
ALGORITHM 651
Algorithm HFFT-High-Order Fast-Direct
Solution of the Helmholtz Equation

RONALD F. BOISVERT
National Bureau of Standards

HFFT is a software package for solving the Helmholtz equation on bounded two- and three-
dimensional rectangular domains with Dirichlet, Neumann, or periodic boundary conditions. The
software is the result of combining new fourth-order accurate compact finite difference (HODIE)
discretizations and a fast-direct solution technique (the Fourier method). In this paper we briefly
describe the user interface to HFFT and present an example of its usage and several details of its
implementation.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis] Partial differential equa-
tions-elliptic equations; G.4 [Mathematics of Computing] Mathematical Software

General Terms: Algorithms

Additional Key Words and Pharses: Fast-direct method, finite differences, Fourier method,
Helmholtz equation, high-order accuracy, HODIE method

1. INTRODUCTION

We describe a collection of Fortran programs, collectively called HFFT, which
solve the Helmholtz equation

Au + Xu = g

(h constant) in two- and three-dimensional rectangular domains with any com-
bination of Dirichlet (solution prescribed), Neumann (normal derivative pre-
scribed), or periodic boundary conditions. The software computes fourth-order
accurate solutions (for suitably smooth problems) using compact finite differenc-
ing techniques (the HODIE method); users can optionally request second-order
accurate differences. The resulting system of equations is solved by the Fourier
method.

A version of this software is also available in the ELLPACK system [15] as
modules HODIE FFT and HODIE FFT 3D. Similar techniques are used by
two other ELLPACK modules. In FFT g-POINT [9], a fourth-order HODIE

This paper is a contribution of the National Bureau of Standards and is not subject to copyright in
the United States.
Author’s address: R. F. Boisvert, National Bureau of Standards, Scientific Computing Division, Tech
A151, Gaithersburg, MD, 20899.
1987 ACM 00983500/87/0900-0235 $00.00

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987, Pages 235-249.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F29380.214342&domain=pdf&date_stamp=1987-09-01

236 l Ronald F. Boisvert

discretization with FACR(l) solution is used to solve the two-dimensional
Dirichlet problem for the Helmholtz equation. In HODIE 27-POINT 3D [ll, lo],
a sixth-order HODIE discretization with a fast tensor-product solution technique
is used to solve the three-dimensional Dirichlet problem for the Poisson equation
(X = 0). This software extends both of these, admitting more general
boundary conditions and removing certain restrictions on grid sizes. Other
available software for this problem include the FISHPAK subroutines SEPX4
and HW3CRT [l].

A complete description of the numerical methods employed in HFFT, along
with computational comparisons with SEPX4 and HW3CRT are given in the
companion paper [2]. Here we describe the user interface to HFFT and give
certain details of its implementation.

2. DESCRIPTION OF THE SOFTWARE

2.1 User Interface

There are four user entry points into HFFT-HFFTB, HFFT2A, HFFT3, and
HFFT3A. The routines HFFTB and HFFT3 solve two and three-dimensional
problems, respectively, presenting a user interface similar to that used by modules
in the ELLPACK system. The software is based upon an equispaced grid
defined on the rectangular domain (AX, BX) X (AY, BY) X (AZ, BZ). The
grid points are (xi, 3/j, zk), for 1 5 i I NX, 1 I j I NY, 1 I k 5 NZ, where
Xi = AX + (i - l)h, Yj = AY + (j - l)h, zk = AZ + (k - l)h, and h =
(BX - AX)/(NX - 1) = (BY - AY)/(NY - 1) = (BZ - AZ)/(NZ - 1). The
user interface for each case is summarized below; complete details are given in
the initial comments for each subroutine.

CALL HFFT3

Input variables

COEFU
AX,BX
AY,BY
AZ,BZ
NX,NY,NZ

BCTY

IORDER
LDXU

(COEFU, PRHS, BRHS, AX, BX, AY, BY, AZ, BZ, NX, NY,
NZ, BCTY, IORDER, U, LDXU, LDYU, WORK, NWORK,
INFO)

coefficient of u in the differential equation.
limiting values of x: in domain (AX < BX).
limiting values of y in domain (AY < BY).
limiting values of z in domain (AZ < BZ).
number of grid lines in x, y, z, respectively (includes
boundaries).
integer array of length 6, indicating the type of boundary
condition along x = BX, y = AY, x = AX, y = BY, z = BZ,
z = AZ, in that order. Possible values are 1 for Dirichlet,
2 for Neumann, and 3 for periodic.
order of accuracy of the discretization (2 or 4).
first dimension of the array U exactly as declared in the calling
program (must be at least NX + 2).

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 651: Algorithm HFFT - 237

LDYU

WORK
NWORK

Output variables

U

INFO

second dimension of the array U exactly as declared in the
calling program (must be at least NY + 2).
workspace array of size NWORK.
length of the array WORK exactly as declared in the calling
program (must be at least (NX + l)(NY + 1)
(NZ + l)(IORDER - 2)/2 + 2(NX x NY + NX x NZ +
NY x NZ) + 2(NX + NY + 1) + max(2NX x NY,BNX +
5NY + 4NZ + (NX + NZ)/2 + 29).

array of size at least NX + 2 by NY + 2 by NZ + 2 containing
the solution at grid points, i.e., U(i, j, 12) = u(xi, Yj, zk) for 1 %
i I NX, 1 5 j 5 NY, 1 5 k I NZ. The extra rows and columns
of U are used as workspace.
error flag. INFO = 0 indicates that the program ran to com-
pletion. INFO = -k # 0 (1 5 k % 14) indicates that error
condition k was detected, INFO = k # 0 (1 I k 5 2) indicates
warning k.

User-supplied functions

PRHS

BRHS

CALL HFFTB

Input variables

COEFU
AX,BX
AY,BY
NX,NY
BCTY

IORDER
LDXU

function of (n, y, z) which returns the right side of the differ-
ential equation. Must be declared EXTERNAL in the calling
program.
function of (k, x, y, z) which evaluates the boundary condition
at (x, y, z) on side k. The value returned depends upon
BCTY(k). If BCTY(k) = 1, u is returned. If BCTY(k) = 2, u,
is returned for k = 1, 3, u, is returned for k = 2, 4, and uz is
returned for k = 5, 6. BRHS will not be called with k = m if
BCTY(m) = 3. Must be declared EXTERNAL in the calling
program.
(COEFU, PRHS, BRHS, AX, BX, AY, BY, NX, NY,
BCTY, IORDER, U, LDXU, WORK, NWORK, INFO)

coefficient of u in the differential equation.
limiting values of x: in domain (AX < BX).
limiting values of y in domain (AY < BY).
number of grid lines in 1c, y, respectively (includes boundaries).
integer array of length 4 indicating the type of boundary
condition along x = BX, y = AY, x = AX, y = BY, in that
order. Possible values are 1 for Dirichlet, 2 for Neumann, and
3 for periodic.
order of accuracy of the discretization (2 or 4).
first dimension of the array U exactly as declared in the calling
program (must be at least NX + 2).

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

238 l Ronald F. Boisvert

WORK
NWORK

workspace array of size NWORK.
length of the array WORK exactly as declared in the
calling program (must be at least (NX + l)(NY + 1)
(IORDER - 2)/2 + 7(NX + NY) + NX/2 + 15).

Output variables

U array of size at least NX + 2 by NY + 2 containing the solution
at grid points, i.e., U(i, j) = u(xi, yj) for 1 I i 5 NX, 1 I j I
NY. The extra rows and columns of U are used as workspace.

INFO error flag. INFO = 0 indicates that the program ran to com-
pletion. INFO = -k # 0 (1 5 k 5 10) indicates that error
condition k was detected, INFO = k # 0 (1 % k I 2) indicates
warning k.

User-supplied functions

PRHS function of (x, y) which returns the right side of the differential
equation. Must be declared EXTERNAL in the calling
program.

BRHS function of (k, x, y) which evaluates the boundary condition at
(x, y) on side k. The value returned depends upon BCTY(k).
If BCTY(k) = 1, u is returned. If BCTY(k) = 2, u, is returned
for k = 1, 3 and u, is returned for k = 2, 4. BRHS will not be
called with k = m if BCTY(m) = 3. Must be declared EXTER-
NAL in the calling program.

The subroutines HFFTB and HFFT3 set up calls to the lower level routines
HFFT2A and HFFT3A, respectively. Users may call HFFTBA and HFFT3A
directly; the subroutines differ in that users are required to prestore all required
function values as is done in FISHPAK. The input provided to these routines is
summarized below.

CALL HFFT3A (COEFU, NX, NY, NZ, H, GH, LDXGH,
LDYGH, BCTY, BDl, BD2, BD3, BD4, BD5, BD6,
LDXBD, LDYBD, IORDER, U, LDYU, LDYU,
WORK, NWORK, INFO)

Input variables

COEFU coefficient of u in the differential equation.
NX,NY,NZ number of grid lines in x, y, z (including boundaries).
H distance between grid lines.
U array of size NX + 2 by NY + 2 by NZ + 2 containing values

of the function g (right side of the differential equation) at grid
points, i.e., U(i, j, k) = g(xi, Yjyi, zk), 1 I i ES NX, 1 d j 5 NY, 1
5 k 5 NZ. The extra rows and columns are used for working
storage.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 651: Algorithm HFFT - 239

LDXU

GH

BCTY

BDl

first dimension of the array U, exactly as declared in the calling
program.
array of size NX + 1 by NY + 1 by NZ + 1 containing values
of the function g at midpoints of the subsquares of the grid,
i.e., GH(i,j, k) = g(xi + h/2, yj + h/2, .~k + h/2) for 1 5 i 5 NX
- 1, 1 5 j 5 NY - 1, 1 5 k 5 NZ - 1. The extra rows and
columns are used for working storage. GH is not referenced
when IORDER = 2.
integer array of length 4 indicating the type of boundary
condition along x = BX, y = AY, x = AX, y = BY, in that
order. Possible values are 1 for Dirichlet, 2 for Neumann, and
3 for periodic.
array of size NY by NZ containing boundary condition values
for x = BX, i.e., BDl(j, k) = f(x~X, 3/j, zk) for 1 5 j 5 NY, 1 5
k I NZ. f is u or u, depending on whether BCTY(l) is 1 or 2.
BDl is not referenced when BCTY(l) = 3.

BD2

BD3

BD4

BD5

BD6

array of size NX by NZ containing boundary condition values
for y = AY, i.e., BDB(i, k) = f(zi, ~1, zk) for 1 I i 5 NX, 1 I k
5 NZ. f is u or u, depending on whether BCTY(2) is 1 or 2.
BD2 is not referenced when BCTY(2) = 3.
array of size NY by NZ containing boundary condition values
for x = AX, i.e., BD3(j, k) = f(xl, yj, zk) for 1 5 j 5 NY, 1 5 k
I NZ. f is u or u, depending on whether BCTY(3) is 1 or 2.
BD3 is not referenced when BCTY(3) = 3.
array of size NX by NZ containing boundary condition values
for y = BY, i.e., BD4(i, k) = f(xi, YNY, zk) for 1 5 i % NX, 1 I
k s NZ. f is u or u, depending on whether BCTY(4) is 1 or 2.
BD2 is not referenced when BCTY(4) = 3.
array of size NX by NY containing boundary condition values
for z = BZ, i.e., BD5(i, j) = f(xi, yj, zNz) for 1 I i 5 NX, 1 5 j
5 NY. f is u or uz depending on whether BCTY(5) is 1 or 2.
BD5 is not referenced when BCTY(5) = 3.
array of size NX by NY containing boundary condition values
for z = AZ. i.e., BDG(i, j) = f(ri, yj, ~1) for 1 5 i 5 NX, 1 5 j
I NY. f is u or u, depending on whether BCTY(6) is 1 or 2.
BD6 is not referenced when BCTY(6) = 3.

LDXBD

LDYBD

IORDER
WORK
NWORK

first dimension of the arrays BD2, BD4, BD5, and BD6 exactly
as declared in the calling program.
first dimension of the arrays BDl and BD3 exactly as declared
in the calling program.
order of accuracy of the discretization (2 or 4).
workspace array of size NWORK.
length of the array WORK exactly as declared in the calling
program (must be at least (NX + l)(NY + l)(IORDER - 2)
+ (NX + 3)(NY + 5) + 5NY + (NX + NZ)/2 + 15.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

240 l Ronald F. Boisvert

Output variables

U

INFO

contains the solution at grid points, i.e., U(i, j, k) =
U(xi, y;, zk) for 1 I i I NX, 1 I j 5 NY, 1 5 k 5 NZ.
error flag. INFO = 0 indicates that the program ran to com-
pletion. INFO = -k # 0 (1 P k I 11) indicates that error
condition k was detected, INFO = k # 0 (1 5 k I 2) indicates
warning k.

CALL HFFTBA (COEFU, NX, NY, H, GH, LDXGH, BCTY, BDl,
BD2, BD3, BD4, IORDER, U, LDXU, WORK,
NWORK, INFO)

Input variables

COEFU
NX,NY
H
U

LDXU

GH

BCTY

BDl

BD2

BD3

BD4

coefficient of u in the differential equation.
number of grid lines in x, y (including boundaries).
distance between grid lines.
array of size NX + 2 by NY + 2 containing values of the
function g (right-hand side of the differential equation) at grid
points, i.e., U(i, j) = g(xi, yj). The extra rows and columns are
used for working storage.
first dimension of the array U, exactly as declared in the calling
program.
array of size NX f 1 by NY + 1 containing values of the
function g at midpoints of the subsquares of the grid,
i.e., GH(i, j) = g(xi + h/2, yj + h/2) for 1 5 i 5 NX - 1, 1 5
j 5 NY - 1. The extra rows and columns are used for working
storage. GH is not referenced when IORDER = 2.
integer array of length 4 indicating the type of boundary
condition along x = BX, y = AY, 3t = AX, y = BY, in that
order. Possible values are 1 for Dirichlet, 2 for Neumann, and
3 for periodic.
array of size NY containing boundary condition values for x =
BX, i.e., BDl(j) = f(~Nx, yj) for 1 I j I NY. f is u or u,
depending on whether BCTY (1) is 1 or 2. BDl is not referenced
when BCTY(l) = 3.
array of size NX containing boundary condition values for y =
AY, i.e., BDZ(i) = f(xi, yi) for 1 I i 5 NX. fis u or u, depending
on whether BCTY(2) is 1 or 2. BD2 is not referenced when
BCTY(2) = 3.
array of size NY containing boundary condition values for x =
AX, i.e., BD3(j) = f(xi, yj) for 1 I j I NY. f is u or u,
depending on whether BCTY (3) is 1 or 2. BD3 is not referenced
when BCTY(3) = 3.
array of size NX containing boundary condition values for y =
BY, i.e., BD4(i) = f(ni, yNy) for 1 I i I NX. f is u or u,
depending on whether BCTY(4) is 1 or 2. BD4 is not referenced
when BCTY(4) = 3.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 651: Algorithm HFFT l 241

IORDER
WORK
NWORK

order of accuracy of the discretization (2 or 4).
workspace array of size NWORK.
length of the array WORK exactly as declared in the calling
program (must be at least 5(NX + NY) + NX/2 + 15).

Output variables

U on output, contains the solution at grid points, i.e., U(i, j) =
U(3Ci,yj)forlIi=NX,l%j(NY.

INFO error flag. INFO = 0 indicates that the program ran to com-
pletion. INFO = -k # 0 (1 5 k 5 8) indicates that error
condition k was detected, INFO = k # 0 (1 5 k 5 2) indicates
warning k.

The output variable INFO is used to report errors and warnings. INFO is
returned less than zero when an error is detected in the parameters passed by
the user; a solution is not attempted in this case. INFO is returned greater than
zero to alert the user of possible problems with the computed solution.

When h = 0 and only periodic or Neumann boundary conditions are prescribed,
the problem admits no solution unless the right side satisfies a consistency
condition [13]. HFFT ensures that this condition is satisfied for the discrete
problem by subtracting an appropriate constant from the right side. The constant
is returned in WORK(l); if it is large in magnitude then the problem may have
been posed incorrectly. The solution of the perturbed problem is a solution to
the original discrete problem in the least squares sense [16]. Finally, the solution
in this case is unique only up to an additive constant; HFFT returns the solution
with minimum Euclidean norm and sets INFO = 2.

When X > 0, a solution may not exist if X is an eigenvalue of the Laplacian. If
X is near one of these values, then the problem may be ill-conditioned; in this
case the computed solution may be grossly inaccurate because of significant
round-off errors. HFFT returns INFO = 1 whenever X > 0.

Note that there is no significant savings in storage when using HFFT2A or
HFFT3A instead of HFFTS or HFFT3. Although users of the latter two routines
do not provide the arrays GH, BDl, BD2, and so on, the size of working storage
is correspondingly larger.

2.2 Implementation Details

The basic components of the package are (a) drivers, (b) discretization modules,
and (c) matrix decomposition modules. The drivers are the routines HFFT3,
HFFT3A, HFFTB, and HFFTBA described above. The discretization modules
compute the coefficients of a compact finite difference (HODIE) stencil [12] and
form the right side of the resulting system of linear algebraic equations. Matrix
decomposition modules solve this system using the Fourier algorithm [3]. A high-
level depiction of this organization is given in Figure 1.

The entire HFFT package is coded in ANSI standard Fortran (1977); this has
been verified using the ANSI option of the CDC FTN5 compiler [7] (version 5.1
running under NOS 2.1). Machine-dependent constants are taken from the
PORT routine RlMACH [8]. The code has been tested on a CDC Cyber 180/855
and a Sun 3.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

242 - Ronald F. Boisvert

RlMACH

‘J User-supplied y

HFFT3A

Drivers

HFFT3 HFFT2 HFFT2A

Discretization

Decomposition

Fourier
Transforms V 4

FFTPACK Tridiagonal Solvers

Fig. 1. Subprogram call graph for HFFT package. (Arrows emanate
from calling subprogram and end at subprogram called.)

The discretization modules compute either a fourth-order accurate or second-
order accurate HODIE discretization, as selected by the parameter IORDER. In
the three-dimensional case the discretizations described in [2] (identified as
methods A and B) are used, implemented by the routines HDIS3 and FDIS3,
respectively. In two dimensions, discretizations obtained by restricting these to
two dimensions are computed by the routines HDISB and FDISB. Dirichlet
boundary data are also loaded into the solution array at this time.

The Fourier method in three dimensions can be viewed as follows (for simplicity
we assume an n x n x n problem).

3D Algorithm

1. Fourier analysis in z direction (n” transforms of length n);
2. Solve n-independent two-dimensional problems, one for each z-plane;
3. Fourier synthesis in z direction (n’ transforms of length n).

Thus the Fourier algorithm reduces the three-dimensional problem to a set of
two-dimensional ones; in HFFT, the three-dimensional routine MDALG3
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 651: Algorithm HFFT 243

repeatedly calls the two-dimensional routine MDALGB. Each of the two-
dimensional problems may also be solved by the Fourier algorithm.

2D Algorithm
1. Fourier analysis in y direction (n transforms of length n);
2. Solve n-independent one-dimensional problems, one for each x-line;
3. Fourier synthesis in y direction (n transforms of length n).

The one-dimensional problems require only the solution of a set of II symmetric
tridiagonal systems of linear equations of order n. The exact form of these
systems depends upon the boundary conditions in the x-direction-they have
constant diagonals except for possibly the first and last elements of the main
diagonal; in the periodic case they are Toeplitz systems. The form of these
matrices is described in detail in [2].

To solve the tridiagonal systems we use an extension of the interlocking
factorization method of Evans [5, 61, which is specific to diagonally dominant
symmetric tridiagonal systems with constant diagonals. This algorithm requires
approximately the same work as standard Gauss elimination for tridiagonal
matrices, but has the advantage of requiring no extra storage; this is of interest
when the algorithm is adapted to a vector computer (see Section 2.3). When
h > 0, the tridiagonal systems are not diagonally dominant and the Evans
algorithm is unstable; in this case Gauss elimination with partial pivoting
is used.

The exact form of the Fourier transform required, i.e., real periodic, sine,
cosine, sine quarter-wave, and cosine quarter-wave, depends upon the boundary
conditions. We use the FFTPACK software of Swarztrauber [17] in which these
transforms are all provided. In addition, FFTPACK places no restriction on the
length of the sequence being transformed, although the transform will only be
“fast” if the length is a highly composite number. FFTPACK is based upon the
autosort algorithms of Stockham as presented in [4].

2.3 Applicability to Vector Computers

The suitability of the Fourier method for vector computation depends principally
upon the vectorization of the FFT and tridiagonal solution algorithms. The
HFFT package has been modularized so that these components can easily
be replaced with vector algorithms to increase the efficiency of the program on
such machines. In this section we comment on these issues briefly. A more
complete survey of applicable methods for vector and parallel computers may
be found in [141.

Swarztrauber has reported [17] that FFTPACK vectorizes well on the Cray-1,
running some five to seven times faster than the CDC 7600 on sequences of
length 32 to 128. Like the Cooley-Tukey algorithm, the Stockham FFT is only
pseudovectorizable, however, in that vector lengths vary during the course of the
computation, with minimum vector length about nl”; this algorithm, as a result,
does not appear to be as attractive for the Cyber 205.

An alternative method of vectorization is possible when many sequences are
simulataneously available to be transformed, as is the case when solving partial
differential equations. By taking each step of an FFT algorithm and applying it

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

244 l Ronald F. Boisvert

Table I. Output of Example 1

Grid Max Error

5X5X5 3.3203-03
9X9X9 1.7793-04

13 x 13 x 13 3.4813-05

17 x 17 x 17 1.0923-05
21 x 21 x 21 4.4453-06

25 X 25 x 25 2.1373-06
29 x 29 x 29 l.l54E-06

to each sequence, one obtains an algorithm that maintains a constant vector
length throughout the computation (and is also easier to implement). This is
quite attractive for the Cyber 205; Sweet has recently built software that provides
several of the transforms of FFTPACK in multitransform form with both scalar
and Cyber 205 versions [18].

The Evans algorithm, like other algorithms for tridiagonal systems, is inher-
ently recursive. However, since multiple systems must be solved simultaneously,
we may vectorize by applying each step to each problem to obtain a vectorized
multisystem solver. The fact that the Evans algorithm requires no additional
workspace is particularly important in this context, since a workspace of length
n for a single system solver would yield a workspace of length n2 for an n-system
solver. We have vectorized the Evans algorithm in this way, obtaining a speedup
of approximately 23 for solving 500 systems of size 500 on the Cyber 205, in
comparison to its performance on the 205 in scalar mode.

3. EXAMPLE

We next give a complete example that demonstrates how the subprogram HFFT3
is used to solve a routine problem. (For a more complete analysis of the
performance of the HFFT subprograms, see [2].) We wish to find a function
u(x, y, z) that satifies

Au - &.L = g(x, y, z) 0 < x, y, z < 1
u(O, Y, 2) = 1 O<y,z<l

~~(1, y, 2) = ze’ + cos(27ry) O<y,z<l
u(x, 0, 2) = u(x, 1, 2) 0 < x, 2 < 1
4(x, Y, 0) = x O<n,y<l
u(x, y, 1) = e” + x cos(27ry) O<x,y<l

where

g(x, y, 2) = (x2 + 2 - 3r2)exz - 57~~3~ ~042~~).

The solution to this problem is U(X, y, z) = exp(xz) + x ~042~~). The following
Fortran program solves this problem using HFFT3, producing the results in
Table I when run on a Cyber 180/855 computer compiled by the FTN5 compiler
with OPT = 2.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 651: Algorithm HFFT - 245

C
C EXAMPLE OF HFFT3 USAGE

E _ _ ___ _ _ ____ _ ____ _ ____ _ _ ____ _ _ ____ _ ____ _ _ ____ _ _ ___- - __-_ _ _--- _ _ --_- - -_-- - _-- - ---- - - -- - - --- - _-- - _ --- _ --- -
C
C PROBLEM UXX + UYY + UZZ - PI**2*U = G(X, Y)
C
C U=l ONX=O
C UX = Z*EXP(Z) + COS(2:PI*Y) ON X = 1

E
uz=x ONZ=O
U = EXP(X) + X:COS(Z*PI*Y) ONZ=l

: U(X, 0, Z) = U(X, 1, Z)
C

E
G = (X+*2 + Z**2 - PIs*2):EXP(X*Z) - 5:PI**2*X*COS(2*PI:Y)

C SOLUTION U = EXP(X*Z) + X*COS(Z*PI*Y)

E __ _ _ _-- _ __- _ _ _-__ _ -___ _ _ ___ _ _ __-- _ _ --_ _ _ ___- _ - _--- _ _-- _ _ _--_ _ - -_-_ - -_-- - _-- - _ _-- _ _-- - _ --- _ _ --_ _ -.

g _-_ _ _--_ _ - -__ _ ___ _ - ____
C DECLARATIONS
c - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ -
C

z **-
CONSTANTS

C PARAMETER (NMAX = 29)
PARAMETER (NWORK = 3 + NMAXs(7 + NMAX*(ll + NMAX)))
PARAMETER (LDXU = NMAX + 2)

C

E *.-
GLOBAL VARIABLES

COMMON /GLOBAL/ TWOPI, PISQR
EXTERNAL PRHS, BRHS

C

: .-*
LOCAL VARIABLES

INTEGER BCTY(6)
REAL U(LDXU, LDXU, LDXU), WORK(NWORK)

C
c - _ - - - - _ - _ - _ _ - - _ _ _ - _ _ _ - - _ _ _ - _ _ _ _ - _
C

PI = 4.0*ATAN(l.O)
TWOPI = 2.O:PI
PISQR = PI*PI

C
c - - - - - _ _ - - - - - - - _ _ - - _ _ - - - _ -
C SETUP PROBLEM
c - _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ - - _ _
C

AX = 0.0
BX = 1.0
AY = 0.0
BY = 1.0
AZ = 0.0
BZ = 1.0

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

246 - Ronald F. Boisvert

C
C
C

COEFU = -PISQR
BCTY(l) = 2
BCTY(2) = 3
BCTY(3) = 1
BCTY(4) = 3
BCTY(5) = 1
BCTY(6) = 2
IORDER = 4

--___-__________________________________------
SOLVE ON SEQUENCE OF GRIDS
----_----__---__--__--------------------------

PRINT 2000
DO 500 N = 5,29,4

NX=N
NY=N
NZ=N

. . . SOLVE PDE

CALL HFFT3(COEFU, PRHS, BRHS, AX, BX, AY, BY, AZ, BZ, NX,
* NY, NZ, BCTY, IORDER, U, LDXU, LDXU, WORK,
* NWORK, INFO)

IF (INFO .LT. 0) GO TO 900

. . . EVALUATE ERROR

H = (BX - AX)/REAL)NX - 1)
ERRMAX = O.OEO
DO 100 K = 1, NZ

Z = AZ + REAL(K - l)*H
DO 100 J = 1, NY

Y = AY + REAL(J - l)*H
DO 100 I = 1, NX

X = AX + REAL(I - l)*H
TRUSOL = TRUE(X, Y, Z)
ERROR = ABS(TRUSOL - U(1, J, K))
ERRMAX = MAX(ERROR, ERRMAX)

100 CONTINUE
PRINT 2001, N, ERRMAX

500 CONTINUE
STOP

. . . ERROR EXIT

900 CONTINUE
PRINT 2002, INFO
STOP

C

C

2000 FORMAT(/’ GRID MAX-ERROR /’ -------------------’ /)
2001 FORMAT(4X, 12,4X, lPE10.3)
2002 FORMAT(/’ HFFT3 RETURNED INFO = ‘,12)

END
FUNCTION PRHS (X, Y, Z)

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987

C

zi

C

:
C

C

C

C

C

C

C

C

Algorithm 651: Algorithm HFFT 247

. . . RIGHT HAND SIDE OF PDE (USER-SUPPLIED)

COMMON /GLOBAL/ TWOPI, PISQR
PRHS = (X*X + Z*Z - PISQR)*EXP(X*Z)

*50*PISQR*X*COS(TWOPI*Y)
RETURN
END
FUNCTION BRHS(K, X, Y, Z)

. . . RIGHT HAND SIDE OF BOUNDARY CONDITIONS (USER-
SUPPLIED)

COMMON /GLOBAL/ TWOPI, PISQR
GO TO (1, 2, 3, 4, 5, 6), K
GO TO 999

1 CONTINUE
BRHS = Z*EXP(Z) + COS(TWOPI*Y)
GO TO 999

2 CONTINUE
GO TO 999

3 CONTINUE
BRHS = 1.0
GO TO 999

4 CONTINUE
GO TO 999

5 CONTINUE
BRHS = EXP(X) + X*COS(TWOPI*Y)
GO TO 999

6 CONTINUE
BRHS = X
GO TO 999

999 CONTINUE
RETURN
END
FUNCTION TRUE (X, Y, Z)
COMMON /GLOBAL/ TWOPI, PISQR
TRUE = EXP(X*Z) + X&OS(TWOPI*Y)
RETURN
END

4. ALGORITHM CONTENT

The following items are distributed with HFFT.

(1) HFFT3 (requires items 2 and 3)
(2) HFFTB (requires item 3)
(3) Auxiliary software: FFTPACK [171 and RlMACH [S].

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

248 l Ronald F. Boisvert

(4) Example of Section 3 (requires items 1, 2, and 3)
(5) Test program for HFFT3 (requires items 1,2, and 3)
(6) Test program for HFFT2 (requires items 2 and 3)
(7) Test program for HW3CRT (requires item 3)
(8) Test program for SEPX4

The first two items contain the three-dimensional and two-dimensional software,
respectively. The third item, while not formally part of this algorithm, contains
software used by HFFT. The test programs, items five and six, each exercise the
software on a battery of problems, including all test problems used in the
companion paper [2]. Finally, programs that exercise the FISHPAK software
HW3CRT and SEPX4 on the same problem sets as items 5 and 6, respectively,
are included. These are made available to facilitate comparison of results with
[2]. The HW3CRT and SEPX4 software are included in these files.

ACKNOWLEDGMENTS

Joan Baumann and John Nestor provided programming assistance in various
phases of the construction of HFFT. The Fourier transforms in HFFT are
performed by FFTPACK software, which was developed at the National Center
for Atmospheric Research.

Disclaimer

Certain proprietary products have been referenced in this paper in order to fully
describe the testing and implementation of HFFT software. Identification of
such products does not imply recommendation or endorsement by the National
Bureau of Standards.

REFERENCES

1. ADAMS, J., SWARZTRAUBER, P. N., AND SWEET, R. A. FISHPAK, a package of Fortran
subprograms for the solution of separable elliptic partial differential equations. Version 3.1. 1981.
NCAR Program Library, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,
co 80307.

2. BOISVERT, R. F. A fourth-order-accurate Fourier method for the Helmholtz equation in three
dimensions. 1985. ACM Trans. Math. Softw. 13,3 (Sept. 1987), 221-234.

3. BUZBEE, B. L., GOLUB, G. H., AND NIELSON, C. W. On direct methods for solving Poisson’s
equations. SIAM J. Num. Anal. 7 (1970), 627-655.

4. COCHRAN, W. T. What is the fast Fourier transform? IEEE Trans. Audio Electroacoustics 15
(1967), 45-55.

5. EVANS, D. J. An algorithm for the solution of certain tridiagonal systems of linear equations.
Computer J. 15 (1972), 356-359.

6. EVANS, D. J. Fast ADI methods for the solution of linear parabolic partial differential equations
involving 2 space dimensions. BIT 17 (1977), 486-491.

7. Fortran Version 5 Reference Manual. Control Data Corporation, CDC Publications and Graphics
Division, P. 0. Box 3492, Sunnyvale, CA 94088-3492, 1983.

8. Fox, P. A., HALL, A. D., AND SCHRYER, N. L. Algorithm 528: Framework for a portable library.
ACM Trans. Math. Softw. 4 (1978), 177-188.

9. HOUSTIS, E. N., AND PAPATHEODOROU, T. S. High-order fast elliptic equation solver. ACM
Trans. Math. Softw. 5 (1979), 431-441.

10. LYNCH, R. E. O(h4) and O(h6) finite difference approximations to the Helmholtz equation
in n-dimensions. In Advances in Computer Methods for Partial Differential Equations V,

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Algorithm 651: Algorithm HFFT l 249

R. Vichnevetsky and R. S. Stepleman, Eds. IMACS, Rutgers Univ., New Brunswick, N.J., 1984,
pp. 199-202.

11. LYNCH, R. E. 0(/P) Accurate Finite Difference Approximation to Solutions of the Poisson
Equation in Three Variables. CSD-TR 221, Computer Sciences Dept., Purdue Univ., West
Lafayette, In., 1977.

12. LYNCH, R. E., AND RICE, J. R. High accuracy finite difference approximations to solutions of
elliptic partial differential equations. Proc. Nat. Acad. Sci. 75 (1978), 2541-2544.

13. MIKHLIN, S. G., ED. Linear Equutions of Mathematical Physics. Holt, Reinhardt, and Winston,
New York, 1967.

14. ORTEGA, J. M., AND VOIGT, R. G. Solution of partial differential equations on vector and
parallel computers. SIAM Rev. 17 (1985), 149-240.

15. RICE, J. R. AND BOISVERT, R. F. Solving Elliptic Problems Using ELLPACK. Springer-Verlag,
New York, 1985.

16. SWARZTRAUBER, P. N., AND SWEET, R. Efficient FORTRAN Subprograms for the Solution of
Elliptic Partial Differential Equations. NCAR Tech. Note IA-109, National Center for Atmos-
pheric Research, Boulder, Co., 1975.

17. SWARZTRAUBER, P. N. Vectorizing the FFTs. In Parallel Computation, G. Rodrigue, Ed. Aca-
demic Press, New York, 1982, pp. 51-84.

18. SWEET, R. A. Fast Fourier transforms on a staggered grid. 1985. To appear.

Received January 1986; revised April 1987; accepted April 1987

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

