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We present fourth-order-accurate compact discretizations of the Helmholtz equation on rectangular 
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1. INTRODUCTION 

Fast direct methods have proved to be very effective techniques for solving 
separable elliptic boundary value problems. These include cyclic reduction, Four- 
ier analysis, FACR(l), and tensor product matrix decomposition [6, 241. Each 
exploits, in some way, the tensor-product nature of the discrete problem obtained 
by applying standard second-order accurate finite differences on a rectangular 
domain. Problems on nonrectangular domains may be solved by using fast-direct 
methods after suitable preprocessing to extend them to an enclosing domain 
[16, 201. 

Recently, there has been much interest in combining fast-direct methods with 
high-order-accurate discretizations to produce software that is both very fast and 
very accurate. There are a variety of techniques for attaining high-order accuracy 
while maintaining the special form of discrete problem required for fast-direct 
solution techniques. The accuracy of standard second-order finite differences can 
be extended using deferred corrections [ 181. This is done for two-dimensional 
problems in the FISHPAK subprograms SEPELI and SEPX4 [l] to attain 
fourth-order accuracy. In [19] the Dirichlet problem for Laplace’s equation is 
solved for nonrectangular planar regions to fourth-order accuracy by using the 
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capacitance matrix method and deferred corrections. A similar technique is 
employed to obtain sixth-order accuracy in [21]. 

An alternative to deferred corrections is the use of high-order-accurate compact 
finite differences. This was done in [lo] to attain fourth- and sixth-order accuracy 
for the two-dimensional Helmholtz equation with Dirichlet boundary conditions. 
Similar techniques have also been applied to the three-dimensional Poisson 
equation [12, 171. Finite-element discretizations based upon tensor products of 
one-dimensional spline functions also yield discrete problems to which fast-direct 
methods can be applied [9, 111. 

In this paper I describe new fourth-order-accurate compact discretizations of 
the two- and three-dimensional Helmholtz equations. I demonstrate how such 
compact discretizations can be extended to maintain fourth-order accuracy at 
boundary points where Neumann boundary conditions are specified. These 
discretizations are the basis for a suite of Fortran subprograms that solve the 
Helmholtz equation on rectangular domains in two and three dimensions with 
any combination of Dirichlet, Neumann, or periodic boundary conditions [5]. 
The discrete problem is solved using the Fourier method. This software differs 
from [lo], [12], and [17] in the variety of boundary conditions handled, as well 
as in the details of the direct solution. The software described here is roughly 
twice as fast as fourth-order solvers based on deferred corrections and does not 
require significantly more working storage. 

2. HODIE DISCRETIZATIONS 

We consider the problem 
2 2 2 

~+~+~+,u=g(r,y,z) 
a2 

(X < 0 constant) on an open rectangular domain R in three dimensions; on the 
boundary dR = dR1 U dR2 U dRa we have 

-u prescribed (Dirichlet condition) on dR1, 
-u,, prescribed (Neumann condition) on dR2, 
-the solution is periodic on dRs. 

(dR1, dR2, and dR3 are each unions of sides of R.) To discretize the problem, we 
first place a uniform grid of mesh width h over R (with NX by NY by NZ grid 
lines) and define I& = lb, Y, 2) I lx, Y, 2) E [xi-~, xi+11 X [Yj-1, Yj+lI X h-l, a+Jl. 
2.1 Interior Point Discretizations 

At grid points (xi, 3/j, zk) in R we use the following discrete analogue of (1). 

LGkU = h21ijkg (2) 

where 

Lijk U = C Cyl U(pl) 

&kg = c&&?(d 
1 

The set (pl) is called the discretization point set, and the set (ql] is called the 
evaluation point set. Both (pl) and (ql) are subsets of Rijk; (pl] contains only grid 
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points, whereas (~1 does not have this restriction. The number and location of 
the evaluation points may be chosen to decrease the truncation error of the 
difference equations. Once an appropriate set of evaluation points has been 
selected, one may obtain O(V) accuracy by choosing the coefficients in (2) so 
that the truncation error LijkU - h21ijkLv = 0 for all v E PN+l, the space of 
polynomials of degree N + 1 or less. Discretizations of this form are studied in 
[2] and [13], where they are called HODIE methods; they are related to Mehr- 
stellenverfahren [8] and operator compact implicit (OCI) methods [7]. Alternate 
methods for deriving such formulae are considered in [15]. 

Our discretization of (1) at the (i, j, k)th grid point uses operators Liik and Ick 
of the form 

Lijk U = Cl Uij, 
+ Hui+l,j,k + u,j+l,k + Ui,j,k+l + Ui-l,j,k + Ui,j-l,k + Ui,j,k-I] 

+ C[&+l,j,k+l + Ui,j+l,k+l + Ui+l,j+l,k + Ui+l,j,k-I 

+ Ui,j+l,k-I + Ui+l,j--l,k + Ui-l,j,k+l + U&j-l,k+l 

+ Ui-l,j+l,k + Ui-l,j,k-1 + Ui,j-l,k-l + Ui-l,j-l,k] 

+ d[~+l,j+l,k+1 + fl+l,j+l,k-l + Ui+l,j--l,k+l + u+l,j-l,k-I 

+ Ui--l,j+l,k+l + Ui-l,j+l,k-I + Ui-l,j-l,k+l + Ui-l,j-l&-l] 

(3) 

+ @1[&+1/2,j+l/Z,k+l/2 + gi-1/2,j+1/2,k+1/2 + &?i+1/2,j-1/2,k+1/2 

+ gi-1/2,j-1/2,k+1/2 + gi+1/2,j+1/2,k-l/2 + gi-1/2,j+1/2,k-l/2 (4) 
+ gi+1/2,j-1/2,k-l/2 + gi-1/2,j-1/2,k-l/2] 

+ @2h?i+l,j,k + gi-l,j,k + gi,j+l,k + gi,j-1,k + gi,j,k+l + gi,j,k-11 

with the coefficients a = -24 + 5A - h2/4, b = 2 - h/24 + A2/48, c = 1 -t 
5A/48, d = 0, PO = 2 - A/4, ,& = f, and p2 = A/48, where A = h2X. This 
discretization has truncation error O(h4) and is of positive type [8]; hence for 
problems with Dirichlet and/or periodic boundary conditions, it follows that the 
resulting global error is at most O(h4). The discretization (3-4) reduces to the 
standard second-order accurate 7-point discretization of the Helmholtz equation 
with the choices a = -6 + A, b = PO = 1, c = d = p1 = p2 = 0. An alternate second- 
order discretization is obtained with the choices a = -24 + 6A, b = 2, c = 1, 
/3,, = 6, d = PI = p2 = 0. 

2.2 Discretization of Neumann Boundary Conditions 

At grid points (Xi, yj, zk) in aR2, we augment the difference equation to obtain 

LijkU = h21ijkg + Mijk& (5) 

where the functionals Lijk and Iijk are defined as in (2), with the point set (pll and 
fql] restricted to Rijk U R. The functional Jijk is defined by 

Jij/zS = c”f@(Q) 
1 

where the boundary evaluation points rl are taken on d& near (Xi, Yj, zk). 
The evaluation points and coefficients are chosen so that the truncation error 
Lijkv - IijkLv - JijklJ, = 0 for all V E PN. Difference approximations of the 
general form (5) are described in more detail in [3]. 
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The specific discretization considered here uses the Lijk and Iijk of (3-4), except 
that values of U and g outside the domain are defined by reflection through the 
boundary. A similar reflection symmetry is present in the standard second-order 
case obtained by applying (2) at a boundary point and then eliminating unknowns 
outside R, using central difference approximations to the normal derivative. Not 
every choice of evaluation points in (2) leads to a boundary point discretization 
(5) with the proper reflection symmetry, as the following simple theorem shows. 

THEOREM 1. No boundary discretization of the form (5) with Lijk of the form 
(3) with reflection symmetry and (41) = (pl] can be exact on P4, unless 2b + 8c + 
8d = 0. 

PROOF. It is sufficient to consider the case (xi, yj, zk) = (0, 0, 0) with x = 
XNX = and Un = u, = s. In this case we seek a discretization with Liku - 
h21ekg - hJ+s = 0 for all u E P4, where 

LijkU = au(0, 0, 0) 
+ b[2u(-h, 0, 0) + ~(0, h, 0) + ~(0, -h, 0) + ~(0, 0, h) + ~(0, 0, -h)] 
+ c[2u(-h, h, 0) + 2u(-h, -h, 0) + 2u(-h, 0, h) + 2u(-h, 0, -h) 

+ ~(0, h, h) + ~(0, h, -h) + ~(0, -h, h) + ~(0, -h, -h)J 
+ d[2u(-h, h, h) + 2u(-h, h, -h) + 2u(-h, -h, h) + 2u(-h, -h, -h)] 

Iij,= Pog(O, O,O) + Blg(O, h, 0) + P2g(-h, 090) + P3g(O, -h 0) 
+ P.&A 0, h) + &do, 0, -h) + Pod-4 h, 0) + PA-h, -h, 0) 
+ &do, h h) + &d-h, 0, h) + Plod’, -4 h) + PdO, h, -h) 
+ Pnd-h 0, -h) + PdO, -h, -h) + P&-h, h, h) +&ad-h -h h) 
+ &d-h h, -h) + &d-h, -h, -h) 

and Jijks is any linear combination of evaluations of s along x = 0. Let p = 
p2 + ,& + p7 + PQ + PI2 + PI4 + ,& + PI6 + PIT. Taking u = 3c3 and u = x4, 
in turn, yield the requirements that p = 2(b + 4c + 4d)/(6 + h2X), and p = 
2(b + 4c + 4d)/(12 + h2X) for h sufficiently small. These cannot both be satisfied 
unless b + 4c + 4d = 0. 0 

Since discretizations of (1) of positive type have b, c, and d of one sign, the 
theorem implies that useful boundary discretizations consistent with (3) cannot 
have fourth-order accuracy unless evaluation points that are not grid points are 
included. 

The exact form of the functional Jijh that we use depends upon whether the 
point (xi, 3/j, zk) is on a side, an edge, or a corner of the domain. At a point on 
the side x = ~Nx (not an edge or corner); where u, = u, = s, Jiik takes the form 

JNX,j,khz = Y@NX,j,k + Yl[SNX,j+l,k + SNX,j-l,k + SNX,j,k+l + SNX,j,k-I] (6) 

At a point on the edge with x = xNX and y = yNY (not a corner), where u, = 
U, = s for x = XNX, and U, = l+ = t for y = yNY, Jijk takes the form 

JNx,NY,kS = aO[SNX,NY,k + tNX,NY,k] 

+ ‘&[SNX,NY--I,k + tNX-l,NY,k] + 62[SNX,NY-2,k + tNX-2,NY,k] 

+ fi3bNX.NY-3,k + tNX-3,NY,k] (7) 
+ ~IbNX,NY,k+l + tNX,NY,k+l + SNX,NY,k-1 + tNX,NY,k-11 

+ &bNX,NY--l,k+l + tNX-l,NY,k+l + SNX,NY-l,k-1 + tNX-l,NY,k--11 
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Table I. Coefficients of Finite Difference 
Equations 

Coefficient Method A Method B 

-24 + 5A - A=/4 - 
2 - A/24 
1 + 58148 

0 
2 - A/4 

w 
A/48 

-12 + llA/12 
A/12 

-(1104 - 125A)/144 
-6 + A/4 
2 - A/48 

-(24 + A)/72 
-(24 - A)/48 

(8 + A)/16 

-(2328 -0245A),l44 
(141 - 14A)/18 
-(24 + A)/72 

(840 - 103A)/36 
-(1752 - 221A)/144 

(57 - 7A)/9 

-24 + 611 
2 
1 
0 
6 
0 
0 

-12 
0 

-10 
-2 

0 
0 
0 
0 

-8 
-2 

0 
0 
0 
0 
0 

At a point at the corner with x = xNX, y = yNY, and z = zNZ, where u, = u, = s 
for x = XNX, U, = Uy = t for y = yNr and U,, = U, = w for z = ZNZ, Jijk takes the 
form 

JNX,NY,NZ~ = fObNX,NY,NZ + tNX,NY,NZ + WNX,NY,NZ] 

+ flbNX,NY-l,NZ + tNX-l,NY,NZ + WNX-l,NY,NZ 

+ SNX,NY,NZ-1 + tNX,NY,NZ-1 + WNX,NY-1,NZI 

+ cP[SNX,NY-2,NZ + tNX-2,NY,NZ + WNX-2,NY.NZ 

+ SNX,NY,NZ-2 + tNXflY,NZ-2 + wNX,NY-2,NZl 

+ t3bNX,NY-3,NZ + tNX-B,NY,NZ + WNX-3,NYpNZ (8) 
+ SNX,NY,NZ-3 + tNX,NY,NZ-3 + WNX,NY-3,NZl 

+ e4bNX,NY-l,NZ-1 + tNX-l,NY,NZ-1 + WNX-l,NY-l.NZ] 

+ e5bNX,NY-l.NZ-2 + tNX-l,NY,NZ-2 + WNX-l,NY-2,NZ 

+ SNX,NY-2,NZ-1 + tNX-P.NYJfZ-1 + WNX-2&Y-l,NZ] 

+ cG[SNX,NY-P,NZ-2 + tNX-2,NY,NZ-2 + WNX-P,NY-2,NZ] 

Discretizations for all other boundary points may be obtained from these by 
symmetry. Values of coefficients yielding O(h4) and O(h2) truncation error are 
listed in Table I as Method A and Method B, respectively. 

Since the operators L+ and Iijk are obtained in each case from (3-4) by reflection 
symmetry, we have that all difference equations are of a positive type, which 
implies that the global error is the same as the truncation error in each case. 
Thus, methods A and B of Table I have order of accuracy O(h4) and O(h2), 
respectively. 
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2.3 Matrix Formulation 

After incorporating Dirichlet and periodic boundary conditions in the usual way 
and using the natural ordering of grid points, one obtains a linear system MU = 
g. The nonzero elements of a row given in M correspond to the coefficients of 
the associated functional Lck. The right-hand side contains the contributions 
from the operators Iijk and Jij/+, as well as terms eliminated from Lijhk, to account 
for Dirichlet boundary data. 

To describe the structure of the matrix M, we first develop a notation for a 
certain class of nearly tridiagonal matrices. Define 

a rb 
b a b 

b a b 
. . . 

Pt 

pb 

. . . 
. . . 

b a b 
vb a 

In tensor-product notation [14] this may be written as 

Tta, b; P, v, P; 4 = L @ a + Jnb, v, PI @ b 

where 

Jnh v, P) = 

0 CL P 
1 0 1 

10 1 
. . . 

. . . 
. . . 

101 
P v 0 

nxn 

and I,, is the identity matrix of order n. In terms of these we define matrices A, 
B, C, J,, and J, by 

A = WA b; ox, vx, px; n) 

B = T(b, c; A, vx, or; n) 

C = T(c, & ox, vx, px; n) 

Jy = Jmbw vy, py) 

Jz = Jh, vz, PA 

The scalars CL,, vX, px, and n depend upon the boundary conditions in x, py, v,,, py, 
and m depend upon the boundary conditions in y, and pcLz, v,, pz, and 1 depend 
upon the boundary conditions in z. Table II gives this dependence explicitly. The 
scalars a, b, c, and d are from (3-4). In terms of these quantities, the matrix M 
may finally be written as 

M = 4 ‘8 (I, 63 A + Jy 63 B) + J, 63~ (I, 63 B + Jy 60 C) 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 
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Table II. Dependence of p, u, p, and n on 
Boundarv Conditions 

Boundary Conditions 

Left Right UY~ nt 

Dirichlet Dirichlet 1 1 0 N-2 
Dirichlet Neumann 120 N 
Neumann Dirichlet 2 1 0 N-l 
Neumann Neumann 220 N 
Periodic Periodic 1 1 1 N-l 

t N is the number of grid lines. 

2.4 The Two-Dimensional Case 

One may obtain a related discretization for the Helmholtz equation in two 
dimensions by considering the application of the three-dimensional discretization 
to a problem whose solution u is independent of Z. When this is done, one obtains 
the fourth-order accurate discretization displayed in [4]. The resulting matrix 
problem Mu = g has a matrix of the somewhat simplified form 

M=I,@A+J,@B (10) 

where A and B have the same form as the matrices A and B described in Section 
2.3 above. 

3. THE FOURIER ALGORITHM 

The solution of linear algebraic systems involving matrices of the form (9) or 
(10) are the prototypical discrete problems for which fast-direct methods have 
been developed. Our software is based on the fact that high-order-accurate 
discretizations may be obtained by a proper choice of a, b, c, and d, and a 
perturbation of the right-hand side. We use the Fourier method, since software 
for the discrete Fourier transform is readily available, and the algorithm is 
adaptable for use on parallel or vector processors [23, 251. We describe the 
Fourier algorithm only briefly; details may be found in [6] or [24]. We first 
consider the two-dimensional problem Mu = g, with M defined as in (10); this 
yields the matrix problem 

A /d p-3 Pl. 63. 

B A B u2. g2. 

BAB us. g3. 

. . . = * (11) 
. . . 

. . . 

BA B &n-l,. &n-l,. 

~3 u,B A 4%. &? m. 

Note that we use double indices to denote the elements of the unknown vector u 
and the right-side vector g; uij denotes the value of u at the (i, j)th grid point, u.j 
denotes the jth column of u, and ui. denotes the ith of row of u. The Fourier 
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Table III. Eigenvalues/Eigenvectors of T(a, b; p, V, p; n)t 

Case: Nonperiodic (p = 0) 

u=l v=2 

p=l l7j = COS jr/(n + 1) IJj = cos(2j - l)T/(2?$) 
QG = sin ijr/(n + 1) Qij = sin i(2j - 1)*/(2n) 

r=2 Cj = cos(2j - 1)*/(2fl) Cj = cos(j - l)r/(n - 1) 
Qij = COS(Z’ - 1)(2j - 1)*/(2n) QG = cos(i - l)(j - l)?r/(n - 1) 

Case: Periodic (p = v = p = 1) 

oj = cos 2kr/n where k = Lj/2J 
Qii = cos j(i - l)?r/n, j even; - sin(j - l)(i - l)?r/n, j odd 

t Eigenvalues are a + 2boj, j=l ,...,n 

method relies on the fact that the matrices A and B have a common set of linearly 
independent eigenvectors of a very special form; see Table III. Let Q be a matrix 
of these eigenvectors, and let wi(A) denote the eigenvalue corresponding to the 
ith eigenvector of A. If we premultiply each block equation in (11) by Q-’ and 
scale each block of unknowns by Q-l, the system decouples to the solution of 
n tridiagonal systems of size m by m. The two-dimensional algorithm may be 
summarized as follows. 

Algorithm: 2D Decomposition 

(1) (Transform x variable.) Compute g-j c Q-‘g.j for j = 1, . . . , m. 
(2) (Solve n 1D problems in y.) Solve Tiui. = gi. for i = 1, . . . , n. 
(3) (Back transform x variable.) Compute U.j + Qu.j forj = 1, . . . , m. 

!Z’i is the tridiagonal matrix T(wi(A), wi(B); p,,, v,, pY; m). Multiplication by Q-’ 
is equivalent to performing a discrete Fourier transform and hence may be 
computed using FFT techniques. As a result, for NX - 1 a power of two, the 
algorithm requires only 0(2mnlog,n) floating point operations on a scalar 
computer. Note that no matrix need be stored, and the arrays u and g may 
coincide in memory, so that the algorithm is quite storage efficient. 

In the three-dimensional case, we consider a problem Mu = g, with M defined 
by (9) and triply subscripted u andg. In this case, after premultiplying each block 
equation by Q-’ and scaling each block of unknowns by Q-l, one obtains a set of 
decoupled block tridiagonal systems. The three-dimensional algorithm may be 
summarized as follows. 

Algorithm: 3D Decomposition 

(1) (Transform x variable.) Compute g.jk + Q-lg.jk for j = 1, . . . , m, 
k = 1, . . . ,1. 

(2) (Solve n 2D problems in ~2.) Solve MiUi.. = gi.. for i = 1, . . . , n. 
(3) (Back transform x variable.) Compute u.jk + QU.jk for j = 1, . . . , m, 

k = 1, . . . , 1. 

The matrices Mi are given by 

M; = 4 8 Ai + Jz @ Bi 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 
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where Ai = ‘J’(wi(A), wi(B); tiy, v,, py; m), and Bi = T(ui(B), #i(C); py, vy, PY; m). 
The n subproblems in Step 2 may be solved by the two-dimensional algorithm. 
Thus, in the three-dimensional case, when NX - 1 and NY - 1 are powers of 
two, the Fourier method requires only 0(2nmZ(logz n + logzm)) floating point 
operations on a scalar computer. 

4. COMPUTATIONAL EXAMPLES 

The algorithms described in Sections 2 and 3 are the basis of a suite of Fortran 
subprograms for the solution of the Helmholtz equation on rectangular two- or 
three-dimensional domains with any combination of Dirichlet, Neumann, or 
periodic boundary conditions. This subprogram package, called HFFT, is de- 
scribed in [5]. It is also available as part of the ELLPACK system [22]. Its two 
primary entry points are HFFTB and HFFT3, for two-dimensional and three- 
dimensional problems, respectively. In each case the user may select either a 
fourth-order accurate or a second-order accurate discretization; the discretiza- 
tions used are those discussed in Section 2. 

We illustrate the performance of the HODIE-based algorithms by comparing 
the software in HFFT with other widely available software for this problem. 
HFFT2 is contrasted with the subprogram SEPX4 [l], which uses standard 
second-order differences to solve the discrete problem using recursive cyclic 
reduction, an algorithm of the same complexity as the Fourier method. Optionally, 
SEPX4 will produce fourth-order accuracy using deferred corrections; this re- 
quires a second fast solve using a modified right-hand side. HFFT3 is compared 
with HW3CRT [ 11, which implements the Fourier method for the standard five- 
point second-order accurate discretization. In summary, we consider the following 
programs. 

Two-dimensional software 

HFFT2(2) HFFTB with second-order accurate compact nine-point discretiza- 
tion. (Fourier method) 

HFFT2(4) HFFTB with fourth-order accurate compact nine-point discretization. 
(Fourier method) 

SEPX4(2) SEPX4 with second-order accurate five-point discretization. (Recur- 
sive cyclic reduction) 

SEPX4(4) SEPX4 with second-order accurate five-point discretization. Fourth- 
order accuracy obtained by deferred corrections. (Recursive cyclic 
reduction) 

Three-dimensional software 

HFFT3(2) HFFT3 with second-order accurate compact 19-point discretization. 
(Fourier method) 

HFFT3(4) HFFTS with fourth-order accurate compact 19-point discretization. 
(Fourier method) 

HW3CRT Second-order accurate seven-point discretization. (Fourier method) 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 
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Table IV. Raw Timing Data in Seconds on Cyber 180/S% 

2D Second order Fourth order 

n SEPX4 HFFTB SEPX4 HFFTZ 

8 0.01 0.01 0.01 0.01 
16 0.01 0.02 0.03 0.02 
32 0.05 0.05 0.12 0.06 
64 0.20 0.18 0.51 0.22 

128 0.84 0.69 2.09 0.82 

3D Second order 

n HWBCRT HFFTB 

Fourth order 

HFFT3 

8 0.10 0.11 0.12 
12 0.25 0.27 0.30 
16 0.51 0.52 0.59 
20 0.91 0.94 1.08 
24 1.56 1.50 1.76 
28 2.90 2.75 3.06 

All our tests are run in single precision on a Cyber MO/855 computer (FTN 
compiler, version 5.1, OPT = 2). Timing data include time to evaluate the forcing 
function g and the boundary conditions. Since HFFTB requires only one fast 
solve, we expect its basic execution time to be roughly the same as SEPX4(2) 
which, in turn, should be half that of SEPX4(4). Similarly, we expect execution 
times for HW3CRT, HFFT3(2), and HFFT3(4) to be roughly the same. These 
are verified in Table IV where we present timings for the homogeneous Dirichlet 
problem for Laplace’s equation on a sequence of square grids (a problem for 
which the cost of function evaluations is minimum). 

Figure 1 displays the results obtained by running the two-dimensional software 
on six additional test problems. These plots display maximum error (scaled by 
the maximum value of u in the domain) versus computing time, plotted on a log- 
log scale. The data points correspond to grids of 9 x 9, 17 x 17, 33 X 33, 65 x 

65, and 129 X 129. These are listed below: 

Two-dimensional test problems 

A2 Lu = Au, u is prescribed (= 0) on x = 0, x = 1, y = 0, y = 1, and u = 
33cy(l - x)(1 - y)exp x + y. Solution is entire and slowly varying. 

B2 Lu = Au - 5u, u, is prescribed on x = 0, x = 1, y = 0, and u is prescribed 
(= 0) on y = 1; solution is the same as in problem A2. 

C2 Lu = Au - 2Ou, u is periodic in x and y, and u = cos 4?ry + sin 4a(x - y). The 
solution is entire and slowly varying. 

D2 The same as problem C2 with u prescribed on y = 0, u,, prescribed on y = 1, 
and u periodic in x. 

E2 Lu = Au, u is prescribed on x = 1, y = 1, and u, is prescribed on x = 0, 
y = 0, u = (xY)~‘~. Th e solution has singular third derivatives along x = 0 
andy = 0. 

F2 Lu = Au, u is prescribed on x = 0, 1, y = 0, 1, u = f(x)f(y), f(x) = (x314 - x). 
The solution has singular first derivatives along x = 0 and y = 0. 
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Fig. 1. Maximum error at grid points versus computing time for six two-dimensional 
test problems. Each line corresponds to a different software module: 0 denotes 
SEPX4(2), W denotes SEPX4(4), 0 denotes HFFT2(2), and 0 denotes HFFT2(4). The 
data points on each line correspond to grids of size 9 X 9, 17 X 17, 33 X 33, 65 X 65, 
and 129 x 129. 

Since the solutions to problems A2, B2, C2, and D2 are entire, the observed 
convergence rate of each method is as expected. The two second-order methods, 
HFFT2(2) and SEPX4(2) have nearly the same behavior for all these problems. 
HFFT2(4) shows no clear advantage over SEPX4(4) for problem A2 (a Dirichlet 
problem for Poisson’s equation), although, for a given grid, it runs twice as fast. 
However, when normal derivative or periodic boundary conditions are present 
(problems B2, C2, D2), the error produced by HFFT2(4) is much smaller (10 
times smaller in problem B2, 45 times smaller in problem D2). When combined 
with the faster execution times of HFFT2(4), these problems clearly show the 
advantage of HFFT2(4). For problems E2 and F2, which have solutions with 
singular low-order derivatives, the observed convergence rates were 1.5 and 0.7 
for all methods. In contrast to SEPX4(4), which shows no advantage over 
SEPX4(2) for these problems, HFFT2(4) again produces a smaller error, although 
this effect is less prominent in problem F2. 

Figure 2 displays the results obtained by running the three-dimensional soft- 
ware on six similar problems. These plots display maximum error (scaled by 
maximum value of u in the domain) versus computing time, plotted on a log-log 
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PROBLEM A3 PROBLEM 83 PROBLEM C3 

PROBLEM D3 
3 

PROBLEM E3 
1 

Time (set) 

PROBLEM F3 
4 

LEGEND 
I?= HWXRT 
cl= wm(2) 
. = HFFCI(4) 

Yg. 2. Maximum error at grid points versus computing time for six three-dimensional 
test problems. Each line corresponds to a different software module: 0 denotes HWBCRT, 
0 denotes HFFT3(2), and 0 denotes HFFT3(4). The data points correspond to grids of 
size 9 X 9 X 9, 17 X 17 X 17,21 X 21 X 21,25 X 25 X 25, and 29 X 29 X 29. 

scale. The data points correspond to grids of 9 x 9 x 9, 13 x 13 x 13, 17 x 17 x 
17, 21 X 21 X 21, 25 X 25 X 25, and 29 X 29 X 29. These are as follows: 

Three-dimensional test problems 

A3 Lu = Au, u is prescribed (= 0) on x = 0, x = 1, y = 0, y = 1, z = 0, z = 1, u = 
xyz(1 - x)(1 - y)(l - z)exp(x + y + z). Solution is entire and slowly varying. 

B3 Lu = Au - 5u, u, is prescribed on x = 0, x = 1, y = 0, z = 0, and u is 
prescribed (= 0) on y = 1, z = 1; the solution is the same as in problem A3. 

C3 Lu = Au - 2Ou, u periodic in x, y, and z, u = cos 47ry + cos4a.z + 
sin47r(x - y). The solution is entire and slowly varying. 

D3 The same as problem C3 with u prescribed on y = 0, z = 0, u, prescribed on 
y = 1, z = 1, and u periodic in x. 

E3 Lu = Au, u is prescribed on x = 1, y = 1, z = 0, z = 1, and u, is prescribed on 
x = 0, y = 0, u = (xyz) 5’2. The solution has singular third derivatives along 
x=Oandy=O. 
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F3 Lu = Au, u is prescribed on x = 0, 1, y = 0, 1, z = 0, 1, u = f(x)f(y)f(z), 
f(x) = (x3/4 - x). The solution has singular first derivatives along x = 0 
andy=O. 

The relative performance of these programs is seen to be similar to the two- 
dimensional case. 

REFERENCES 

1. ADAMS, J., SWARZTRAIJBER, P. N., AND SWEET, R. A. FISHPAK, a package of Fortran 
subprograms for the solution of separable elliptic partial differential equations. Version 3.1, 
NCAR Program Library, National Center for Atmospheric Research, Boulder, Colo., 1981. 

2. BOISVERT, R. F. Families of high order accurate discretizations of some elliptic problems. SIAM 
J. Sci. Stat. Comput. 2 (1981), 268284. 

3. BOISVERT, R. F. High order compact difference formulas for elliptic problems with mixed 
boundary conditions. In Advances in Computer Methods for Partial Differential Equations ZV, R. 
Vichnevetsky and R. S. Stepleman, Eds. IMACS, Rutgers Univ., New Brunswick, N.J., 1981, pp. 
193-199. 

4. BOISVERT, R. F. A fourth-order accurate fast direct method for the Helmholtz equation. In 
Elliptic Problem Soluers ZZ, G. Birkhoff and A. Schoenstadt, Eds. Academic Press, Orlando, Fla., 
pp. 35-44. 

5. BOISVERT, R. F. A fourth-order accurate Fourier method for the Helmholtz equation in three 
dimensions. Submitted for publication. 

6. BUZBEE, B. L., GOLUB, G. H., AND NIELSON, C. W. On direct methods for solving Poisson’s 
equations. SIAM J. Numer. Anal. 7 (1970), 627-655. 

7. CIMENT, M., LEVENTHAL, S. H., AND WEINBERG, B. C. The operator compact implicit method 
for parabolic equations. J. Comput. Phys. 28 (1978), 135-166. 

8. COLLATZ, L. The Numerical Treatment of Differential Equations. Springer-Verlag, Berlin, 1960. 
9. DYKSEN, W. R. The tensor product generalized AD1 method for elliptic problems. CSD-TR 

493, Purdue Univ., Computer Sciences Dept., West Lafayette, In., 1984. 
10. HOUSTIS, E. N., AND PAPATHEODOROU, T. S. High-order fast elliptic equation solver. ACM 

Trans. Math. Softw. $4 (Dec. 1979), 431-441. 
11. KAUFMAN, L., AND WARNER, D. D. High order, fast-direct methods for separable elliptic 

equations. SIAM J. Numer. Anal. 21 (1984), 672-694. 
12. LYNCH, R. E. O(h’) and O(h6) finite difference approximations to the Helmholtz equation in 

n-dimensions. In Advances in Computer Methods for Partial Differential Equations. V. R. Vich- 
nevetsky and R. S. Steplemen, Eds. IMACS, Rutgers Univ., New Brunswick, N.J., 1984, 
pp. 199-202. 

13. LYNCH, R. E., AND RICE, J. R. High accuracy finite difference approximations to solutions of 
elliptic partial differential equations. Proc. Nat. Acad. Sci. 75 (1978), 2541-2544. 

14. LYNCH, R. E., RICE, J. R., AND THOMAS, D. H. Tensor product analysis of partial differential 
equations. Bull. Am. Math. Sot. 70 (1964), 378-384. 

15. MANOHAR, R., AND STEPHENSON, J. W. High order difference schemes for linear partial 
differential equations. SIAM J. Sci. Stat. Comput. 5 (1984), 69-77. 

16. MAYO, A. Fast high order accurate solution of Laplace’s equation on irregular regions. SIAM 
J. Sci. Stat. Comput. 6 (1985), 144-157. 

17. MERCIER, P., AND DEVILLE, M. A multidimensional compact higher order scheme for 3-d 
Poisson’s equation. J. Comput. Phys. 39 (1981), 443-455. 

18. PEREYRA, V. On improving the approximate solution of a functional equation by deferred 
corrections. Numer. Math. 8 (1966), 376-391. 

19. PEREYRA, V., PROSKUROWSKI, W., AND WIDLUND, 0. High order fast Laplace solvers for the 
Dirichlet problem on general regions. Math. Comput. 31 (1977), 1-16. 

20. PROSKUROWSKI, W. Numerical solution of Helmholtz’s equation by implicit capacitance matrix 
methods. ACM Tram. Math. Softw. 5, 1 (Mar. 1979), 36-49. 

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 



234 l Ronald F. Boisvert 

21. PROSKUROWSKI, W. Algorithm 593. A package for the Helmholtz equation in nonrectangular 
planar regions. ACM Trans. Math. Softw. 9, 1 (Mar. 1983), 117-124. 

22. RICE, J. R., AND BOISVERT, R. F. Solving Elliptic Problems Using ELLPACK. Springer-Verlag, 
New York, 1985. 

23. SCHULTZ, M. H. Solving elliptic problems on an array processor system. In Elliptic Problem 
Solvers ZZ, G. Birkhoff and A. Schoenstadt, Eds. Academic Press, Orlando, Fl., 1984, pp. 77-92. 

24. SWARZTRAUBER, P. N. The methods of cyclic reduction, Fourier analysis, and the FACR 
algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19 (1977), 
490-501. 

25. SWARZTRAUBER, P. N. Vectorizing the FFTs. In Parallel Computation, G. Rodrigue, Ed. Aca- 
demic Press, New York, 1982, pp. 51-84. 

Received January 1986; revised April 1987; accepted April 1987 

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 


