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A new stiffness detection scheme based on explicit Runge-Kutta methods is proposed. It uses a
Krylov subspace approximation to estimate the eigenvalues of the Jacobian of the differential
system. The numerical examples indicate that this technique is a worthwhile alternative to
other known stiffness detection schemes, especially when the systems are large and when it is
desirable to know more about the spectrum of the Jacobian than just the spectral radius.
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1. INTRODUCTION

There are available a large number of computer codes which attempt to
solve initial-value problems in the general form

ẏ 5 f~t, y!, y~a! 5 y0, a # t # b, (1)

where f is a nonlinear map, f ; R 3 R 3 RN. Most modern codes use a
stepsize selection strategy that tries in each step to choose the largest
possible stepsize such that an estimate of the local truncation error is kept
smaller than a user-defined tolerance TOL. To proceed from tn21 to tn, one
thus needs to estimate a stepsize which makes the error estimate at tn
approximately equal to TOL. If one succeeds in the sense that the estimated
error at tn is less than TOL the step is accepted and the integration can
proceed. If the error estimate is larger than TOL, one must reject the step,
choose a smaller stepsize, and try once again. This procedure is repeated
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until the step is accepted. It is quite common to attempt to make the error
estimate equal to u z TOL where u , 1 is a “pessimist factor.” In this way,
one hopes to avoid a large number of steps being rejected.

The numerical integration schemes used to solve (1) can be divided into
two classes, explicit and implicit schemes. The former have a low computa-
tional cost per step and are usually easy to implement. Explicit methods
are usually preferred when (1) is nonstiff. We do not intend to give a
precise definition of the notion of stiffness here. The term was first used by
Curtiss and Hirschfelder [1952], but it has been refined several times; the
texts [Dekker and Verwer 1984; Lambert 1991; Hairer and Wanner 1996]
give a good account of the various definitions. It is perhaps true that a
precise definition of stiffness is not crucial for practical purposes. When an
initial-value problem is stiff, one will typically observe that a code based on
an explicit scheme will need to use extremely small stepsizes in order to
compute a stable solution as opposed to one based on an implicit scheme.
The natural question is then “Will the increase in stepsize obtained with an
appropriate implicit scheme compensate for the additional cost involved per
step?” In other words, is the implicit scheme cheaper per unit time than the
explicit scheme? Although this way of interpreting stiffness is somewhat
intuitive, it will be fundamental to the ideas of this article.

It is not necessarily an easy task to determine a priori from (1) whether
the problem is stiff. Sometimes, the degree of stiffness can be established
by carefully analyzing the differential equation, taking into account the
size of the tolerance to be used, the integration interval, the initial values,
and possibly other effects that will influence the stiffness. But in many
cases, it may be more useful to assess the degree of stiffness as the
integration proceeds, that is, to apply a stiffness detection scheme. We
shall focus on a new way of detecting stiffness when an explicit Runge-
Kutta method is used to integrate (1). To begin with, we shall review some
of the most popular stiffness detection schemes. Several of the most
popular stiffness detection schemes were proposed by Shampine; e.g., see
Shampine [1977; 1980; 1991]. For an excellent account of these and other
schemes, see Robertson [1987].

Perhaps the simplest of all stiffness detection schemes is the method of
constant stepsize. It is based on the experience that in many situations
where a problem becomes stiff, the stepsize as determined by the stepsize
selection formula hardly changes at all. This is certainly a cheap method.
But it is not very reliable, and perhaps its most important use is for early
indication of stiffness that can trigger the application of a more reliable
test.

A reliable and not too costly technique is the method of the “Low-order
comparison formula pair.” The idea is to use a comparison formula pair in
addition to the basic formula pair during the integration process. The two
error estimates obtained from the two formulas are used to assess the
degree of stiffness in the problem. The comparison formula pair is designed
to use the same stages as the basic formula; thus no extra function
evaluations are required. The comparison formula has lower order of
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accuracy than the basic formula; hence when the problem is nonstiff, it is
expected to yield a larger error estimate than the basic formula pair.
However, if the comparison formula pair has a larger stability region than
the basic formula pair, we would expect its error estimate to become
smaller than that of the basic formula pair when the problem is stiff. In the
basic formula pair, we expect in each step that the error estimate en
satisfies

ieni < u TOL, 0 # u # 1,

where u is the pessimist factor mentioned above. Thus, if the error estimate
of the comparison formula pair, ẽn satisfies i ẽni # ieni it is an indication
that the problem may be stiff.

The eigenvalues of the Jacobian J of f in (1) may frequently give useful
information about the stiffness of the problem. An eigenvalue with a large
negative real part can be an indication of stiffness. If such a situation
occurs, it is not uncommon that this eigenvalue l satisfies ul u 5 r( J) where
r( J) is the spectral radius of J. If f satisfies a Lipschitz condition with
respect to its second argument, i.e.,

i f~ x, u! 2 f~ x, v!i # Liu 2 vi,

we have the condition

r~ J! # i Ji # L.

Hence, we can argue that the Lipschitz constant L may give some useful
information about the stiffness of the problem. For the Fehlberg (4,5) pair,
Robertson [1987] suggests the local estimate for the Lipschitz constant
given by

Lest 5
i f~ yn11! 2 f~ yn11 1 Ken11!i

iKen11i

where K is chosen such that iKen11i 5 =ui yn11i and u is the machine
precision.

In this article we will consider the approximation of eigenvalues of the
Jacobian by means of a modified version of the Arnoldi algorithm. The
technique is based on the observation that the stages of an explicit
Runge-Kutta method can be viewed as approximations to a basis for a
Krylov subspace of the Jacobian. The use of Krylov subspace techniques in
the numerical solution of ODEs is not a new idea. See for instance Hairer
and Wanner [1996, pp 160–165] where such techniques are reviewed for
systems of ODEs that can be partitioned into a stiff and a nonstiff part.
Also, Shampine [1991] has suggested an approach which is in some ways
similar to Krylov subspace techniques for the purpose of stiffness detection.
By combining the stages of an explicit Runge-Kutta method, he obtains
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approximations to the powers (hJ)k(hf( xn, yn)), and these are used to
obtain a nonlinear version of the power method for computing eigenvalues.

After reviewing the original Arnoldi’s method, we will present a modifi-
cation of it that can be used on the stages of a Runge-Kutta method. It
leads to approximations to the dominant eigenvalues of the Jacobian
matrix associated with a system of ODEs and may conceivably be used for
many purposes. But the numerical experiments we present are all applica-
tions to stiffness detection.

2. A REVIEW OF ARNOLDI’S METHOD

The material we use here is taken from Saad [1992]. Arnoldi’s method is an
orthogonal projection method onto the Krylov subspace km # CN generated
by an initial vector v1 and the vectors Av1, . . . , Am21v1. The dimension of
km is min{m, m} where m is the degree of the minimal polynomial of A and
v1. In what follows we shall always assume, without loss of generality, that
m # m. Let A be an N 3 N complex matrix. The Arnoldi algorithm can be
expressed as follows:

Algorithm 2.1.

Choose a vector v1 [ CN of norm 1
for j 5 1, . . . , m do

w ;5 Avj
for i 5 1, . . . , j do

hij ;5 ^w, vi&
w ;5 w 2 hijvi

end
hj11, j ;5 iwi
vj11 ;5 w/hj11, j

end

The inner product above and in what follows is defined by ^x, y& 5 yHx
for any x, y [ CN. Also, by convention, the norm we refer to will always be
the two-norm i xi 5 =^x, x& for any x [ CN.

The vectors v1, . . . , vm form an orthonormal basis for km. By letting Vm
be the N 3 m matrix whose columns are v1, . . . , vm, and Hm the m 3 m
upper Hessenberg matrix whose elements are defined in the algorithm, we
can write

AVm 5 VmHm 1 hm11,mvm11em
H

Vm
HAVm 5 Hm

(2)

where em is the mth canonical unit vector in CN.
We shall be interested in approximating the eigenvalue problem

Au 5 lu, u [ CN, l [ C.
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Our intention is to find an approximate eigenpair ũ [ km, l̃ [ C such that
the Galerkin condition

^ Aũ 2 l̃ũ, v& 5 0, @v [ km

is satisfied. Since ũ [ km, we have ũ 5 Vmy for some y [ Cm, and the
Galerkin condition can be rewritten as

Hmy 5 l̃y,

where Hm is given by (2). Thus, approximating the eigenvalue l of A by
means of the Galerkin condition is equivalent to finding an eigenvalue of
the upper Hessenberg matrix Hm obtained from the Arnoldi algorithm.
Observe also that since modern versions of the QR method for finding
eigenvalues of a matrix usually perform a preprocessing by computing a
similarity transform of upper Hessenberg type; hence this step can be
omitted if the QR algorithm is used to obtain the eigenvalues of Hm. It
should be noted that in this approach we only find approximations to m of
the N eigenvalues of A.

To assess the convergence properties of this approach, we shall consider a
result from Saad [1992]. Assume now that A is diagonalizable and that the
initial vector has the eigenvector expansion v1 5 (k51

N akuk. The distance
in two-norm between the eigenvector u1 and its projection onto km is
bounded as follows:

i~I 2 Pm!u1i # j1e1
~m!, j1 5 O

k52

N uaku

ua1u

For m , N we then have the following result: there exists m eigenvalues of
A, labeled l2, . . . , lm11 such that

e1
~m! 5 S O

j52

m11 P
k52,kÞj

m11 ulk 2 l1u

ulk 2 l ju D
21

. (3)

To interpret this expression, let the eigenvalue l1 belong to the outer-
most part of the spectrum of A. We expect that the numbers ulk 2 l1u will
then be larger than the numbers ulk 2 l ju of the denominator. Therefore,
many of the products in (3) will be large, and the inverse of their sum will
be small. From this we may conclude that if an eigenvalue is much larger in
absolute value than most other eigenvalues, we expect the corresponding
eigenvector to be well approximated by the above algorithm. We have found
no result which relates directly the eigenvalue l1 to the approximate one l̃1
corresponding to ũ1 5 Pmu1. However, assume that iu1i 5 1 and that for
some m, we have iu1 2 ũ1i , 1. It follows from the Galerkin condition
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that

^ A~u1 2 ũ1!, v& 5 l1^u1, v& 2 l̃1^ũ1, v& 5 ~l1 2 l̃1!^u1, v& 1 l̃1^u1 2 ũ1, v&

for any v [ km. Thus, we find that

ul1 2 l̃1u u^u1, v& u # ~ ul̃1u 1 iAi!iu1 2 ũ1i ivi # 2iAi

iu1 2 ũ1i ivi @v [ km

where we have used that ul̃1u # iHmi # iAi. We now choose v 5 ũ1 [ km
and compute

1 5 ^u1, u1& # u^u1, ũ1& u 1 u^u1, u1 2 ũ1& u # u^u1, ũ1& u 1 iu1i iu1 2 ũ1i

to deduce that

u^u1, ũ1& u $ 1 2 iu1 2 ũ1i.

Moreover ivi 5 iũ1i # 1 1 iu1 2 ũ1i, so we finally find that

ul1 2 l̃1u # 2iAi
1 1 iu1 2 ũ1i

1 2 iu1 2 ũ1i
z iu1 2 ũ1i,

which relates the difference in eigenvalues to the difference in eigenvec-
tors.

3. STIFFNESS DETECTION WITH ARNOLDI’S METHOD

To begin with, we consider the linear problem

ẏ 5 My 1 b, M [ CN3N, {, [ CN. (4)

Explicit Runge-Kutta schemes for (1) have the following form

kr 5 f~tn 1 crh, yn 1 h O
j51

r21

arjkj!, r 5 1, . . . , s

yn11 5 yn 1 h O
r51

s

brkr

Applied to (4) the stage values take the form

k1 5 Myn 1 b

kr 5 k1 1 O
j51

r21

arj M̃kj, where M̃ 5 hM.
(5)
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Thus, it follows that under the condition ar,r21 Þ 0, r 5 2, . . . , s, the
stage value kr belongs to the Krylov subspace kr(k1, M̃). In fact, the
condition ar,r21 Þ 0 is not at all crucial. Without loss of generality, we
assume that a21 Þ 0. Consider then the sequence 2 5 i1 , i2 , . . . ,
where im 5 min{i ; ai,m Þ 0}. We then have kim

[ km(k1, M̃). It is quite
rare that Runge-Kutta methods have ar,r21 5 0 for the stages we wish to
use, and to avoid cluttered notation we shall subsequently always assume
that ar,r21 Þ 0.

We may also observe that the dimension of the available Krylov subspace
is not necessarily limited to s. We can proceed into the next step. Now,
using step indices we get

k1
n11 5 k1

n 1 O
r51

s

br M̃kr
n [ ks11~k1

n, M̃!

kr
n11 5 k1

n11 1 un11 O
j51

r21

arj M̃kr
n11 [ ks1r~k1, M̃! where un11 5 hn11/hn.

Again, for ease of notation and since our experience shows that it is not
necessary to use a Krylov subspace of dimension larger than s 2 1, we
shall only use stages from one step at a time.

The introduction of M̃ suggests that we wish to estimate the eigenvalues
of hM rather than those of M. If yn and wn are two numerical approxima-
tions to y(tn), we have the iteration

yn11 2 wn11 5 p~M̃!~ yn 2 wn!

where p( z) is the stability polynomial of the Runge-Kutta method. Hence it
makes sense to consider the eigenvalues of M̃.

In Arnoldi’s algorithm, the orthonormal basis {v1, . . . , vs} is computed
by applying a Gram-Schmidt type of orthogonalization procedure repeat-
edly to the vectors M̃vi, i 5 1, . . . , s 2 1. Our situation is somewhat
different, since the basis which is available is of a different form.

We begin by applying a QR-factorization to the stages k1, . . . , ks,
keeping in mind that kr [ kr(k1, M̃). We thus compute

w1 ;5 k1, v1 ;5 w1/iw1i

wr ;5 kr 2 O
j51

r21

^kr, vj&vj, vr ;5 wr/iwri, r 5 2, . . . , s.

The matrix Vs with columns v1, . . . , vs can be used to form

Hs ;5 Vs
HM̃Vs
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of which the eigenvalues can be computed. However, this approach only
works when M̃ is known explicitly; it would be more convenient to use only
to the stage values k1, . . . , ks such that the approach can be generalized to
problems of the form (1). At least for autonomous problems, the ki’s will
serve as an approximate basis to a Krylov subspace of the Jacobian J. The
cost of not using M̃ explicitly is that we only obtain dimension s 2 1 of the
Krylov subspace we compute. Let Ks21 be the matrix with columns k1, . . . ,
ks21. Recall that Vs21Vs21

H is a projection onto ks21; thus

Vs21Vs21
H z Ks21 5 Ks21, (6)

and therefore

M̃ z Vs21 5 M̃ z Ks21 z ~Vs21
H Ks21!

21. (7)

We let K2. . .s be the matrix with columns k2, . . . , ks. Expression (5) can
then be written in matrix form as

K2. . .s 5 k11H 1 M̃Ks21A1 where A1 5 3
a21 a31 · · · as,1

0 a32 · · ·
···

···
· · ·

· · ·
···

0 · · · 0 as,s21

4 ,

and 1 is the (s 2 1)-vector of ones, (1, . . . , 1)H. By combining this
expression with (7), we obtain

Hs21 5 Vs21
H z ~K2 . . . s 2 k11H! z A1

21 z ~Vs21
H Ks21!

21. (8)

We suggest the following algorithm for the computation of Hs21 as given in
(8).

Algorithm 3.1.

Compute the nonzero elements of A1
21, a ij, i # j # s, before integration

begins.
Set b11 ;5 ik1i, and v1 ;5 k1/b11
for j 5 1, 2, . . . , s 2 1 do

for i 5 1, . . . , j do
b i, j11 ;5 ^kj11, vi&

end
w ;5 kj11 2 (i51

j b i, j11vi
b j11, j11 ;5 iwi
vj11 ;5 w/b j11, j11
for i 5 1, . . . , j 1 1 do

, 5 max{1, i 2 1}
hij ;5 (2(k5,

j21 hikbkj 1 (k5,
j b i,k11akj 2 d i1b11(k51

j akj)/b jj
end
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end
where the standard convention, d ij 5 0, i Þ j and d ii 5 1 is used.
Also, sums where the lower index exceeds the upper index are taken as
zero.

The resulting matrix Hs21 5 (hij) i, j51
s21 is used for approximating the

dominant eigenvalues of the matrix M̃ 5 hM.
Even if the degree of the minimial polynomial of (M̃, k1) is greater than

s 2 1, it may happen that the process must be terminated for j , s 2 1.
One should therefore test in each run through the j-loop of the algorithm
whether iwi , dikj11i where d is some small user-defined tolerance. To
perform such a test it is useful to have made the observation that

iwi 5 ub j11, j11u and ikj11i 5 S O
i51

j11

b i, j11
2 D 1/ 2

.

The above algorithm was developed based on the test problem (4).
However, since it only uses the stages kr, we may also apply the algorithm
to (1), and we expect the resulting eigenvalues to approximate the outer
part of the spectrum of the Jacobian of f.

Computational Cost. Algorithm 3.1 takes

S ~s2 1 s 2 1! z N 1
1

3
s3 1

5

3
s 2 4D flops, s $ 2

where one flop is approximately one addition and one multiplication. Also
there are

S ~s 2 1! z N 1
1

2
s2 1

1

2
s 1 1D

divisions and s square roots. In addition to this there is the cost of
computing the eigenvalues of Hs21 by a suitable method, for instance the
double-shifted QR algorithm. According to Golub and Loan [1983] this
takes approximately 8(s 2 1)3 flops. In conclusion, the dependence on N
here is linear. In contrast, if for instance (4) is solved by an explicit
Runge-Kutta method where M is a full matrix, the cost of taking a step is
approximately

S s z N2 1 S1

2
s2 1

5

2
sD z ND flops.

Testing for Stiffness. It is usually an indication of stiffness when
eigenvalues of hJ with negative real part are located near the boundary of
the stability region of the method. J is the Jacobian of f. The stability
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region of a method is the set of complex numbers

Sp 5 $ z [ C; up~ z! u # 1%.

The stability polynomial p( z) of the method can be defined in terms of the
Runge-Kutta coefficients as follows: let A be the s 3 s matrix with
ij-element aij if i . j and 0 otherwise. Let b be the s-vector (b1, . . . , bs)

T.
Then

p~ z! 5 1 1 zbT~I 2 zA!211, 1 5 ~1, . . . , 1!T [ Rs.

For the most popular Runge-Kutta methods Sp looks approximately like a
semicircle in the left half plane, centered at the origin; see for instance
Figure 1.

For a thorough account of a possible detection strategy, see for instance
Ekeland and Øines [1996]. Their idea is to use the criteria of Dekker and
Verwer [1984, p. 9] for linear problems to determine if the problem is stiff.
Ultimately one then needs to determine whether an eigenvalue with
negative real part exists and is located near the boundary of Sp. The
closeness to the boundary can be assessed by computing up(l) u.

4. NUMERICAL RESULTS

The following examples were run on a UNIX workstation using Matlab.
The eigenvalues of the upper Hessenberg matrix Hs21 were obtained with

Fig. 1. Stability region of the RKF45 method. The region is symmetric around the real axis.
p( x) 5 1 1 z 1 (1/ 2) z2 1 (1/6) z3 1 (1/ 24) z4 1 (1/120) z5 1 (1/ 2080) z6.
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the use of the eig function in Matlab. In all examples we present here, we
have used the RKF4(5) method due to Fehlberg. However, tests done with
the 5(4) method by Dormand and Prince show similar results, and we have
found no reason to believe that the performance of the new stiffness
detection scheme depends strongly on the choice of integration method.

The reader may notice that in some of the examples, the number of
eigenvalues of the matrix H resulting from the Arnoldi process is less than
s 2 1. In fact, we have added a stopping criterion to Algorithm 3.1, causing
the modified Arnoldi process to terminate whenever it happens for some j
that

iwi , dikj11i.

The value of d was set experimentally to ' 1026. The consequence of not
doing this is that rounding error may cause the introduction of large “false”
eigenvalues of the matrix H.

Example 1 (Nonlinear Problem with Real Eigenvalues). The reaction-
diffusion PDE

ut 5 uxx 1 u~1 2 u!, u~0, t! 5 u~1, t! 5 1, u~ x, 0! 5 x~1 2 x!

has an attractive fixed point at u( x, t) [ 1. We apply the method of lines
by using centered differences for the uxx term and obtain in the obvious
way an ODE system of the type

U9 5 AU 1 F~U! 1 g, U [ RN (9)

where A is a tridiagonal matrix, (F(U))k 5 Uk(1 2 Uk), and g is a
constant vector that accounts for the boundary conditions. In Figure 2 we
show the result of applying the new stiffness detection technique to (9) with
N 5 39. The plot shows the eigenvalues of the scaled Jacobian hJ 5 hA 1
hF9(U) as dots, and the approximating eigenvalues resulting from the
Arnoldi process are shown as circles. To improve visibility, the eigenvalues
are only plotted at certain time steps. Notice how the outermost part of the
spectrum of hJ is well approximated, especially after some time steps.

Example 2. In many numerical experiments, we have found that the
comparison formula performs well; it is usually capable of detecting stiff-
ness quickly and in a reliable way. It does not give as detailed information
of the problem as the new technique, but it is less computationally
expensive, and therefore if the issue is only to decide between “stiff” and
“nonstiff” it may be preferable to the new technique. We have, however,
found cases where the new technique detects stiffness correctly and much
faster than the comparison formula. Consider again the PDE of the
previous example, but now we add the term 100u, i.e., we consider

ut 5 uxx 1 u~1 2 u! 1 100u
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with the same initial/boundary data and spatial discretization as in Exam-
ple 1. The extra term causes “locally” a right translation of the spectrum of
hJ. For this reason, hJ will have small positive eigenvalues in the time
range 0 # t # 0.062. There will, however, still be a stable fixed-point
solution u*( x) which attracts the chosen initial function, u* being close to
the constant value 101 except for the thin layers near x 5 0 and x 5 1
where it drops down to the boundary value 1. Figure 3 shows the times
when the two techniques detect stiffness. The comparison formula (lower
part) detects stiffness when the two lines crosses each other, i.e. when the
error estimate of the comparison formula becomes less than that of the
basic formula. The Arnoldi based technique will detect the problem as stiff
when up(hl) u ' 1 for the eigenvalue l with the largest negative real part.
In the upper part of Figure 3 we show up(hl) u as time proceeds; one can for
instance let the detection technique flag “stiff” when up(hl) u has stayed
between the two horizontal dashed lines for a certain number of time steps.

Example 3 (Complex Eigenvalues). This example is artificial. Consider
the linear problem

y9 5 Ay, A [ R32332

where A has 16 complex conjugate pairs of eigenvalues; more precisely,
they are of the form l2k21 5 ak 1 i=2ak, l2k 5 ak 2 i=2ak, ak 5 2k,
k 5 1, . . . , 16. A is constructed by computing a random similarity

Fig. 2. Exact (dots) and approximate eigenvalues (circles) for a discretized PDE.
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transform of the blockdiagonal matrix with 2 3 2 blocks

Dk 5 F ak Î2ak

2Î2ak ak
G , k 5 1, . . . , 16.

In the four snapshots of Figure 4, we show the location of the eigenvalues
of hA and the eigenvalues obtained with the new stiffness detection
scheme. The dots show the eigenvalues of hA, the circles are the approxi-
mating eigenvalues resulting from the stiffness detection scheme, while the
dotted line show the stability region of the method used, RKF4(5).

5. CONCLUSION

In this article we have proposed a new way of detecting stiffness when
integrating initial-value problems with an explicit Runge-Kutta method.
The approach was based on Arnoldi’s method for projecting an eigenvalue
problem onto a corresponding Krylov subspace. We made the observation
that the stages of an explicit Runge-Kutta method locally approximates a
basis of a Krylov subspace of the Jacobian of the initial-value problem. We
thereby obtained an inexpensive approximation of the dominant eigenval-
ues of the Jacobian. In this article, we have elected to use this information
for the purpose of detecting stiffness, but there may be other applications
as well. For instance, it may be possible to use the information on the
dominant part of the eigenspace of the Jacobian to filter out stiffness,
thereby making explicit methods feasible for integration of mildly stiff

Fig. 3. New technique compared to comparison formula for a discretized PDE.
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problems. This application was not pursued here and is probably only
feasible in the case that there are only a few dominant eigenvalues. There
are other stiffness detection schemes, like the comparison formula pair that
may seem simpler and less computationally, expensive than the one pre-
sented here. It should be pointed out that the extra cost of the new
technique is rewarded through the access to more detailed information
about the problem. It is for instance well known that problems with
eigenvalues on or near the imaginary axis are usually best solved with
special methods like for instance symplectic Runge-Kutta methods. The
technique presented here can give such information as opposed to for
instance the comparison formula technique. The power method of Sham-
pine [1991] also yields an approximation to the dominant eigenvalue, and
he mentions briefly how to obtain approximations to the two most domi-
nant eigenvalues. Our approach here may give somewhat more informa-
tion, since additional eigenvalues can be approximated. One should note
however that when the problem has been stiff for some time, all the stages
will tend to become rich in the direction of the most dominant eigenvector;
hence, there is little information left to recover other pairs of eigenvectors/
eigenvalues, and attempts to do so will typically give poor results, due to
rounding errors.

There are problems where the new technique fails to give good estimates
to the eigenvalues of the Jacobian. A good example is the class of problems
with extremely nonnormal Jacobians. For such cases, the problem of
finding eigenvalues is itself ill posed. At best, one may expect to find

Fig. 4. Exact (dots) and approximate (circles) eigenvalues for problem with complex eigenval-
ues at four different times. The dotted line shows the boundary of the stability region.
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approximations to the pseudospectrum of the matrix; see Toh and Tre-
fethen [1996]. In Higham and Trefethen [1993], it is shown that it may be
more useful to consider the pseudospectrum than the spectrum of the
Jacobian when assessing the stiffness of a problem. Our experience is that
for highly nonnormal problems it seems hard to extract useful information
about the stiffness from the information obtained by the stages of an
explicit Runge-Kutta method.

Finally, the computational cost of the new stiffness detection scheme is
proportional to the dimension N of the ODE system, and the coefficient of
the N-term is approximately s2, where s is the number of stages used. No
additional function evaluations are needed. The cost of the comparison
formula pair will be approximately s z N. Especially for large problems,
and for problems where high-quality information on the spectrum of the
Jacobian is needed, we believe that the stiffness detection scheme pre-
sented here is at least a worthwhile alternative to existing techniques.
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