower bound up to polylogarithmic
factors. However, their approach relies on a pruned version of Dijkstra’s algorithm for distance
computations and hence does not lead to a low-depth parallel algorithm.

Several parallel and distributed algorithms compute FRT trees [14, 26, 30]. These algorithms and
ours have in common that they represent the embedding by Least Element (LE) lists, which were
first introduced in Cohen [16, 18]. In the parallel case, the state-of-the-art solution due to Blelloch
et al. [14] achieves O(log2 n) depth and O(n2 logn) work. However, Blelloch et al. assume the input
to be given as an n-point metric, where the distance between two points can be queried at constant
cost. Note that our approach is more general, as a metric can be interpreted as a complete weighted
graph of SPD 1; a single MBF-like iteration reproduces the result by Blelloch et al. Moreover, this
point of view shows that the input required to achieve subquadratic work must be a sparse graph.
Furthermore, Blelloch et al. determine LE lists in O(D logn) depth and O(W logn) work, where D
andW are the depth and work of an SSSP computation that is used as a black box [12]. However,

to date only approximate SSSP algorithms simultaneously achieve W ∈ Õ(m) and D ∈ polylogn;
because calling an approximate SSSP algorithm multiple times does not result in approximate dis-
tances that respect the triangle inequality, this approach cannot be used to efficiently determine an
FRT-style embedding. For graph inputs, we are not aware of any metric tree embedding algorithm
achieving polylogn depth and a nontrivial work bound (i.e., not incurring the Ω(n3) work caused
by relying on matrix-matrix multiplication).

In the distributed setting, Khan et al. [30] show how to compute LE lists in O(SPD(G ) logn)
rounds in the Congest model [41]. On the lower bound side, trivially Ω(D(G )) rounds are required,
where D(G ) is the maximum hop distance (i.e., ignoring weights) between nodes. However, even if

D(G ) ∈ O(logn), Ω̃(
√
n), rounds are necessary [20, 26]. Extending the algorithm by Khan et al. [26],

it is shown how to obtain a round complexity of Õ(min{n1/2+ε , SPD(G )} + D(G )) for any ε > 0 at
the expense of increasing the stretch to O(ε−1 logn). We partly build on these ideas; specifically, the
construction in Section 4 can be seen as a generalization of the key technique from Khan et al. [26].
As detailed in Section 8, our framework subsumes these algorithms and can be used to improve on
the result from Khan et al. [26]: Leveraging further results [29, 35], we obtain a metric tree embed-

ding with expected stretch O(logn) that is computed in min{n1/2+o(1) + D(G )1+o(1), Õ(SPD(G ))}
rounds.

1.2 Notation and Preliminaries

We consider weighted, undirected graphs G = (V ,E,ω) without loops or parallel edges with
nodes V , edges E, and edge weights ω : E → R>0. Unless specified otherwise, we set n := |V |
and m := |E |. For an edge e = {v,w } ∈ E, we write ω (v,w ) := ω (e ), ω (v,v ) := 0 for v ∈ V , and
ω (v,w ) := ∞ for {v,w } � E. We assume that the ratio between maximum and minimum edge
weight is polynomially bounded in n and that each edge weight and constant can be stored with
sufficient precision in a single register.5 We assume that G is connected and given in the form of
an adjacency list.

5As we are interested in approximation algorithms, O(log n) bits suffice to encode values with sufficient precision.
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Let p ⊆ E be a path. p has |p | hops and weight ω (p) :=
∑

e ∈p ω (e ). For the nodes v,w ∈ V let

P(v,w,G ) denote the set of paths fromv tow and Ph (v,w,G ) the set of such paths using at most h

hops. We denote by disth (v,w,G ) := min{ω (p) | p ∈ Ph (v,w,G )} the minimum weight of anh-hop
path fromv tow , where min ∅ := ∞; the distance betweenv andw is dist(v,w,G ) := distn (v,w,G ).
The shortest path hop distance betweenv andw is hop(v,w,G ) := min{|p | | p ∈ P(v,w,G ) ∧ ω (p) =
dist(v,w,G )}; MHSP(v,w,G ) := {p ∈ Phop(v,w,G ) (v,w,G ) | ω (p) = dist(v,w,G )} denotes all min-

hop shortest paths from v to w . Finally, the Shortest Path Diameter (SPD) of G is SPD(G ) :=

max{hop(v,w,G ) | v,w ∈ V }, and D(G ) := min{h ∈ N | ∀v,w ∈ V : disth (v,w,G ) < ∞} is the un-
weighted hop diameter of G.

We sometimes use min and max as binary operators, assume 0 ∈ N, and define, for a set N

and k ∈ N,
(

N
k

)
:= {M ⊆ N | |M | = k } and denote by id : N → N the identity function. Further-

more, we use weak asymptotic notation hiding polylogarithmic factors in n: O( f (n) polylog(n)) =
Õ( f (n)), etc.

Model of Computation. We use an abstract model of parallel computation similar to those used
in circuit complexity; the goal here is to avoid distraction by details such as read or write colli-
sions or load balancing issues typical to PRAM models, noting that these can be resolved with (at
most) logarithmic overheads. The computation is represented by a Directed Acyclic Graph (DAG)
with constantly bounded maximum indegree, where nodes represent words of memory that are
given as input (indegree 0) or computed out of previously determined memory contents (non-
zero indegree). Words are computed with a constant number of basic instructions (e.g., addition,
multiplication, comparison, etc.); here, we also allow for the use of independent randomness. For
simplicity, a memory word may hold any number computed throughout the algorithm. As pointed
out earlier, O(logn)-bit words suffice for our purpose.

An algorithm defines, given the input, the DAG and how the nodes’ content is computed as well
as which nodes represent the output. Given an instance of the problem, the work is the number of
nodes of the corresponding DAG and the depth is its longest path. Assuming that there are no read
or write conflicts, the work is thus (proportional to) the time required by a single processor (of
uniform speed) to complete the computation, whereas the depth lower-bounds the time required
by an infinite number of processors. Note that the DAG may be a random graph because the
algorithm may use randomness, implying that work and depth may be random variables. When
making probabilistic statements, we require that they hold for all instances (i.e., the respective
probability bounds are satisfied after fixing an arbitrary instance).

Probability. A claim holds w.h.p. if it occurs with a probability of at least 1 − n−c for any fixed
choice of c ∈ R≥1; c is a constant for the purposes of O-notation. We use the following basic state-
ment frequently and implicitly throughout this article:

Lemma 1.2. Let E1, . . . ,Ek be events occurring w.h.p., and k ∈ polyn. E1 ∩ · · · ∩ Ek occurs w.h.p.

Proof. We have k ≤ anb for fixed a,b ∈ R>0 and choose that all Ei occur with a probability of

at least 1 − n−c ′ with c ′ = c + b + logn a for some fixed c ≥ 1. The union bound yields

P[E1 ∩ · · · ∩ Ek ] ≤
k∑

i=1

P[Ēi ] ≤ kn−c ′ = anbn−c−b−logn a = n−c , (2)

hence E1 ∩ · · · ∩ Ek occurs w.h.p. as claimed. �

Hop Sets. A graph G = (V ,E,ω), contains a (d, ε̂ )-hop set if

∀v,w ∈ V : distd (v,w,G ) ≤ (1 + ε̂ ) dist(v,w,G ); (3)
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(i.e., if its d-hop distances are a (1 + ε̂ )-approximation of its distances). This definition is based on
Cohen [17], who describes how to efficiently add edges to G to establish this property.

Distance Metrics. The min-plus semiring Smin,+ = (R≥0 ∪ {∞},min,+), also referred to as the
tropical semiring, forms a semiring (i.e., a ring without additive inverses; see Definition A.2 in
Appendix A). Unless explicitly stated otherwise, we associate ⊕ and � with the addition and mul-
tiplication of the underlying ring throughout the article; in this case, we use a ⊕ b := min{a,b} and
a � b := a + b. Observe that∞ and 0 are the neutral elements with respect to ⊕ and �, respectively.
We sometimes write x ∈ Smin,+ instead of x ∈ R≥0 ∪ {∞} to refer to the elements of a semiring.
Furthermore, we follow the standard convention to occasionally leave out � and give it priority
over ⊕ (e.g., interpret ab ⊕ c as (a � b) ⊕ c for all a,b, c ∈ Smin,+).

The min-plus semiring is a well-established tool to determine pairwise distances in a graph via
the distance product (see, e.g., [3, 39, 43]). LetG = (V ,E,ω) be a weighted graph and letA ∈ SV×V

min,+

be its adjacency matrix A, given by

(avw ) :=
⎧⎪⎪⎨⎪⎪⎩

0 if v = w
ω (v,w ) if {v,w } ∈ E
∞ otherwise.

(4)

Throughout this article, the operations involved in matrix addition and multiplication are the op-
erations of the underlying semiring; that is, for square matrices A,B with row and column index
set V we have

(A ⊕ B)vw = min{avw ,bvw } and (5)

(AB)vw = min
u ∈V
{avu + buw }. (6)

The distance product Ah corresponds to h-hop distances (i.e., (Ah )vw = disth (v,w,G )) [3]. In par-
ticular, this corresponds to the exact distances between all pairs of nodes for h ≥ SPD(G ).

2 MBF-LIKE ALGORITHMS

The MBF algorithm [11, 24, 40] is both fundamental and elegant. In its classical form, it solves the
SSSP problem: In each iteration, each node communicates its current upper bound on its distance
to the source node s (initially ∞ at all nodes but s) plus the corresponding edge weight to its
neighbors, which then keep the minimum of the received values and their previously stored one.
Iterating h times determines all nodes’ h-hop distances to s .

Over the years, numerous algorithms emerged that use similar iterative schemes for distributing
information [4, 7, 8, 23, 29, 33–35]. It is natural to ask for a characterization that captures all of these
algorithms. In this section, we propose such a characterization: the class of MBF-like algorithms.

The common denominator of these algorithms is the following:

—An initial state vector x (0) ∈ MV contains information initially known to each node.
—In each iteration, each node first propagates information along all incident edges.
—All nodes then aggregate the received information. This and the previous step are precisely

the same as updating the state vector x (i ) by the matrix-vector product x (i+1) = Ax (i ) over
the min-plus semiring.

—Finally, irrelevant information is filtered out before moving on to the next iteration.

As a concrete example consider k-Source Shortest Paths (k-SSP), the task of determining for each
node the list of its k closest nodes. To this end, one needs to consider all nodes as sources (i.e., run
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the multi-source variant of the classic MBF algorithm with all nodes as sources). Nodes store val-
ues in (R≥0 ∪ {∞})V , so that in iteration i each node v ∈ V can store disti (v,w,G ) ∈ R≥0 ∪ {∞}
for allw ∈ V . Initially, x (0)

vw is 0 ifv = w and∞ everywhere else (the 0-hop distances).6 Propagating

these distances over an edge of weightω (e ) means uniformly increasing them byω (e ). During ag-

gregation, each node picks, for each target node, the smallest distance reported so far. This is costly
since each node might learn non-∞ distances values for all other nodes. To increase efficiency, we
filter out, in each iteration and at each node, all source–distance pairs but the k pairs with smallest

distance. This reduces the amount of work per iteration from Θ̃(mn) to Θ̃(mk ).
The filtering step generalizes from classic MBF to an MBF-like algorithm, with the goal of re-

ducing work. The crucial characteristics exploited by this idea are the following:

—Propagation and aggregation are interchangeable. It makes no difference whether two
pieces of information are propagated separately or as a single aggregated piece of infor-
mation.

—Filtering or not filtering after aggregation has no impact on the correctness (i.e., the output)
of an algorithm, only on its efficiency.

In this section, we formalize this approach for later use in more advanced algorithms. To this
end, we develop a characterization of MBF-like algorithms in Sections 2.1–2.3 and establish basic
properties in Section 2.4. We demonstrate that our approach applies to a wide variety of known
algorithms in Section 3. In order to maintain self-containment without obstructing presentation,
basic algebraic definitions are given in Appendix A.

2.1 Propagation and Aggregation

Let M be the set of node states, i.e., the possible values that an MBF-like algorithm can store
at a vertex. We represent propagation of x ∈ M over an edge of weight s ∈ R≥0 ∪ {∞} by s � x ,
where � : R≥0 ∪ {∞} ×M → M , and aggregation of x ,y ∈ M at some node by x ⊕ y, where ⊕ :
M ×M → M ; the discussion of filtering is deferred to Section 2.2. Concerning the aggregation
of information, we demand that ⊕ is associative and has a neutral element ⊥ ∈ M encoding “no
available information,” hence (M, ⊕) is a semigroup with neutral element ⊥. Furthermore, we
require for all s, t ∈ R≥0 ∪ {∞} and x ,y ∈ M (note that we “overload” ⊕ and �):

0 � x = x (7)

∞ � x = ⊥ (8)

s � (x ⊕ y) = (s � x ) ⊕ (s � y) (9)

(s ⊕ t ) � x = (s � x ) ⊕ (t � x ) (10)

(s � t ) � x = s � (t � x ). (11)

Our requirements are quite natural: Equations (7) and (8) state that propagating information over
zero distance (e.g., keeping it at a vertex) does not alter it and that propagating it infinitely far
away (i.e., “propagating” it over a nonexisting edge) means losing it, respectively. Note that 0 and
∞ are the neutral elements with respect to � and ⊕ in Smin,+. Equation (9) says that propagat-
ing aggregated information is equivalent to aggregating propagated information (along identical
distances), Equation (10) means that propagating information over a shorter of two edges is equiv-
alent to moving it along both edges and then aggregating it (information “becomes obsolete” with

6Whenever nodes store vectors of distances, we use double-index notation: x
(0)
v ∈ (R≥0 ∪ {∞})V is the “distance vector”

stored at node v, and x
(0)
vw ∈ R≥0 ∪ {∞} is the distance regarding w stored at node v .
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increasing distance), and Equation (11) states that propagating propagated information can be done
in a single step.

Altogether, this is equivalent to demanding thatM = (M, ⊕, �) is a zero-preserving semimodule
(see Definition A.3 in Appendix A) overSmin,+. A straightforward choice ofM is the direct product
of |V | copies of R≥0 ∪ {∞}, which is suitable for most of the applications we consider.

Definition 2.1 (Distance Map). The distance map semimoduleD := ((R≥0 ∪ {∞})V , ⊕, �) is given
by, for all s ∈ Smin,+ and x ,y ∈ D,

(x ⊕ y)v := xv ⊕ yv = min{xv ,yv } (12)

(s � x )v := s � xv = s + xv (13)

where ⊥ := (∞, . . . ,∞)� ∈ D is the neutral element with respect to ⊕.

Corollary 2.2. D is a zero-preserving semimodule over Smin,+ with zero ⊥ = (∞, . . . ,∞)� by

Lemma A.4.

Distance maps can be represented by only storing the non-∞ distances (and their indices
from V ). This is of interest when there are few non-∞ entries, which can be ensured by filter-
ing (see below). In the following, we denote by |x | the number of non-∞ entries of x ∈ D. The
following lemma shows that this representation allows for efficient aggregation.

Lemma 2.3. Suppose x1, . . . ,xn ∈ D are stored in lists of index–distance pairs as above. Then⊕n
i=1 xi can be computed with O(logn) depth and O(

∑n
i=1 |xi | logn) work.

Proof. We sort
⋃n

i=1 xi in ascending lexicographical order. This can be done in parallel with
O(log(

∑n
i=1 |xi |)) ⊆ O(logn) depth and O(

∑n
i=1 |xi | logn) work [2]. Then we delete each pair for

which the next smaller pair has the same index; the resulting list thus contains, for each v ∈ V for
which there is a non-∞ value in some list xi , the minimum such value. As this operation is easy
to implement with O(logn) depth and O(

∑n
i=1 |xi | logn) work, the claim follows. �

WhileSmin,+ andD suffice for most applications and are suitable to convey our ideas, it is some-
times necessary to use a different semiring. We elaborate on this in Section 3. Hence, rather than
confining the discussion to semimodules overSmin,+, in the following we make general statements
about an arbitrary semimoduleM = (M, ⊕, �) over an arbitrary semiring S = (S, ⊕, �) wherever
it does not obstruct the presentation. It is, however, helpful to keep S = Smin,+ and M = D in
mind.

2.2 Filtering

MBF-like algorithms achieve efficiency by maintaining and propagating—instead of the full
amount of information nodes are exposed to—only a filtered (small) representative of the informa-
tion they obtained. Our goal in this section is to capture the properties that a filter must satisfy to
not affect output correctness. We start with a congruence relation, an equivalence relation com-
patible with propagation and aggregation, onM. A filter r :M →M is a projection mapping all
members of an equivalence class to the same representative within that class; compare Defini-
tion 2.6.

Definition 2.4 (Congruence Relation). LetM = (M, ⊕, �) be a semimodule over the semiring S
and ∼ an equivalence relation on M . We call ∼ a congruence relation onM if and only if

∀s ∈ S,∀x ,x ′ ∈ M : x ∼ x ′ ⇒ sx ∼ sx ′ (14)

∀x ,x ′,y,y ′ ∈ M : x ∼ x ′ ∧ y ∼ y ′ ⇒ x ⊕ y ∼ x ′ ⊕ y ′. (15)

A congruence relation induces a quotient semimodule.
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Observation 2.5. Denote by [x] the equivalence class of x ∈ M under the congruence relation ∼
on the semimoduleM. Set M/∼ := {[x] | x ∈ M}. ThenM/∼ := (M/∼, ⊕, �) is a semimodule with

the operations [x] ⊕ [y] := [x ⊕ y] and s � [x] := [sx].

An MBF-like algorithm performs efficient computations by implicitly operating on this quotient
semimodule (i.e., on suitable, typically small, representatives of the equivalence classes). Such rep-
resentatives are obtained in the filtering step using a representative projection, also referred to as
a filter. We refer to this step as filtering since, in all our applications and examples, it discards a
subset of the available information that is irrelevant to the problem at hand.

Definition 2.6 (Representative Projection). LetM = (M, ⊕, �) be a semimodule over the semiring
S and ∼ a congruence relation onM. Then r :M →M is a representative projection with respect

to ∼ if and only if

∀x ∈ M : x ∼ r (x ) (16)

∀x ,y ∈ M : x ∼ y ⇒ r (x ) = r (y). (17)

Observation 2.7. A representative projection is a projection (i.e., r 2 = r ).

In the following, we typically first define a suitable projection r ; this projection in turn defines
equivalence classes [x] := {y ∈ M | r (x ) = r (y)}. The following lemma is useful when we need to
show that equivalence classes defined this way yield a congruence relation (i.e., are suitable for
MBF-like algorithms).

Lemma 2.8. LetM be a semimodule over the semiring S, let r :M →M be a projection, and for

x ,y ∈ M, let x ∼ y :⇔ r (x ) = r (y). Then ∼ is a congruence relation with representative projection r
if:

∀s ∈ S,∀x ,x ′ ∈ M : r (x ) = r (x ′) ⇒ r (sx ) = r (sx ′), and (18)

∀x ,x ′,y,y ′ ∈ M : r (x ) = r (x ′) ∧ r (y) = r (y ′) ⇒ r (x ⊕ y) = r (x ′ ⊕ y ′). (19)

Proof. Obviously, ∼ is an equivalence relation, and r fulfills Equations (16) and (17). Condi-
tions (2.8) and (2.9) directly follow from the preconditions of the lemma. �

An MBF-like algorithm has to behave in a compatible way for all vertices in that each vertex fol-
lows the same propagation, aggregation, and filtering rules. This induces a semimodule structure
on the (possible) state vectors of the algorithm in a natural way.

Definition 2.9 (Power Semimodule). Given a node set V and a zero-preserving semimodule
M = (M, ⊕, �) over the semiring S, we define MV = (MV , ⊕, �) by applying the operations of
M coordinatewise (i.e., ∀v,w ∈ MV ,∀s ∈ S):

(x ⊕ y)v := xv ⊕ yv and (20)

(s � x )v := s � xv . (21)

Furthermore, by rV we denote the componentwise application of a representative projection r
ofM,

(rV x )v := r (xv ). (22)

This induces the equivalence relation ∼ onM via x ∼ y if and only if xv ∼ yv for all v ∈ V .

Observation 2.10. MV is a zero-preserving semimodule over S and ⊥V := (⊥, . . . ,⊥)� ∈ MV

is its neutral element with respect to ⊕, where⊥ is the neutral element ofM. The equivalence relation

∼ induced by rV is a congruence relation onMV with representative projection rV .
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2.3 The Class of MBF-like Algorithms

The following definition connects the properties introduced and motivated earlier:

Definition 2.11 (MBF-like Algorithm). A MBF-like algorithm A is determined by

(1) a zero-preserving semimoduleM over a semiring S,
(2) a congruence relation onM with representative projection r :M →M, and

(3) initial values x (0) ∈ MV for the nodes (which may depend on the input graph).

On a graph G with adjacency matrix A, h iterations of A determine

Ah (G ) := x (h) := rVAhx (0) . (23)

Since A reaches a fixed point after at most i = SPD(G ) < n iterations (i.e., a state where x (i+1) =

x (i )), we abbreviate A (G ) := An (G ).

Note that the definition of the adjacency matrix A ∈ SV×V depends on the choice of the semir-
ing S. For the standard choice of S = Smin,+, which suffices for all our core results, we define
A in Equation (4); examples using different semirings and the associated adjacency matrices are
discussed in Sections 3.2–3.4.

The (i + 1)-th iteration of an MBF-like algorithm A determines x (i+1) := rVAx (i ) (propagate,

aggregate, and filter). Thus,h iterations yield (rVA)hx (0) , which we show to be identical to rVAhx (0)

in Corollary 2.17 of Section 2.4.

2.4 Preserving State-Equivalence Across Iterations

As motivated earlier, MBF-like algorithms filter intermediate results; a representative projection rV

determines a small representative of each node state. This maintains efficiency: Nodes propagate
and aggregate only small representatives of the relevant information instead of the full amount of
information they are exposed to. However, as motivated in, for example, Section 2.2, filtering is
only relevant regarding efficiency, but not the correctness of MBF-like algorithms.

In this section, we formalize this concept in the following steps.

(1) We introduce the functions needed to iterate MBF-like algorithms without filtering (i.e.,
multiplications with [adjacency] matrices). These Simple Linear Functions (SLFs) are a
proper subset of the linear7 functions onMV .

(2) The next step is to observe that SLFs are well-behaved with respect to the equivalence
classesMV /∼ of node states.

(3) Equivalence classes of SLFs mapping equivalent inputs to equivalent outputs yield the
functions required for the study of MBF-like algorithms. These form a semiring of (a subset
of) the functions onMV /∼.

(4) Finally, we observe that rV ∼ id, formalizing the concepts of “operating on equivalence
classes of node states” and “filtering being optional with respect to correctness.”

An SLF f is “simple” in the sense that it corresponds to matrix-vector multiplications; thatis, it
maps x ∈ MV such that ( f (x ))v is a linear combination of the coordinates xw , w ∈ V , of x .

Definition 2.12 (Simple Linear Function). Let M be a semimodule over the semiring S. Each
matrix A ∈ SV×V defines an SLF A :MV →MV (and vice versa) by

A(x )v := (Ax )v =
⊕
w ∈V

avwxw . (24)

7A linear function f : M → M on the semimodule M over the semiring S satisfies, for all x, y ∈ M and s ∈ S, that

f (x ⊕ y ) = f (x ) ⊕ f (y ) and f (s � x ) = s � f (x ).
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Thus, each iteration of an MBF-like algorithm is an application of an SLF given by an adjacency
matrix followed by an application of the filter rV . In the following, fix a semiring S, a semimodule
M over S, and a congruence relation ∼ on M. Furthermore, let F denote the set of SLFs (i.e.,
matrices A ∈ SV×V ), each defining a function A :MV →MV .

Example 2.13 (Non-Simple Linear Function). We remark that not all linear functions onMV are
SLFs. Choose V = {1, 2}, S = Smin,+, andM = D. Consider f :MV →MV given by

f

(
(x11,x12)

(x21,x22)

)
:=

(
(x11 ⊕ x12,∞)

⊥

)
. (25)

While f is linear, f (x )1 is not a linear combination of x1 and x2. Hence, f is not an SLF.

Let A,B ∈ F be SLFs. Denote by A(x ) �→ Ax the application of the SLF A to the argument x ∈
MV . Furthermore, we write (A ⊕ B) (x ) �→ A(x ) ⊕ B (x ) and (A ◦ B) (x ) �→ A(B (x )) for the addition
and concatenation of SLFs, respectively. We proceed to Lemma 2.14, in which we show that matrix
addition and multiplication are equivalent to the addition and concatenation of SLF functions,
respectively. It follows that the SLFs form a semiring that is isomorphic to the matrix semiring of
SLF matrices. Hence, we may use A(x ) and Ax interchangeably in the following.

Lemma 2.14. F := (F , ⊕, ◦), where ⊕ denotes the addition of functions and ◦ their concatenation,

is a semiring. Furthermore, F is isomorphic to the matrix-semiring over S; that is, for all A,B ∈ F
and x ∈ MV ,

(A ⊕ B) (x ) = (A ⊕ B)x and (26)

(A ◦ B) (x ) = ABx . (27)

Proof. Let A,B ∈ F and x ∈ MV be arbitrary. Regarding Equations (26) and (27), observe that
we have

(A ⊕ B)x = Ax ⊕ Bx = A(x ) ⊕ B (x ) = (A ⊕ B) (x ) and (28)

ABx = A(Bx ) = A(B (x )) = (A ◦ B) (x ), (29)

respectively; addition and concatenation of SLFs are equivalent to addition and multiplication of
their respective matrices. It follows that F is isomorphic to the matrix semiring (SV×V , ⊕, �) and
hence F is a semiring as claimed. �

Recall that MBF-like algorithms project node states to appropriate equivalent node states. SLFs
correspond to matrices and (adjacency) matrices correspond to MBF-like iterations. Hence, it is
important that SLFs are well-behaved with respect to the equivalence classesMV /∼ of node states.
Lemma 2.15 states that this is the case (i.e., that Ax ∼ Ax ′ for all x ′ ∈ [x]).

Lemma 2.15. Let A ∈ F be an SLF. Then we have, for all x ,x ′ ∈ MV ,

x ∼ x ′ ⇒ Ax ∼ Ax ′. (30)

Proof. First, for k ∈ N, let x1, . . . ,xk ,x
′
1, . . . ,x

′
k
∈ M be such that xi ∼ x ′i for all 1 ≤ i ≤ k . We

show that for all s1, . . . , sk ∈ S it holds that

k⊕
i=1

sixi ∼
k⊕

i=1

six
′
i . (31)

We argue that Equation (31) holds by induction over k . For k = 1, the claim trivially follows from
Equation (14). Regarding k ≥ 2, suppose the claim holds for k − 1. Since xk ∼ x ′

k
, we have that
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skxk ∼ skx
′
k

by (2.8). The induction hypothesis yields
⊕k−1

i=1 sixi ∼
⊕k−1

i=1 six
′
i . Hence,

k⊕
i=1

sixk = ��
k−1⊕
i=1

sixi
�	 ⊕ skxk

(2.9)∼ ��
k−1⊕
i=1

six
′
i
�	 ⊕ skx

′
k =

k⊕
i=1

six
′
k . (32)

As for the original claim, let v ∈ V be arbitrary and note that we have

(Ax )v =
⊕
w ∈V

avwxv
(2.25)∼

⊕
w ∈V

avwx
′
v = (Ax ′)v . (33)

�

Due to Lemma 2.15, each SLF A ∈ F not only defines a function A :MV →MV , but also a
function A :MV /∼ → MV /∼ with A[x] := [Ax] (A[x] does not depend on the choice of the rep-
resentant x ′ ∈ [x]). This is important since MBF-like algorithms implicitly operate onMV /∼ and
because they do so using adjacency matrices, which are SLFs. As a natural next step, we rule for
SLFs A,B ∈ F that

A ∼ B :⇔ ∀x ∈ MV : Ax ∼ Bx ; (34)

that is, that they are equivalent if and only if they yield equivalent results when presented with the
same input. This yields equivalence classes F/∼ = {[A] | A ∈ F }. This implies, by Equation (34), that
[A][x] := [Ax] is well-defined. In Theorem 2.16, we show that the equivalence classes of SLFs with
respect to summation and concatenation form a semiring F /∼. As MBF-like algorithms implicitly
work onMV /∼, we obtain with F /∼ precisely the structure that may be used to manipulate the
state of MBF-like algorithms, which we leverage throughout this article.

Theorem 2.16. Each [A] ∈ F/∼ defines an SLF onMV /∼. Furthermore, F /∼ := (F/∼, ⊕, ◦), where

⊕ denotes the addition and ◦ the concatenation of functions, is a semiring of SLFs onMV /∼ with

[A] ⊕ [B] = [A ⊕ B] and (35)

[A] ◦ [B] = [AB]. (36)

Proof. As argued earlier, for any A ∈ F , [A] ∈ F/∼ is well-defined on MV /∼ by Lemma 2.15.
Equations (35) and (36) follow from Equations (26) and (27), respectively:

[A ⊕ B][x] = [(A ⊕ B)x]
(2.20)
= [(A ⊕ B) (x )] = ([A] ⊕ [B]) ([x]) (37)

[AB][x] = [ABx]
(2.21)
= [(A ◦ B) (x )] = [A ◦ B]([x]). (38)

To see that [A] is linear, let s ∈ S and x ,y ∈ MV be arbitrary and compute

[A][x] ⊕ [A][y] = [Ax] ⊕ [Ay] = [Ax ⊕ Ay] = [A(x ⊕ y)] = [A][x ⊕ y]

= [A]([x] ⊕ [y]) and (39)

[A](s[x]) = [A(sx )] = [s (Ax )] = s[Ax] = s[A][x]. (40)

This implies that F /∼ is a semiring of linear functions. As each function [A] is represented by
multiplication with (any) SLF A′ ∈ [A], [A] is an SLF. �

The following corollary is a key property used throughout this article. It allows us to apply
filter steps whenever convenient. We later use this to simulate MBF-like iterations on an implicitly
represented graph whose edges correspond to entire paths in the original graph. This is efficient
only because we have the luxury of applying intermediate filtering repeatedly without affecting
the output.
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Corollary 2.17 (rV ∼ id). For any representative projection r onM, we have rV ∼ id; thatis, for

any SLF A ∈ F it holds that

rVA ∼ ArV ∼ A. (41)

In particular (as promised in Section 2.3) for any MBF-like algorithm A, we have

Ah (G )
(2.17)
= rVAhx (0) (2.35)

= (rVA)hx (0) . (42)

Finally, we stress that both the restriction to SLFs and the componentwise application of r in rV

are crucial for Corollary 2.17.

Example 2.18 (Non-Simple Linear Functions break Corollary 2.17). Consider V , M, and f from
Example 2.13. If r (x ) = (x1,∞) for all x ∈ M, we have that

rV f

(
(2, 1)

⊥

)
=

(
(1,∞)

⊥

)
�

(
(2,∞)

⊥

)
= f rV

(
(2, 1)

⊥

)
, (43)

implying that rV f � f rV .

Example 2.19 (Non–Component-Wise Filtering Breaks Corollary 2.17). Consider V = {1, 2}, S =
Smin,+, andM = D. Suppose f is the SLF given by f x := ( x1⊕x2

⊥ ) and rV (x ) := ( x1

⊥ ); that is, rV is
not a component-wise application of some representative projection r onM, but still a represen-
tative projection onMV . Then we have that

rV f

(
(2,∞)

(1,∞)

)
= rV

(
(1,∞)

⊥

)
=

(
(1,∞)

⊥

)
�

(
(2,∞)

⊥

)
= f

(
(2,∞)

⊥

)
= f rV

(
(2,∞)

(1,∞)

)
, (44)

again implying that rV f � f rV .

3 A COLLECTION OF MBF-LIKE ALGORITHMS

For the purpose of illustration and to demonstrate the generality of our framework, we show that
a variety of standard algorithms are MBF-like algorithms; due to the machinery established earlier,
this is a trivial task in many cases. In order to provide an unobstructed view on the machinery—
and since this section is not central to our contributions—we defer proofs to Appendix B.

We demonstrate that some more involved distributed algorithms in the Congest model have a
straightforward and compact interpretation in our framework in Section 8. They compute metric
tree embeddings based on the FRT distribution; we present them alongside an improved distributed
algorithm based on the other results of this work.

MBF-like algorithms are specified by a zero-preserving semimodule M over a semiring S, a

representative projection of a congruence relation onM, initial states x (0) , and the number of it-
erationsh (compare Definition 2.11). While this might look like a lot, typically, a standard semiring
and semimodule can be chosen; the general-purpose choices of S = Smin,+ andM = D (see Defi-
nition 2.1 and Corollary 2.2) orM = Smin,+ (every semiring is a zero-preserving semimodule over
itself) usually are up to the task. Refer to Sections 3.2 and 3.3 for examples that require different
semirings. However, even in these cases, the semirings and semimodules specified in Sections 3.2
and 3.3 can be reused. Hence, all that is left to do in most cases is to pick an existing semiring and
semimodule, choose h ∈ N, and specify a representative projection r .

3.1 MBF-like Algorithms over the Min-Plus Semiring

We demonstrate that the min-plus semiring Smin,+ (a.k.a. the tropical semiring) is the semiring of
choice to capture many standard distance problems. Note that we also use Smin,+ in our core result
(i.e., for sampling FRT trees). For the sake of completeness, first recall the adjacency matrix A of
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the weighted graphG in the semiring Smin,+ from Equation (4) and the distance-map semimodule

D from Definition 2.1; consider the initialization x (0) ∈ DV with

x (0)
vw :=

{
0 if v = w and
∞ otherwise,

(45)

and observe that the entries of
x (h) := Ahx (0) (46)

correspond to the h-hop distances in G:

Lemma 3.1. For h ∈ N and x (h) from Equation (46), we have

x (h)
vw = disth (v,w,G ). (47)

It is well-known that the min-plus semiring can be used for distance computations [3, 39, 43].
Nevertheless, for the sake of completeness, we prove Lemma 3.1 in terms of our notation in
Appendix B.

As a first example, we turn our attention to source detection. It generalizes all examples covered
in this section, saving us from proving each one of them correct; well-established examples like
SSSP and APSP follow. Source detection was introduced by Lenzen and Peleg [36]. Note, however,
that we include a maximum considered distance d in the definition.

Example 3.2 (Source Detection [36]). Given a weighted graph G = (V ,E,ω), sources S ⊆ V , hop
and result limits h,k ∈ N, and a maximum distance d ∈ R≥0 ∪ {∞}, (S,h,d,k )-source detection is

the following problem: For each v ∈ V , determine the k smallest elements of {(disth (v, s,G ), s ) |
s ∈ S, dist(v, s,G ) ≤ d } with respect to lexicographical ordering, or all of them if there are fewer
than k .

Source detection is solved by h iterations of an MBF-like algorithm with S = Smin,+,M = D,

r (x )v �→
{
xv if v ∈ S , xv ≤ d , and xv is among k smallest entries of x (ties broken by index),
∞ otherwise,

(48)

and x (0)
vv = 0 if v ∈ S and x (0)

vw = ∞ in all other cases.

Since it may not be obvious that r is a representative projection, we prove it in Appendix B.

Example 3.3 (SSSP). Single-Source Shortest Paths (SSSP) requires us to determine the h-hop dis-
tance to s ∈ V for all v ∈ V . It is solved by an MBF-like algorithm with S =M = Smin,+, r = id,

and x (0)
s = 0, x (0)

v = ∞ for all v � s .

Equivalently, one may use ({s},h,∞, 1)-source detection, effectively resulting in M = Smin,+.
When only storing the non-∞ entries, only the s-entry is relevant; however, the vertex ID of s is
stored as well—and r = id, too.

Example 3.4 (k-SSP). The k-SSP requires us to determine, for each node, the k closest nodes in

terms of the h-hop distance disth (·, ·,G ). It is solved by an MBF-like algorithm, as it corresponds
to (V ,h,∞,k )-source detection.

Example 3.5 (APSP). All-Pairs Shortest Paths (APSP) is the task of determining theh-hop distance
between all pairs of nodes. It is solved by an MBF-like algorithm because we can use (V ,h,∞,n)-
source detection, resulting inM = D, r = id, and x (0) from Equation (45).

Example 3.6 (MSSP). In the Multi-Source Shortest Paths (MSSP) problem, each node is looking for
the h-hop distances to all nodes in a designated set S ⊆ V of source nodes. This is solved by the
MBF-like algorithm for (S,h,∞, |S |)-source detection.
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Example 3.7 (Forest Fires). The nodes in a graphG form a distributed sensor network, the edges
represent communication channels, and edge weights correspond to distances. Our goal is to
detect, for each node v , if there is a node w on fire within distance dist(v,w,G ) ≤ d for some
d ∈ R≥0 ∪ {∞}, where every node initially knows if it is on fire. As a suitable MBF-like algorithm,
pick h = n, S =M = Smin,+,

r (x ) �→
{
x if x ≤ d and
∞ otherwise,

(49)

and x (0)
v = 0 if v is on fire and x (0)

v = ∞ otherwise.

Example 3.7 can be handled differently by using (S,n,d, 1)-source detection, where S are the
nodes on fire. This also reveals the closest node on fire, whereas the solution from Example 3.7
works in anonymous networks. One can interpret both solutions as instances of SSSP with a virtual
source s � V that is connected to all nodes on fire by an edge of weight 0. This, however, requires
a simulation argument and additional reasoning if the closest node on fire is to be determined.

3.2 MBF-like Algorithms over the Max-Min Semiring

Some problems require using a semiring other than Smin,+. As an example, consider the Widest
Path Problem (WPP), also referred to as the bottleneck shortest path problem: Given two nodes
v and w in a weighted graph, find a v-w-path maximizing the lightest edge in the path. More
formally, we are interested in the widest-path distance between v and w :

Definition 3.8 (Widest-Path Distance). Given a weighted graph G = (V ,E,ω), a path p has width

width(p) := min{ω (e ) | e ∈ p}. The h-hop widest-path distance between v,w ∈ V is

widthh (v,w,G ) := max
p∈Ph (v,w,G )

{width(p)}. (50)

We abbreviate width(v,w,G ) := widthn (v,w,G ).

An application of the WPP are trust networks: The nodes of a graph are entities, and an edge
{v,w } of weight 0 < ω (v,w ) ≤ 1 encodes that v and w trust each other with ω (v,w ). Assuming
trust to be transitive, v trusts w with maxp∈P(v,w,G ) mine ∈p ω (e ) = width(v,w,G ). The WPP re-
quires a semiring supporting the max and min operations:

Definition 3.9 (Max-Min Semiring). We refer to Smax,min := (R≥0 ∪ {∞},max,min) as the max-

min semiring.

Lemma 3.10. Smax,min is a semiring with neutral elements 0 and∞.

Proof in Appendix B.

Corollary 3.11. Smax,min is a zero-preserving semimodule over itself. Furthermore, we have that

W := ((R≥0 ∪ {∞})V , ⊕, �) with, for all x ,y ∈ (R≥0 ∪ {∞})V and s ∈ R≥0 ∪ {∞},
(x ⊕ y)v := max{xv ,yv } (51)

(s � x )v := min{s,xv } (52)

is a zero-preserving semimodule over Smax,min with zero ⊥ = (0, . . . , 0)� by Lemma A.4.

As adjacency matrix of G = (V ,E,ω) with respect to Smax,min, we propose A ∈ SV×V
max,min with

(avw ) :=
⎧⎪⎪⎨⎪⎪⎩
∞ if v = w ,
ω (v,w ) if {v,w } ∈ E, and
0 otherwise.

(53)
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This is a straightforward adaptation of the adjacency matrix with respect to Smin,+ in Equation (4).

As an initialization, x (0) ∈ WV in which each node knows the trivial path of unbounded width to
itself, but nothing else, is given by

x (0)
vw :=

{
∞ if v = w and
0 otherwise.

(54)

Then, 1 ≤ h ∈ N multiplications with A (i.e., h iterations) yield

x (h) := Ahx (0) (55)

which corresponds to the h-hop widest-path distance:

Lemma 3.12. Given x (h) from Equation (55), we have

x (h)
vw = widthh (v,w,G ). (56)

Proof in Appendix B.

Example 3.13 (Single-Source Widest Paths). Single-Source Widest Paths (SSWP) asks for, given a
weighted graph G = (V ,E,ω), a designated source node s ∈ V , and h ∈ N, the h-hop widest-path

distance widthh (s,v,G ) for every v ∈ V . It is solved by an MBF-like algorithm with S =M =
Smax,min, r = id, and x (0)

s = ∞ and x (0)
v = 0 for all v � s .

Example 3.14 (All-Pairs Widest Paths). All-Pairs Widest Paths (APWP) asks for, given G =

(V ,E,ω) and h ∈ N, widthh (v,w,G ) for all v,w ∈ V . APWP is MBF-like; it is solved by choos-
ing S = Smax,min,M =W , r = id, and x (0) from Equation (54) by Lemma 3.12.

Example 3.15 (Multi-Source Widest Paths). In the Multi-Source Widest Paths (MSWP) problem,
each node is looking for the h-hop widest path distance to all nodes in a designated set S ⊆ V of
source nodes. This is solved by the same MBF-like algorithm as for APWP in Example 3.14 when

changing x (0) to x (0)
vw = ∞ if v = w ∈ S and x (0)

vw = 0 otherwise.

3.3 MBF-like Algorithms over the All-Paths Semiring

Mohri discusses k-SDP, where each v ∈ V is required to find the k shortest paths to a designated
source node s ∈ V , in the light of his algebraic framework for distance computations [39]. Our
framework captures this application as well but requires a different semiring than Smin,+: While
Smin,+ suffices for many applications (see Section 3.1), it cannot distinguish between different paths
of the same length. This is a problem in the k-SDP because there may be multiple paths of the same
length among the k shortest.

Observation 3.16. No semimoduleM over Smin,+ can overcome this issue: The left-distributive

law (A.9) requires, for all x ∈ M and s, s ′ ∈ Smin,+, that sx ⊕ s ′x = (s ⊕ s ′)x . Consider different paths

π � π ′ ending in the same node with ω (π ) = s = s ′ = ω (π ′). With respect to Smin,+ andM, the left-

distributive law yields sx ⊕ s ′x = min{s, s ′} � x ; that is, propagating x over π , over π ′, or over both

and then aggregating must be indistinguishable in the case of s = s ′.

This does not mean that the framework of MBF-like algorithms cannot be applied, but rather it
indicates that the toolbox needs a more powerful semiring than Smin,+. The motivation of this
section is to add such a semiring, the all-paths semiring Pmin,+, to the toolbox. Having estab-
lished Pmin,+, the advantages of the previously established machinery are available: pick a semi-
module (or use Pmin,+ itself) and define a representative projection. We demonstrate this for k-SDP
and a variant.
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The basic concept of Pmin,+ is simple: remember paths instead of adding up “anonymous” dis-
tances. Instead of storing the sum of the traversed edges’ weight, store the string of edges. We
also add the ability to remember multiple paths into the semiring. This includes enough features
in Pmin,+; we do not require dedicated semimodules for k-SDP, and we use the fact that Pmin,+ is
a zero-preserving semimodule over itself.

We begin the technical part with a convenient representation of paths: Let P ⊂ V + denote the set
of non-empty, loop-free, directed paths on V , denoted as tuples of nodes. Furthermore, let ◦ ⊆ P2

be the relation of concatenable paths defined by

(v1, . . . ,vk ) ◦ (w1, . . . ,w� ) :⇔ vk = w1. (57)

By abuse of notation, when and if its operands are concatenable, we occasionally use ◦ as
the concatenation operator. Furthermore, we use {(π 1,π 2) | π = π 1 ◦ π 2} as a shorthand for the
rather cumbersome {(π 1,π 2) | π 1,π 2 ∈ P ∧ π 1 ◦ π 2 ∧ π is the concatenation of π 1 and π 2} to iter-
ate over all two-splits of π . We call a path π valid with respect to G if π ∈ P(G ) and invalid with

respect to G otherwise.
As motivated earlier, the all-paths semiring can store multiple paths. We represent this using

vectors in (R≥0 ∪ {∞})P storing a non-∞ weight for every encountered path and ∞ for all paths
not encountered so far. This can be efficiently represented by implicitly leaving out all∞ entries.

Definition 3.17 (All-Paths Semiring). We call Pmin,+ = ((R≥0 ∪ {∞})P , ⊕, �) the all-paths semir-

ing, where ⊕ and � are defined, for all π ∈ P and x ,y ∈ Pmin,+, by

(x ⊕ y)π := min{xπ ,yπ } and (58)

(x � y)π := min{xπ 1 + yπ 2 | π = π 1 ◦ π 2}. (59)

We say that x contains π (with weight xπ ) if and only if xπ < ∞.

Summation picks the smallest weight associated with each path in either operand; multiplication
(x � y)π finds the lightest estimate for π composed of two-splits π = π 1 ◦ π 2, where π 1 is picked
from x and π 2 from y. Observe that Pmin,+ supports upper bounds on path lengths; we do not,
however, use this feature. Intuitively, Pmin,+ stores all encountered paths with their exact weights;
in this mindset, summation corresponds to the union and multiplication to the concatenability-
obeying Cartesian product of the paths contained in x and y.

Lemma 3.18. Pmin,+ is a semiring with neutral elements

0 := (∞, . . . ,∞)� and (60)

1π :=

{
0 if π = (v ) for some v ∈ V and

∞ otherwise
(61)

with respect to ⊕ and �, respectively.

Proof in Appendix B.

Corollary 3.19. Pmin,+ is a zero-preserving semimodule over itself.

Computations on a graph G = (V ,E,ω) with respect to Pmin,+ require (this is a generalization
of Equation (4)) an adjacency matrix A ∈ PV×V

min,+ defined by

(avw )π :=
⎧⎪⎪⎨⎪⎪⎩

1π if v = w ,
ω (v,w ) if π = (v,w ), and
∞ otherwise.

(62)

On the diagonal, avv = 1π contains exactly the zero-hop paths of weight 0; all nontrivial paths are
“unknown” in avv (i.e., accounted for with an infinite weight). An entry avw with v � w contains,

Journal of the ACM, Vol. 65, No. 6, Article 43. Publication date: November 2018.



43:22 S. Friedrichs and C. Lenzen

if present, only the edge {v,w }, represented by the path (v,w ) of weight ω (v,w ); all other paths
are not contained in avw . An initialization where each nodev knows only about the zero-hop path

(v ) is represented by the vector x (0) ∈ PV
min,+ with

(
x (0)

v

)
π

:=

{
0 if π = (v ) and
∞ otherwise.

(63)

Then, 1 ≤ h ∈ N multiplications of x (0) with A (i.e., h iterations) yield x (h) with

x (h) := Ahx (0) . (64)

As expected, x (h)
v contains exactly the h-hop paths beginning in v with their according weights:

Lemma 3.20. Let x (h) be defined as in Equation (63), with respect to the graphG = (V ,E,ω). Then,

for all v ∈ V and π ∈ P (
x (h)

v

)
π
=

{
ω (π ) if π ∈ Ph (v, ·,G ) and

∞ otherwise.
(65)

Proof in Appendix B.

With the all-paths semiring Pmin,+ established, we turn to the k-SDP, our initial motivation for
adding Pmin,+ to the toolbox of MBF-like algorithms in the first place.

Definition 3.21 (k-Shortest Distance Problem [39]). Given a graphG = (V ,W ,ω) and a designated
source vertex s ∈ V , the k-SDP asks: For each node v ∈ V and considering all v-s-paths, what are
the weights of the k lightest such paths? In the k-DSDP, the path weights have to be distinct.

Observe that with the preceding definitions of A and x (h) , we always associate a path π with
either its weight ω (π ) or with ∞; in particular, invalid paths always are associated with ∞. For-
mally, G induces a subsemiring of Pmin,+. In addition to being an interesting observation, these
properties are required for the representative projections defined later (r breaks for the k-DSDP
when facing inconsistent non-∞ values for the same path) so we formalize them. LetG = (V ,E,ω)
be a graph and let D (G ) ⊂ (R≥0 ∪ {∞})P be the restriction of (R≥0 ∪ {∞})P to exact path weights
and∞:

xπ ∈ {ω (π ),∞}; (66)

recall that ω (π ) = ∞ for all paths π invalid with respect to G.

Definition 3.22 (Graph-Induced All-Paths Semiring). LetG be a graph and D (G ) ⊂ (R≥0 ∪ {∞})P

as above. Then we refer to Pmin,+ (G ) := (D (G ), ⊕, �) as the all-paths semiring induced byG, where
⊕ and � are the same as in Definition 3.17.

The next step is to show that Pmin,+ (G ) is a semiring.8

Lemma 3.23. Pmin,+ (G ) is a semiring.

Proof in Appendix B.

Corollary 3.24. Pmin,+ (G ) is a zero-preserving semimodule over itself.

Observe that we haveA ∈ PV×V
min,+ (G ) as well asx (0) ∈ PV

min,+ (G ). It follows that Lemma 3.20 holds

for Pmin,+ (G ) as much as it does for Pmin,+. Furthermore, observe that the restriction to Pmin,+ (G )
happens implicitly, simply by starting with the preceding initialization. There is no information

8It is a subsemiring of Pmin,+. We do not, however, use that property and hence refrain from formally introducing the

according definitions.
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about Pmin,+ (G ) that needs to be distributed in the graph in order to run an MBF-like algorithm
over Pmin,+ (G ).

In order to solve the k-SDP, we require a representative projection that reduces the abundance

of paths stored in an unfiltered x (h) to the relevant ones. Relevant in this case simply means to keep

the k shortest v-s-paths in x (h)
v . In order to formalize this, let P (v,w,x ) denote, for x ∈ Pmin,+ (G )

and v,w ∈ V , the set of all v-w-paths contained in x :

P (v,w,x ) := {π ∈ P | π is a v-w-path with xπ � ∞}. (67)

Order P (v,w,x ) ascendingly with respect to the weights xπ , breaking ties using lexicographical
order on P . Then let Pk (v,w,x ) denote the set of the first (at most) k entries of that sequence:

Pk (v,w,x ) := {π | (xπ ,π ) is among the k smallest of {(xπ ′,π
′) | π ′ ∈ P (v,w,x )}}. (68)

We define the (representative, see below) projection r : Pmin,+ (G ) → Pmin,+ (G ) by

r (x )π �→
{
xπ if π ∈ Pk (v, s,x ) for some v ∈ V and
∞ otherwise.

(69)

If xπ = r (x )π , we say that r keeps π and otherwise that r discards π . The projection r keeps, for
each v ∈ V , exactly the k shortest v-s-paths contained in x . Following the standard approach (see
Lemma 2.8) we define vectors x ,y ∈ Pmin,+ to be equivalent if and only if their entries for Pk (·, s,x )
do not differ:

∀x ,y ∈ Pmin,+ (G ) : x ∼ y :⇔ r (x ) = r (y). (70)

Lemma 3.25. ∼ is a congruence relation on Pmin,+ (G ) with representative projection r .

Proof in Appendix B.
Observe that r is defined to maintain the k shortest v-s-paths for all v ∈ V , potentially storing

k |V | paths instead of just k . Intuitively, one could argue that rV x (h)
v only needs to contain k paths

since they all start in v , which is what the algorithm should actually be doing. This objection is

correct in that this is what actually happens when running the algorithm with initialization x (0) :

By Lemma 3.20, x (h)
v contains the h-hop shortest paths starting in v and r removes all that do not

end in s or are too long. On the other hand, the objection is flawed. In order for r to behave correctly

with respect to all x ∈ Pmin,+, especially those less nicely structured than x (h)
v where all paths start

at v, we must define r as it is; otherwise, the proof of Lemma 3.25 fails for mixed starting-node
inputs.

Example 3.26 (k-Shortest Distance Problem). k-SDP (compare Definition 3.21) is solved by an
MBF-like algorithm A with S =M = Pmin,+ (G ), the representative projection and congruence

relation defined in Equations (69) and (70), the choices of A and x (0) from Equations (62) and (63),
and h = SPD(G ) iterations.

By Lemma 3.20 and due to h = SPD(G ), x (h)
v contains all paths that start in v , associated with

their weights. Since Ah (G ) = rV x (h) , by definition of r in Equation (69), (rV x (h) )v = r (x (h)
v ) con-

tains the subset of those paths that have the k smallest weights and start in v (i.e., precisely what
k-SDP asks for).

We remark that solving a generalization of k-SDP looking for the k shortest h-hop distances is
straightforward using h iterations. Furthermore, note that our approach reveals the actual paths
along with their weights.

Example 3.27 (k-Distinct-Shortest Distance Problem). k-DSDP from Definition 3.21 can be solved
analogously to k-SDP in Example 3.26.
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In order for this to work, the definition of Pk (v,w,x ) in Equation (68) needs to be adjusted. For
each of the k smallest weights in x , the modified P̄k (v,w,x ) contains only one representative: the
path contained in x of that weight that is first with respect to lexicographical order on P . This
results in

P̄ ′k (v,w,x ) := {π | xπ is among the k smallest of {xπ ′ | π ′ ∈ P (v,w,x )}} and (71)

P̄k (v,w,x ) := {π | π is lexicographically first of {π ′ ∈ P̄ ′
k

(v,w,x ) | xπ ′ = xπ }}. (72)

The proof of Lemma 3.25 works without modification when replacing Equation (68) with Equa-
tions (71)–(72).

3.4 MBF-like Algorithms over the Boolean Semiring

A well-known semiring is the Boolean semiring B = ({0, 1},∨,∧). By Lemma A.4, BV is a zero-
preserving semimodule over B. It can be used to check for connectivity in a graph9 using the
adjacency matrix

(avw ) :=

{
1 if v = w or {v,w } ∈ E and
0 otherwise

(73)

together with initial values

x (0)
vw :=

{
1 if v = w and
0 otherwise

(74)

indicating that each node v ∈ V is connected to itself. An inductive argument reveals that(
Ahx (0)

)
vw
= 1 ⇔ Ph (v,w,G ) � ∅. (75)

Example 3.28 (Connectivity). Given a graph, we want to check which pairs of nodes are con-
nected by paths of at most h hops. This is solved by an MBF-like algorithm usingS = B,M = BV ,

r = id, and x (0) from Equation (74). This example easily generalizes to single-source and multi-
source connectivity variants.

4 THE SIMULATED GRAPH

In order to sample from a tree embedding of the graph G, we need to determine LE lists (compare
Section 7) for a random permutation of the nodes. These are the result of an MBF-like algorithm

using Smin,+ and D; its filter r ensures that |r (x (i ) )v | ∈ O(logn) w.h.p. for all i (i.e., that interme-

diate results are small). This allows for performing an iteration with Õ(m) work. However, doing
so requires SPD(G ) iterations, which in general can be as large as n − 1, conflicting with our goal
of polylogarithmic depth.

To resolve this problem, we reduce the SPD, accepting a slight increase in stretch. The first step
is to use Cohen’s (d, 1/ polylogn)-hop set [17]: a small number of additional (weighted) edges

for G, such that for all v,w ∈ V , distd (v,w,G ′) ≤ (1 + ε̂ ) dist(v,w,G ), where G ′ is G augmented
with the additional edges and ε̂ ∈ 1/ polylogn. Her algorithm is sufficiently efficient in terms of
depth, work, and number of additional edges. Yet our problem is not solved: The d-hop distances
in G ′ only approximate distances (compare Observation 1.1), but constructing FRT trees critically
depends on the triangle inequality and thus on the use of exact distances.

In this section, we resolve this issue. After augmenting G with the hop set, we embed it into a
complete graph H on the same node set so that SPD(H ) ∈ O(log2 n), keeping the stretch limited.
Where hop sets preserve distances exactly and ensure the existence of approximately shortest paths
with few hops, H preserves distances approximately but guarantees that we obtain exact shortest

9For this problem, we drop the assumption that graphs are connected.
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paths with few hops. Note that explicitly constructing H causes Ω(n2) work; we circumnavigate
this obstacle in Section 5 with the help of the machinery developed in Section 2.

Since our construction requires to first add the hop set toG, assume for the sake of presentation
that G already contains a (d, ε̂ )-hop set for fixed ε̂ ∈ R>0 and d ∈ N throughout this section. We
begin our construction of H by sampling levels for the verticesV : Every vertex starts at level 0. In
step λ ≥ 1, each vertex in level λ − 1 is raised to level λ with probability 1

2 . We continue until the
first step Λ + 1 where no node is sampled. λ(v ) refers to the level of v ∈ V . We define the level of
an edge e ∈ E as λ(e ) := min{λ(v ) | v ∈ e}, the minimal level of its incident vertices; as H will be
a complete graph, we thus have λ({v,w }) = min{λ(v ), λ(w )} for each v,w ∈ V , v � w .

Lemma 4.1. W.h.p., Λ ∈ O(logn).

Proof. For c ∈ R≥1, v ∈ V has λ(v ) < c logn with probability 1 − ( 1
2 )c log n = 1 − n−c (i.e.,

w.h.p.). Lemma 1.2 yields that all nodes have a level of O(logn) w.h.p. and the claim follows. �

The idea is to use the levels in the following way. We devise a complete graph H on V . An
edge of H of level λ is weighted with the d-hop distance between its endpoints in G—a (1 + ε̂ )-
approximation of their exact distance becauseG contains a (d, ε̂ )-hop set by assumption and mul-
tiplied with a penalty of (1 + ε̂ )Λ−λ . This way, high-level edges are “more attractive” for shortest
paths because they receive smaller penalties.

Definition 4.2 (Simulated graph H ). Let G = (V ,E,ω) be a graph that contains a (d, ε̂ )-hop set
with levels sampled as above. We define the complete graph H as

H :=

(
V ,

(
V

2

)
,ωΛ

)
(76)

ωΛ({v,w }) �→ (1 + ε̂ )Λ−λ (v,w ) distd (v,w,G ). (77)

We formalize the notion of high-level edges being “more attractive” than low-level paths: In H ,
any min-hop shortest path between two nodes of level λ is exclusively comprised of edges of
level λ or higher; no min-hop shortest path’s level locally decreases. Therefore, all min-hop short-
est paths can be split into two subpaths, the first of monotonically increasing and the second of
monotonically decreasing levels.

Lemma 4.3. Considerv,w ∈ V , λ = λ(v,w ), andp ∈ MHSP(v,w,H ). Then all edges ofp have level

at least λ.

Proof. The case λ = 0 is trivial. Consider 1 ≤ λ ≤ Λ and, for the sake of contradiction, let q be
a nontrivial maximal subpath of p containing only edges of level strictly less than λ. Observe that
q ∈ MHSP(v ′,w ′,H ) for some v ′,w ′ ∈ V with λ(v ′), λ(w ′) ≥ λ. We have

ωΛ(q) ≥ (1 + ε̂ )Λ−(λ−1) dist(v ′,w ′,G ). (78)

However, the edge e = {v ′,w ′} has level λ(v ′,w ′) ≥ λ and weight

ωΛ(e ) ≤ (1 + ε̂ )Λ−λ distd (v ′,w ′,G ) ≤ (1 + ε̂ )Λ−(λ−1) dist(v ′,w ′,G ) ≤ ωΛ(q) (79)

by construction. Since |q | is maximal and λ(v ′), λ(w ′) ≥ λ, q can only be a single edge of level λ
or higher, contradicting the assumption. �

Knowing that edge levels in min-hop shortest paths are first monotonically increasing and then
monotonically decreasing, the next step is to limit the number of hops spent on each level.
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Lemma 4.4. Consider vertices v and w of H with λ(v ), λ(w ) ≥ λ. Then w.h.p., one of the following

statements holds:

hop(v,w,H ) ∈ O(logn) or (80)

∀p ∈ MHSP(v,w,H )∃e ∈ p : λ(e ) ≥ λ + 1. (81)

Proof. Condition on the event EVλ
thatVλ ⊆ V is the set of nodes with level λ or higher (with

level λ + 1 not yet sampled). Let Hλ := (Vλ , (
Vλ

2 ),ωλ ) with ωλ ({v,w }) �→ (1 + ε̂ )Λ−λ distd (v,w,G )
denote the subgraph of H spanned by Vλ and capped at level λ.

Considerp ∈ MHSP(v,w,Hλ ). Observe thatP[λ(u) ≥ λ + 1 | EVλ
] = 1

2 independently for allu ∈
Vλ , and hence P[λ(e ) ≥ λ + 1 | EVλ

] = 1
4 for all e ∈ p. This probability holds independently for

every other edge ofp. If |p | ≥ 2c log4/3 n for some choice of c ∈ R≥1, the probability thatp contains

no edge of level λ + 1 or higher is bounded from above by ( 3
4 ) |p |/2 ≤ ( 3

4 )c log4/3 n = n−c , sop contains
such an edge w.h.p.

Fix a single arbitrary p ∈ MHSP(v,w,Hλ ). Let Ep denote the event that p fulfills |p | ∈ O(logn)
or contains an edge of level λ + 1 or higher; as argued earlier, Ep occurs w.h.p. Note that we cannot
directly apply the union bound to deduce a similar statement for all q ∈ MHSP(v,w,Hλ ): There
are more than polynomially many v-w-paths. Instead, we argue that if Ep holds, it follows that all
q ∈ MHSP(v,w,H ) must behave as claimed.

To show that all q ∈ MHSP(v,w,H ) fulfill Equations (80) or (81) under the assumption that Ep

holds, first recall that q only uses edges of level λ or higher by Lemma 4.3. Furthermore, observe
thatωΛ(q) ≤ ωΛ(p), as q is a shortest path with respect toωΛ. If q contains an edge of level λ + 1 or
higher, Equation (81) holds for q. Otherwise, we have ωλ (q) = ωΛ(q), and distinguish two cases:

Case 1 (|p | ∈ O(logn)): We have

ωΛ(p) ≤ ωλ (p) ≤ ωλ (q) = ωΛ(q), (82)

so ωΛ(q) = ωΛ(p) and |q | ≤ |p | ∈ O(logn) follows from q ∈ MHSP(v,w,H ).
Case 2 (p contains an edge of level λ + 1 or higher): This yields ωΛ(p) < ωλ (p), im-
plying

ωΛ(p) < ωλ (p) ≤ ωλ (q) = ωΛ(q), (83)

which contradicts q ∈ MHSP(v,w,H ).

So far, we condition on EVλ
. In order to remove this restriction, let Evw denote the event that Equa-

tion (80) or Equation (81) holds forv,w ∈ V . The above case distinction shows thatP[Evw | EVλ
] ≥

1 − n−c for an arbitrary c ∈ R≥1. We conclude that

P[Evw | λ(v,w ) ≥ λ] =
∑

Vλ ⊆V

P[EVλ
| λ(v,w ) ≥ λ]P[Evw | EVλ

] (84)

=
∑

{v,w }⊆Vλ ⊆V

P[EVλ
| λ(v,w ) ≥ λ]P[Evw | EVλ

] (85)

≥
∑

{v,w }⊆Vλ ⊆V

P[EVλ
| λ(v,w ) ≥ λ](1 − n−c ) (86)

= (1 − n−c )
∑

{v,w }⊆Vλ ⊆V

P[EVλ
| λ(v,w ) ≥ λ] (87)

= 1 − n−c , (88)

which is the statement of the lemma. �
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We argue above that any min-hop shortest path in H traverses every level at most twice,
Lemma 4.4 states that each such traversal, w.h.p., only has a logarithmic number of hops, and
Lemma 4.1 asserts that, w.h.p., there are only logarithmically many levels. Together, this means
that min-hop shortest paths in H have O(log2 n) hops w.h.p. Additionally, our construction limits

the stretch of shortest paths in H as compared to G by (1 + ε̂ )Λ+1(i.e., by (1 + ε̂ )O(log n)) w.h.p.

Theorem 4.5. W.h.p., SPD(H ) ∈ O(log2 n) and, for all v,w ∈ V ,

dist(v,w,G ) ≤ dist(v,w,H ) ≤ (1 + ε̂ )O(log n) dist(v,w,G ). (89)

Proof. Fix a level λ. Any fixed pair of vertices of level λ or higher fulfills, w.h.p., Equation (80)
or (81) by Lemma 4.4. Since there are at most ( n

2 ) such pairs, w.h.p., all of them fulfill Equation (80)
or (81) by Lemma 1.2.

Let Elog denote the event that there is no higher level than Λ ∈ O(logn), which holds w.h.p.
by Lemma 4.1. Furthermore, let Eλ denote the event that all pairs of vertices of level λ or higher
fulfill Equation (80) or (81), which holds w.h.p. as argued above. Then E := Elog ∩ E0 ∩ · · · ∩ EΛ

holds w.h.p. by Lemma 1.2.
Condition on E; in particular, no min-hop shortest path whose edges all have the same level

has more than O(logn) hops. Consider some min-hop shortest path p in H . By Lemma 4.3, p has
two parts: The edge level monotonically increases in the first and monotonically decreases in the
second part. Hence, p can be split up into at most 2Λ − 1 segments, in each of which all edges
have the same level. As this holds for all min-hop shortest paths, we conclude that SPD(H ) ∈
O(Λ logn) ⊆ O(log2 n) w.h.p., as claimed.

As for Inequality (4.14), recall that H is constructed from G = (V ,E,ω) and that G contains a
(d, ε̂ )-hop set. For all v,w ∈ V , we have

dist(v,w,H ) ≤ ωΛ(v,w ) ≤ (1 + ε̂ )Λ distd (v,w,G ) ≤ (1 + ε̂ )Λ+1 dist(v,w,G ) (90)

by construction of H . Recalling that Λ ∈ O(logn) due to E completes the proof. �

We use Cohen’s construction to obtain a (d, ε̂ )-hop set with ε̂ ∈ 1/ polylogn, where the expo-

nent of polylogn is under our control [17]. A sufficiently large exponent yields (1 + ε̂ )O(log n) ⊆
e ε̂ O(log n) ⊆ e1/ polylog n = 1 + 1/ polylogn, upper-bounding Inequality (4.14) by

dist(v,w,G ) ≤ dist(v,w,H ) ∈ (1 + 1/ polylogn) dist(v,w,G ) ⊆ (1 + o(1)) dist(v,w,G ). (91)

To wrap things up: Given a weighted graph G, we augment G with a (d, 1/ polylogn)-hop set.
After that, the d-hop distances in G approximate the actual distances in G, but these approxima-
tions may violate the triangle inequality. We fix this by embedding into H , using geometrically
sampled node levels and an exponential penalty on the edge weights with decreasing levels. Since
H is a complete graph, explicitly constructing it is prohibitively costly in terms of work. The next
section shows how to avoid this issue by efficiently simulating MBF-like algorithms on H .

5 AN ORACLE FOR MBF-LIKE QUERIES

Given a weighted graph G and ε̂ ∈ 1/ polylogn, Section 4 introduces a complete graph H that
(1 + o(1))-approximates the distances ofG and w.h.p. has a polylogarithmic SPD using a (d, ε̂ )-hop
set. H would solve our problem, but we cannot explicitly write H into memory as this requires an
unacceptable Ω(n2) work.

Instead, we dedicate this section to an oracle that answers MBF-like queries; that is, to an oracle
that, given a weighted graph G, an MBF-like algorithm A, and a number of iterations h, returns
Ah (H ). Note that while the oracle can answer distance queries in polylogarithmic depth (when,
e.g., queried by SSSP, k-SSP, or APSP), MBF-like queries are more general (compare Section 3)
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and allow for more work-efficient algorithms (as in Sections 6 and 7). The properties of MBF-like
algorithms discussed in Section 2 allow the oracle to internally work onG and simulate iterations
of A on H using d (i.e., polylogarithmically many) iterations on G.

Throughout this section, we denote by AG and AH the adjacency matrices of G and H , respec-
tively. Furthermore, we fix the semiring to be Smin,+, since we explicitly calculate distances; gen-
eralizations to other semirings are possible but require appropriate generalizations of adjacency
matrices and hence obstruct presentation.

We establish this section’s results in two steps: Section 5.1 derives a representation of AH in
terms of AG , which is then used to efficiently implement the oracle in Section 5.2. The oracle is
used to approximate the metric of G in Section 6 and to construct an FRT tree in Section 7, both
with polylogarithmic depth.

5.1 Decomposing H

The idea is to simulate each iteration of an MBF-like algorithm A on H using d iterations on G.
This is done for each level λ ∈ {0, . . . ,Λ} in parallel. For level λ, we run A for d iterations on G
with edge weights scaled up by (1 + ε̂ )Λ−λ , where the initial vector is obtained by discarding all
information at nodes of level smaller than λ. Afterward, we again discard everything stored at

vertices with a level smaller than λ. Since (Ad
G

)vw = distd (v,w,G ), this ensures that we propagate
information between nodes v,w ∈ V with λ(v,w ) = λ with the corresponding edge weight while
discarding any exchange between nodes with λ(v,w ) < λ (which is handled by the respective
parallel run). While we also propagate information between v and w if λ(v,w ) > λ (over too long

a distance because edge weights are scaled by (1 + ε̂ )Λ−λ > (1 + ε̂ )Λ−λ (v,w )) the parallel run for
λ(v,w ) correctly propagates values. Therefore, aggregating the results of all levels (i.e., applying ⊕,
the source-wise minimum) and applying rV completes the simulation of an iteration of A on H .

This approach resolves two complexity issues. First, we multiply (polylogarithmically often)
withAG , which, as opposed to the denseAH , has O(m) non-∞ entries only. Second, Corollary 2.17
shows that we are free to filter using rV at any time, keeping the entries of intermediate state
vectors small.

We formalize the preceding intuition. Recall that

(AH )vw = ωΛ(v,w ) = (1 + ε̂ )Λ−λ (v,w ) distd (v,w,G ) = (1 + ε̂ )Λ−λ (v,w ) (Ad
G )vw . (92)

For λ ∈ {0, . . . ,Λ}, denote by Pλ theMV -projection to coordinates Vλ := {v ∈ V | λ(v ) ≥ λ}:

(Pλx )v :=

{
xv if λ(v ) ≥ λ and
⊥ otherwise.

(93)

Observe that Pλ is an SLF on MV , where (Pλ )vw = 0 if v = w ∈ Vλ and (Pλ )vw = ∞ otherwise.
This gives us the tools to decompose AH as motivated earlier.

Lemma 5.1. With (Aλ )vw := (1 + ε̂ )Λ−λ (AG )vw (with respect to multiplication in R, not �), we

have

AH =

Λ⊕
λ=0

PλA
d
λPλ . (94)

Proof. Since (Ad
G

)vw = distd (v,w,G ), it holds that (Ad
λ

)vw = (1 + ε̂ )Λ−λ distd (v,w,G ). There-
fore,

(Ad
λPλ )vw = min

u ∈V

{
(Ad

λ )vu + (Pλ )uw

}
=

{
(1 + ε̂ )Λ−λ distd (v,w,G ) if w ∈ Vλ and
∞ otherwise,

(95)
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and hence

(PλA
d
λPλ )vw = min

u ∈V

{
(Pλ )vu + (Ad

λPλ )uw

}
=

{
(1 + ε̂ )Λ−λ distd (v,w,G ) if v,w ∈ Vλ and
∞ otherwise.

(96)

We conclude that

��
Λ⊕

λ=0

PλA
d
λPλ

�	vw

= min
{
(1 + ε̂ )Λ−λ distd (v,w,G ) ��� λ ∈ {0, . . . , λ(v,w )}

}
(97)

= (1 + ε̂ )Λ−λ (v,w ) distd (v,w,G ) (98)

= (AH )vw . �

Having decomposed AH , we continue withAh (H ), taking the freedom to apply filters interme-
diately. For all h ∈ N, we have

Ah
H

(5.3)
= ��

Λ⊕
λ=0

PλA
d
λPλ

�	
h

(2.35)∼ ��rV ��
Λ⊕

λ=0

Pλ (rVAλ )dPλ
�	�	

h

rV , (99)

and hence

Ah (H ) = rVAh
Hx

(0) (2.11), (5.8)
= ��rV ��

Λ⊕
λ=0

Pλ (rVAλ )dPλ
�	�	

h

rV x (0) . (100)

Observe that we can choose h = SPD(H ) ∈ O(log2 n) w.h.p. by Theorem 4.5 and recall that d ∈
polylogn. Overall, this allows us to determine A (H ) with polylogarithmic depth and Õ(m) work
provided we can implement the individual steps (see below) at this complexity.

5.2 Implementing the Oracle

The oracle determines iterations of A on H using iterations on G while only introducing a poly-
logarithmic overhead with respect to iterations in G. With the decomposition from Lemma 5.1 at
hand, it can be implemented as follows.

Given a state vector x (i ) ∈ MV , simulate one iteration of A on H for edges of level λ; that is,

determine yλ := Pλ (rVAλ )dPλx
(i ) by

—discarding entries at nodes of a level smaller than λ,
—running d iterations of A with distances stretched by (1 + ε̂ )Λ−λ on G, applying the filter

after each iteration, and
—again discarding entries at nodes with levels smaller than λ.

After running this procedure in parallel for all 0 ≤ λ ≤ Λ, perform the ⊕-operation and apply the

filter; that is, for each node v ∈ V determine x (i+1)
v = r (

⊕Λ
λ=0 yλ )v .

Theorem 5.2 (Oracle). Consider an MBF-like algorithmA using a semimoduleM over the semir-

ing Smin,+, the representative projection r :M →M, and the initialization x (0) ∈ MV . If we can, for

all 1 ≤ f ≤ d , 1 ≤ i ≤ h, and 0 ≤ λ ≤ Λ, where we may assume Λ ∈ O(logn),

(1) compute rV x (0) from x (0) with depth D and workW ,

(2) determine rVAλy from any intermediate state vector y = (rVAλ )f −1Pλx
(i−1)—corresponding

to the f th iteration with respect to Aλ starting at state x (i−1)—with depth D and work W ,

and
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(3) compute rV (
⊕Λ

λ=0 yλ ) from the individual yλ = (Pλr
VAd

λ
Pλ )x (i−1) , 0 ≤ λ ≤ Λ (reflecting

aggregation over all levels to complete a simulated iteration in H )using depth D⊕ and

workW⊕ ,

then we can w.h.p.

(1) determine Ah (H ) using O((dW logn +W⊕ )h) ⊆ Õ((dW +W⊕ )h) work and a depth of

O((dD + D⊕ )h) and thus

(2) calculate A (H ) using O((dW logn +W⊕ ) log2 n) ⊆ Õ(dW +W⊕ ) work and a depth of

O((dD + D⊕ ) log2 n) ⊆ Õ(dD + D⊕ ).

Proof. Condition on Λ ∈ O(logn) and SPD(H ) ∈ O(log2 n); both events occur w.h.p. by
Lemma 4.1 and Theorem 4.5. By Equation (100), we have to compute

Ah (H ) = ��rV ��
Λ⊕

λ=0

Pλ (rVAλ )dPλ
�	�	

h

rV x (0) . (101)

Concerning Pλ , note that we can evaluate (Pλy)v ∈V lazily; that is, we can determine whether (Pλy)v
evaluates to⊥ or toyv only if it is accessed. Thus, the total work and depth required increase by at
most a constant factor due to all applications of Pλ . Together with the prerequisites, this means that
(rVAλPλ )y can be determined in O(W ) work and O(D) depth and that evaluating Pλ (rVAλ )dPλy
sequentially in d requires O(dW ) work and O(dD) depth.

The set of summands of
⊕Λ

λ=0 Pλ (rVAλ )dPλy can be determined using O(ΛdW ) work and
O(dD) depth since this is independent for each λ. Performing the aggregation and applying the
filter is possible in D⊕ depth andW⊕ work by assumption. We arrive at O(ΛdW +W⊕ ) work and

O(dD + D⊕ ) depth for determining x (i ) = rV
⊕Λ

λ=0 Pλ (rVAλ )dPλx
(i−1) from x (i−1) .

Sequentially iterating this h times to determine Ah (H ) increases work and depth by a factor

of h, yielding O((ΛdW +W⊕ )h) work and O((dD + D⊕ )h) depth. Computing rV x (0) requires work
W and depth D by the prerequisites and does not change the asymptotic complexity accumulated
so far. We arrive at O((dW logn +W⊕ )h) work and O((dD + D⊕ )h) depth, which is the first claim;
SPD(H ) ∈ O(log2 n) yields the second claim. As we only condition on two events that occur w.h.p.,
this concludes the proof by Lemma 1.2. �

6 APPROXIMATE METRIC CONSTRUCTION

As a consequence of the machinery in Section 5, we can efficiently determine approximate metrics.
In fact, our metric approximations are fast enough to improve the state of the art regarding the

FRT embedding from Õ(n3) to Õ(n2+ε ) work when combined with a result of Blelloch et al. [14];
see below.

An approximate metric is stronger than approximate distances (i.e., stronger than hop sets) as
it requires consistency with the triangle inequality:

Definition 6.1 (Approxmiate Metric). Consider α ∈ R≥1 and a metric d : V ×V → R≥0 ∪ {∞}
on V . We refer to d ′ as α-approximate metric of d if

(1) d ′ is a metric on V and
(2) for all v,w ∈ V ,

d (v,w ) ≤ d ′(v,w ) ≤ αd (v,w ). (102)

We can determine a (1 + o(1))-approximate metric of dist(·, ·,G ) for an arbitrary graph G by

querying the oracle with APSP onH using polylogarithmic depth and Õ(nm1+ε ) work. This is much
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more work-efficient on sparse graphs than the naive approach using O(n3 logn) work (squaring
the adjacency matrix �log2 n
 times) for obtaining dist(·, ·,G ) exactly.

Theorem 6.2 ((1 + o(1))-Approximate Metric). Given a weighted graph G = (V ,E,ω) and a

constant ε > 0, we can w.h.p. compute, using Õ(n(m + n1+ε )) work and polylogn depth, a (1 +
1/ polylogn)-approximate metric of dist(·, ·,G ) on V .

Proof. First augment G with a (d, 1/ polylogn)-hop set using Õ(m1+ε ) work and polylogn
depth with d ∈ polylogn using Cohen’s hop set construction [17]. The resulting graph has

Õ(m + n1+ε ) edges. An iteration of APSP (compare Example 3.5) incurs O(logn) depth and
O(δvn logn) work at a node v of degree δv by Lemma 2.3. Hence, D ∈ O(logn) depth and W ∈
O(

∑
v ∈V δvn logn) ⊆ Õ(n(m + n1+ε )) work suffice for an entire iteration. Aggregation and filter-

ing over the individualyλ , 0 ≤ λ ≤ Λ ∈ O(logn), takesD⊕ ∈ O(logn) depth andW⊕ ∈ O(n2 log2 n)
work. The trivial filter rV = id does not induce any overhead. By Theorem 5.2, we can w.h.p. simu-

late SPD(H ) iterations of APSP on H using Õ(n(m + n1+ε )) work and Õ(1) depth. By Theorem 4.5
and Equation (91), this yields a metric which (1 + 1/ polylogn)-approximates dist(·, ·,G ). �

Using the sparse spanner algorithm of Baswana and Sen [9], we can obtain a metric with a
different work–approximation tradeoff. Note that this is near-optimal in terms of work due to the
trivial lower bound of Ω(n2) for writing down the solution.

Theorem 6.3 (O(1)-Approximate Metric). For a weighted graph G = (V ,E,ω) and a constant

ε > 0, we can w.h.p. compute an O(1)-approximate metric of dist(·, ·,G ) on V using Õ(n2+ε ) work

and polylogn depth.

Proof. Baswana and Sen show how to compute a (2k − 1)-spanner of G = (V ,E,ω); that is,
E ′ ⊆ E such that G ′ := (V ,E ′,ω) fulfills, for all v,w ∈ V ,

dist(v,w,G ) ≤ dist(v,w,G ′) ≤ (2k − 1) dist(v,w,G ), (103)

using Õ(1) depth and Õ(m) work. Baswana and Sen argue that |E ′ | ∈ O(kn1+1/k ) in expectation [9],

and we obtain |E ′ | ∈ O(kn1+1/k logn) ⊆ Õ(kn1+1/k ) w.h.p., as, for example, argued in Appendix A
of Becker et al. [10]. Furthermore, without loss of generalityk ∈ O(logn), becausekn1/k = k2log n/k

starts growing beyond that point. This results in |E ′ | ∈ Õ(n1+1/k ) w.h.p.
We compute an O(1)-approximate metric as follows. (1) Compute a (2k − 1)-spanner for k =
�1/ε
. This is possible within the given bounds on work and depth, yielding |E ′ | ∈ Õ(n1+1/k ) =
Õ(n1+ε ) edges w.h.p. and a stretch that is constant with respect to n andm. (2) Apply Theorem 6.2

to G ′ := (V ,E ′,ω) and ε . This induces Õ(1) depth and Õ(n2+ε ) work.
By construction, the resulting metric has stretch (2k − 1) (1 + o(1)) ⊆ O(1). �

Blelloch et al. [14] show how to construct an FRT tree from a metric using O(n2) work and
O(log2 n) depth. Combining this with Theorem 6.3 enables us to w.h.p. construct an FRT tree from

a graphG using polylogarithmic depth and Õ(n2+ε ) work. This already improves upon the state of

the art of using Õ(n3) work to compute dist(·, ·,G ) exactly and then applying the algorithm of Blel-
loch et al. [14]. We can, however, achieve this even more efficiently on sparse graphs: Constructing
FRT trees is an MBF-like algorithm and solving the problem directly—using the oracle—reduces

the work to Õ(m1+ε ); this is the goal of Section 7.

7 FRT CONSTRUCTION

Given a weighted graph G, determining a metric that O(1)-approximates dist(·, ·,G ) (using poly-

logarithmic depth and Õ(n2+ε ) work) is straightforward; see Theorem 6.3. The oracle is queried
with the MBF-like APSP algorithm, implicitly enjoying the benefits of the SPD-reducing sampling
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technique of Section 4. In this section, we show that collecting the information required to con-
struct FRT trees—LE lists—is an MBF-like algorithm; that is, a query that can be directly answered
by the oracle. Since collecting LE lists is more work-efficient than APSP, this leads to our main

result: w.h.p. sampling from the FRT distribution using polylogarithmic depth and Õ(m1+ε ) work.
We begin with a formal definition of metric (tree) embeddings in general and the FRT embedding

in particular in Section 7.1, proceed to show that the underlying algorithm is MBF-like (Section 7.2)
and that all intermediate steps are sufficiently efficient in terms of depth and work (Section 7.3),
and present our main results in Section 7.4. Section 7.5 describes how to retrieve the original paths
in G that correspond to the edges of the sampled FRT tree.

7.1 Metric Tree Embeddings

We use this section to introduce the (distribution over) metric tree embeddings of Fakcharoenphol,
Rao, and Talwar, referred to as FRT embedding, which has expected stretch O(logn) [23].

Definition 7.1 (Metric Embedding). LetG = (V ,E,ω) be a graph. A metric embedding of stretch α
of G is a graph G ′ = (V ′,E ′,ω ′), such that V ⊆ V ′ and

∀v,w ∈ V : dist(v,w,G ) ≤ dist(v,w,G ′) ≤ α dist(v,w,G ), (104)

for some α ∈ R≥1. IfG ′ is a tree, we refer to it as metric tree embedding. For a random distribution
of metric embeddings G ′, we require dist(v,w,G ) ≤ dist(v,w,G ′) and define the expected stretch

as

α := max
v�w ∈V

{
E

[
dist(v,w,G ′)

dist(v,w,G )

]}
. (105)

We show how to efficiently sample from the FRT distribution for the graph H introduced in
Section 4. As H is an embedding ofG with a stretch in 1 + o(1), this results in a tree embedding of
G of stretch O(logn). Khan et al. [30] show that a suitable representation of (a tree sampled from
the distribution of) the FRT embedding [23] can be constructed as follows.

(1) Choose β ∈ [1, 2) uniformly at random.
(2) Choose uniformly at random a total order of the nodes (i.e., a uniformly random permu-

tation). In the following, v < w means that v is smaller than w with respect to to this
order.

(3) Determine for each node v ∈ V its LE list: This is the list obtained by deleting from
{(dist(v,w,H ),w ) | w ∈ V } all pairs (dist(v,w,H ),w ) for which there is some u ∈ V with
dist(v,u,H ) ≤ dist(v,w,H ) and u < w . Essentially, v learns, for every distance d , the
smallest node within distance at most d , i.e., min{w ∈ V | dist(v,w,G ) ≤ d }.

(4) Denote by ωmin := mine ∈E {ω (e )} and ωmax := maxe ∈E {ω (e )} the minimum and maxi-
mum edge weight, respectively; recall that ωmax /ωmin ∈ polyn by assumption. From
the LE lists, determine for each v ∈ V and distance β2i ∈ [ωmin /2, 2ωmax], i ∈ Z, the
node vi := min{w ∈ V | dist(v,w,H ) ≤ β2i }. Without loss of generality, we assume that
i ∈ {0, . . . ,k } for k ∈ O(logn) (otherwise, we shift the indices of the nodesvi accordingly).
Hence, for each v ∈ V , we obtain a sequence of nodes (v0,v1, . . . ,vk ). (v0,v1, . . . ,vk ) is
the leaf corresponding to v = v0 of the tree embedding, (v1, . . . ,vk ) is its parent, and so
on; the root is (vk ). The edge from (vi , . . . ,vk ) to (vi+1, . . . ,vk ) has weight β2i .

We refer to Ghaffari and Lenzen [26] for a more detailed summary.
The preceding procedure implicitly specifies a random distribution over tree embeddings with

expected stretch O(logn) [23], which we call the FRT distribution. We refer to following the proce-
dure 1–4 as sampling from the FRT distribution. Once the randomness is fixed (i.e., steps 1–2 are
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completed), the tree resulting from steps 3–4 is unique; we refer to them as constructing an FRT

tree.
The next lemma shows that step 4 (i.e., constructing the FRT tree from the LE lists) is easy.

Lemma 7.2. Given LE lists of length O(logn) for all vertices, the corresponding FRT tree can be

determined using O(n log3 n) work and O(log2 n) depth.

Proof. Determiningωmax,ωmin, and the range of indices i is straightforward at this complexity,
as is sorting of each node’s list in ascending order with respect to distance. Note that in each
resulting list of distance–node pairs, the nodes are strictly decreasing in terms of the random order
on the nodes, and each list ends with an entry for the minimal node. For each node v and entry
(d,u) in its list in parallel, we determine the values of i ∈ {0, . . . ,k } such that u is the smallest
node within distance β2i of v . This is done by reading the distance value d ′ of the next entry
of the list (using d ′ = β2k + 1 if (d,u) is the last entry) and writing to memory vi = u for each i
satisfying that d ≤ β2i < d ′. Since ωmax /ωmin ∈ polyn, this has depth O(logn) and a total work
of O(n log2 n).

Observe that we computed the list (v0, . . . ,vk ) for each v ∈ V . Recall that the ancestors of the
leaf (v0, . . . ,vk ) are determined by its k suffixes. It remains to remove duplicates wherever nodes
share a parent. To this end, we sort the list (possibly with duplicates) of (k + 1)n ∈ O(n logn) suf-
fixes (each with O(logn) entries) lexicographically, requiring O(n log3 n) work and depth O(log2 n),
as comparing two suffixes requires depth and work O(logn). Then duplicates can be removed by
comparing each key to its successor in the sorted sequence, taking another O(n log2 n) work and
O(logn) depth.

Note that tree edges and their weights are encoded implicitly as the parent of each node is given
by removing the first node from the list, and the level of a node (and thus the edge to its parent) is
given by the length of the list representing it. If required, it is thus trivial to determine, for example,
an adjacency list with O(n log2 n) work and depth O(log2 n). Overall, we spent O(n log3 n) work at
O(log2 n) depth. �

7.2 Computing LE Lists is MBF-like

Picking β is trivial and choosing a random order of the nodes can be done w.h.p. by assigning to
each node a string of O(logn) uniformly and independently chosen random bits. Hence, in the
following, we assume this step to be completed, without loss of generality, resulting in a random
assignment of the vertex IDs {1, . . . ,n}. It remains to establish how to efficiently compute LE lists.

We establish that LE lists can be computed by an MBF-like algorithm (compare Definition 2.11)
using the parameters in Definition 7.3; the claim that Equations (106) and (107) define a represen-
tative projection and a congruence relation is shown in Lemma 7.5.

Definition 7.3. For constructing LE lists, use the semiringS = Smin,+ and the distance mapM =
D from Definition 2.1 as zero-preserving semimodule. For all x ∈ D, define

r (x )v :=

{
∞ ∃w < v : xw ≤ xv and
xv otherwise, and

(106)

x ∼ y :⇔ r (x ) = r (y) (107)

as representative projection and congruence relation, respectively. As initialization x (0) ∈ DV use

x (0)
vw :=

{
0 if v = w and
∞ otherwise.

(108)

Hence, r (x ) is the LE list of v ∈ V if xw = dist(v,w,H ) for all w ∈ V , and we consider two lists
equivalent if and only if they result in the same LE list. This allows us to prepare the proof that
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retrieving LE lists can be done by an MBF-like algorithm in the following lemma. It states that
filtering keeps the relevant information: If a node–distance pair is dominated by an entry in a
distance map, the filtered distance map also contains a—possibly different—dominating entry.

Lemma 7.4. Consider arbitrary x ,y ∈ D, v ∈ V , and s ∈ R≥0 ∪ {∞}. Then

∃w < v : xw ≤ s ⇔ ∃w < v : r (x )w ≤ s (109)

Proof. Observe that the necessity “⇐” is trivial. As for sufficiency “⇒,” suppose that there is
w < v such that xw ≤ s . If r (x )w = xw , we are done. Otherwise, there must be some u < w < v
satisfying xu ≤ xw ≤ s . Since |V | is finite, an inductive repetition of the argument yields that there
is some w ′ < v with r (x )w ′ = xw ′ ≤ s . �

Equipped with this lemma, we can prove that ∼ is a congruence relation on D with represen-
tative projection r . We say that a node–distance pair (v,d ) dominates (v ′,d ′) if and only if v < v ′

and d ≤ d ′; in the context of x ∈ D, we say that xw dominates xv if and only if (w,xw ) domi-
nates (v,xv ).

Lemma 7.5. The equivalence relation ∼ from Equation (107) of Definition 7.3 is a congruence re-

lation. The function r from Equation (106) Definition 7.3 is a representative projection with respect

to ∼.

Proof. Trivially, r is a projection (i.e., r 2 (x ) = r (x ) for all x ∈ D). By Lemma 2.8, it hence suf-
fices to show that Equations (18) and (19) hold. In order to do that, let s ∈ Smin,+ be arbitrary, and
x ,x ′,y,y ′ ∈ D such that r (x ) = r (x ′) and r (y) = r (y ′). As we have xv ≤ xw ⇔ s + xv ≤ s + xw for
all v,w ∈ V , Equation (18) immediately follows from Equation (109).

Regarding Equation (19), we show that

r (x ⊕ y) = r (r (x ) ⊕ r (y)) (110)

which implies Equation (19) due to r (x ⊕ y) = r (r (x ) ⊕ r (y)) = r (r (x ′) ⊕ r (y ′)) = r (x ′ ⊕ y ′). Let
v ∈ V be an arbitrary vertex and observe that (x ⊕ y)v is dominated if and only if

∃w < v : (x ⊕ y)w ≤ (x ⊕ y)v (111)

⇔ ∃w < v : min{xw ,yw } ≤ (x ⊕ y)v (112)

⇔ ∃w < v : xw ≤ (x ⊕ y)v ∨ yw ≤ (x ⊕ y)v (113)

(7.6)
⇔ ∃w < v : r (x )w ≤ (x ⊕ y)v ∨ r (y)w ≤ (x ⊕ y)v . (114)

In order to show Equation (110), we distinguish two cases.

Case 1 ((x ⊕ y)v is dominated): By Definition 7.3, we have r (x ⊕ y)v = ∞. Addition-
ally, we know that (r (x ) ⊕ r (y))v = min{r (x )v , r (y)v } ≥ min{xv ,yv } = (x ⊕ y)v must be
dominated due to Equation (114), and hence r (r (x ) ⊕ r (y))v = ∞ = r (x ⊕ y)v .
Case 2 ((x ⊕ y)v is not dominated): This means that, by Definition 7.3, r (x ⊕ y)v =
(x ⊕ y)v = min{xv ,yv }. Furthermore, the negation of Equation (114) holds; that is, ∀w <
v : min{r (x )w , r (y)w } > (x ⊕ y)v = min{xv ,yv }. Assuming without loss of generality that
xv ≤ yv (the other case is symmetric), we have that xv = (x ⊕ y)v = r (x ⊕ y)v and
that xv = r (x )v = (r (x ) ⊕ r (y))v , where xv = r (x )v is implied by Equation (109) because
r (x )w ≥ min{r (x )w , r (y)w } > min{xv ,yv } = xv for any w < v . Thus, ∀w < v : (r (x ) ⊕
r (y))w > (r (x ) ⊕ r (y))v , yielding by applying Definition 7.3 once more that

r (r (x ) ⊕ r (y))v = (r (x ) ⊕ r (y))v = xv = r (x ⊕ y)v . (115)

Altogether, this shows Equation (110) and, as demonstrated above, implies Equation (19). �
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Having established that determining LE lists can be done by an MBF-like algorithm allows us to
apply the machinery developed in Sections 2–5. Next, we establish that LE list computations can
be performed efficiently, which we show by bounding the length of LE lists.

7.3 Computing LE Lists is Efficient

Our course of action is to show that LE list computations are efficient using Theorem 5.2 (i.e.,
the oracle theorem). The purpose of this section is to prepare the lemmas required to apply Theo-
rem 5.2. We stress that the key challenge is to perform each iteration in polylogarithmic depth; this
allows us to determineA (H ) in polylogarithmic depth due to SPD(H ) ∈ O(log2 n). To this end, we
first establish the length of intermediate LE lists to be logarithmic w.h.p. (Lemma 7.6). This permits
us to apply rV and determine the matrix-vector multiplication with Aλ (the scaled version of AG ,
the adjacency matrix of G from Section 5) in a sufficiently efficient manner (Lemmas 7.7 and 7.8).
Section 7.4 plugs these results into Theorem 5.2 to establish our main result.

We remark that LE lists are known to have length O(logn) w.h.p. throughout intermediate com-
putations [26, 30], assuming that LE lists are assembled using h-hop distances. Lemma 7.6, while
using the same key argument, is more general since it makes no assumption about x except for its
independence of the random node order; we need the more general statement due to our decom-
position of AH .

Recall that by |x | we denote the number of non-∞ entries of x ∈ D and that we only need
to keep the non-∞ entries in memory. Lemma 7.6 shows that any LE list r (x ) ∈ D has length
|r (x ) | ∈ O(logn) w.h.p., provided that x does not depend on the random node ordering. Observe
that, in fact, the lemma is quite powerful as it suffices that there is anyy ∈ [x] that does not depend
on the random node ordering: as r (x ) = r (y), then |r (x ) | = |r (y) | ∈ O(logn) w.h.p.

Lemma 7.6. Let x ∈ D be arbitrary but independent of the random order of the nodes. Then |r (x ) | ∈
O(logn) w.h.p.

Proof. Order the non-∞ values of x by ascending distance, breaking ties independently of the
random node order. Denote for i ∈ {1, . . . , |x |} by vi ∈ V the ith node with respect to this order
(i.e., xvi

is the ith smallest entry in x ). Furthermore, denote by Xi the indicator variable which is 1
if vi < vj for all j ∈ {1, . . . , i − 1} and 0 otherwise. As the node order and x are independent, we

obtain E[Xi ] = 1/i . For X :=
∑ |x |

i=1 Xi , this implies

E[X ] =

|x |∑
i=1

1

i
≤

n∑
i=1

1

i
∈ Θ(logn). (116)

Observe that Xi is independent of {X1, . . . ,Xi−1}, as whether vi < vj for all j < i is indepen-
dent of the internal order of the set {v1, . . . ,vi−1}. We conclude that all {X1, . . . ,X |x | } are in-
dependent; this can be checked by inductively verifying that P[(X1, . . . ,Xk ) = (b1, . . . ,bk )] =∏k

i=1 P[Xi = bi ] for any possible assignment (b1, . . . ,bk ) ∈ {0, 1}k . Applying Chernoff’s bound
yields X ∈ Θ(logn) w.h.p. As P[X = k] = P[|r (x ) | = k], this concludes the proof. �

Hence, filtered, possibly intermediate LE lists r (x ) w.h.p. comprise O(logn) entries. We proceed
to show that, under these circumstances, r (x ) can be computed efficiently.

Lemma 7.7. Let x ∈ D be arbitrary. Then r (x ) can be computed using O( |r (x ) | logn) depth and

O( |r (x ) | |x |) work.
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Proof. We use one iteration per non-∞ entry of r (x ). In each iteration, the smallest non-
dominated entry of xv is copied to r (x )v , and all entries of x dominated by xv are marked as
dominated. This yields |r (x ) | iterations as follows:

(1) Initialize r (x ) ← ⊥. Construct a balanced binary tree on the non-∞ elements of x and
identify its leaves with their indices v ∈ V (O(logn) depth and O( |x |) work).

(2) Find the element with the smallest node index v with respect to the random node order
whose corresponding leaf is not marked as discarded by propagating the minimum up the
tree (O(logn) depth and O( |x |) work). Set r (x )v ← xv .

(3) Mark each leaf w for which xv ≤ xw , including v , as discarded (O(1) depth and O( |x |)
work).

(4) If there are non-discarded leaves (O(logn) depth and O( |x |) work), continue at step 2.

Note that for each w � v for which the corresponding node is discarded, we have r (x )w = ∞. On
the other hand, by construction, we have for all v for which we stored r (x )v = xv that there is no
w ∈ V satisfying both xw ≤ xv and w < v . Thus, the computed list is indeed r (x ).

The depth and work bounds follow from the above bounds on the complexities of the individual
steps and by observing that, in each iteration, we add a distinct index–value pair (with non-∞
value) to the list that after termination equals r (x ). �

Any intermediate result used by the oracle is of the form rVAλy with

y = (rVAλ )f Pλx
(h), (117)

where x (h) = rVAh
H
x (0) is the intermediate result of h iterations on H , λ ∈ {0, . . . ,Λ} is a level, and

(rVAλ )f Pλ represents another f iterations in G with edge weights stretched according to level λ.
The oracle uses this to simulate the (h + 1)-th iteration in H (compare Section 5 and Theorem 5.2
in particular).

Lemma 7.8. Consider x (0) ∈ DV from Equation (108). For arbitrary h, f , λ ∈ N0, we can w.h.p.

(1) determine rV x (0) from x (0) using O(n) work and O(1) depth,

(2) compute rVAλy from y as defined in Equation (117) using W ∈ O(m log2 n) work and D ∈
O(log2 n) depth, and

(3) compute rV (
⊕Λ

λ=0 yλ ) from the individual yλ = (Pλr
VAd

λ
Pλ )x (i ) , 0 ≤ λ ≤ Λ, with W⊕ ∈

O(n log4 n) work and D⊕ ∈ O(log2 n) depth.

Proof. We establish the claims in order.

(1) Regarding the first claim, observe that rV x (0) = x (0) . Hence, we can copy x (0) using con-

stant depth and O(
∑

v ∈V |x
(0)
v |) = O(n) work.

(2) As for the second claim, we expand x (h) in Equation (117) and remove all intermediate
filtering steps, obtaining

y
(5.8)
= (rVAλ )f Pλ

��rV ��
Λ⊕

λ=0

Pλ (rVAλ )dPλ
�	�	

h

rV x (0) (118)

(2.35)
= rV A

f

λ
Pλ

��
Λ⊕

λ=0

PλA
d
λPλ

�	
h

x (0)

︸���������������������������︷︷���������������������������︸
=:y′

. (119)

The key observation is that, since the random order of V only plays a role for r and we
removed all intermediate applications of rV , y ′ does not depend on that order. Hence, we
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may apply Lemma 7.6, which yields for each v ∈ V that |yv | = |r (y ′v ) | ∈ O(logn) w.h.p.
Condition on |yv | ∈ O(logn) for all v ∈ V in the following, which happens w.h.p. by
Lemma 1.2.

Regarding the computation of rVAλy, we first compute each (Aλy)v in parallel for all
v ∈ V . By Lemma 2.3 and because |yv | ∈ O(logn), this can be done using O(logn) depth
and work

O

������
∑
v ∈V

∑
w ∈ V
{v, w } ∈ E

|yw | logn
�����	
⊆ O

���
∑

{v,w }∈E

log2 n��	 = O(m log2 n). (120)

Here, we use that propagation with respect toD—uniformly increasing weights—requires,
due to |yv | ∈ O(logn), no more than O(1) depth and O(m logn) work and is thus domi-
nated by aggregation. To bound the cost of computing rVAλy from Aλy, observe that we
have

��(Aλy)v �� ∈ O

������
∑

w ∈ V
{v, w } ∈ E

|yw |
�����	
. (121)

Hence, by Lemma 7.7 and due to |yv | ∈ O(logn), we can compute (rVAλy)v in parallel for
all v ∈ V using O(log2 n) depth and

O ��
∑
v ∈V
|(Aλy)v | logn�	

(7.18)
⊆ O

������
∑
v ∈V

∑
w ∈ V
{v, w } ∈ E

|yw | logn
�����	

(122)

⊆ O
���

∑
{v,w }∈E

log2 n��	 (123)

⊆ O
(
m log2 n

)
(124)

work. All operations are possible using D ∈ O(log2 n) depth and W ∈ O(m log2 n) work.
As we condition only on an event that occurs w.h.p., this concludes the proof of the second
claim.

(3) Regarding the last claim, condition on logarithmic length of all LE lists (i.e., on |(yλ )v | ∈
O(logn) for all 0 ≤ λ ≤ Λ). We can compute

⊕Λ
λ=0 (yλ )v ∈ D, the aggregation for a single

vertex v , using O(
∑Λ

λ=0 |(yλ )v | logn) = O(log3 n) work and O(logn) depth by Lemma 2.3.

As the work bounds the length of the resulting list, we can determine r (
⊕Λ

λ=0 (yλ )v ) using

O(log4 n) work and O(log2 n) depth by Lemma 7.7. Doing this in parallel for all v ∈ V
yields W⊕ ∈ O(n log4 n) work and D⊕ ∈ O(log2 n) depth. As we condition on two events
that occur w.h.p., this concludes the last claim. �

7.4 Metric Tree Embedding in Polylogarithmic Time and Near-Linear Work

Determining LE lists onH yields a probabilistic tree embedding ofG with expected stretch O(logn)
(Section 7.1), is the result of an MBF-like algorithm (Section 7.2), and each iteration of this algo-
rithm is efficient (Theorem 5.2 and Section 7.3). We assemble these pieces in Theorem 7.9, which
relies on G containing a suitable hop set. Corollaries 7.10 and 7.11 remove this assumption by
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invoking known algorithms to establish this property first. Note that Theorem 7.9 serves as a
blueprint yielding improved tree embedding algorithms when provided with improved hop set
constructions.

Theorem 7.9. Suppose we are given the weighted incidence list of a graphG = (V ,E,ω) satisfying

for some α ∈ R≥1 and d ∈ N that distd (v,w,G ) ≤ α dist(v,w,G ) for all v,w ∈ V . Then, w.h.p., we

can sample from a tree embedding ofG of expected stretch O(αO(log n) logn) with depth O(d log4 n) ⊂
Õ(d ) and work O(m(d + logn) log5 n) ⊂ Õ(md ).

Proof. We first w.h.p. compute the LE lists ofH . To this end, by Lemma 7.8, we may apply The-
orem 5.2 with parameters D ∈ O(log2 n),W ∈ O(m log2 n), D⊕ ∈ O(log2 n), andW⊕ ∈ O(n log4 n);
we arrive at depth O(d log4 n) and work O(m(d + logn) log5 n). As shown in Fakcharoenphol et al.
[23], the FRT tree T represented by these lists has expected stretch O(logn) with respect to the

distance metric of H . By Theorem 4.5, w.h.p. dist(v,w,G ) ≤ dist(v,w,H ) ≤ αO(log n) dist(v,w,G )
and hence

dist(v,w,G ) ≤ dist(v,w,T ) ∈ O
(
αO(log n) logn dist(v,w,G )

)
(125)

in expectation (compare Definition 7.1). Observe that, by Lemma 7.2, explicitly constructing the
FRT tree is possible within the stated bounds. �

As stated earlier, we require G to contain a (d, 1/ polylogn)-hop set with d ∈ polylogn in order
to achieve polylogarithmic depth. We also need to determine such a hop set using polylogn depth
and near-linear work inm and that it does not significantly increase the problem size by adding too
many edges. Cohen’s hop sets [17] meet all these requirements, yielding the following corollary.

Corollary 7.10. Given the weighted incidence list of a graph G and an arbitrary constant ε > 0,

we can w.h.p. sample from a tree embedding of expected stretch O(logn) using depth polylogn and

work Õ(m1+ε ).

Proof. We apply the hop set construction by Cohen [17] to G = (V ,E,ω) to w.h.p. deter-

mine an intermediate graph G ′ with vertices V and an additional Õ(m1+ε ) edges. The algorithm

guarantees distd (v,w,G ) ≤ α dist(v,w,G ′) for d ∈ polylogn and α ∈ 1 + 1/ polylogn (where the

polylogn term in α is under our control) and has depth polylogn and work Õ(m1+ε ). Choosing
α ∈ 1 + O(1/ logn) and applying Theorem 7.9, the claim follows. �

Adding a hop set toG, embedding the resulting graph in H , and sampling an FRT tree on H is a
three-step sequence of embeddings ofG. Still, in terms of stretch, the embedding of Corollary 7.10
is—up to a factor in 1 + o(1)—as good as directly constructing an FRT tree ofG: (1) Hop sets do not
stretch distances. (2) By Theorem 4.5 and Equation (91), H introduces a stretch of 1 + 1/ polylogn.
(3) Together, this ensures that the expected stretch of the FRT embedding with respect to G is
O(logn).

It is possible to reduce the work at the expense of an increased stretch by first applying the
spanner construction by Baswana and Sen [9]:

Corollary 7.11. Suppose we are given the weighted incidence list of a graph G. Then, for any

constant ε > 0 and any k ∈ N, we can w.h.p. sample from a tree embedding of G of expected stretch

O(k logn) using depth polylogn and work Õ(m + n1+1/k+ε ).

Proof. The algorithm of Baswana and Sen [9] computes a (2k − 1)-spanner of G = (V ,E,ω);
that is, a subgraph G ′ = (V ,E ′,ω) satisfying for all v,w ∈ V that dist(v,w,G ) ≤ dist(v,w,G ′) ≤
(2k − 1) dist(v,w,G ) using polylogn depth and Õ(m) work. We argue in the proof of Theorem 6.3

that |E ′ | ∈ Õ(n1+1/k ) w.h.p. The claim follows from applying Corollary 7.10 to G ′. �
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7.5 Reconstructing Paths from Virtual Edges

Given that we only deal with distances and not with paths in the FRT construction, there is one
concern: Consider an arbitrary graphG = (V ,E,ω), its augmentation with a hop set resulting inG ′,
which is then embedded into the complete graph H and finally into an FRT tree T = (VT ,ET ,ωT ).
How can an edge e ∈ ET of weight ωT (e ) be mapped to a path p in G with ω (p) ≤ ωT (H )? Note
that this question has to be answered in polylogarithmic depth and without incurring too much
memory overhead. Our purpose is not to provide specifically tailored data structures, but we pro-
pose a three-step approach that maps edges inT to paths inH , edges inH to paths inG, and finally
edges from G ′ to paths in G.

Concerning a tree edge e ∈ ET , observe that e maps back to a path p of at most SPD(H ) hops
in H with ωH (p) ≤ 3ωT (e ) as follows. First, to keep the notation simple, identify each tree node—
given as tuple (vi , . . . ,vj )—w ith its “leading” node vi ∈ V ; in particular, each leaf has i = 0 and is
identified with the node inV that is mapped to it. A leafv0 has an LE entry (dist(v0,v1,H ),v1), and
we can trace the shortestv0-v1-path in H based on the LE lists (nodes locally store the predecessor
of shortest paths just like in APSP). Moreover, dist(vi ,vi+1,H ) ≤ ωT (vi ,vi+1) (i.e., we may map the
tree edge back to the path without incurring larger cost than in T ). If i > 0, vi and vi+1 are inner
nodes. Choose an arbitrary leafv0 that is a common descendant (this choice can, e.g., be fixed when
constructing the tree from the LE list without increasing the asymptotic bounds on depth or work).
We then can trace shortest paths from v0 to vi and from v0 to vi+1 in H , respectively. The cost of
their concatenation is dist(v0,vi ,H ) + dist(v0,vi+1,H ) ≤ β2i + β2i+1 = 3(β2i ) = 3ωT (v,w ) by the
properties of LE lists and the FRT embedding. Note that, due to the identification of each tree node
with its “leading” graph node, paths in T map to concatenable paths in H .

Regarding the mapping from edges in H to paths in G, recall that we compute the LE lists of H
by repeated application of the operations rV , ⊕, Pλ , and Aλ with 0 ≤ λ ≤ Λ. Observe that rV , ⊕,
and Pλ discard information; that is, distances to nodes that do not make it into the final LE lists and
therefore are irrelevant to routing. Aλ , on the other hand, is an MBF step. Thus, we may store the
necessary information for backtracing the induced paths at each node; specifically, we can store,
for each iteration h ∈ O(log2 n) with respect to H , each of the intermediate d iterations in G, and
each λ ∈ O(logn), the state vector y of the form in Equation (117) in a lookup table. This requires

Õ(d ) memory and efficiently maps edges of H to d-hop paths in G—or rather to d-hop paths in G ′

if we construct H after augmenting G to G ′ using a hop set.
Mapping edges ofG ′ to edges inG depends on the hop set. Cohen [17] does not discuss this in her

article, but her hop set edges can be efficiently mapped to paths in the original graph by a lookup
table: Hop set edges either correspond to a shortest path in a small cluster or to a cluster that has
been explored using polylogarithmic depth. Regarding other hop set algorithms, we note that many
techniques constructing hop set edges using depth D allow for reconstruction of corresponding
paths at depth O(D) (i.e., that polylogarithmic-depth algorithms are compatible analogously to
Cohen’s hop sets). For instance, this is the case for the hop set construction by Henziger et al. [29],
which we leverage in Section 8.3.

8 DISTRIBUTED FRT CONSTRUCTION

Distributed algorithms for constructing FRT-type tree embeddings in the Congest model are cov-
ered by our framework as well. In the following, we recap two existing algorithms [26, 30] (our
framework allows doing this in a very compact way), and we improve upon the state of the
art, reducing a factor of nε in the currently best-known round complexity for expected stretch

O(logn) [26] to no (1) . We use the hop set of Henzinger et al. [29] instead of Cohen’s [17], because
it is compatible with the Congest model. Note that replacing the hop set is straightforward since
our theorems in the previous sections are formulated with respect to generic (d, ε̂ )-hop sets.
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The Congest Model. We refer to Peleg [41] for a formal definition of the Congest model but briefly
outline its core aspects. The Congest model is a model of computation that captures distributed
computations performed by the nodes of a graph, where communication is restricted to its edges.
Each node is initialized with a unique ID of O(logn) bits, knows the IDs of its adjacent nodes
along with the weights of the corresponding incident edges, and “its” part of the input (in our case
the input is empty); each node has to compute “its” part of the output (in our case, as detailed
in Section 7.1, its LE list). Computations happen in rounds, and we are interested in how many
rounds it takes for an algorithm to complete. In each round, each node does the following:

(1) Perform finite, but otherwise arbitrary local computations.
(2) Send a message of O(logn) bits to each neighboring node.
(3) Receive the messages sent by neighbors.

Recall that, by assumption, edge weights can be encoded using O(logn) bits; that is, an index–
distance pair can be encoded in a single message.

Overview. Throughout this section, let G = (V ,E,ω) be a weighted graph and denote, for any
graphG, byAG ∈ (R≥0 ∪ {∞})V×V its adjacency matrix according to Equation (4). Fix the semiring
S = Smin,+ and the zero-preserving semimoduleM = D from Definition 2.1, as well as r , ∼, and

x (0) as given in Definition 7.3.
Sections 8.1 and 8.2 briefly summarize the distributed FRT algorithms by Kahn et al. [30] and

Ghaffari and Lenzen [26], respectively. We use these preliminaries, our machinery, and a dis-
tributed hop set construction due to Henziger et al. [29] in Section 8.3 to propose an algorithm

that reduces a multiplicative overhead of nε in the round complexity of [26] to no (1) .

8.1 The Algorithm by Khan et al.

In our terminology, the algorithm of Khan et al. [30] performs SPD(G ) iterations of the MBF-like
algorithm for collecting LE lists implied by Definition 7.3; that is,

rVASPD(G )
G

x (0) (2.35)
=

(
rVAG

)SPD(G )
x (0) . (126)

It does so in SPD(G ) + 1 iterations by initializing x (0) as in Equation (108) and iteratively com-

puting x (i+1) := rVAGx
(i ) until a fixed point is reached (i.e., until x (i+1) = x (i ) . As (rVAG )ix (0) =

rVAi
G
x (0)). Lemma 7.6 shows, that w.h.p. |x (i )

v | ∈ O(logn) for all 0 ≤ i ≤ SPD(G ) and all v ∈ V .

Therefore,v ∈ V can w.h.p. transmit x (i )
v to all of its neighbors using O(logn) messages, and, upon

reception of its neighbors’ lists, locally compute x (i+1)
v . Thus, each iteration takes O(logn) rounds

w.h.p., implying the round complexity of O(SPD(G ) logn) w.h.p. shown in Khan et al. [30].

8.2 The Algorithm by Ghaffari and Lenzen

The strongest lower bound regarding the round complexity for constructing a (low-stretch) metric

tree embedding ofG in the Congest model is Ω̃(
√
n + D(G )) [20, 26]. If SPD(G ) � max{D(G ),

√
n},

one may thus hope for a solution that runs in õ(SPD(G )) rounds. For any ε ∈ R>0, in Ghaffari and

Lenzen [26], it is shown that expected stretch O(ε−1 logn) can be achieved in Õ(n1/2+ε + D(G ))
rounds; below, we summarize this algorithm.

The strategy is to first determine the LE lists of a constant-stretch metric embedding of (the in-
duced submetric of) an appropriately sampled subset ofV . The resulting graph is called the skele-

ton spanner, and its LE lists are then used to jump-start the computation on the remaining graph.
When sampling the skeleton nodes in the right way, stretching non-skeleton edges analogously
to Section 4, and fixing a shortest path for each pair of vertices, w.h.p. all of these paths contain
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a skeleton node within a few hops. Ordering skeleton nodes before non-skeleton nodes with re-
spect to the random ordering implies that each LE list has a short prefix accounting for the local
neighborhood, followed by a short suffix containing skeleton nodes only. This is due to the fact
that skeleton nodes dominate all non-skeleton nodes for which the respective shortest path passes

through them. Hence, no node has to learn information that is further away than dS ∈ Õ(
√
n), an

upper bound on the number of hops when a skeleton node is encountered on a shortest path that
holds w.h.p.

The Graph H . In Ghaffari and Lenzen [26], G is embedded into H and an FRT tree is sampled
on H , where H is derived as follows. Abbreviate � := �

√
n
. For a sufficiently large constant c ,

sample �c� logn
 nodes uniformly at random; call this set S . Define the skeleton graph

GS := (S,ES ,ωS ), where (127)

ES :=

{
{s, t } ∈

(
S

2

)
| dist� (s, t ,G ) < ∞

}
and (128)

ωS (s, t ) �→ dist� (s, t ,G ). (129)

Then w.h.p. dist(s, t ,GS ) = dist(s, t ,G ) for all s, t ∈ S (Lemma 4.6 of [33]). For k ∈ Θ(ε−1), construct
a (2k − 1)-spanner

G ′S := (S,E ′S ,ωS ) (130)

of the skeleton graph GS that has Õ(�1+1/k ) ⊆ Õ(n1/2+ε ) edges w.h.p. (Lemma 4.9 of [33]). Define

H := (V ,EH ,ωH ), where (131)

EH := E ′S ∪ E, and (132)

ωH (e ) �→
{
ωS (e ) if e ∈ E ′S and
(2k − 1)ω (e ) otherwise.

(133)

By construction, G embeds into H with a stretch of 2k − 1 w.h.p.; that is, dist(v,w,G ) ≤
dist(v,w,H ) ≤ (2k − 1) dist(v,w,G ). Computing an FRT tree T of H of expected stretch O(logn)
thus implies that G embeds into T with expected stretch O(k logn) = O(ε−1 logn).

FRT Trees ofH . Observe that min-hop shortest paths inH contain only a single maximal subpath
consisting of spanner edges, where the maximal subpaths of non-spanner edges have at most �
hops w.h.p. This follows analogously to Lemma 4.4 with two levels and a sampling probability of

Θ̃(1/�). Assuming s < v for all s ∈ S andv ∈ V \ S (we discuss this below) for eachv ∈ V and each
entry (w, dist(v,w,H )) of its LE list, w.h.p. there is a min-hop shortest v-w-path with a prefix of �
non-spanner edges followed by a shortest path in G ′S . This entails that w.h.p.

rVASPD(H )
H

x (0) = rVA�
G,2k−1A

|S |
G′

S

x (0) = rVA�
G,2k−1

(
rVA |S |

G′
S

x (0)
)

︸���������︷︷���������︸
=:x̄ (0)

, (134)

where AG,s is AG with entries stretched by a factor of s ∈ R≥0 ∪ {∞}, and we extend AG′
S

to be a

V ×V matrix by setting (AG′
S

)vw = ∞ if v � w ∈ V \ S and (AG′
S

)vv = 0 for v ∈ V \ S .

In order to construct an FRT tree, suppose we have sampled uniform permutations of S andV \ S
and a random choice of β . We extend the permutations to a permutation of V by ruling that, for
all s ∈ S and v ∈ V \ S , we have s < v , fulfilling the above assumption. Lemma 4.9 of Ghaffari and
Lenzen [26] shows that the introduced dependence between the topology of H and the resulting
permutation on V does not increase the expected stretch of the embedding beyond O(logn). The
crucial advantage of this approach lies in the fact that now the LE lists of nodes in S may be used
to jump-start the construction of LE lists for H , in accordance with Equation (134).
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The Algorithm. In Ghaffari and Lenzen [26], it is shown that LE lists of H can be determined
quickly in the Congest model as follows.

(1) Some node v0 starts by broadcasting k and a random choice of β , constructing a BFS tree
on the fly. Upon receipt, each node generates a random ID of O(logn) bits which is unique
w.h.p. Querying the amount of nodes with an ID of less than some threshold via the BFS
tree, v0 determines the bottom � node IDs via binary search; these nodes form the set S
and satisfy the assumption that went into Equation (134). All of these operations can be

performed in Õ(D(G )) rounds.

(2) The nodes in S determine G ′S , which is possible in Õ(D(G ) + �1+1/k ) ⊆ Õ(D(G ) + n1/2+ε )
rounds, such that all v ∈ V learn E ′S and ωS [26, 33]. After that, G ′S is global knowledge

and each v ∈ V can locally compute x̄ (0)
v .

(3) Subsequently, nodes w.h.p. determine their component of rVA�
G,2k−1

x̄ (0) =

(rVAG,2k−1)�x̄ (0) via � MBF-like iterations of

x̄ (i+1) := rVAG,2k−1x̄
(i ) . (135)

Here, one exploits that, for all i , |x̄ (i )
v | ∈ O(logn) w.h.p. by Lemma 7.6,10 and thus each

iteration can be performed by sending O(logn) messages over each edge (i.e., in O(logn)
rounds); the entire step thus requires Õ(�) ⊆ Õ(n1/2) rounds.

Together, this w.h.p. implies the round complexity of Õ(n1/2+ε + D(G )) for an embedding of ex-
pected stretch O(ε−1 logn).

8.3 Achieving Stretch O(logn) in Near-Optimal Time

The multiplicative overhead of nε in the round complexity is due to constructing and broadcasting
the skeleton spanner G ′S . We can improve upon this by relying on hop sets, just as we do in our

parallel construction. Henziger et al. [29] show how to compute an (no(1), o(1))-hop set of the

skeleton graph in the Congest model using n1/2+o(1) + D(G )1+o(1) rounds.
Our approach is similar to the one outlined in Section 8.2. The key difference is that we replace

the use of a spanner by combining a hop set of the skeleton graph with the construction from
Section 4; using the results from Section 5, we can then efficiently construct the LE lists on S to
jump-start the construction of LE lists for all nodes.

The Graph H . Let �, c , and the skeleton graph GS = (S,ES ,ωS ) be defined as in Section 8.2 and
Equations (127)–(128), w.h.p. yielding dist(s, t ,GS ) = dist(s, t ,G ) for all s, t ∈ S . Suppose for all
s, t ∈ S , we know approximate weights ω ′S (s, t ) with

dist(s, t ,G ) ≤ ω ′S (s, t ) ∈ (1 + o(1))ωS (s, t )

(our algorithm has to rely on an approximation to meet the stated round complexity) and add

an (no(1), o(1/ logn))-hop set to GS using the construction of Henzinger et al. [29]. Together, this
results in a graph

G ′S := (S,E ′S ,ω
′
S ), (136)

10We apply Lemma 7.6 twice, as it requires x ∈ D to be independent of the permutation. First consider a computation

initialized with y
(0)
vw := 0 if v = w ∈ S and y

(0)
vw := ∞ else. By Lemma 7.6, we have |y (i )

v | ∈ O(log n) w.h.p. for all y (i ) :=

r V Ai
HS

y (0) and iterations i ∈ {1, . . . , |S | }. Analogously, apply Lemma 7.6 to z (i ) := r V Ai
G,2k−1

z (0) , i ∈ {1, . . . , � } with

z
(0)
vw := 0 if v = w ∈ V \ S and z

(0)
vw := ∞ else; this yields that |z (i )

v | ∈ O(log n) for all v ∈ V w.h.p., too. As we have

x
(i )
v = r V (y

(j )
v ⊕ z

(k )
v ) for all v ∈ V and appropriate i, j, k ∈ N, we obtain |x (i )

v | ∈ O(log n) w.h.p.
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where E ′S contains the skeleton edges ES and some additional edges, and w.h.p. it holds for all
s, t ∈ S that

dist(s, t ,GS ) ≤ distd (s, t ,G ′S ) ∈ (1 + o(1/ logn)) dist(v,w,GS ) (137)

for some d ∈ no(1) and dist(v,w,G ) ≤ dist(v,w,GS ) ∈ (1 + o(1)) dist(v,w,G ). Next, embedG ′S into
HS as in Section 4, yielding node and edge levels λ(e ) ∈ {0, . . . ,Λ}:

HS :=

(
S,

(
S

2

)
,ωHS

)
with (138)

ωHS
({s, t }) �→ (1 + ε̂ )Λ−λ (s,t ) distd (s, t ,G ′S ) (139)

with d as above, ε̂ ∈ o(1/ logn). By Theorem 4.5, w.h.p. we have that SPD(G ) ∈ O(log2 n) and for
all s, t ∈ S that

dist(s, t ,G ) ≤ dist(s, t ,GS ) ≤ dist(s, t ,HS ) ∈ (1 + o(1)) dist(s, t ,GS ), (140)

which is bounded from above by α dist(s, t ,G ) for some α ∈ 1 + o(1). Analogously to Equa-
tions (8.6)–(8.8), define

H := (V ,EH ,ωH ), where (141)

EH := E ∪
(
S

2

)
, and (142)

ωH (e ) �→
{
ωHS

(e ) if e ∈
(

S
2

)
and

α ωG (e ) otherwise.
(143)

By construction, we thus have

∀v,w ∈ V : dist(v,w,G ) ≤ dist(v,w,H ) ≤ α dist(v,w,G ) ∈ (1 + o(1)) dist(v,w,G ) (144)

w.h.p.

FRT Trees of H . Analogously to Section 8.2, assume that the node IDs of S are ordered before
those ofV \ S ; then min-hop shortest paths inH contain a single maximal subpath of edges in EHS

.
To determine the LE lists for H , we must therefore compute

rVASPD(H )
H

x (0) =
(
rVAG,α

)� (
rVAHS

)SPD(HS )
x (0)︸��������������������︷︷��������������������︸

=:x̄ (0)

, (145)

whereAG,α is given by multiplying each entry ofAG by the above-mentioned factor of α , andAHS

is extended to an adjacency matrix on the node set V as in Section 8.2.

The Algorithm. We determine the LE lists of H as follows, adapting the approach from Ghaffari
and Lenzen [26] outlined in Section 8.2.

(1) A node v0 starts the computation by broadcasting a random choice of β . The broadcast is
used to construct a BFS tree, nodes generate distinct random IDs of O(logn) bits w.h.p.,
and v0 figures out the ID threshold of the bottom c� nodes S with respect to the induced

random ordering. This can be done in Õ(D(G )) rounds.
(2) Each skeleton nodes s ∈ S computesω ′S (s, t ) as above for all t ∈ S , using the (1 + 1/ log2 n)-

approximate (S, �, |S |)-detection algorithm given in Lenzen and Patt-Shamir [35]. This

takes Õ(� + �) = Õ(n1/2) rounds.
(3) Run the algorithm of Henzinger et al. [29] to compute an (no(1), o(1))-hop set ofG ′S , in the

sense that nodes in S learn their incident weighted edges. This takes n1/2+o(1) + D(G )1+o(1)

rounds.
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(4) Next, we (implicitly) constructHS . To this end, nodes in S locally determine their level and

broadcast it over the BFS tree, which takes O( |S | + D(G )) ⊂ Õ(
√
n + D(G )) rounds; thus,

s ∈ S knows the level of {s, t } ∈ EHS
for each t ∈ S .

(5) To determine x̄ (0) , we follow the same strategy as in Theorem 5.2; that is, we simulate
matrix-vector multiplication withAHS

via matrix-vector multiplications withAG′
S
. Hence,

it suffices to show that we can efficiently perform a matrix-vector multiplicationAG′
S
x for

any x that may occur during the computation—applying rV is a local operation and thus
free—assuming each node v ∈ V knows xv and its row of the matrix.

Since multiplications with AG′
S

only affects lists at skeleton nodes, this can be done by

local computations once all nodes know xs for each s ∈ S . As before, |xs | ∈ O(logn) w.h.p.,

so
∑

s ∈S |xs | ∈ O( |S | logn) ⊂ Õ(
√
n) w.h.p. We broadcast these lists over the BFS tree

of G, taking Õ(
√
n + D(G )) rounds per matrix-vector multiplication. Due to SPD(HS ) ∈

Õ(log2 n), by Theorem 4.5, this results in a round complexity of Õ(n1/2+o(1) + D(G )1+o(1) ).
(6) Applying rVA�

G,α is analogous to step 3 in Section 8.2 and takes Õ(�) ⊆ Õ(n1/2) rounds.

Altogether, this yields a round complexity of n1/2+o(1) + D(G )1+o(1) . Combining this result with the
algorithm by Khan et al. [30], which terminates quickly if SPD(G ) is small, yields the following
result.

Theorem 8.1. There is a randomized distributed algorithm that w.h.p. samples from a metric tree

embedding of expected stretch O(logn) in min{(
√
n + D(G ))no (1), Õ(SPD(G ))} rounds of the Congest

model.

9 k-MEDIAN

In this section, we turn to the k-median problem, an application considered by Blelloch et al. [14],
and show how their results are improved by applying our techniques. The contribution is that we
work on a weighted graphG that only implicitly provides the distance metric dist(·, ·,G ); Blelloch
et al. require a metric providing constant-time query access. Our solution is more general, as any
finite metric defines a complete graph of SPD 1, whereas determining exact distances in graphs
(by known techniques) requires Ω(SPD(G )) depth. The use of hop sets, however, restricts us to
polynomially bounded edge-weight ratios.

Definition 9.1 (k-Median). In the k-median problem we are given a weighted graphG = (V ,E,ω)
and an integer k ∈ N. The task is to determine F ⊆ V with |F | ≤ k that minimizes∑

v ∈V
dist(v, F ,G ), (146)

where dist(v, F ,G ) := min{dist(v, f ,G ) | f ∈ F } is the distance of v to the closest member of F .

Blelloch et al. [14] solve the following problem: Given a metric with constant-time query access,

determine an expected O(logk )-approximation of k-median using O(log2 n) depth and Õ(nk +
k3) work for k ≥ logn; the special case of k < logn admits an Õ(n)-work solution of the same
depth [15]. Below, we show how to determine an expected O(logk )-approximation of k-median

on a weighted graph using polylogn depth and Õ(m1+ε + k3) work.
The algorithm of Blelloch et al. [14] essentially comprises three steps:

(1) Use a parallel version of a sampling technique due to Mettu and Plaxton [38]. It samples
candidates Q , such that |Q | ∈ O(k ) and there is F ⊆ Q that O(1)-approximates k-median.
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(2) Sample an FRT tree regarding the submetric spanned byQ . Normalize the tree to a binary
tree (required by the next step); this is possible without incurring too much overhead with
respect to the depth of the tree [14].

(3) Run an O(k3)-work dynamic programming algorithm to solve the tree instance optimally
without using any Steiner nodes. This yields an O(logk )-approximate solution on the
original metric due to the expected stretch from the FRT embedding.

We keep the overall structure but modify steps 1–2, resulting in the following algorithm:

(1) The sampling step generates O(k ) candidate points Q .
It requires O(log n

k
) iterations and maintains a candidate set U that initially contains

all points. In each iteration, O(logn) candidates S are sampled, and a constant fraction of
vertices in U , those closest to S , is removed [14].

The key to adapting this procedure to graphs lies in efficiently determining dist(u, S,G )
for all u ∈ U (this would be trivial with constant-time query access to the metric). We
achieve this by sampling after embedding inH from Section 4, which only costs a factor of
(1 + o(1)) in approximation, regardless of k . By Theorem 4.5, we only require O(log2 n) it-
erations of the MBF-like algorithm from Example 3.7 (ford = ∞) to determine each node’s
distance to the closest vertex in S w.h.p. Hence, we require polylogarithmic depth and

Õ(m1+ε ) work for this step.
Since |U | decreases by a constant factor in each iteration and we have O(logn) itera-

tions, we require a total of Õ(m1+ε ) work and polylogarithmic depth, including the costs
for determining Cohen’s hop set [17].

(2) Sample an FRT tree on the submetric spanned by Q .

To compute the embedding only on Q , set x (0)
vv = 0 if v ∈ Q and x (0)

vw = ∞ everywhere
else. Consider only the LE lists of nodes in Q when constructing the tree.

As we are limited to polynomially bounded edge-weight ratios, our FRT trees have
logarithmic depth. We normalize to a binary tree using the same technique as Blelloch
et al. [14].

(3) The Õ(k3)-work polylogarithmic-depth dynamic-programming algorithm of Blelloch
et al. can be applied without modification.

W.h.p., we arrive at an expected O(logk )-approximation of k-median:

Theorem 9.2. For any fixed constant ε > 0, w.h.p., an expected O(logk )-approximation to k-

median on a weighted graph can be computed using polylogn depth and Õ(m1+ε + k3) work.

We remark that, analogously to Corollary 7.11, one can first compute a sparse spanner to reduce

the work to Õ(m + n1+ε + k3).

10 BUY-AT-BULK NETWORK DESIGN

In this section, we reduce the work of the approximation algorithm for the buy-at-bulk network
design problem given by Blelloch et al. [14] that requires O(n3 logn) work and O(log2 n) depth
w.h.p. while providing the same asymptotic approximation guarantees. Blelloch et al. transform
the input graph G into a metric that allows constant-time query access on which they sample an
FRT embedding, hence their work is dominated by solving APSP.

Replacing the APSP routine in the algorithm Blelloch et al. with our O(1)-approximate metric
from Theorem 6.3 (and keeping the rest of the algorithm in place) directly reduces the work to

Õ(n2+ε ) while incurring polylogn depth. However, using our result from Section 7 to sample an

FRT without the detour over the metric, we can guarantee a stronger work bound of Õ(min{m1+ε +
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kn,n2}) ⊆ Õ(n2), which achieves the same depth. The use of hop sets, however, restricts us to
polynomially bounded edge ratios (or our solution loses efficiency).

Definition 10.1 (Buy-at-Bulk Network Design). In the buy-at-bulk network design problem, one is
given a weighted graphG = (V ,E,ω), demands (si , ti ,di ) ∈ V ×V ×R>0 for 1 ≤ i ≤ k , and a finite
set of cable types (ui , ci ) ∈ R>0 ×R>0, 1 ≤ i ≤ �, where the cable of type i incurs costs ci ω (e )
when purchased for edge e (multiple cables of the same type can be bought for an edge). The goal
is to find an assignment of cable types and multiplicities to edges minimizing the total cost, such
that the resulting edge capacities allow us to simultaneously route di units of (distinct) flow from
si to ti for all 1 ≤ i ≤ k .

Andrews showed that the buy-at-bulk network design problem is hard to approximate better

than with factor log1/2−o(1) n [5]. Blelloch et al. [14] give an expected O(logn)-approximation w.h.p.
using polylogn depth and O(n3 logn) work for the buy-at-bulk network design problem. It is a
straightforward parallelization of the algorithm by Awerbuch and Azar [6]. Our tools allow for a
more work-efficient parallelization of this algorithm, as the work of the implementation by Blelloch
et al. is dominated by solving APSP to determine the distance metric of the graph; we achieve the

same approximation guarantee as Blelloch et al. using polylogn depth and Õ(n2) work. We propose
the following modification of the approach of Blelloch et al.

(1) Metrically embed G into a tree T = (VT ,ET ,ωT ) with expected stretch O(logn). As the
objective is linear in the edge weights, an optimal solution in G induces a solution in T
whose expected cost is by at most a factor O(logn) larger.

(2) O(1)-approximate on T : For e ∈ ET , pick the cable of type i that minimizes ci �de/ui 
,
where de is the accumulated flow on e , see [14]).

(3) Map the tree solution back to G, increasing the cost by a factor of O(1).

Combining these steps yields an O(logn)-approximation. Using Corollary 7.11 (for constant ε and

k = �ε−1
), the first step has polylogn depth and Õ(m + n1+ε ) work; for the second step, Blelloch

et al. discuss an algorithm of polylogn depth and Õ(n + k ) work.
Concerning the third step, recall that each tree edge {v,w } maps back to a path p of at most

SPD(H ) hops in H with ω (p) ≤ 3ωT (v,w ), as argued in Section 7.5. Using this observation, we
can map the solution on T back to one in H whose cost is at most by factor 3 larger. Assuming

suitable data structures are used, this operation has depth polylogn and requires Õ(min{k,n})
work w.h.p., where we exploit that SPD(H ) ∈ O(log2 n) w.h.p. by Theorem 4.5 and the fact that
T has depth O(logn), implying that the number of edges in T with non-zero flow is bounded by
O(min{k,n} logn).

Finally, we map back from H to G ′ (G augmented with hop set edges) and then to G. This can

be handled with depth polylogn and Õ(n) work for a single edge in H because edges in H and
hop set edges in G ′ correspond to polylogarithmically many edges in G ′ and at most n edges
in G, respectively. The specifics depend on the hop set, and, again, we assume that suitable data

structures are in place (see Section 7.5). Since we deal with Õ(min{k,n}) edges in H , mapping back

the edges yields Õ(min{kn,n2}) work in total. Together with the computation of the hop set, we

have Õ(min{m + n1+ε ,n2} +min{kn,n2}) = Õ(min{m + n(k + nε ),n2}) ⊆ Õ(n2) work.

Theorem 10.2. For any constant ε > 0, w.h.p., an expected O(logn)-approximation to the buy-

at-bulk network design problem can be computed using polylogn depth and Õ(min{m + n(k +
nε ),n2}) ⊆ Õ(n2) work.
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11 CONCLUSION

In this work, we show how to sample from an FRT-style distribution of metric tree embeddings at
low depth and near-optimal work, provided that the maximum ratio between edge weights is poly-
nomially bounded. While we consider the polylogarithmic factors too large for our algorithm to be
of practical interest, this result motivates the search for solutions that achieve low depth despite
having work comparable to the currently best-known sequential bound of O(m logn) w.h.p. [13].
Concretely, better hop set constructions could readily be plugged into our machinery to yield im-
proved bounds, and one may seek to reduce the number of logarithmic factors incurred by the
remaining construction.

Our second main contribution is an algebraic interpretation of MBF-like algorithms, reducing
the task of devising and analyzing such algorithms to the following recipe:

(1) Pick a suitable semiring S and semimoduleM over S.

(2) Choose a filter r and initial values x (0) ∈ MV so that rVAhx (0) is the desired output.
(3) Verify that r induces a congruence relation onM.
(4) Leverage (repeated use of) rV to ensure that iterations can be implemented efficiently.

As can be seen by the example of our metric tree embedding algorithm, further steps may be re-
quired to control the number of iterations h; concretely, we provide an embedding into a complete
graph of small SPD and an oracle allowing for efficient MBF-like queries. Nevertheless, we believe
that our framework unifies and simplifies the interpretation and analysis of MBF-like algorithms,
as illustrated by the examples listed in Sections 3 and the discussion of distributed tree embeddings
in Section 8. Therefore, we hope that our framework will be of use in the design of further efficient
MBF-like algorithms in the future.

APPENDIX

A ALGEBRAIC FOUNDATIONS

For the sake of self-containment and unambiguousness, we give the algebraic definitions required
in this article as well as a standard result. Definitions A.1, A.2, and A.3 are slightly adapted from
Chapters 1 and 5 of Hebisch and Weinert [28]. In this section, we refer to the neutral elements of
addition and multiplication as 0 and 1. Note, however, that in the min-plus semiring Smin,+ the
neutral element of “addition” (min) is∞ and that of “multiplication” (+) is 0.

Definition A.1 (Semigroup). Let M � ∅ be a set and ◦ : M ×M → M a binary operation. (M, ◦) is
a semigroup if and only if ◦ is associative; that is,

∀x ,y, z ∈ M : x ◦ (y ◦ z) = (x ◦ y) ◦ z. (A.1)

A semigroup (M, ◦) is commutative if and only if

∀x ,y ∈ M : x ◦ y = y ◦ x . (A.2)

e ∈ M is a neutral element of (M, ◦) if and only if

∀x ∈ M : e ◦ x = x ◦ e = x . (A.3)

Some authors do not require semirings to have neutral elements or an annihilating 0. We, how-
ever, need them and work on semirings (mostly on Smin,+, Smax,min, and Pmin,+) which provide
them, anyway.

Definition A.2 (Semiring). Let M � ∅ be a set, and ⊕, � : M ×M → M binary operations. Then
(M, ⊕, �) is a semiring if and only if
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(1) (M, ⊕) is a commutative semigroup with neutral element 0,
(2) (M, �) is a semigroup with neutral element 1,
(3) the left- and right-distributive laws hold:

∀x ,y, z ∈ M : x � (y ⊕ z) = (x � y) ⊕ (x � z), (A.4)

∀x ,y, z ∈ M : (y ⊕ z) � x = (y � x ) ⊕ (z � x ), and (A.5)

(4) 0 annihilates with respect to �:

∀x ∈ M : 0 � x = x � 0 = 0. (A.6)

Definition A.3 (Semimodule). Let S = (S, ⊕, �) be a semiring.M = (M, ⊕, �) with binary oper-
ations ⊕ : M ×M → M and � : S ×M → M is a semimodule over S if and only if

(1) (M, ⊕) is a semigroup and
(2) for all s, t ∈ S and all x ,y ∈ M :

1 � x = x , (A.7)

s � (x ⊕ y) = (s � x ) ⊕ (s � y), (A.8)

(s ⊕ t ) � x = (s � x ) ⊕ (t � x ), and (A.9)

(s � t ) � x = s � (t � x ). (A.10)

M is zero-preserving if and only if

(1) (M, ⊕) has the neutral element 0 and
(2) 0 ∈ S is an annihilator for �:

∀x ∈ M : 0 � x = 0. (A.11)

A frequently used semimodule over the semiring S is Sk with coordinate-wise addition, i.e.,
k-dimensional vectors over S. In particular, S = S1 is always a semimodule over itself.

Lemma A.4. Let S = (S, ⊕, �) be a semiring and k ∈ N an integer. Then Sk := (Sk , ⊕, �) with,

for all s ∈ S, x ,y ∈ Sk , and 1 ≤ i ≤ k ,

(x ⊕ y)i := xi ⊕ yi and (A.12)

(s � x )i := s � xi (A.13)

is a zero-preserving semimodule over S with zero (0, . . . , 0).

Proof. We check the conditions of Definition A.3 one by one. Throughout the proof, let s, t ∈ S
and x ,y ∈ Sk be arbitrary.

(1) (Sk , ⊕) is a semigroup because (S, ⊕) is.
(2) Equations (A.7)–(A.10) hold due to

(1 � x )i = 1 � xi = xi , (A.14)

(s � (x ⊕ y))i = s � (xi ⊕ yi ) = (s � xi ) ⊕ (s � yi ) = ((s � x ) ⊕ (s � y))i , (A.15)

((s ⊕ t ) � x )i = (s ⊕ t ) � xi = (s � xi ) ⊕ (t � xi ) = ((s � x ) ⊕ (t � x ))i , and (A.16)

((s � t ) � x )i = (s � t ) � xi = s � (t � xi ) = (s � (t � x ))i . (A.17)

(3) (0, . . . , 0) is the neutral element of (Sk , ⊕) because 0 is the neutral element of (S, ⊕).
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(4) 0 is an annihilator for �:

(0 � x )i = 0 � xi = 0. (A.18)

�

B DEFERRED PROOFS

This appendix contains the proofs deferred from Section 3 for the sake of presentation.

Proof of Lemma 3.1.

Proof. The claim trivially holds for h = 0. As induction hypothesis, suppose the claim holds
for h ∈ N. We obtain

x (h+1)
vw = (Ax (h) )vw (B.1)

= ��
⊕
u ∈V

avu � x (h)
u

�	w

(B.2)

=
⊕
u ∈V

avu � x (h)
uw (B.3)

= min
u ∈V

{
avu + x

(h)
uw

}
(B.4)

= min
{
ω (v,u) + disth (u,w,G ) | {v,u} ∈ E

}
∪

{
0 + disth (v,w,G )

}
; (B.5)

that is, exactly the definition of disth+1 (v,w,G ), as claimed. �

Proof for Example 3.2.

Proof. Let s ∈ Smin,+ be arbitrary and let x ,x ′,y,y ′ ∈ D be such that x ∼ x ′ and y ∼ y ′, where
x ∼ y :⇔ r (x ) = r (y). By Lemma 2.8, it suffices to show (1) that r 2 = r , (2) that r (sx ) = r (sx ′), and
(3) that r (x ⊕ y) = r (x ′ ⊕ y ′).

We show the claims one by one. First, observe that r (x )v = ∞ for all v ∈ V \ S ; hence, without
loss of generality, assume v ∈ S in the following. (1) r (x ) has at most k entries, each at most d ,
so r (r (x )) = r (x ) by (3.4). (2) Since multiplication with s uniformly increases the non-∞ entries
of x and x ′, it does not affect their ordering with respectto Equation (48). As the k smallest S-
entries of x and x ′ with respect to Equation (48) are identical, so are those of sx and sx ′. Some
entry (sx )v may become larger than d , but that happens for (sx )′v as well; hence, r (sx ) = r (sx ′).
(3) We have r (x ⊕ y)v ≤ d only if (x ⊕ y)v = min{xv ,yv } ≤ d is among the k smallest entries of
(x ⊕ y) with respect to (48). If that is the case, there are no k entries smaller than r (x ⊕ y)v in x
or in y. Hence, these entries exist in x ′ and y ′ as well, form the k smallest entries of (x ′ ⊕ y ′), and
r (x ⊕ y)v = r (x ′ ⊕ y ′)v follows.

Proof of Lemma 3.10.

Proof. We check each of the requirements of Definition A.2 in Appendix A. Throughout the
proof, let x ,y, z ∈ R≥0 ∪ {∞} be arbitrary.

(1) (R≥0 ∪ {∞},max) is a commutative semigroup because max is associative and commuta-
tive. Since 0 is the minimum of R≥0 ∪ {∞}, it is the neutral element of (R≥0 ∪ {∞},max).

(2) (R≥0 ∪ {∞},min) is a semigroup because min is associative. As above, ∞ is its neutral
element because it is the maximum of R≥0 ∪ {∞}.

(3) Regarding the left- and right-distributive laws in Equations (A.4)–(A.5), a case distinction
between the cases (a) x ≤ y ≤ z, (b) y ≤ x ≤ z, and (c) y ≤ z ≤ x is exhaustive due to the
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commutativity of min and max and reveals that

min{x ,max{y, z}} = max{min{x ,y},min{x , z}}; (B.6)

that is, that the left-distributive law holds. Since min is commutative,

min{max{y, z},x } = max{min{y,x },min{z,x }} (B.7)

immediately follows; hence, Smax,min fulfills both distributive laws.
(4) 0 is an annihilator for min because

min{0,x } = min{x , 0} = 0. (B.8)

Together, it follows that Smax,min is a semiring as claimed. �

Proof of Lemma 3.12.

Proof. The claim holds for h = 0 by Equation (54). As induction hypothesis, suppose the claim
holds for some h ∈ N. We obtain

x (h+1)
v

(3.11)
=

(
Ax (h)

)
v
=

⊕
w ∈V

avw � x (h)
w

(3.9)
= ∞ � x (h)

v︸����︷︷����︸
x

(h )
v

⊕
⊕
{v,w }∈E

ω (v,w ) � x (h)
w . (B.9)

Recall that ⊕ inW is the element-wise maximum by Corollary 3.11. Hence, we have

x (h+1)
vu = max

{
x (h)

vu

}
∪

{
min{ω (v,w ),x (h)

wu } | {v,w } ∈ E
}

(B.10)

and the induction hypothesis yields

x (h+1)
vu = max

{
widthh (v,u,G )

}
∪

{
min{ω (v,w ),widthh (w,u,G )} | {v,w } ∈ E

}
, (B.11)

which is exactly widthh+1 (v,u,G ). �

Proof of Lemma 3.18.

Proof. We check the requirements of Definition A.2 in Appendix A step by step. Throughout
the proof, let π ∈ P and x ,y, z ∈ Pmin,+ be arbitrary.

(1) We first show that ((R≥0 ∪ {∞})P , ⊕) is a commutative semigroup with neutral element 0.
The associativity of ⊕ (and with it the property of ((R≥0 ∪ {∞})P , ⊕) being a semigroup)
follows from the associativity of min:

((x ⊕ y) ⊕ z)π = min{min{xπ ,yπ }, zπ } = min{xπ ,min{yπ , zπ }} = (x ⊕ (y ⊕ z))π . (B.12)

Since min is commutative, ⊕ is, too, and it is easy to check that (x ⊕ 0)π = (0 ⊕ x )π = xπ .
(2) To see that ((R≥0 ∪ {∞})P , �) is a semigroup with neutral element 1, we first check that
� is associative (i.e., that it is a semigroup):

((x � y) � z)π = min{min{xπ 1 + yπ 2 | π 12 = π 1 ◦ π 2} + zπ 3 | π = π 12 ◦ π 3} (B.13)

= min{(xπ 1 + yπ 2 ) + zπ 3 | π = (π 1 ◦ π 2) ◦ π 3} (B.14)

= min{xπ 1 + (yπ 2 + zπ 3 ) | π = π 1 ◦ (π 2 ◦ π 3)} (B.15)

= (x � (y � z))π . (B.16)

Furthermore, (1 � x )π = min{0 + xπ } = xπ = (x � 1)π , hence 1 is the neutral element
with respect to �.
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(3) Regarding the distributive laws, we begin with the left-distributive law (A.4):

(x � (y ⊕ z))π = min{xπ 1 +min{yπ 2 , zπ 2 } | π = π 1 ◦ π 2} (B.17)

= min{min{xπ 1 + yπ 2 ,xπ 1 + zπ 2 } | π = π 1 ◦ π 2} (B.18)

= min{min{xπ 1 + yπ 2 | π = π 1 ◦ π 2},min{xπ 1 + zπ 2 | π = π 1 ◦ π 2}} (B.19)

= ((x � y) ⊕ (x � z))π . (B.20)

Regarding the right-distributive law (A.5), we obtain:

((y ⊕ z) � x )π = min{min{yπ 1 , zπ 1 } + xπ 2 | π = π 1 ◦ π 2} (B.21)

= min{min{yπ 1 + xπ 2 , zπ 1 + xπ 2 } | π = π 1 ◦ π 2} (B.22)

= min{min{yπ 1 + xπ 2 | π = π 1 ◦ π 2},min{zπ 1 + xπ 2 | π = π 1 ◦ π 2}} (B.23)

= ((y � x ) ⊕ (z � x ))π . (B.24)

(4) It remains to check that 0 is an annihilator for �. We have

(0 � x )π = min{0π 1 + xπ 2 | π = π 1 ◦ π 2} = min ∅ = ∞ = 0π (B.25)

and, equivalently, (x � 0)π = 0π .

Hence, Pmin,+ is a semiring as claimed. �

Proof of Lemma 3.20.

Proof. We prove the claim by induction. By Equation (63), the claim holds for h = 0. As induc-
tion hypothesis, suppose the claim holds for all 0 ≤ h′ ≤ h. The induction step yields

x (h+1)
v

(3.20)
=

(
Ax (h)

)
v
=

⊕
w ∈V

avwx
(h)
w

(3.18)
= avv︸︷︷︸

1

x (h)
v ⊕

⊕
{v,w }∈E

avwx
(h)
w . (B.26)

We have avvx
(h)
v = 1x (h)

v = x (h)
v by construction; that is, avvx

(h)
v contains exactly the properly

weighted h-hop paths beginning at v by the induction hypothesis. Next, consider {v,w } ∈ E. By

induction, x (h)
w contains exactly the h-hop paths beginning in w and avw contains only the edge

{v,w } of weightω (v,w ) by Equation (62). Hence, avwx
(h) contains all (h + 1)-hop paths beginning

with {v,w }. Due to Equation (B.26) and

Ph+1 (v, ·,G ) = Ph (v, ·,G ) ∪
⋃

{v,w }∈E

{
(v,w ) ◦ π | π ∈ Ph (w, ·,G )

}
, (B.27)

x (h+1)
v contains exactly the properly weighted (h + 1)-hop paths, as claimed. �

Proof of Lemma 3.23.

Proof. Fix a graph G = (V ,E,ω). We show that D (G ) is closed under ⊕ and �. Consider x ,y ∈
D (G ) and let π ∈ P be a path. Hence, we have xπ ,yπ ∈ {ω (π ),∞} if π is valid and xπ = yπ = ∞ if
π is invalid in G; recall that we defined ω (π ) = ∞ for invalid paths.

(1) Consider x ⊕ y. It directly follows from xπ ,yπ ∈ {ω (π ),∞} that (x ⊕ y)π = min{xπ ,yπ } ∈
{ω (π ),∞}. Hence, (x ⊕ y) ∈ D (G ).

(2) Regarding multiplication, we have (x � y)π = xπ 1 + yπ 2 for some two-split of π . Due
to xπ 1 ∈ {ω (π 1),∞} and yπ 2 ∈ {ω (π 2),∞}, we obtain (x � y)π = xπ 1 + yπ 2 ∈ {ω (π 1) +
ω (π 2),∞} = {ω (π ),∞}. If π is invalid in G, π 1 or π 2 must be invalid and (x � y)π =

xπ 1 + yπ 2 = ∞ follows.
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Also observe that 0, 1 ∈ D (G ) for 0 and 1 from Lemma 3.18. Together, it follows from Lemma 3.18
that Pmin,+ (G ) is a semiring. �

Proof of Lemma 3.25. Let π be av-w-path andy ∈ Pmin,+ (G ) such thaty contains only π (i.e., with
yπ = ω (π ) andyπ ′ = ∞ for all π ′ � π ). We say that π is dominated in x if and only if r (x ⊕ y)π = ∞,
meaning that making π available in x does not change the outcome of filtering. Regarding the k-
SDP, this is the case where either (1) π does not end in s , or (2) x contains k other v-s-paths
that are shorter than π or have the same weight as π but are lexicographically ordered before π .
While the notion of domination may seem overly complicated for the matter at hand, it sufficiently
generalizes the proof for Lemma 3.25 to cover the k-SDP as well as the k-DSDP from Examples 3.27
and 3.26, respectively.

Observation B.1. Note that r discards all paths not ending in s . Furthermore, for all paths π , we

have

r (x )π = xπ or r (x )π = ∞; (B.28)

that is, r (x ) ∈ Pmin,+ (G ) for all x ∈ Pmin,+ (G ), as r either keeps a path with its original weight or

discards it by setting the according entry to∞. We also obtain that, for all v ∈ V ,

Pk (v, s,x ) = Pk (v, s, r (x )) (B.29)

because Pk (v, s,x ) is invariant under discarding dominated paths from x .

Proof. Clearly, r is a projection. Below, we show in one step each that it fulfills Conditions (2.12)
and (2.13) of Lemma 2.8. Throughout the proof, fix a graphG = (V ,E,ω), let x ,x ′,y,y ′ ∈ Pmin,+ (G )
be such that x ∼ x ′ and y ∼ y ′.

(1) We show below that r (yx ) = r (yr (x )). Equation (18) then follows using that r (yx ) =
r (yr (x )) = r (yr (x ′)) = r (yx ′). To see that r (yx ) = r (yr (x )), we argue that, for all v-s-
paths π , we either have (yx )π = (yr (x ))π , or both π � Pk (v, s,yx ) and π � Pk (v, s,yr (x )).
In other words, the entries regarding π are either equal in yx and yr (x ) or r discards π
from yx as well as from yr (x ).

Consider av-s-path π with (yx )π � (yr (x ))π . Observe that this impliesω (π ) = (yx )π <
(yr (x ))π = ∞ because the non-∞ entries of r (x ) are a subset of those of x . Hence, π is
contained in yx . By definition of �, it holds that (yx )π = yπ 1 + xπ 2 for some partition
π = π 1 ◦ π 2, where π 1 and π 2 are, for some node w , v-w- and w-s-paths, respectively. It
follows from Equation (B.28) and x ∈ Pmin,+ (G ) that

ω (π 2) = xπ 2 < r (x )π 2 = ∞. (B.30)

Hence, π 2 � Pk (w, s,x ), i.e., π 2 is dominated in x . As Pk (w, s, r (x )) = Pk (w, s,x ) by Equa-
tion (B.29), the following k v-s-paths are contained in yr (x ) and in yx each:{

π 1 ◦ π̄ 2 | π̄ 2 ∈ Pk (w, s, r (x ))
}
. (B.31)

We conclude that π is dominated in—and thus discarded from—both yx and yr (x ), as
claimed.

(2) Consider a node v ∈ V and a v-s-path π . As (x ⊕ y)π = min{xπ ,yπ }, we have P (v, s,x ⊕
y) = P (v, s,x ) ∪ P (v, s,y). In particular, it holds that Pk (v, s,x ⊕ y) ⊆ Pk (v, s,x ) ∪
Pk (v, s,y) because if π ∈ P (v, s,x ⊕ y) is dominated in x and in y, it is dominated in x ⊕ y
as well. Using Equation (B.29), we obtain that

Pk (v, s,x ⊕ y) ⊆ Pk (v, s,x ) ∪ Pk (v, s,y) = Pk (v, s, r (x )) ∪ Pk (v, s, r (y)). (B.32)
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As r discards all paths not ending in s , and xπ = r (x )π for all π ∈ Pk (v, s, r (x )) and, analo-
gously, yπ = r (y)π for all π ∈ Pk (v, s, r (y)), we conclude that r (x ⊕ y) = r (r (x ) ⊕ r (y)).
Hence, r (x ⊕ y) = r (r (x ) ⊕ r (y)) = r (r (x ′) ⊕ r (y ′)) = r (x ′ ⊕ y ′); that is, r fulfills Equa-
tion (2.13).

Since x ∼ x ′ and y ∼ y ′ are arbitrary, r fulfills the preconditions of Lemma 2.8 and the claim fol-
lows. �
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