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HFFT is a software package for solving the Helmholtz equation on bounded two- and three- 
dimensional rectangular domains with Dirichlet, Neumann, or periodic boundary conditions. The 
software is the result of combining new fourth-order accurate compact finite difference (HODIE) 
discretizations and a fast-direct solution technique (the Fourier method). In this paper we briefly 
describe the user interface to HFFT and present an example of its usage and several details of its 
implementation. 

Categories and Subject Descriptors: G.1.8 [Numerical Analysis] Partial differential equa- 
tions-elliptic equations; G.4 [Mathematics of Computing] Mathematical Software 

General Terms: Algorithms 

Additional Key Words and Pharses: Fast-direct method, finite differences, Fourier method, 
Helmholtz equation, high-order accuracy, HODIE method 

1. INTRODUCTION 

We describe a collection of Fortran programs, collectively called HFFT, which 
solve the Helmholtz equation 

Au + Xu = g 

(h constant) in two- and three-dimensional rectangular domains with any com- 
bination of Dirichlet (solution prescribed), Neumann (normal derivative pre- 
scribed), or periodic boundary conditions. The software computes fourth-order 
accurate solutions (for suitably smooth problems) using compact finite differenc- 
ing techniques (the HODIE method); users can optionally request second-order 
accurate differences. The resulting system of equations is solved by the Fourier 
method. 

A version of this software is also available in the ELLPACK system [15] as 
modules HODIE FFT and HODIE FFT 3D. Similar techniques are used by 
two other ELLPACK modules. In FFT g-POINT [9], a fourth-order HODIE 
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discretization with FACR(l) solution is used to solve the two-dimensional 
Dirichlet problem for the Helmholtz equation. In HODIE 27-POINT 3D [ll, lo], 
a sixth-order HODIE discretization with a fast tensor-product solution technique 
is used to solve the three-dimensional Dirichlet problem for the Poisson equation 
(X = 0). This software extends both of these, admitting more general 
boundary conditions and removing certain restrictions on grid sizes. Other 
available software for this problem include the FISHPAK subroutines SEPX4 
and HW3CRT [l]. 

A complete description of the numerical methods employed in HFFT, along 
with computational comparisons with SEPX4 and HW3CRT are given in the 
companion paper [2]. Here we describe the user interface to HFFT and give 
certain details of its implementation. 

2. DESCRIPTION OF THE SOFTWARE 

2.1 User Interface 

There are four user entry points into HFFT-HFFTB, HFFT2A, HFFT3, and 
HFFT3A. The routines HFFTB and HFFT3 solve two and three-dimensional 
problems, respectively, presenting a user interface similar to that used by modules 
in the ELLPACK system. The software is based upon an equispaced grid 
defined on the rectangular domain (AX, BX) X (AY, BY) X (AZ, BZ). The 
grid points are (xi, 3/j, zk), for 1 5 i I NX, 1 I j I NY, 1 I k 5 NZ, where 
Xi = AX + (i - l)h, Yj = AY + (j - l)h, zk = AZ + (k - l)h, and h = 
(BX - AX)/(NX - 1) = (BY - AY)/(NY - 1) = (BZ - AZ)/(NZ - 1). The 
user interface for each case is summarized below; complete details are given in 
the initial comments for each subroutine. 

CALL HFFT3 

Input variables 

COEFU 
AX,BX 
AY,BY 
AZ,BZ 
NX,NY,NZ 

BCTY 

IORDER 
LDXU 

(COEFU, PRHS, BRHS, AX, BX, AY, BY, AZ, BZ, NX, NY, 
NZ, BCTY, IORDER, U, LDXU, LDYU, WORK, NWORK, 
INFO) 

coefficient of u in the differential equation. 
limiting values of x: in domain (AX < BX). 
limiting values of y in domain (AY < BY). 
limiting values of z in domain (AZ < BZ). 
number of grid lines in x, y, z, respectively (includes 
boundaries). 
integer array of length 6, indicating the type of boundary 
condition along x = BX, y = AY, x = AX, y = BY, z = BZ, 
z = AZ, in that order. Possible values are 1 for Dirichlet, 
2 for Neumann, and 3 for periodic. 
order of accuracy of the discretization (2 or 4). 
first dimension of the array U exactly as declared in the calling 
program (must be at least NX + 2). 
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LDYU 

WORK 
NWORK 

Output variables 

U 

INFO 

second dimension of the array U exactly as declared in the 
calling program (must be at least NY + 2). 
workspace array of size NWORK. 
length of the array WORK exactly as declared in the calling 
program (must be at least (NX + l)(NY + 1) 
(NZ + l)(IORDER - 2)/2 + 2(NX x NY + NX x NZ + 
NY x NZ) + 2(NX + NY + 1) + max(2NX x NY,BNX + 
5NY + 4NZ + (NX + NZ)/2 + 29). 

array of size at least NX + 2 by NY + 2 by NZ + 2 containing 
the solution at grid points, i.e., U(i, j, 12) = u(xi, Yj, zk) for 1 % 
i I NX, 1 5 j 5 NY, 1 5 k I NZ. The extra rows and columns 
of U are used as workspace. 
error flag. INFO = 0 indicates that the program ran to com- 
pletion. INFO = -k # 0 (1 5 k % 14) indicates that error 
condition k was detected, INFO = k # 0 (1 I k 5 2) indicates 
warning k. 

User-supplied functions 

PRHS 

BRHS 

CALL HFFTB 

Input variables 

COEFU 
AX,BX 
AY,BY 
NX,NY 
BCTY 

IORDER 
LDXU 

function of (n, y, z) which returns the right side of the differ- 
ential equation. Must be declared EXTERNAL in the calling 
program. 
function of (k, x, y, z) which evaluates the boundary condition 
at (x, y, z) on side k. The value returned depends upon 
BCTY(k). If BCTY(k) = 1, u is returned. If BCTY(k) = 2, u, 
is returned for k = 1, 3, u, is returned for k = 2, 4, and uz is 
returned for k = 5, 6. BRHS will not be called with k = m if 
BCTY(m) = 3. Must be declared EXTERNAL in the calling 
program. 
(COEFU, PRHS, BRHS, AX, BX, AY, BY, NX, NY, 
BCTY, IORDER, U, LDXU, WORK, NWORK, INFO) 

coefficient of u in the differential equation. 
limiting values of x: in domain (AX < BX). 
limiting values of y in domain (AY < BY). 
number of grid lines in 1c, y, respectively (includes boundaries). 
integer array of length 4 indicating the type of boundary 
condition along x = BX, y = AY, x = AX, y = BY, in that 
order. Possible values are 1 for Dirichlet, 2 for Neumann, and 
3 for periodic. 
order of accuracy of the discretization (2 or 4). 
first dimension of the array U exactly as declared in the calling 
program (must be at least NX + 2). 
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WORK 
NWORK 

workspace array of size NWORK. 
length of the array WORK exactly as declared in the 
calling program (must be at least (NX + l)(NY + 1) 
(IORDER - 2)/2 + 7(NX + NY) + NX/2 + 15). 

Output variables 

U array of size at least NX + 2 by NY + 2 containing the solution 
at grid points, i.e., U(i, j) = u(xi, yj) for 1 I i 5 NX, 1 I j I 
NY. The extra rows and columns of U are used as workspace. 

INFO error flag. INFO = 0 indicates that the program ran to com- 
pletion. INFO = -k # 0 (1 5 k 5 10) indicates that error 
condition k was detected, INFO = k # 0 (1 % k I 2) indicates 
warning k. 

User-supplied functions 

PRHS function of (x, y) which returns the right side of the differential 
equation. Must be declared EXTERNAL in the calling 
program. 

BRHS function of (k, x, y) which evaluates the boundary condition at 
(x, y) on side k. The value returned depends upon BCTY(k). 
If BCTY(k) = 1, u is returned. If BCTY(k) = 2, u, is returned 
for k = 1, 3 and u, is returned for k = 2, 4. BRHS will not be 
called with k = m if BCTY(m) = 3. Must be declared EXTER- 
NAL in the calling program. 

The subroutines HFFTB and HFFT3 set up calls to the lower level routines 
HFFT2A and HFFT3A, respectively. Users may call HFFTBA and HFFT3A 
directly; the subroutines differ in that users are required to prestore all required 
function values as is done in FISHPAK. The input provided to these routines is 
summarized below. 

CALL HFFT3A (COEFU, NX, NY, NZ, H, GH, LDXGH, 
LDYGH, BCTY, BDl, BD2, BD3, BD4, BD5, BD6, 
LDXBD, LDYBD, IORDER, U, LDYU, LDYU, 
WORK, NWORK, INFO) 

Input variables 

COEFU coefficient of u in the differential equation. 
NX,NY,NZ number of grid lines in x, y, z (including boundaries). 
H distance between grid lines. 
U array of size NX + 2 by NY + 2 by NZ + 2 containing values 

of the function g (right side of the differential equation) at grid 
points, i.e., U(i, j, k) = g(xi, Yjyi, zk), 1 I i ES NX, 1 d j 5 NY, 1 
5 k 5 NZ. The extra rows and columns are used for working 
storage. 
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LDXU 

GH 

BCTY 

BDl 

first dimension of the array U, exactly as declared in the calling 
program. 
array of size NX + 1 by NY + 1 by NZ + 1 containing values 
of the function g at midpoints of the subsquares of the grid, 
i.e., GH(i,j, k) = g(xi + h/2, yj + h/2, .~k + h/2) for 1 5 i 5 NX 
- 1, 1 5 j 5 NY - 1, 1 5 k 5 NZ - 1. The extra rows and 
columns are used for working storage. GH is not referenced 
when IORDER = 2. 
integer array of length 4 indicating the type of boundary 
condition along x = BX, y = AY, x = AX, y = BY, in that 
order. Possible values are 1 for Dirichlet, 2 for Neumann, and 
3 for periodic. 
array of size NY by NZ containing boundary condition values 
for x = BX, i.e., BDl(j, k) = f(x~X, 3/j, zk) for 1 5 j 5 NY, 1 5 
k I NZ. f is u or u, depending on whether BCTY(l) is 1 or 2. 
BDl is not referenced when BCTY(l) = 3. 

BD2 

BD3 

BD4 

BD5 

BD6 

array of size NX by NZ containing boundary condition values 
for y = AY, i.e., BDB(i, k) = f(zi, ~1, zk) for 1 I i 5 NX, 1 I k 
5 NZ. f is u or u, depending on whether BCTY(2) is 1 or 2. 
BD2 is not referenced when BCTY(2) = 3. 
array of size NY by NZ containing boundary condition values 
for x = AX, i.e., BD3( j, k) = f(xl, yj, zk) for 1 5 j 5 NY, 1 5 k 
I NZ. f is u or u, depending on whether BCTY(3) is 1 or 2. 
BD3 is not referenced when BCTY(3) = 3. 
array of size NX by NZ containing boundary condition values 
for y = BY, i.e., BD4(i, k) = f(xi, YNY, zk) for 1 5 i % NX, 1 I 
k s NZ. f is u or u, depending on whether BCTY(4) is 1 or 2. 
BD2 is not referenced when BCTY(4) = 3. 
array of size NX by NY containing boundary condition values 
for z = BZ, i.e., BD5(i, j) = f(xi, yj, zNz) for 1 I i 5 NX, 1 5 j 
5 NY. f is u or uz depending on whether BCTY(5) is 1 or 2. 
BD5 is not referenced when BCTY(5) = 3. 
array of size NX by NY containing boundary condition values 
for z = AZ. i.e., BDG(i, j) = f(ri, yj, ~1) for 1 5 i 5 NX, 1 5 j 
I NY. f is u or u, depending on whether BCTY(6) is 1 or 2. 
BD6 is not referenced when BCTY(6) = 3. 

LDXBD 

LDYBD 

IORDER 
WORK 
NWORK 

first dimension of the arrays BD2, BD4, BD5, and BD6 exactly 
as declared in the calling program. 
first dimension of the arrays BDl and BD3 exactly as declared 
in the calling program. 
order of accuracy of the discretization (2 or 4). 
workspace array of size NWORK. 
length of the array WORK exactly as declared in the calling 
program (must be at least (NX + l)(NY + l)(IORDER - 2) 
+ (NX + 3)(NY + 5) + 5NY + (NX + NZ)/2 + 15. 
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Output variables 

U 

INFO 

contains the solution at grid points, i.e., U(i, j, k) = 
U(xi, y;, zk) for 1 I i I NX, 1 I j 5 NY, 1 5 k 5 NZ. 
error flag. INFO = 0 indicates that the program ran to com- 
pletion. INFO = -k # 0 (1 P k I 11) indicates that error 
condition k was detected, INFO = k # 0 (1 5 k I 2) indicates 
warning k. 

CALL HFFTBA (COEFU, NX, NY, H, GH, LDXGH, BCTY, BDl, 
BD2, BD3, BD4, IORDER, U, LDXU, WORK, 
NWORK, INFO) 

Input variables 

COEFU 
NX,NY 
H 
U 

LDXU 

GH 

BCTY 

BDl 

BD2 

BD3 

BD4 

coefficient of u in the differential equation. 
number of grid lines in x, y (including boundaries). 
distance between grid lines. 
array of size NX + 2 by NY + 2 containing values of the 
function g (right-hand side of the differential equation) at grid 
points, i.e., U(i, j) = g(xi, yj). The extra rows and columns are 
used for working storage. 
first dimension of the array U, exactly as declared in the calling 
program. 
array of size NX f 1 by NY + 1 containing values of the 
function g at midpoints of the subsquares of the grid, 
i.e., GH(i, j) = g(xi + h/2, yj + h/2) for 1 5 i 5 NX - 1, 1 5 
j 5 NY - 1. The extra rows and columns are used for working 
storage. GH is not referenced when IORDER = 2. 
integer array of length 4 indicating the type of boundary 
condition along x = BX, y = AY, 3t = AX, y = BY, in that 
order. Possible values are 1 for Dirichlet, 2 for Neumann, and 
3 for periodic. 
array of size NY containing boundary condition values for x = 
BX, i.e., BDl(j) = f(~Nx, yj) for 1 I j I NY. f is u or u, 
depending on whether BCTY (1) is 1 or 2. BDl is not referenced 
when BCTY(l) = 3. 
array of size NX containing boundary condition values for y = 
AY, i.e., BDZ(i) = f(xi, yi) for 1 I i 5 NX. fis u or u, depending 
on whether BCTY(2) is 1 or 2. BD2 is not referenced when 
BCTY(2) = 3. 
array of size NY containing boundary condition values for x = 
AX, i.e., BD3(j) = f(xi, yj) for 1 I j I NY. f is u or u, 
depending on whether BCTY (3) is 1 or 2. BD3 is not referenced 
when BCTY(3) = 3. 
array of size NX containing boundary condition values for y = 
BY, i.e., BD4(i) = f(ni, yNy) for 1 I i I NX. f is u or u, 
depending on whether BCTY(4) is 1 or 2. BD4 is not referenced 
when BCTY(4) = 3. 
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IORDER 
WORK 
NWORK 

order of accuracy of the discretization (2 or 4). 
workspace array of size NWORK. 
length of the array WORK exactly as declared in the calling 
program (must be at least 5(NX + NY) + NX/2 + 15). 

Output variables 

U on output, contains the solution at grid points, i.e., U(i, j) = 
U(3Ci,yj)forlIi=NX,l%j(NY. 

INFO error flag. INFO = 0 indicates that the program ran to com- 
pletion. INFO = -k # 0 (1 5 k 5 8) indicates that error 
condition k was detected, INFO = k # 0 (1 5 k 5 2) indicates 
warning k. 

The output variable INFO is used to report errors and warnings. INFO is 
returned less than zero when an error is detected in the parameters passed by 
the user; a solution is not attempted in this case. INFO is returned greater than 
zero to alert the user of possible problems with the computed solution. 

When h = 0 and only periodic or Neumann boundary conditions are prescribed, 
the problem admits no solution unless the right side satisfies a consistency 
condition [13]. HFFT ensures that this condition is satisfied for the discrete 
problem by subtracting an appropriate constant from the right side. The constant 
is returned in WORK(l); if it is large in magnitude then the problem may have 
been posed incorrectly. The solution of the perturbed problem is a solution to 
the original discrete problem in the least squares sense [16]. Finally, the solution 
in this case is unique only up to an additive constant; HFFT returns the solution 
with minimum Euclidean norm and sets INFO = 2. 

When X > 0, a solution may not exist if X is an eigenvalue of the Laplacian. If 
X is near one of these values, then the problem may be ill-conditioned; in this 
case the computed solution may be grossly inaccurate because of significant 
round-off errors. HFFT returns INFO = 1 whenever X > 0. 

Note that there is no significant savings in storage when using HFFT2A or 
HFFT3A instead of HFFTS or HFFT3. Although users of the latter two routines 
do not provide the arrays GH, BDl, BD2, and so on, the size of working storage 
is correspondingly larger. 

2.2 Implementation Details 

The basic components of the package are (a) drivers, (b) discretization modules, 
and (c) matrix decomposition modules. The drivers are the routines HFFT3, 
HFFT3A, HFFTB, and HFFTBA described above. The discretization modules 
compute the coefficients of a compact finite difference (HODIE) stencil [12] and 
form the right side of the resulting system of linear algebraic equations. Matrix 
decomposition modules solve this system using the Fourier algorithm [3]. A high- 
level depiction of this organization is given in Figure 1. 

The entire HFFT package is coded in ANSI standard Fortran (1977); this has 
been verified using the ANSI option of the CDC FTN5 compiler [7] (version 5.1 
running under NOS 2.1). Machine-dependent constants are taken from the 
PORT routine RlMACH [8]. The code has been tested on a CDC Cyber 180/855 
and a Sun 3. 
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RlMACH 

‘J User-supplied y 

HFFT3A 

Drivers 

HFFT3 HFFT2 HFFT2A 

Discretization 

Decomposition 

Fourier 
Transforms V 4 

FFTPACK Tridiagonal Solvers 

Fig. 1. Subprogram call graph for HFFT package. (Arrows emanate 
from calling subprogram and end at subprogram called.) 

The discretization modules compute either a fourth-order accurate or second- 
order accurate HODIE discretization, as selected by the parameter IORDER. In 
the three-dimensional case the discretizations described in [2] (identified as 
methods A and B) are used, implemented by the routines HDIS3 and FDIS3, 
respectively. In two dimensions, discretizations obtained by restricting these to 
two dimensions are computed by the routines HDISB and FDISB. Dirichlet 
boundary data are also loaded into the solution array at this time. 

The Fourier method in three dimensions can be viewed as follows (for simplicity 
we assume an n x n x n problem). 

3D Algorithm 

1. Fourier analysis in z direction (n” transforms of length n); 
2. Solve n-independent two-dimensional problems, one for each z-plane; 
3. Fourier synthesis in z direction (n’ transforms of length n). 

Thus the Fourier algorithm reduces the three-dimensional problem to a set of 
two-dimensional ones; in HFFT, the three-dimensional routine MDALG3 
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repeatedly calls the two-dimensional routine MDALGB. Each of the two- 
dimensional problems may also be solved by the Fourier algorithm. 

2D Algorithm 
1. Fourier analysis in y direction (n transforms of length n); 
2. Solve n-independent one-dimensional problems, one for each x-line; 
3. Fourier synthesis in y direction (n transforms of length n). 

The one-dimensional problems require only the solution of a set of II symmetric 
tridiagonal systems of linear equations of order n. The exact form of these 
systems depends upon the boundary conditions in the x-direction-they have 
constant diagonals except for possibly the first and last elements of the main 
diagonal; in the periodic case they are Toeplitz systems. The form of these 
matrices is described in detail in [2]. 

To solve the tridiagonal systems we use an extension of the interlocking 
factorization method of Evans [5, 61, which is specific to diagonally dominant 
symmetric tridiagonal systems with constant diagonals. This algorithm requires 
approximately the same work as standard Gauss elimination for tridiagonal 
matrices, but has the advantage of requiring no extra storage; this is of interest 
when the algorithm is adapted to a vector computer (see Section 2.3). When 
h > 0, the tridiagonal systems are not diagonally dominant and the Evans 
algorithm is unstable; in this case Gauss elimination with partial pivoting 
is used. 

The exact form of the Fourier transform required, i.e., real periodic, sine, 
cosine, sine quarter-wave, and cosine quarter-wave, depends upon the boundary 
conditions. We use the FFTPACK software of Swarztrauber [17] in which these 
transforms are all provided. In addition, FFTPACK places no restriction on the 
length of the sequence being transformed, although the transform will only be 
“fast” if the length is a highly composite number. FFTPACK is based upon the 
autosort algorithms of Stockham as presented in [4]. 

2.3 Applicability to Vector Computers 

The suitability of the Fourier method for vector computation depends principally 
upon the vectorization of the FFT and tridiagonal solution algorithms. The 
HFFT package has been modularized so that these components can easily 
be replaced with vector algorithms to increase the efficiency of the program on 
such machines. In this section we comment on these issues briefly. A more 
complete survey of applicable methods for vector and parallel computers may 
be found in [ 141. 

Swarztrauber has reported [17] that FFTPACK vectorizes well on the Cray-1, 
running some five to seven times faster than the CDC 7600 on sequences of 
length 32 to 128. Like the Cooley-Tukey algorithm, the Stockham FFT is only 
pseudovectorizable, however, in that vector lengths vary during the course of the 
computation, with minimum vector length about nl”; this algorithm, as a result, 
does not appear to be as attractive for the Cyber 205. 

An alternative method of vectorization is possible when many sequences are 
simulataneously available to be transformed, as is the case when solving partial 
differential equations. By taking each step of an FFT algorithm and applying it 
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Table I. Output of Example 1 

Grid Max Error 

5X5X5 3.3203-03 
9X9X9 1.7793-04 

13 x 13 x 13 3.4813-05 

17 x 17 x 17 1.0923-05 
21 x 21 x 21 4.4453-06 

25 X 25 x 25 2.1373-06 
29 x 29 x 29 l.l54E-06 

to each sequence, one obtains an algorithm that maintains a constant vector 
length throughout the computation (and is also easier to implement). This is 
quite attractive for the Cyber 205; Sweet has recently built software that provides 
several of the transforms of FFTPACK in multitransform form with both scalar 
and Cyber 205 versions [18]. 

The Evans algorithm, like other algorithms for tridiagonal systems, is inher- 
ently recursive. However, since multiple systems must be solved simultaneously, 
we may vectorize by applying each step to each problem to obtain a vectorized 
multisystem solver. The fact that the Evans algorithm requires no additional 
workspace is particularly important in this context, since a workspace of length 
n for a single system solver would yield a workspace of length n2 for an n-system 
solver. We have vectorized the Evans algorithm in this way, obtaining a speedup 
of approximately 23 for solving 500 systems of size 500 on the Cyber 205, in 
comparison to its performance on the 205 in scalar mode. 

3. EXAMPLE 

We next give a complete example that demonstrates how the subprogram HFFT3 
is used to solve a routine problem. (For a more complete analysis of the 
performance of the HFFT subprograms, see [2].) We wish to find a function 
u(x, y, z) that satifies 

Au - &.L = g(x, y, z) 0 < x, y, z < 1 
u(O, Y, 2) = 1 O<y,z<l 

~~(1, y, 2) = ze’ + cos(27ry) O<y,z<l 
u(x, 0, 2) = u(x, 1, 2) 0 < x, 2 < 1 
4(x, Y, 0) = x O<n,y<l 
u(x, y, 1) = e” + x cos(27ry) O<x,y<l 

where 

g(x, y, 2) = (x2 + 2 - 3r2)exz - 57~~3~ ~042~~). 

The solution to this problem is U(X, y, z) = exp(xz) + x ~042~~). The following 
Fortran program solves this problem using HFFT3, producing the results in 
Table I when run on a Cyber 180/855 computer compiled by the FTN5 compiler 
with OPT = 2. 
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C 
C EXAMPLE OF HFFT3 USAGE 

E _ _ ___ _ _ ____ _ ____ _ ____ _ _ ____ _ _ ____ _ ____ _ _ ____ _ _ ___- - __-_ _ _--- _ _ --_- - -_-- - _-- - ---- - - -- - - --- - _-- - _ --- _ --- - 
C 
C PROBLEM UXX + UYY + UZZ - PI**2*U = G(X, Y) 
C 
C U=l ONX=O 
C UX = Z*EXP(Z) + COS(2:PI*Y) ON X = 1 

E 
uz=x ONZ=O 
U = EXP(X) + X:COS(Z*PI*Y) ONZ=l 

: U(X, 0, Z) = U(X, 1, Z) 
C 

E 
G = (X+*2 + Z**2 - PIs*2):EXP(X*Z) - 5:PI**2*X*COS(2*PI:Y) 

C SOLUTION U = EXP(X*Z) + X*COS(Z*PI*Y) 

E __ _ _ _-- _ __- _ _ _-__ _ -___ _ _ ___ _ _ __-- _ _ --_ _ _ ___- _ - _--- _ _-- _ _ _--_ _ - -_-_ - -_-- - _-- - _ _-- _ _-- - _ --- _ _ --_ _ -. 

g _-_ _ _--_ _ - -__ _ ___ _ - ____ 
C DECLARATIONS 
c - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - 
C 

z **- 
CONSTANTS 

C PARAMETER (NMAX = 29) 
PARAMETER (NWORK = 3 + NMAXs(7 + NMAX*(ll + NMAX))) 
PARAMETER (LDXU = NMAX + 2) 

C 

E *.- 
GLOBAL VARIABLES 

COMMON /GLOBAL/ TWOPI, PISQR 
EXTERNAL PRHS, BRHS 

C 

: .-* 
LOCAL VARIABLES 

INTEGER BCTY(6) 
REAL U(LDXU, LDXU, LDXU), WORK(NWORK) 

C 
c - _ - - - - _ - _ - _ _ - - _ _ _ - _ _ _ - - _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
C 

PI = 4.0*ATAN(l.O) 
TWOPI = 2.O:PI 
PISQR = PI*PI 

C 
c - - - - - _ _ - - - - - - - _ _ - - _ _ - - - _ - 
C SETUP PROBLEM 
c - _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ - - _ _ 
C 

AX = 0.0 
BX = 1.0 
AY = 0.0 
BY = 1.0 
AZ = 0.0 
BZ = 1.0 
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C 
C 
C 

COEFU = -PISQR 
BCTY(l) = 2 
BCTY(2) = 3 
BCTY(3) = 1 
BCTY(4) = 3 
BCTY(5) = 1 
BCTY(6) = 2 
IORDER = 4 

--___-__________________________________------ 
SOLVE ON SEQUENCE OF GRIDS 
----_----__---__--__-------------------------- 

PRINT 2000 
DO 500 N = 5,29,4 

NX=N 
NY=N 
NZ=N 

. . . SOLVE PDE 

CALL HFFT3(COEFU, PRHS, BRHS, AX, BX, AY, BY, AZ, BZ, NX, 
* NY, NZ, BCTY, IORDER, U, LDXU, LDXU, WORK, 
* NWORK, INFO) 

IF (INFO .LT. 0) GO TO 900 

. . . EVALUATE ERROR 

H = (BX - AX)/REAL)NX - 1) 
ERRMAX = O.OEO 
DO 100 K = 1, NZ 

Z = AZ + REAL(K - l)*H 
DO 100 J = 1, NY 

Y = AY + REAL(J - l)*H 
DO 100 I = 1, NX 

X = AX + REAL(I - l)*H 
TRUSOL = TRUE(X, Y, Z) 
ERROR = ABS(TRUSOL - U(1, J, K)) 
ERRMAX = MAX(ERROR, ERRMAX) 

100 CONTINUE 
PRINT 2001, N, ERRMAX 

500 CONTINUE 
STOP 

. . . ERROR EXIT 

900 CONTINUE 
PRINT 2002, INFO 
STOP 

C 

C 

2000 FORMAT(/’ GRID MAX-ERROR /’ -------------------’ /) 
2001 FORMAT(4X, 12,4X, lPE10.3) 
2002 FORMAT(/’ HFFT3 RETURNED INFO = ‘,12) 

END 
FUNCTION PRHS (X, Y, Z) 
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zi 

C 

: 
C 

C 

C 

C 

C 

C 

C 

C 
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. . . RIGHT HAND SIDE OF PDE (USER-SUPPLIED) 

COMMON /GLOBAL/ TWOPI, PISQR 
PRHS = (X*X + Z*Z - PISQR)*EXP(X*Z) 

*50*PISQR*X*COS(TWOPI*Y) 
RETURN 
END 
FUNCTION BRHS(K, X, Y, Z) 

. . . RIGHT HAND SIDE OF BOUNDARY CONDITIONS (USER- 
SUPPLIED) 

COMMON /GLOBAL/ TWOPI, PISQR 
GO TO (1, 2, 3, 4, 5, 6), K 
GO TO 999 

1 CONTINUE 
BRHS = Z*EXP(Z) + COS(TWOPI*Y) 
GO TO 999 

2 CONTINUE 
GO TO 999 

3 CONTINUE 
BRHS = 1.0 
GO TO 999 

4 CONTINUE 
GO TO 999 

5 CONTINUE 
BRHS = EXP(X) + X*COS(TWOPI*Y) 
GO TO 999 

6 CONTINUE 
BRHS = X 
GO TO 999 

999 CONTINUE 
RETURN 
END 
FUNCTION TRUE (X, Y, Z) 
COMMON /GLOBAL/ TWOPI, PISQR 
TRUE = EXP(X*Z) + X&OS(TWOPI*Y) 
RETURN 
END 

4. ALGORITHM CONTENT 

The following items are distributed with HFFT. 

(1) HFFT3 (requires items 2 and 3) 
(2) HFFTB (requires item 3) 
(3) Auxiliary software: FFTPACK [ 171 and RlMACH [S]. 
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(4) Example of Section 3 (requires items 1, 2, and 3) 
(5) Test program for HFFT3 (requires items 1,2, and 3) 
(6) Test program for HFFT2 (requires items 2 and 3) 
(7) Test program for HW3CRT (requires item 3) 
(8) Test program for SEPX4 

The first two items contain the three-dimensional and two-dimensional software, 
respectively. The third item, while not formally part of this algorithm, contains 
software used by HFFT. The test programs, items five and six, each exercise the 
software on a battery of problems, including all test problems used in the 
companion paper [2]. Finally, programs that exercise the FISHPAK software 
HW3CRT and SEPX4 on the same problem sets as items 5 and 6, respectively, 
are included. These are made available to facilitate comparison of results with 
[2]. The HW3CRT and SEPX4 software are included in these files. 
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