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We present fourth-order-accurate compact discretizations of the Helmholtz equation on rectangular
domains in two and three dimensions with any combination of Dirichlet, Neumann, or periodic
boundary conditions. The resulting systems of linear algebraic equations have the same block-
tridiagonal structure as traditional central differences and hence may be solved efficiently using the
Fourier method. The performance of the method for a variety of test cases, including problems with
nonsmooth solutions, is presented. The method is seen to be roughly twice as fast as deferred
corrections and, in many cases, results in a smaller discretization error.
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1. INTRODUCTION

Fast direct methods have proved to be very effective techniques for solving
separable elliptic boundary value problems. These include cyclic reduction, Four-
ier analysis, FACR(]l), and tensor product matrix decomposition [6, 24]. Each
exploits, in some way, the tensor-product nature of the discrete problem obtained
by applying standard second-order accurate finite differences on a rectangular
domain. Problems on nonrectangular domains may be solved by using fast-direct
methods after suitable preprocessing to extend them to an enclosing domain
[16, 20].

Recently, there has been much interest in combining fast-direct methods with
high-order-accurate discretizations to produce software that is both very fast and
very accurate. There are a variety of techniques for attaining high-order accuracy
while maintaining the special form of discrete problem required for fast-direct
solution techniques. The accuracy of standard second-order finite differences can
be extended using deferred corrections [18]. This is done for two-dimensional
problems in the FISHPAK subprograms SEPELI and SEPX4 [1] to attain
fourth-order accuracy. In [19] the Dirichlet problem for Laplace’s equation is
solved for nonrectangular planar regions to fourth-order accuracy by using the
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capacitance matrix method and deferred corrections. A similar technique is
employed to obtain sixth-order accuracy in [21].

An alternative to deferred corrections is the use of high-order-accurate compact
finite differences. This was done in [10] to attain fourth- and sixth-order accuracy
for the two-dimensional Helmholtz equation with Dirichlet boundary conditions.
Similar techniques have also been applied to the three-dimensional Poisson
equation [12, 17]. Finite-element discretizations based upon tensor products of
one-dimensional spline functions also yield discrete problems to which fast-direct
methods can be applied [9, 11].

In this paper I describe new fourth-order-accurate compact discretizations of
the two- and three-dimensional Helmholtz equations. I demonstrate how such
compact discretizations can be extended to maintain fourth-order accuracy at
boundary points where Neumann boundary conditions are specified. These
discretizations are the basis for a suite of Fortran subprograms that solve the
Helmholtz equation on rectangular domains in two and three dimensions with
any combination of Dirichlet, Neumann, or periodic boundary conditions [5].
The discrete problem is solved using the Fourier method. This software differs
from [10], [12], and [17] in the variety of boundary conditions handled, as well
as in the details of the direct solution. The software described here is roughly
twice as fast as fourth-order solvers based on deferred corrections and does not
require significantly more working storage.

2. HODIE DISCRETIZATIONS
We consider the problem
%u % S
W+W+@+>\u=g(x,y,z) (1)

(A < 0 constant) on an open rectangular domain R in three dimensions; on the
boundary dR = dR; U dR; U dR; we have

—u prescribed (Dirichlet condition) on dR;,
—u, prescribed (Neumann condition) on dR,,
—the solution is periodic on dRs.

(0R,, dR,, and OR; are each unions of sides of R.) To discretize the problem, we
first place a uniform grid of mesh width h over R (with NX by NY by NZ grid
lines) and define R, = {(x, y, 2) | (x, ¥, 2) € [xi-1, Xis1] X [¥j-1, Yjr1] X [2a-1, Zk41]}.
2.1 Interior Point Discretizations
At grid points (x;, ¥, 2x) in R we use the following discrete analogue of (1).

Liij = hzlijkg (2)
where

LU = Y aU(py)
{

Ljg = ;Btg((h)

The set {p;} is called the discretization point set, and the set {q;} is called the
evaluation point set. Both {p;} and {q,} are subsets of R;;; {p;} contains only grid
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points, whereas {q;} does not have this restriction. The number and location of
the evaluation points may be chosen to decrease the truncation error of the
difference equations. Once an appropriate set of evaluation points has been
selected, one may obtain O(h") accuracy by choosing the coefficients in (2) so
that the truncation error Ly,v — h*[Lv = 0 for all v € PN*! the space of
polynomials of degree N + 1 or less. Discretizations of this form are studied in
[2] and [13], where they are called HODIE methods; they are related to Mehr-
stellenverfahren [8] and operator compact implicit (OCI) methods [7]. Alternate
methods for deriving such formulae are considered in {15].

Our discretization of (1) at the (i, j, k)th grid point uses operators Ly, and I
of the form

Liij= anjk
+ b[Uissje + Usjorge + Uijerr + Ui + Usjore + Ui jeil
+ c[Uisrjret + Uijorpsr + Unerjore + Ui je—
+ Usjerp—1 + Uiryjmre + Ui jpr + U jorpnr (3)
+ Ui jorp + Uisrje—1 + Ui jmip—1 + Uiny jorp]
+ dlUierj141 + Uisrjerp—1 + Uit jm1 41 + Uiir jo1p-1
+ Uingjaresr + Uicyjerpot + Uiy jorpr1 + Uicp jor p-1]

Ljkg = Bogir
+ Bil&i+1/2,j+1/20+172 T Bim1/2,jv1/2k+1/2 T iv1y2,j-1/20+1/2
+ gic1yo.j-1/2k+172 T Eivr/2jri2k—1/2 + Giv1/2,j+1/2,k-1/2 4)
+ Ziv1/2,j-1/2.0—172 + 8im1/2,j-1/2,k-1/2]
+ Bolgivrjr + Gi-rjk T Sij+re + Sijore t Gijper + &ijri]

with the coefficients ¢ = —24 + 5A — A%/4, b =2 — A/24 + A%/48, c =1 +
5A/48,d = 0, By = 2 — A/4, B1 = 3, and B = A/48, where A = h%\. This
discretization has truncation error O(h*) and is of positive type [8]; hence for
problems with Dirichlet and/or periodic boundary conditions, it follows that the
resulting global error is at most O(h*). The discretization (3-4) reduces to the
standard second-order accurate 7-point discretization of the Helmholtz equation
with the choicesa=—6+ A, b= 8, =1,¢c=d = §; = 82 = 0. An alternate second-
order discretization is obtained with the choices a = —24 + 6A, b = 2, ¢ = 1,
Bo=6,d=p =06.=0.

2.2 Discretization of Neumann Boundary Conditions

At grid points (x;, yj, zx) in dR;, we augment the difference equation to obtain
LU = h*Lug + hdju, (5)

where the functionals L, and I, are defined as in (2), with the point set {p;} and

{q} restricted to R;, U R. The functional Jj, is defined by

Jirs = X vis(r)
l

where the boundary evaluation points r, are taken on dR, near (x;, ¥;, 2).
The evaluation points and coefficients are chosen so that the truncation error
Lpv — IpLlv — Jiv, = 0 for all v € PN, Difference approximations of the
general form (5) are described in more detail in [3].
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The specific discretization considered here uses the L, and I of (3-4), except
that values of U and g outside the domain are defined by reflection through the
boundary. A similar reflection symmetry is present in the standard second-order
case obtained by applying (2) at a boundary point and then eliminating unknowns
outside R, using central difference approximations to the normal derivative. Not
every choice of evaluation points in (2) leads to a boundary point discretization
(5) with the proper reflection symmetry, as the following simple theorem shows.

THEOREM 1. No boundary discretization of the form (5) with Ly, of the form
(3) with reflection symmetry and {q;} = {p:} can be exact on P*, unless 2b + 8¢ +
8d = 0.

Proor. It is sufficient to consider the case (x;, ¥, 2,) = (0, 0, 0) with x =
xnvx = and u, = u, = s. In this case we seek a discretization with Lju —
h®Lixg — hd s = 0 for all u € P*, where

L,yku = au(O, O, 0)
+ b[2u(—h, 0, 0) + u(0, h, 0) + u(0, —h, 0) + u(0, 0, h) + u(0, 0, —h)]
+ ¢[2u(—h, h, 0) + 2u(—h, —h, 0) + 2u(—h, 0, h) + 2u(—h, 0, —h)
+ u(0, h, h) + w(0, h, —h) + u(0, —h, h) + u(0, —h, —h)]
+ d[2u(—h, h, h) + 2u(—h, h, —h) + 2u(—h, —h, h) + 2u(—h, —h, —h)]

Iing = B0£(0,0,0) + 8,£(0, h, 0) + B2g(—h, 0, 0) + B3g(0, —h, 0)
+ B84£(0,0, h) + B52(0,0, —h) + Beg(—h, h, 0) + B:8(—h, —h, 0)
+ B3g (0, h, h) + Bog (—h, 0, h) + 8108 (0, —h, h) + 8118(0, h, —h)
+ B128(—h, 0, —h) + B13g(0, —h, —h) + B14g(—h, h, h) + B1sg(—h, —h, h)
+ Bg(—h, h,—h) + B128(—h,—h,—h)

and J;s is any linear combination of evaluations of s along x = 0. Let 8 =
Bz + B + B1+ Bo + Biz + Bue + Bis + Bis + Bir. Taking u = x® and u = x*,
in turn, yield the requirements that 8 = 2(b + 4c + 4d)/(6 + h*)\), and 8 =
2(b + 4c + 4d)/(12 + h?%)) for h sufficiently small. These cannot both be satisfied
unless b+ 4c+4d=0. O

Since discretizations of (1) of positive type have b, ¢, and d of one sign, the
theorem implies that useful boundary discretizations consistent with (3) cannot
have fourth-order accuracy unless evaluation points that are not grid points are
included.

The exact form of the functional J;; that we use depends upon whether the
point (x;, ¥;, 2x) is on a side, an edge, or a corner of the domain. At a point on
the side x = xnx (not an edge or corner); where u, = u, = s, J;; takes the form

Inxjrtn = YoSnxjr + YilSnxj+1e t SNxj-1k + SNxjE+1 + SNX k1] 6)

At a point on the edge with x = xyx and y = yny (not a corner), where u, =
u, = s for x = xyx, and u, = u, = t for y = yny, Jj; takes the form

Inx Ny RS = Oo[SnxNye t+ ENx Ny k]
+ Silsvxny—1x T tvx—1nve] + Oo[Snxny—2k + tnx-anye]
+ O3[snxNy-sk + tNx-3.NYE] (7
+ dalsnxnyrer + tnxnvier F SNxNYE-1 + Enx Ny E-1]
+ O5[snxNy-1he1 T Evx—1NvR+r Tt SNXNY-16-1 T INX-1NYR-1]
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Table I. Coefficients of Finite Difference

Equations
Coefficient Method A Method B
a —24 +5A — A4 —24 + 6A
b 2— A/24 2
¢ 1+5A/48 1
d 0 0
Bo 2— A/4 6
) 1/2 0
B2 A/48 0
Yo —12 + 11A/12 -12
7 A/12 0
8o —(1104 — 125A)/144 -10
N —6+ A/4 -2
02 2— A/48 0
53 —(24 + A)/T2 0
) —(24 — A)/48 0
d5 (8+ A)/16 0
€0 0 —8
@ —(2328 — 245A4)/144 -2
€ (141 — 14A)/18 0
€ —(24 + A)/72 0
€ (840 — 103A)/36 0
€ —(1752 — 221A)/144 0
€ (57 — TA)/9 0

At a point at the corner with x = xnyx, ¥y = ynv, and z = zyz, where u, = u, = s
for x = xnx, up = u, = t for y = yny and u, = u, = w for z = zyz, J;x takes the
form

JInxNyNzS = €lsSnxnynz + tnx vz + Waxnynz)

+ alsvxny-1nz  + Inx-iNvNz T WNx-1NYNZ

+ snxnNyNz-1 + EnxNyNz-1 + WNxNy-1NzZ]
+ elsnxny-anz  + Enx-2NyNz + WNx-2NY.NZ

+ SnxnvNz-2 t InxNyNz-2 + WNxNy—2,Nz]
+ es[snxny-snz  + Enx-snyNz T WNx-3NY.NZ (8)

+ snxny.Nz-3 + tnxNy.Nz-3 + Wax,Ny-3NzZ]
+ edsvxnv-1nz—1 T tnxinvNzo1 + Wx-1Ny-1,87]
+ es[snx.Ny-1.Nz—2 + ENx-1NYNzZ—2 + WNX-1,NY-2,NZ

+ snxnv-a.Nz-1 F+ INx-aNvNZ-1 T Wax-anNv-1.82])

+ esnxNy-2.Nz-2 + ENx-2NYNzZ-2 + WNx-2NY-2,NZ]

Discretizations for all other boundary points may be obtained from these by
symmetry. Values of coefficients yielding O(h*) and O(h?) truncation error are
listed in Table I as Method A and Method B, respectively.

Since the operators Ly, and I;; are obtained in each case from (3-4) by reflection
symmetry, we have that all difference equations are of a positive type, which
implies that the global error is the same as the truncation error in each case.
Thus, methods A and B of Table I have order of accuracy O(k*) and O(h?),
respectively.
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2.3 Matrix Formulation

After incorporating Dirichlet and periodic boundary conditions in the usual way
and using the natural ordering of grid points, one obtains a linear system Mu =
g. The nonzero elements of a row given in M correspond to the coefficients of
the associated functional L. The right-hand side contains the contributions
from the operators I;; and Ji;, as well as terms eliminated from L, to account
for Dirichlet boundary data.

To describe the structure of the matrix M, we first develop a notation for a
certain class of nearly tridiagonal matrices. Define

a ub pb]
b a b
b a b
T(a, b; u, v, p; 1) = '
b a b
| pb vb aj nxn

In tensor-product notation [14] this may be written as

T(a, b u, v, p;n) =1, a+ J,(u, v, p) ®b

where
"0 o7
1 01
1 0 1
Jn(ﬂ) y’ p) = .
1 01
L » . v 0_ nXxn

and I, is the identity matrix of order n. In terms of these we define matrices A,
B, C, J,, and J, by

A = T(a, b; p, vz, px; 1)
B = T(b, C5 Mxs Vxs Pxs n)
C =T(c, d; ux, ¥x, p; 1)
Jy = Jm(ﬂy; Vy, Py)

J. = Ji(u., vz, p2)

The scalars p,, v,, p:, and n depend upon the boundary conditions in x, u,, vy, py,
and m depend upon the boundary conditions in y, and ., v,, p,, and [ depend
upon the boundary conditions in 2. Table II gives this dependence explicitly. The
scalars a, b, ¢, and d are from (3-4). In terms of these quantities, the matrix M
may finally be written as

M= (I,®A+J,®B)+J,®1,®B+J,8C() 9
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Table II. Dependence of g, v, p, and n on
Boundary Conditions

Boundary Conditions

Left Right w v p nt
Dirichlet  Dirichlet 11 0 N-2
Dirichlet Neumann 1 2 0 N
Neumann Dirichlet 21 0 N-1
Neumann Neumann 2 2 0 N
Periodic  Periodic 1 11 N-1

t N is the number of grid lines.

2.4 The Two-Dimensional Case

One may obtain a related discretization for the Helmholtz equation in two
dimensions by considering the application of the three-dimensional discretization
to a problem whose solution u is independent of z. When this is done, one obtains
the fourth-order accurate discretization displayed in [4]. The resulting matrix
problem Mu = g has a matrix of the somewhat simplified form

M=I1,8A+J,®B (10)

where A and B have the same form as the matrices A and B described in Section
2.3 above.

3. THE FOURIER ALGORITHM

The solution of linear algebraic systems involving matrices of the form (9) or
(10) are the prototypical discrete problems for which fast-direct methods have
been developed. Our software is based on the fact that high-order-accurate
discretizations may be obtained by a proper choice of a, b, ¢, and d, and a
perturbation of the right-hand side. We use the Fourier method, since software
for the discrete Fourier transform is readily available, and the algorithm is
adaptable for use on parallel or vector processors [23, 25]. We describe the
Fourier algorithm only briefly; details may be found in [6] or [24]. We first
consider the two-dimensional problem Mu = g, with M defined as in (10); this
yields the matrix problem

A uB p<B] ERES
B A B Us. 8.
B A B Us. 8s.
. . . . _ . .
B A B Un-1,. Em—1,
_pr VxB A _ | Um. | 8m.

Note that we use double indices to denote the elements of the unknown vector u
and the right-side vector g; u; denotes the value of u at the (i, j)th grid point, v ;
denotes the jth column of u, and u;, denotes the ith of row of u. The Fourier
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Table III. Eigenvalues/Eigenvectors of T'a, b; u, v, p; n)t

Case: Nonperiodic (p = 0)

v=1 y=2
p=1 oj = cos ju/(n + 1) g; = cos(2j — 1)7/(2n)
Qi =sin jr/(n + 1) Q; =sin i(2j — 1)w/(2n)
n=2 a; = cos(2j — 1)=/(2n) o;=cos(j — L)a/(n ~ 1)
Qi = cos(i — 1)(2j — 1)=/(2n) Qi=cos(i—1)(j—x/(n—1)

Case: Periodic (u=v=p=1)

gj = cos 2knx/n where k = Lj/21
Qy = cos j(i — 1)«w/n, j even; — sin(j — 1)({ = 1)n/n, j odd

t Eigenvalues are a + 2bg;, j=1,...,n

method relies on the fact that the matrices A and B have a common set of linearly
independent eigenvectors of a very special form; see Table III. Let @ be a matrix
of these eigenvectors, and let w;(A) denote the eigenvalue corresponding to the
ith eigenvector of A. If we premultiply each block equation in (11) by @ ! and
scale each block of unknowns by @', the system decouples to the solution of
n tridiagonal systems of size m by m. The two-dimensional algorithm may be
summarized as follows.

Algorithm: 2D Decomposition

(1) (Transform x variable.) Compute g; < @ 'g;forj=1,...,m
(2) (Solve n 1D problems in y.) Solve Tyu;, = g;,. fori=1,...,n
(3) (Back transform x variable.) Compute u; «— Qu;forj=1,..., m.

T; is the tridiagonal matrix T'(w;(A), w;(B); wy, vy, py; m). Multiplication by @
is equivalent to performing a discrete Fourier transform and hence may be
computed using FFT techniques. As a result, for NX — 1 a power of two, the
algorithm requires only O(2mnlogyn) floating point operations on a scalar
computer. Note that no matrix need be stored, and the arrays u and g may
coincide in memory, so that the algorithm is quite storage efficient.

In the three-dimensional case, we consider a problem Mu = g, with M defined
by (9) and triply subscripted u and g. In this case, after premultiplying each block
equation by @' and scaling each block of unknowns by @, one obtains a set of
decoupled block tridiagonal systems. The three-dimensional algorithm may be
summarized as follows.

Algorithm: 3D Decomposition

(1) (Transform x variable.) Compute g, « Q7 'g; for j = 1,...,m,
k=1,...,L
(2) (Solve n 2D problems in yz.) Solve M;u;.. =g;..fori=1,...,n
(3) (Back transform x variable.) Compute uj «— Quj for j = 1,...,m,
k=1,...,L

The matrices M; are given by
M;=II®A,'+JZ®B,'
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where A; = T(wi(A), wi(B); wy, vy, py; m), and B; = T(wi(B), wi(C); py, vy, py; m).
The n subproblems in Step 2 may be solved by the two-dimensional algorithm.
Thus, in the three-dimensional case, when NX — 1 and NY — 1 are powers of
two, the Fourier method requires only O(2nml(logzn + logem)) floating point
operations on a scalar computer.

4. COMPUTATIONAL EXAMPLES

The algorithms described in Sections 2 and 3 are the basis of a suite of Fortran
subprograms for the solution of the Helmholtz equation on rectangular two- or
three-dimensional domains with any combination of Dirichlet, Neumann, or
periodic boundary conditions. This subprogram package, called HFFT, is de-
scribed in [5]. It is also available as part of the ELLPACK system [22]. Its two
primary entry points are HFF'T2 and HFFT3, for two-dimensional and three-
dimensional problems, respectively. In each case the user may select either a
fourth-order accurate or a second-order accurate discretization; the discretiza-
tions used are those discussed in Section 2.

We illustrate the performance of the HODIE-based algorithms by comparing
the software in HFFT with other widely available software for this problem.
HFFT2 is contrasted with the subprogram SEPX4 [1], which uses standard
second-order differences to solve the discrete problem using recursive cyclic
reduction, an algorithm of the same complexity as the Fourier method. Optionally,
SEPX4 will produce fourth-order accuracy using deferred corrections; this re-
quires a second fast solve using a modified right-hand side. HFFT3 is compared
with HW3CRT [1], which implements the Fourier method for the standard five-
point second-order accurate discretization. In summary, we consider the following
programs.

Two-dimensional software

HFFT2(2) HFFT2 with second-order accurate compact nine-point discretiza-
tion. (Fourier method)

HFFT2(4) HFFT2 with fourth-order accurate compact nine-point discretization.
(Fourier method)

SEPX4(2) SEPX4 with second-order accurate five-point discretization. (Recur-
sive cyclic reduction)

SEPX4(4) SEPX4 with second-order accurate five-point discretization. Fourth-
order accuracy obtained by deferred corrections. (Recursive cyclic
reduction)

Three-dimensional software

HFFT3(2) HFFT3 with second-order accurate compact 19-point discretization.
(Fourier method)

HFFT3(4) HFFT3 with fourth-order accurate compact 19-point discretization.
(Fourier method)

HW3CRT Second-order accurate seven-point discretization. (Fourier method)
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.
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Table IV. Raw Timing Data in Seconds on Cyber 180/855

2D Second order Fourth order
n SEPX4 HFFT2 SEPX4 HFFT2
8 0.01 0.01 0.01 0.01
16 0.01 0.02 0.03 0.02
32 0.05 0.05 0.12 0.06
64 0.20 0.18 0.51 0.22
128 0.84 0.69 2.09 0.82
3D Second order Fourth order
n HW3CRT HFFT3 HFFT3
8 0.10 0.11 0.12
12 0.25 0.27 0.30
16 0.51 0.52 0.59
20 0.91 0.94 1.08
24 1.56 1.50 1.76
28 2.90 2.75 3.06

All our tests are run in single precision on a Cyber 180/855 computer (FTN
compiler, version 5.1, OPT = 2). Timing data include time to evaluate the forcing
function g and the boundary conditions. Since HFFT2 requires only one fast
solve, we expect its basic execution time to be roughly the same as SEPX4(2)
which, in turn, should be half that of SEPX4(4). Similarly, we expect execution
times for HW3CRT, HFFT3(2), and HFFT3(4) to be roughly the same. These
are verified in Table IV where we present timings for the homogeneous Dirichlet
problem for Laplace’s equation on a sequence of square grids (a problem for
which the cost of function evaluations is minimum).

Figure 1 displays the results obtained by running the two-dimensional software
on six additional test problems. These plots display maximum error (scaled by
the maximum value of u in the domain) versus computing time, plotted on a log-
log scale. The data points correspond to grids of 9 X 9, 17 X 17, 33 X 33, 65 X
65, and 129 X 129. These are listed below:

Two-dimensional test problems

A2 Lu = Au, u is prescribed (= 0)on x =0, x =1, y=0,y =1, and u =
3xy(1 — x)(1 — y)exp x + y. Solution is entire and slowly varying.

B2 Lu = Au — 5u, u, is prescribed on x = 0, x = 1, y = 0, and u is prescribed
(= 0) on y = 1; solution is the same as in problem A2.

C2 Lu = Au — 20u, u is periodic in x and y, and u = cos 4wy + sin4n(x — y). The
solution is entire and slowly varying.

D2 The same as problem C2 with u prescribed on y = 0, u, prescribedon y = 1,
and u periodic in x.

E2 Lu = Au, u is prescribed on x = 1, y = 1, and u, is prescribed on x = 0,
y =0, u = (xy)*% The solution has singular third derivatives along x = 0
andy = 0.

F2 Lu= Au, uisprescribedonx=0,1,y =0, 1, u=f(x)f (), f(x) = (x** — x).
The solution has singular first derivatives along x = 0 and y = 0.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.
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Fig. 1. Maximum error at grid points versus computing time for six two-dimensional
test problems. Each line corresponds to a different software module: O denotes
SEPX4(2), B denotes SEPX4(4), O denotes HFFT2(2), and ® denotes HFFT2(4). The
data points on each line correspond to grids of size 9 X 9, 17 X 17, 33 X 33, 65 X 65,
and 129 X 129.

Since the solutions to problems A2, B2, C2, and D2 are entire, the observed
convergence rate of each method is as expected. The two second-order methods,
HFFT2(2) and SEPX4(2) have nearly the same behavior for all these problems.
HFFT2(4) shows no clear advantage over SEPX4(4) for problem A2 (a Dirichlet
problem for Poisson’s equation), although, for a given grid, it runs twice as fast.
However, when normal derivative or periodic boundary conditions are present
(problems B2, C2, D2), the error produced by HFFT2(4) is much smaller (10
times smaller in problem B2, 45 times smaller in problem D2). When combined
with the faster execution times of HFFT2(4), these problems clearly show the
advantage of HFFT2(4). For problems E2 and F2, which have solutions with
singular low-order derivatives, the observed convergence rates were 1.5 and 0.7
for all methods. In contrast to SEPX4(4), which shows no advantage over
SEPX4(2) for these problems, HFFT2(4) again produces a smaller error, although
this effect is less prominent in problem F2.

Figure 2 displays the results obtained by running the three-dimensional soft-
ware on six similar problems. These plots display maximum error (scaled by
maximum value of u in the domain) versus computing time, plotted on a log-log
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Tig. 2. Mazximum error at grid points versus computing time for six three-dimensional
test problems. Each line corresponds to a different software module: (J denotes HW3CRT,
O denotes HFFT3(2), and @ denotes HFFT3(4). The data points correspond to grids of
size 9 X 9 X 9,17 X 17 X 17,21 X 21 X 21, 25 X 25 X 25, and 29 X 29 X 29.

scale. The data points correspond to grids of 9 X 9 X 9, 13 X 13 X 13, 17 X 17 X
17,21 X 21 X 21, 25 X 25 X 25, and 29 X 29 X 29. These are as follows:

Three-dimensional test problems

A3

B3

C3

D3

E3

Lu = Au, uis prescribed (=0)onx=0,x=1,y=0,y=1,2=0,z2=1,u=
xyz(1 — x)(1 — y}(1 — 2)exp(x + y + z). Solution is entire and slowly varying.
Lu = Au — 5u, u, is prescribed on x =0, x =1,y =0, 2 = 0, and u is
prescribed (= 0) on y = 1, z = 1; the solution is the same as in problem A3.
Lu = Au — 20u, u periodic in x, ¥, and 2z, u = cosd4nry + cosdnz +
sin4x(x — y). The solution is entire and slowly varying.

The same as problem C3 with u prescribed on y = 0, z = 0, u, prescribed on
y =1,z =1, and u periodic in x.

Lu= Au, uis prescribedonx=1,y=1,z2=0, z =1, and u, is prescribed on
x =0,y =0, u= (xyz)*2 The solution has singular third derivatives along
x=0andy=0.
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F3 Lu = Au, uis prescribedon x =0, 1,y =0,1,2 =0, 1, u = f(x)f ) (2),

f(x) = (x¥* — x). The solution has singular first derivatives along x = 0
andy = 0.

The relative performance of these programs is seen to be similar to the two-

dimensional case.
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