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1. ABSTRACT 

A systematic approach for integrating virtual 
objects into real images is developed in this 
paper. We propose the P3P-IC. method to 
solve the camera pose estimation problem. A 
robust tracking method is developed via the 
combination of the LMedS technique and the 
P3P-ICP method. With the 3D models and the 
robust tracking methods, we can determine 
the camera poses associated with each frame 
in the image sequence. Knowing the camera 
poses for each image frame, we can then 
integrate virtual objects into a video segment. 

1.1 Keywords 
Augmented reality, computer graphics, computer vision. 

2. INTRODUCTION 
A fundamental problem in augmented reality (AR) is to 
integrate virtual objects into real images. There are three 
major concerns in the integration task for generating 
realistic scenes: 

(1) Geometrical consistency: If we freely move the virtual 
object in a scene image, geometrically correct integration 
should be generated during the free motion. For example, 
the sizes of the virtual objects have to be correctly 
generated and the occlusion effects have also to be 
faultlessly presented. 
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(2) Motion consistency: If we integrate a virtual object into 
an image sequence, the motion of the virtual object should 
be consistent with that of the objects contained in the scene 
images. 

(3) Photometry consistency: The shadows of the virtual 
objects have to be corrected generated. 

Both (1) and (2) require the estimations of the camera 
positions and orientations with respect to the reference 
objects contained in the scene; while the problem of (3) 
requires further considerations about the lighting 
conditions of the environment. In this paper, we focus on 
the problems of (1) and (2). Nevertheless, our approach 
also has great potential to be generalized for solving the 
problem of (3) because the important objects contained in 
the scene can be reconstructed. 

We divided the work into three parts: a semi-automatic 
modeling part, a model-based re-calibration and tracking 
part, and an integration part. The semi-automatic 
modeling part is an off-line process. A user can 
reconstruct the objects in the scene via a human-machine 
interaction interface directly from some reference images. 
The reference images can be either some of the images 
contained in the image sequence into which a virtual 
object will be integrated or some stereo image pairs off- 
line captured. The purpose of this part is to reconstruct the 
important objects (which may be the foregrounds in 
integration or may be used for building an object 
coordinate system) by using as small as possible number of 
reference images. The model-based camera pose 
estimation and tracking part is operated based on the 
knowledge that a rough 3D shape of the important object 
models contained in the scene is given. However, the 
position and orientation of the model with respect to the 
scene image is still unlmown. In model-based camera pose 
estimation, we try to solve the problem of finding the pose 
of the camera by giving a set of correspondences of 3D 
points and 2D features in an image. This problem is also 
referred to as the PnP problem in the vision community 
[7][4]. In this paper, we proposed a new approach - the 
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Figure 1: An image sequence taken from a scene into 
which virtual objects are to be integrated. The stereo 
views are used for building the 3D models of the 
important objects contained in the scene. 

P3P-ICP approach, to solve this problem in a reliable way. 
In model-based tracking, temporal registrations of the 
model and the features in the images should be found. In 
this paper, we developed a model-based tracking strategy 
combining the P3P-ICP approach and the LMedS robust 
estimator [ 161. Via the model-based re-calibration and 
tracking procedures, the camera poses with respect to the 
object coordinate system can be estimated and hence a 
virtual object can be integrated with consistent geometry 
and motion if an initial pose of the object was given. In 
the integration part, to handle the shading and the 
occlusion of the virtual objects is a diBcult problem. An 
advantage of our 3D modeling approach is that, by 
creating an equivalent 3D scene of the image into which 
virtual objects will be integrated, the shading and 
occlusion effects can be easily handled using an existing 
graph software (e.g., OpenGL). 

Recently, another class of AR approaches which use afJine 
or projective spaces for the integration of virtual objects 
(e.g., [9][17]) were proposed. They are referred to as 
calibration free approaches. In our opinion, advantages of 
these approaches include the allowance of less priori 
information and easy for implementation. However, they 
also suffer from some drawbacks. For example, these 
approaches require users to manually draw some points of 
the virtual objects in the first two frames of an image 
sequence (which can indeed be treated as a human-aided 
calibration). Hence, the quality of integration may depend 
on the accuracy of the human draw to some extent. Also, 
some photometry effects (such as shadows) are difficult to 
be handled because, to human imagination, virtual objects 
are basically characterized in the Euclidean space. In this 
paper, we use a calibration and 3D modeling approach, 
which allows users to perform integration naturally and 
directly. 

introduces the camera pose estimation method. Section 5 
describes the model-based tracker developed for AR in this 
paper. Section 6 introduces the integration and graphics 
module. Some experimental results are given in Section 7. 
Finally, Section 8 gives some conclusions and discussion. 

3. 3D OBJECT MODELER 
The input of this modeler is a set of stereo views and their 
camera parameters (including both the intrinsic 
parameters and the extrinsic parameters between the left 
and right images of a stereo view). In our work, the stereo 
views can be either some reference frames of an image 
sequence, or some newly captured images of the same 
scene, as shown in Figure 1. In the former case, the 
camera parameters can be obtained via camera calibration 
‘; while in the later case, the camera parameters can be 
computed using self-calibration techniques [ 113 [ 141. The 
stereo views should allow us to reconstruct all the 
important objects contained in the scene in the Euclidean 
space. An operator can edit the mesh structure of objects 
by interactively providing the computer the following 
information: 

1. The stereo-correspondence information: An operator 
can select an image point in the left image, and specify its 
correspondence in the right image. 

2. The structural information: An operator can speci& 
that which image points should be connected to form a 

polygon. 

After the specification of the stereo-correspondence 
information, the 3D coordinates of each pair of image 
points can be computed. These points can then be 
connected to form a 3D mesh since the structural 
information has also been given. The Arun et al. method 
[l] was used to compute the rigid-transformation when the 
3D data obtained from multiple stereo views has to be 
integrated. Figure 2 shows an example of the operations 
of our 3D modeler. practically, we usually edit a rough 3D 
model of the scene, that is, only sparse 3D points were 
reconstructed. It is because that a rough model is enough 

This paper is organized as follows: Section 3 introduces 
the 3D object modeler used in this paper. Section 4 

’ In this work, the Shih et, al. method [18] was used for 
calibration. 

I -: 

~Figure 2: An example of some operations of our 3D object 
modeler. (a) The editing of the corresponding points. The 
epi-polar line is shown in the right image as a good hint, 
when the operator selected a point in the left image. (b) 
Connecting some points to form a polygon. 
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Figure 3: (a) The P3P problem. (b) Our method for 
solving the P3P problem. 

for the application of AR. 

4. RE-ESTIMATION OF CAMERA POSE 
If the 3D model of the scene has been reconstructed it can 
be used for re-estimation of the camera pose if the camera 
is used to grab the same scene from different poses. Given 
a set of 3D points and their corresponding image points, to 
find the least-mean-square rigid transformation by which 
the projection of the transformed 3D points coincide with 
their 2D image points, was called the PnP problem [7] if n 
point correspondences are used. Closed form solutions 
have been formulated if three feature points are considered 
[4]. However, if more point correspondences are used for 
camera pose estimations, closed form solutions do not 
exist. Also notable among pose computations are the 
method proposed by Lowe [12], Yuan [21] and Dementhon 
and Davis [5]. Both the Low and Yuan approaches used 
the Newton-Raphson method, thus a drawback is that an 
approximate pose has to be provided. An additional 
drawback is that, at each iteration step, the computation of 
the pseudoinverse matrix of a Jacobian is very 
computationally expensive. The Dementhon and Davis 
approach [5] assumed that the camera model is scaled 
orthographic and finds the rigid transformation by solving 
a linear system, and then used a POSIT procedure to 
iteratively refine the result. In this paper, we proposed the 

P3P-ICP approach to solve the PnP problem. In our 
approach, the P3P problem is solved for three selected 
seed points firstly via its close form solution. Then, the 
iterative closest point (ICP) algorithm is used to refine the 
estimated poses in an iterative way. 

4.1 Estimation by solving the P3P problem 
In the P3P-ICP approach, three seed points have to be 
selected. Here, we simply select three points that the 
triangle formed by them has the largest area because the 
larger the spread of the seed points, the smaller the 
affection of the 2D positioning error. Referred to Figure 
3(a), assume that there are three points, PI, Pz, P3, whose 
coordinates are given with the object coordinate system 
(OCS). If their projections with respect to the camera 
coordinate system (CCS) are Q1, Qz, Q3,, then the 

coordinates of PI, P2, P3, with CCS are al c, a,= , 

a3OQ, , respectively. If al, a2, a3 are computed then 

finding the transformation between CCS and OCS (ie,, 
the camera pose) is reduced to finding the least mean 
square rigid-transformation between two sets of 3D points, 
and can be computed via the Arun et al,. method [l]. 
From Figure 3(a), three equations can be listed as follows: 

(1) 

(2) 

(3) 

There are three variables al, az, a3, and three degree-2 
nonlinear equations (1) (2) (3). They can be solved using 
the method given in [4]. Since six solutions can be solved 
with (1) (2) and (3) but only one of them is correct, we 
can use other 3D-2D correspondences to verify that which 
one is correct. Here, each of the six solutions are used as 
initial estimate of the ICP method described below, and the 
solution with the least residue error is served as the 
solution of the P3P-ICP approach. 

4.2 Refinement using the ICP approach 
Most nonlinear optimization methods require the 
estimation of gradients of the error function in the 
parametric space. Because the gradient computation is 
easily affected by noise, the obtained solution is easily 
trapped in a local minimum. In our work the ICP method 
[3] is used which requires no estimation of the gradients 
and can also converge to a solution with minimal residual 
error. Each iteration of the ZCP algorithm contains two 
steps: (1) establishing point correspondences by finding 
the closest neighboring points, and (2) computing the rigid 
motion via a least-square error measure. In the Wunsch 
and Hirzinger approach [20], the ICP method was also 
used to register CAD models to images. However, in their 
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Figure 4: Using the ICP method to refine the camera pose 
for solving the PnP problem. 

problem formulation, the correspondences between the 3D 
model points and 2D image points are assumed to be 
unknown in advance. On the other hand in our work, the 
3D-2D correspondences are available in advance, and an 
initial solution has also been given using the method 
described in Section 4.1. This additional constraint can be 
used to increase the reliability of our system. In the 
following, a method similar to that given in [20] is 
developed for the refinement of the initial solution 
obtained by solving the P3P problem. 

Assume that {Ml, Mz, . . . . MN} is a set of model points and 
{ml, mz, . . . . rnN> are their corresponding 2D image points, 
respectively. Initially, let TO be the transformation between 
the OCS and the CCS of the first frame. 

1. Apply TO for the transformation, M*, = T&f,. 
2. In the 3D line L(m,), finding the closest point (namely, 

M’,) Of M*i, where L(mJ is the back projected 3D ray 
as shown in Figure 4. 

3. Using the Anm et, al. method [l] to find the rigid- 
transformation T, that minimizing e = C , IIM’i - 

T,M*j112. 
4. If’ T, and the identity matrix are close enough, stop; 

Else, To t T,TO, and go to 1. 
According to our experience, the combination of the P3P 
algorithm and the ICP approach is a very reliable and 
robust method. Even the initial pose is quite different 
from the correct one, the P3P-ICP approach can 
successfully converge to the right solution without trapped 
in local minimum. 

5. MODEL-BASED TRACKER 
In our work the P3P-ICP method was used to compute the 
camera pose of the first frame of an image sequence ‘. 
Once the camera pose of the first frame was computed 

’ The initial correspondences (i.e. the correspondences between 
the model points and the 2D feature points of the first frame) 
were provided manually. 

1.1 Randomly select three image points (p ‘Ir p >, p ‘k, 
using the bucketing technique [22]. 

1.2 

1.3 

1.4 

Apply the 3D-2D correspondences (ipi, p ‘J, (‘PI, p I$, 
(pk, p ‘J to compute the object pose using the P3P- 
ZCP approach. Assume that a rigid transformation 
T,,, is found. 
Apply T,, to transform all of the N model features, 
Pl, P2, . . . . PN to new 3D positions P “1, P”J, . . . . 
P’;,i, where P”h = TiJ,k Ph, h=l, 2, . . . . N. 
Compute the residue error eh= ]lp’h - p”hJJ for h=l, 
2, . . . . N, where p "h iS the prOjeCtiOn Of P '6 OntO 

the image plane. 

that of the other frames can be obtained using the model- 
based tracker. Hence, the model-based tracker can avoid 
intensive manual work of the associations of 3D-2D 
correspondences by automatically tracking the feature 
points of the 3D model and re-estimating the poses of the 
camera for each frames of the sequence. In the past, some 
methods [S] [lo] assumed a velocity model in priori and a 
Kalman filter was used to better predict the position of the 
image feature. Lowe [12] used a probabilistic criterion to 
guide the search for the best match, and numerical 
minimization is used to determine object rotation and 
translation. Unfortunately the use of a velocity model 
imposes regularity constraints on the camera motion. In 
[ 151, the indexing of aspect graph is used for tracking, and 
the aspect tables have to be constructed off line manually. 
Simon and Berger [2] used a robust estimation of the view 
point as well as the parts of the tracked image features that 
actually correspond to the model. The robust estimator 
adopted was the M-estimator in their approach. 

In this work we combine the I&feds, technique and the 
P3P-ICP method to obtain reliable tracking results. Our 
approach can deal with the case that features may 
disappear and re-appear in an image sequence. The 
tracking algorithm includes a hypotheses-generation stage 
and a verification stage. Assume that there are N model 
features in the 3D space, namely, PI, Pz, . . . . PN, and their 
2D corresponding points in current image are pl, pz, . . . . 
pN, respectively. In the hypotheses-generation stage, 
hypothesized matches of pr, pa .,,, pN in the next frame are 
found. Here, the least squared-error block-matching 
result is served as the hypothesized match of each feature. 
Denote the hypothesized matches found for pI, pz, . , pN in 
the next frame to be p II, p ‘2, . . . . p ‘N, respectively. Then, 
we used the LMedS technique to find the most consensus 
class of matches among all of the hypothesized matches. 
The most consensus camera motion (MCCM) is referred to 
as the rigid-transformation corresponding to the most 
consensus class of matches. The procedure of finding the 
MCCM is listed below. 

Algorithm 1 

1. Repeat K random trials (i.e., iteration = 1, 2, . . . . K). 
Do steps 1.1-1.6: 
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Figure 5: The edge image (canny edge) using a threshold. 
In regions A and B, there are full of edges. It is not easy 
to segment line features in these two regions. 

2 

3 

1.5 Obtain the median residue error emid by sorting all 
eh h=l, 2, . . . . N. 

1.6 Record that EQteration) = emid and T(iteration)= 
Tij,b 

Let E(g be the least one among {Eoteration) 1 
iteration = I, 2, . . . , K}. Let T=T(5). 
Re-compute T using the 3D-2D correspondences 
whose residues are smaller than E(t), then T is the 
MCC’ 

Algorithm 1 is a general approach which can deal with the 
model-based tracking problems where only 3D points are 
used to specify the model. In our experience, this 
algorithm had good performance if the object motion in 
the image sequence is translational. However, if there is 
some rotational motion in the image sequence, the 
correspondence may not be correctly found using block 
matching for only point features. Hence, we proposed 
another algorithm (i.e., Algorithm 2) to overcome this 
problem. In Algorithm 2, line features in the wire Came 
model are used for the generation of more robust 
hypotheses. In the past, Deriche and Faugeras [6] and 
Zhang and Faugeras [22] have proposed line tracking 
methods which extracts line features by linking edge maps 
at first, and then tracking line features in the image 
sequence. Their methods can be referred to as a “linking 
followed by matching” approach. However, because 
extraction of line features contains feature grouping, 
clustering and fitting, it is not easy to segment line features 
in an image, especially, in an image containing rich 
textured objects. For example, Figure 5 shows an edge 
image obtained by using the carmy edge detector. One can 
see that there are firI1 of edges in regions A and B. In fact, 
it is difficult to perform correct edge linking or 
segmentation in these regions. 

. ..’ 

time=t time = t+l 

Figure 6: Finding the hypothesized matches using the 
masked block matching. 

In this paper, instead of linking or grouping edge pixels in 
advance, we treat each neighborhood region of the model 
line points as a textured block and find hypothesized line 
points in the next frame by performing block matching in 
the original image (rather than the edge map). As shown 
in Figure 6, consider linesp, andp, in the given model, we 
uniformly sample this line to a few points. Then, for each 
sampled point, find the corresponding point in the next 
frame using masked block matching 3. Finally, we use the 
LMedS method to fit these corresponding points in a robust 
way in the next frame. The major advantage of our 
approach is that it can be applied not only for tracking line 
features with homogeneous neighborhood but also for 
tracking line features with textured neighborhood. Notice 
that due to the aperture problem, the corresponding blocks 
found by block matching may not be correct. For example, 
some blocks may “shift” along the image line as shown in 
Figure 6. However, since the positions of the matched 
blocks are still lying on a line if the matching error is 
caused by aperture problem, the correct line can still be 
found by fitting those matched points. Hence, such a 
“matching followed by linking” strategy has better 
performance that those using a “linking followed by 
matching” strategy. The procedure of finding the MCCM 
by using the line features is listed below. 

Algorithm 2 
1. For each line segment of the wire-frame model 

1.1 Assume that p, and p, are two end points of this 
line segment in the current frame. 

1.2 Sample the line interval between p, and pj 
uniformly, and obtain points So, i = I, 2, N, 

1.3 For each s,, find the hypothesized corresponding 
point, s ‘,, in the next frame using the masked block 
matching. 

1.4 Perform robust line fitting for {s II 1 i = I, 2, NJ in 

If we project the tracked 3D model to the current hame, the 
region covered by the projection is referred to as the masked 
region. Then, for each block across the boundary of the 
masked region, we give larger weights for the pixels in the 
masked region and smaller weights for the pixels not in the 
masked region. This method is similar to that used in [ 133, and 
is referred to as the masked block matching in this paper. 
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Figure 7: Equivalent 3D scene. 

the next frame using the LMedS technique. 
2. Find the corner points of the wire-frame model by 

computing the intersection points of joined lines. Let 

p;, p’z, .,., p IN be all of the corner points. 
3. Apply Algorithm 1 to obtain the MCC’, T. 

A similar method proposed by Armstrong and Zisserman 
[2] also used “matching followed by linking” strategy. 
Their method first selected a few control points from a 
primitive (e.g., line), and then a 1D search is carried out 
perpendicular to the projected outline to find the strongest 
image edge in the next frame for each control point. 
Nevertheless, such a strategy may also suffer from wrong 
matching of the control points which have rich textured 
neighbor region because there may be too many strong 
edges in the neighborhood. 

The tracking module in our work was designed to achieve 
temporal registration on long sequences without human 
interaction. However, automatic tracking of objects 
contained in an image sequence remains a very difficult 
problem. Hence, appropriate human interaction is 
necessary for correcting the tracking results. In our work 
an operator can verity the tracking result by viewing the 
alignment of the model and the image sequence, and can 
modify the 3D-2D correspondences of any images and then 
re-start a P3P-ICP and tracking process from this image. 
We are now developing a more intelligent human-machine 
interaction interface which can verify its own performance 
and send alarms of the problematic images to the operator. 

6. INTEGRATION AND GRAPHICS 
To integrate a virtual object into real images, we separate 
the work into two parts: 

1. 

2. 

Building an interactive interface allowing a user to 
dynamically control and move a virtual object in a static 
scene with respect to the object coordinate system. 

If an initial integration has been given via the interface, 
a virtual object can then be integrated into a sequence 
automatically following the rigid-transformation 
generated by the tracking and recalibration processes. 

The integration module was designed that the existing 
graphic software can be directly applied. It is because that 
the shading texture-mapping and occlusion processing 
tools are all well-prepared in these software, the rendering 

of the virtual objects can be faster and easier. We created 
an equivalent 30 scene (E3DS) of the static scene, as 
shown in Figure 7. With this, an equivalent image (which 
is the same as the scene image) can then be produced by 
mapping the textures onto the E3DS and observed it from 
the same view. 

7. EXPERIMENTAL RESULTS 
In the first experiment we integrate a virtual object into a 
static scene. In particular, we apply our system for the 
integration of a virtual object into a stereo image pair. 
Figure S(a) is the left image of a stereo image pair into 
which virtual objects are to be integrated. Using the 3D 
modeler introduced in Section 3, some important objects 
contained in the scene can be reconstructed via stereo 
vision, as shown in Figure S(b). Figure 8(c) shows the 
reconstructed model observed from a slightly different 
view. The reconstructed object model can then be served 
as the foreground objects for building the E3DS 
(equivalent 3D scene). After the construction of the E3DS, 
a user can then freely move a virtual object (a teapot) on 
the table contained in the scene because we have also 
compute the plane equation of the table by using a 
specified triangle during modeling. Figure 8(d) and 
Figure 8(e) show two different integration results when we 
freely move the teapot on the table plane. Since the 
partial-occlusion and the changes of sizes effects can be 
correctly presented during the human-controlled moving of 
the teapot, the user can interact with the real world in a 
natural way. 

In the next experiment, we integrate a virtual object into 
an image sequence containing a moving truck. First, a 3D 
model of the truck was created using the 3D object 
modeler from a stereo image pair, as shown in Figure 9(a). 
Then, the camera pose of the first frame of the image 
sequence was reestimated based on the reconstructed 
model using the P3P-ICP approach. After that, the 3D 
model can be re-projected onto the image plane of the first 
frame. The other images contained in the sequence were 
tracked via the robust tracking process (Algorithm 1 was 
used in this experiment), and part of the tracking results 
are shown in Figure 9(b) by aligning the moving model 
with the images. It can be observed that good temporal 
registrations of the model and the images can be obtained 
via the tracking process. Finally, Figure 9(c) shows the 
integration of a virtual box on the top of the truck. To 
demonstrate the usefulness of our tracking algorithm for 
dealing with the partial-occlusion case, Figure 10(a) shows 
part of a sequence containing a moving truck which is 
occluded by a foreground object (a tree). In this sequence, 
model features could be disappear and re-appear. 
However, using our tracking algorithm, the 3D model of 
the truck can be successfully tracked in 3D space, as 
shown in Figure 10(b). Figure 10(c) shows the integration 
results. 
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In the above sequences, the motion type is roughly 
translational. In the last experiment, a moving camera 
was used to grab a sequence of a static scene. The motion 
contained in this sequence includes not only translation 
but also rotation. Since it is not easy to track a rotational 
motion using only point features, we adopted Algorithm 2 
for visual tracking in this experiment, which can keep 
tracking the wire-frame model successfully. Figure 11 
shows the integration results of this sequence. 

8. CONCLUSIONS AND DISCUSSION 
In this paper, we successfully developed a systematic 
approach which can integrate virtual objects into real 
images. Many useful modules in 3D computer vision, 
including 3D object reconstruction, model-based camera 
pose estimation and model-based tracking, were 
appropriately integrated in our approach. The 3D 
modeling approach has the advantage that the virtual can 
be integrated by human in a direct and natural way, and 
the geometrical consistency and the partial-occlusion effect 
can be easily handled by creating an equivalent 3D scene. 
We proposed a new model-based calibration method - the 
P3P-ICP method which can solve the general PnP 
problem. A new robust model-based tracking method was 
also developed via the combination of the LA4edS 
technique and the P3P-ICP approach. Qur method 
requires no assumptions of motion models, and the most 
consensus camera motion can be found. 

9. ACKNOWLEDGMENTS 
This work was partly sponsored by MOEA and supported 
in part by Institute for Information Industry, R. 0. C. 

10. 
PI 

PI 

[31 

[41 

PI 

[61 

[71 

REFERENCES 
K. S. Arun, T. S. Huang, and S. D. Blostein, “Least- 
Square Fitting of Two 3-D Point Set,” IEEE Trans. 
PMI, Vol. 9, pp. 698-700, 1987. 
M. 0. Berger and G. Simon, “Robust Image 
Composition Algorithms for Augmented Reality,” 
Proc. Asia Con. Computer &ion, pp. 360-367, 1998. 
P. J. Besl and N. McKay, “A Method for Registration 
of 3-D Shapes,” IEEE Trans. PAMI, Vol. 14, pp. 239- 
256, 1992, 
D. DeMenthon and L. S. Davis, “Exact and 
Approximate Solutions of the Perspective-Three- 
Point Problem,” IEEE Trans. PAMI, Vol. 14, pp. 
1100-1105, 1992. 
D. F. Dementhon and L. S. Davis, “Model-Based 
Object Pose in 25 Line of Code,” International 
Journal of Computer &ion, 15, pp. 123-141, 1995. 
R. Deriche and 0. Faugeras, “Tracking Line 
Segments,” Image and Vision Computing, Vol. 8, pp. 
261-270, 1990. 
M. A. Fischler and R. C. Bolles, “Random Sample 
Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated 

[81 

[91 

[lOI 

[ill 

121 

131 

1141 

151 

161 

[171 

[181 

1191 

[201 

[211 

Catography,” Communications of ACM, Vol. 24, pp. 
381-395, 1981. 
D. Gennery, “Visual Tracking of Known Three 
Dimensional objects,” Intl. Journal of Comp. Msion, 
7(3), pp. 243-270, 1992. 
K. N. Kutulakos, J. R. Vallino, “Calibration-Free 
Augmented Reality,” IEEE Trans. Msualization and 
Computer Graphics, Vol. 4, pp. 3-20, 1998. 
D. Koller et, al., “Automated Camera Calibration and 
3D Egomotion Estimation for Augmented Reality 
Applications,” Proc. International Conference on 
Computer Analysis of Images and Patterns, Kiel, 
Germany, pp. 199-205, 1997. 
Q-T. Luong and 0. D. Faugeras, “Self-Calibration of 
A Moving Camera from Point Correspondences and 
Fundamental Matrix,” Intl. Journal of Comp. Msion, 
22(3), 261-289, 1997. 
D. G. Lowe, “Robust Model-based Motion Tracking 
Through the Integration of Search and Estimation,” 
Intl. Journal of Comp. Msion, 8:2, pp. 113-122, 1992. 
T. Mitsunaga, T. Yokoyama, and T. Tot&a, 
“AutoKey: Human Assisted Key Extraction,” Proc. 
SIGGRAPH, Los Angeles, USA, pp. 265-272, 1995. 
M. Pollefeys, R. Koch, and L. V. Gool, “Self- 
Calibration and Metric Reconstruction in spite of 
Varying and Unknown Internal Camera Parameters,” 
Proc. International Conference on Computer Vision, 
Bombay India, pp. 90-95, 1998. 
S. Ravela, et, al., “Tracking Object Motion Across 
Aspect Changes for Augmented Reality,” Proc. ARPA 
Image Understanding Workshop, pp. 1345-1352, 
August, 1996. 
P J. Rousseeuw and A. M. Leroy, Robust Regression 
and Outlier Detection. Wiley, New York 1987. 
Y. Seo, et al., “Video Augmentation by Image-Based 
Rendering under The Perspective Camera Model,” 
Proc. International Conference on Pattern 
Recognition, Australia, pp. 1694-1996, 1998. 
S. W. Shih, Y. I? Hung, and W. S. Lin, “Accurate 
Linear Technique for Camera Calibration 
Considering Lens Distortion by Solving an 
Eigenvalue Problem” Optical Engineering, Vol. 32, 
pp. 138-149, 1993. 
G. Simon and M. 0. Berger, “A Two-Stage Robust 
Statistical Method for Temporal Registration from 
Features of Various Type,” Proc. International 
Conference on Computer &ion, Bombay, India, pp. 
261-266, 1998. 
F? Wunsch and G. Hirzinger, “Registration of CAD- 
Models to Images by Iterative Inverse Perspective 
Matching,” Proc. International Conference on 
Pattern Recognition, pp. 78-83, 1996. 
J. C. Yuan, “A General Photogrammetric Method for 
Determining object Position and Orientation,” IEEE 
Trans. Robotics andAutomation, Vol. 5, pp. 129-142, 

TAIPEI, TAIWAN Nov. 2-5 1998 VEST’98 7 



1989. 
[22] Z. Zhang and 0. Faugeras, 30 Dynamic Scene 

Analysis, A Stereo Based Approach, Springer-Verlag, 

(4 (e> 

Figure 8: (a) The left image of a stereo pair into which 
virtual objects are to be integrated. (b) The 3D model 
reconstructed using the 3D object modeler. (c) The 
reconstructed 3D model observed from a different view 
point. (d) (e) show the freely integration results from 
two different object poses. 

Figure 9: (a) The stereo image pair used to build a rough 
3D model of the truck. (I$ The tracking result of the 
sequence containing a moving truck. (c) The integration 
of a virtual object (a textured block) into this sequence. 

Berlin Heidelberg, 1992. 

(cl 

Figure 10: (a) A sequence containing a moving truck 
and a foreground object (a tree). (b) The tracking 
results. (c) The integration results. 

Figure 11: The integration results of the image sequence 
captured with a moving camera. 
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