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Access control models, such as the ones supported by commercial DBMSs, are not yet able to
fully meet many application needs. An important requirement derives from the temporal
dimension that permissions have in many real-world situations. Permissions are often limited
in time or may hold only for specific periods of time. In this article, we present an access
control model in which periodic temporal intervals are associated with authorizations. An
authorization is automatically granted in the specified intervals and revoked when such
intervals expire. Deductive temporal rules with periodicity and order constraints are provided
to derive new authorizations based on the presence or absence of other authorizations in
specific periods of time. We provide a solution to the problem of ensuring the uniqueness of the
global set of valid authorizations derivable at each instant, and we propose an algorithm to
compute this set. Moreover, we address issues related to the efficiency of access control by
adopting a materialization approach. The resulting model provides a high degree of flexibility
and supports the specification of several protection requirements that cannot be expressed in
traditional access control models.

Categories and Subject Descriptors: H.2.7 [Information Systems]: Database Administra-
tion—security, integrity, and protection

General Terms: Security

Additional Key Words and Phrases: Access control, periodic authorization, temporal con-
straints, time management

1. INTRODUCTION

Data protection from unauthorized accesses is becoming more and more
crucial as an increasing number of organizations entrust their data to
database systems. Moreover, as organizations and users are becoming more

This article extends the previous work by the authors, which appeared in IEEE Transactions
on Knowledge and Data Engineering 8, 1, 67–80, ©1996, The Institute of Electrical and
Electronics Engineers, Inc.
Authors’ address: Dipartimento di Scienze dell’Informazione, Università di Milano, via
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aware of data security issues, more articulate access control policies are
being devised. An access control policy establishes for each user (or group of
users, or functional role within the organization) the actions the user can
perform on each object (or set of objects) within the system and under
which circumstances. An example of a policy is that “all programmers can
modify the project files every working day except Friday afternoons.” Once
the organization security policies are devised, they are implemented in
terms of the access control model of the DBMS at hand.

The implementation of the security policy in terms of access control
models, provided as part of a typical current DBMS, is however quite a
difficult task. Current commercial DBMSs are still rather poor with respect
to expressiveness of security requirements and therefore unable to directly
support many relevant application policies [Jajodia et al. 1997]. Even the
preceding simple requirement cannot be directly supported by any current
commercial DBMS. As a matter of fact, in most cases the access control
policies must be implemented as code in application programs. Such an
approach makes it very difficult to verify and modify the access control policies
and to provide any assurance that these policies are actually enforced.

An important requirement, common to many application security poli-
cies, is related to the temporal dimension of access permissions. In many
real-world situations, permissions may hold only for specific time intervals.
A further requirement concerns periodic authorizations. In many organiza-
tions, authorizations given to users must be tailored to the pattern of their
activities within the organization. Therefore, users must be given access
authorizations to data only for the time periods in which they are expected
to need the data. The preceding requirement concerning programmers and
project files is an example of specification requiring an authorization
mechanism able to support periodic authorizations. As another example,
consider part-time staff that should be authorized for accesses only on
working days between 9 AM and 1 PM.

Periodic authorizations are also crucial for optimizing resource usage. In
particular, authorizations for application programs, whose execution is
very resource-expensive, could be assigned only for specific time periods in
which other programs are not likely to be executed. Periodic authorizations
are, however, even more difficult to handle than simple, nonperiodic,
temporal authorizations. Therefore the solution of implementing periodic
authorizations as part of application programs is not viable.

The development of a temporal authorization model entails several
issues, including the definition of a formal semantics for the authorization
model, the development of strategies for efficient access control, and the
development of tools for authorization administration. In this article we
address some of these issues by proposing an access control model charac-
terized by temporal authorizations. In the proposed model, a temporal
expression is associated with each authorization, identifying the instants in
which the authorization applies. The temporal expression is formed by a
periodic expression (e.g., 9am to 1pm on Working-days , identifying the
periods from 9 AM to 1 PM in all days excluding weekends and vacations),
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and a temporal interval bounding the scope of the periodic expression (e.g.,
[2/1997, 8/1997] , restricting the preceding periods to those between
February and August, 1997).

Another relevant feature provided by our model is the possibility of
specifying derivation rules expressing temporal dependencies among autho-
rizations. These rules allow the derivation of new authorizations based on
the presence or absence of other authorizations in specific periods of time.
By using derivation rules, many protection requirements can be concisely
and clearly specified. For example, it is possible to specify that two users,
working on the same project, must receive the same authorizations on
certain types of objects; or that a user should receive the authorization to
access an object in certain periods, only if nobody else was ever authorized
to access the same object in any instant within those periods. Derivation
rules are specified by constraining the rule application with a temporal
expression, by providing the authorization to be derived, by specifying one
of the three temporal dependency operators that the model provides, and,
finally, by giving the body of the rule in the form of a Boolean expression of
authorizations. The three temporal operators correspond to the three main
temporal relations among authorizations that we have identified in com-
mon protection requirements.

In addition to these temporal capabilities, the model supports both
positive and negative authorizations. The capability of supporting explicit
denials, provided by negative authorizations, can be used for specifying
exceptions to positive authorizations and for supporting a stricter control in
the case of decentralized authorization administration [Bertino et al. 1993].
The combination of positive/negative authorizations with temporal authori-
zations results in a powerful yet flexible authorization model.

A formal semantics has been defined for temporal authorizations and
derivation rules, based on the semantics of Datalog programs with negation
and periodicity and order constraints. A critical issue is represented by the
presence of negation in our derivation rules. Negation, by allowing the
derivation of new authorizations based on the absence of other authoriza-
tions, augments the expressive power of the model. However, it does not
always ensure the derivation of a unique set of authorizations, since the set
of authorizations derivable from a given set of authorizations and rules
may depend on the evaluation order. To avoid this problem, we impose a
syntactical restriction on the set of derivation rules and we show how this
condition guarantees the uniqueness of the set of derived authorizations.

Finally, we address the problem of efficient access control by proposing a
strategy based on view materialization approaches. Our approach, which is
based on a combination of the Dred [Gupta et al. 1993] and Stdel [Lu et al.
1995] approaches, avoids the high costs arising from the evaluation of the
deductive rules when performing access control.

Previous Related Work

We first presented a proposal for an authorization model supporting
authorizations with temporal intervals and a restricted set of derivation
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rules in Bertino et al. [1996a]. The current article extends our previous
work introducing, among other features, support for periodic access autho-
rizations and rules. This is a major extension, both for the practical
relevance of periodic expressions in specifying authorizations and for the
related theoretical and performance issues. The language for expressing
derivation rules also has two major extensions with respect to the one
supported by our previous model: the introduction of a new temporal
operator (UPON) and the possibility of using an arbitrary Boolean expres-
sion of authorizations as the right-hand side of a rule. These extensions
significantly augment the expressiveness of the model in terms of protec-
tion requirements that can be supported. A preliminary approach towards
the introduction of periodic constraints has been presented in Bertino et al.
[1996b]. However, Boolean operators were not considered, nor access con-
trol strategies devised. All the relevant theoretical foundations are re-
ported only in this article. To the best of our knowledge, the authorization
model we are presenting is the first one proposing features such as periodic
authorizations and derivation rules.

In the context of database systems, Ingres [Date 1995] supports some
temporal features. In Ingres, when granting an authorization, a user can
specify that the authorization is valid only in specific hours and days of the
week. For instance, it is possible to give a user the authorization to read a
table only between 8:00 AM and 5:00 PM between Tuesday and Thursday.
Temporal specifications in Ingres are conditions that can be evaluated,
upon access control, by checking the time/day of the request against that of
the system’s clock. Although representing a first step towards the inclusion
of temporal features in authorization specification, Ingres provides only a
rudimentary treatment of time-based authorizations. For instance, no start
or expiration date can be associated with authorizations and no calendar
management, time reasoning, or authorization derivation features are
supported.

Other relevant related work can be found in the framework of authenti-
cation systems. Kerberos [Steiner et al. 1988], based on a client-server
architecture, provides the notion of “ticket,” with an associated validity
time. The span of the validity time is chosen by the administrator based on
a tradeoff between security and convenience (a typical choice is a span of
8–24 hours for all tickets). The ticket is used by a client to require a service
from a particular server. Associating a validity time with the ticket saves
the client from the need to acquire a ticket for each interaction with the
same server. The scope of the temporal ticket mechanism is very different
from our access control model. In Kerberos the ticket is only used to denote
that a client has been authenticated by the authentication server. It cannot
be used to grant access to specific documents or resources managed by the
server.

From the side of logical formalisms for security specifications, Woo and
Lam [1993] propose a very general formalism for expressing authorization
rules. Their language does not have explicit constraints to deal with
temporal information. However, the generality of their language, which has
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almost the same expressive power of first-order logic, makes it possible to
model temporal constraints. The main drawback is that the tradeoff
between expressiveness and efficiency seems to be strongly unbalanced in
their approach. Finally, Abadi et al. [1993] proposed a formal language
based on modal logic. However, their language, which is mainly devoted to
the modeling of concepts such as roles and delegation of authorities, is not
able to support temporal constraints.

Organization of the Article

The remainder of this article is organized as follows. Section 2 describes the
formalisms we use to represent periodic time. Section 3 introduces periodic
authorizations and derivation rules and gives the formal semantics of our
model. Section 4 deals with the problems due to the presence of negation. A
sufficient condition to guarantee the uniqueness of the set of derived
authorizations and an algorithm for checking this condition are given. In
Section 5 an algorithm for deriving the set of implicit and explicit authori-
zations is presented. Administrative operations are discussed in Section 6.
In this section we also discuss implementation issues. Section 7 concludes
the article and outlines future work. Appendix A illustrates the Datalog
extension we use to represent the semantics of our rules. Finally, formal
proofs are reported in Appendix B.

2. PRELIMINARIES

To represent periodic authorizations we need a formalism to denote peri-
odic time. Our choice is to provide a symbolic (user-friendly) formalism for
the user that has to specify authorizations, and an equivalent “mathemat-
ical” formalism for internal representation. The symbolic formalism con-
sists of a pair ^[begin, end], P & where P is a periodic expression denoting
an infinite set of time intervals, and [begin, end] denotes the lower and
upper bounds that are imposed on time intervals in P. The formalism for
internal representation is based on sets of periodicity and gap-order con-
straints over integer numbers and is inspired by the work in Toman et al.
[1994]. A mapping from symbolic periodic expressions into these types of
constraints is needed to describe the semantics of periodic authorizations
and rules, to prove formal properties of our model, and to perform deduc-
tive reasoning.

In the following we take as our model of time the integers Z with the
total order relation ,.

2.1 Symbolic Expressions

The formalism for symbolic periodic expressions is essentially the one
proposed in Niezette and Stevenne [1992], based on the notion of calendars.
A calendar is defined as a countable set of consecutive intervals. Each
interval of a calendar is numbered by an integer number, called the index
of the interval, in such a way that successive intervals are numbered by
successive integers.
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Example 1. Days, Months, Years are examples of calendars represent-
ing, respectively, the set of all the days, the months, and the years.

New calendars can be dynamically constructed from the existing ones.
The starting point in the definition of new calendars is the definition of a
basic calendar (the tick of the system), from which other calendars can be
dynamically defined. In the following, we assume that Hours is the basic
calendar with the tick indexed by 1 as the first hour of 1/1/94. A new
calendar C1 can be defined from an existing calendar C0 by means of
function “generate¼”. C1 5 generate(sp; C0; ( x1, . . . , xn)) creates a
calendar C1 whose first tick is the union of the first x1 ticks of calendar C0,
the second tick is the union of the following x2 ticks of C0, and so on,
cycling through the given values. Parameter sp is the synchronization
point; that is, it is the index of the interval of C0 that starts at the same
time as the first interval of C1.

Example 2. Starting from the basic calendar Hours, the following calen-
dars can be defined.

—Days 5 generate(1; Hours; (24));
—Months 5 generate(1; Days; (31, 28, . . . , 31, 28, . . . , 31, 29, . . . , 31, 28,

. . . , 31));
—Weeks 5 generate(2; Days; (7));
—Years 5 generate(1; Days; (365, 365, 366, 365)).1

Note that, in the definition of Weeks, 2 is used as the synchronization
point since the first full week of 1994 starts on Sunday, January 2nd. The
definition of Years says to take the first 365 days as the first tick of the
calendar, the following 365 days as the second tick, and so on, cycling
through the given values.

In our model, we postulate the existence of a set of predefined calendars
containing at least the calendars Hours, Days, Weeks, Months, and Years.
Given two calendars C1 and C2, C1 is called a subcalendar of C2, (written
C1 v C2), if each interval of C2 is exactly covered by a finite number of
intervals of C1. It is easy to show that the subcalendar relation defines a
partial order on calendars, and that, since we take Hours as our basic
calendar, Hours v C for each calendar C defined in our system.

Calendars can be combined to represent more general sets of periodic
intervals, not necessarily contiguous, such as the set of Mondays or the set
of the third hour of the first day of each month. Complex sets of periodic
intervals, like the preceding ones, are represented by means of periodic
expressions, formally defined as follows.

Definition 1. Given calendars Cd, C1, . . . , Cn, a periodic expression is
defined as P 5 ( i51

n Oi.Ci � r.Cd, where O1 5 all, Oi [ 2N ø {all} and
Ci v Ci21 for i 5 2, . . . , n, Cd v Cn, and r [ N.

1The definitions of Months and Years are not precise, since a period of 400 years should be
considered to take into account all the exceptions for leap years.
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The symbol � separates the first part of the expression, identifying the
set of starting points of the intervals it represents, from the specification of
the duration of each interval in terms of calendar Cd. For example,
all.Years 1 {3, 7}.Months � 2.Months represents the set of intervals
starting at the same instant as the third and seventh month of every year,
and having a duration of two months. Oi is omitted when its value is all,
whereas it is represented by its unique element when it is a singleton. r.Cd
is omitted when it is equal to 1.Cn. Table I reports a set of periodic
expressions with their intuitive meaning.

Periodic expressions are a symbolic representation of infinite sets of
periodic intervals. The set of time intervals corresponding to periodic
expressions is formalized by function P¼, defined as follows.

Definition 2. Let P 5 (i51
n Oi.Ci � r.Cd be a periodic expression, then

P(P) is a set of time intervals whose common duration is r z Cd, and whose
set S of starting points is computed as follows.

—If n 5 1, S contains all the starting points of the intervals of calendar C1.
—If n . 1, and On 5 {n1, . . . , nk}, then S contains the starting points of

the n1
th, . . . , nk

th intervals (all intervals if On 5 all) of calendar Cn
included in each interval of P((i51

n21 Oi.Ci � 1.Cn21).

For example, if P is the last expression in Table I, then P(P) is the set of
time intervals, with a duration of four hours, starting with the tenth hour
(9 AM to 10 AM) of the second, third, fourth, fifth, and sixth day of every
week.

A symbolic formalism is also needed to express the bounds begin and
end that limit the application of the periodic expression. This formalism
must guarantee that each expression identifies a single instant in the basic
calendar, or, possibly, the special values 1/2`. Although the results of this
article do not rely on a particular choice for this formalism, for simplicity
we choose a simple date notation.

Definition 3. A date expression has the form mm/dd/yy:hh , where mm[
{1, . . . , 12}, dd [ {1, . . . , 31}, yy [ {00, . . . , 99}, and hh [ {01, . . . , 24}.

A date expression denotes a single tick of calendar Hours, according to
the intuitive semantics.2

2In our examples, we consider yy as corresponding to year 19yy if yy $ 94 and to year 20yy if
yy , 94.

Table I. Example of Periodic Expressions
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We require begin to be a date expression, and end to be ` or a date
expression. We sometimes abbreviate date expressions according to the
intuitive semantics; for example, when 1/1/94 is used as begin , it denotes
the first instant of the first day of January 1994, whereas, as end , it
denotes the last instant of 1/1/94.

2.2 Periodicity and Gap-Order Constraints

Symbolic expressions, although convenient for the users, are not easy to
manipulate in the deductive process. For this reason, we translate expres-
sions given by the user into expressions in a different formalism. This
formalism is based on sets of constraints. Intervals [begin, end] , consist-
ing of date expressions, are straightforwardly translated into so-called
gap-order constraints [Revesz 1995].

Definition 4. Let u, l be integers, c be a nonnegative integer, and t, t9
be integer variables. A gap-order constraint is a formula of the form l , t,
t , u, t 5 t9, or t 1 c , t9.

If begin and end denote instant t b and t e, respectively, the correspond-
ing constraints are c1 , t and t , c2, where the constants c1 and c2 are,
respectively, t b 2 1 and t e 1 1. For brevity, we often write t b # t # t e for
the conjunction of the constraints.3 Gap-order constraints involving two
variables are also used in the reasoning process.

To manipulate periodic expressions we use periodicity constraints over
integer numbers, as introduced in Toman et al. [1994]. Periodicity con-
straints denote infinite periodic sets of integers.

Definition 5. Let K be a finite set of natural numbers, t an integer
variable, k an element of K, and c [ {0, . . . , k 2 1}. A simple periodicity
constraint is a formula of the form: t [k c.

Periodicity constraint t [k c denotes the set of integers of the form c 1
nk, with n ranging from 2` to 1` in Z. In the following, we use the
notation t [k ( y 1 c)@y 5 0, . . . , u as a compact representation for the
disjunction of simple constraints: t [k c ~ t [k c 1 1 ~ . . . ~ t [k c 1 u.

In our model, each access authorization is associated with a periodic
expression, and a pair of date expressions defining the lower and upper
bounds of its applicability. As shown in the next section, a periodic
expression corresponds to a disjunction of simple periodicity constraints,
and the lower and upper bounds can be represented by a conjunction of
gap-order constraints. Hence, it would be natural to associate with each
authorization a complex constraint comprising these two components.
However, since the reasoning process requires the manipulation of these
constraints by the operations of complement, conjunction, and projection,
we need an adequate normal form. For this purpose, we introduce a
temporal constraint J that is represented by the set {(PC1, GC1), . . . ,

3If end 5 `, no constraint for the upper bound is needed.
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(PCm, GCm)}, where each PCi is a conjunction of simple periodicity
constraints and each GCi is a conjunction of gap-order constraints. J is
associated with a propositional logic formula in disjunctive normal form
^(J) 5 (PC1 ` GC1) ~ . . . ~ (PCm ` GCm), corresponding to the
intuitive semantics of J. J denotes all the instants t such that there exists
i [ [1, m] with t satisfying both PCi and GCi.

Some basic operations have been defined for simple periodicity con-
straints in Toman et al. [1994] and for gap-order constraints in Revesz
[1993], using a graph for the representation of PCs and GCs. For example,
rules are given to compute the constraint equivalent to the conjunction of
two constraints on the same variables.

We now define conjunction (`*) and complement (¬*) on temporal
constraints.

Definition 6. Given two temporal constraints J1 and J2, J 5 J1 `* J2
is the set of pairs (PC, GC) whose associated formula ^(J) is the
disjunctive normal form of ^(J1) ` ^(J2).

Definition 7. Let J9 be a set of pairs (PC, GC). J 5 ¬*J9 is the set of
pairs (PC, GC) whose associated formula ^(J) is the disjunctive normal
form of ¬^(J).

Any propositional logic formula on PCs and GCs in disjunctive normal
form, resulting from the preceding operations, can be represented as a
temporal constraint J. Indeed, each pair in J corresponds to a disjunct in
the formula. If no PC or no GC appears in a disjunct, the always satisfied
constraint {true} is used in its place.

Example 3. Let J 5 {(PC1, GC1), (PC2, GC2)} and J9 5 {(PC91, GC91),
(PC92, GC92)}.

J ` * J9 5 $~PC1 ` PC91 , GC1 ` GC91!, ~PC2 ` PC91 , GC2 ` GC91!,

~PC1 ` PC92 , GC1 ` GC92!, ~PC2 ` PC92 , GC2 ` GC92!};

¬*J 5 $~¬PC1 ` ¬PC2 , $true%!, ~$true%, ¬GC1 ` ¬GC2!,

~¬PC1 , ¬GC2!, ~¬PC2 , ¬GC1!}.

Note that conjunction among PCs and among GCs is defined in Toman et
al. [1994] and Revesz [1993], and that negation can be easily eliminated.
For example, if PC 5 (t [k c ` t9 [k9 c9), ¬PC is the disjunction of the
constraints (PCs) t [k r with r 5 0, . . . , c 2 1, c 1 1, . . . , k 2 1, and
t9 [k9 s with s 5 0, . . . , c9 2 1, c9 1 1, . . . , k9 2 1.

Example 4. Consider the periodicity constraints PC1 5 (t [7 1 `
t9 [10 1) and PC2 5 (t [14 1). PC1 ` PC2 5 (t [1 41 ` t9 [10 1)
whereas ¬PC1 is the disjunction of the PCs: t [7 0, t [7 2, . . . , t [7 6,
t9 [10 0, t9 [10 2, . . . , t9 [10 9.
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2.3 From Symbolic Expressions to Constraints

The following proposition states the correspondence between periodic ex-
pressions and sets of periodicity constraints.

PROPOSITION 1. Any symbolic periodic expression can be translated into
an equivalent set of simple periodicity constraints.

In Niezette and Stevenne [1992], it is shown how any calendar can be
translated into a union of linear repeating intervals. It is easily seen that
the translation can be extended to periodic expressions.4 A linear repeating
interval is a mathematical expression of the form kn 1 (b, e) denoting the
set of intervals including the interval (b, e) and all intervals obtained by
shifting (b, e) by multiples of k. Any instant t in the intervals defined by
kn 1 (b, e) satisfies one of the constraints t [k (b 1 y) @y 5 0, . . . , e 2
b and vice versa. Hence, for each periodic expression P, there exists a
disjunction of simple periodicity constraints such that the set of its solu-
tions is the set of instants contained in the intervals of P(P).

When the intervals in P(P) have the same length, the simple periodicity
constraints corresponding to P can be represented in a compact way:

t [Periodicity~P! ~ y 1 z 2 2! @y 5 1, . . . , Granularity~P!,

and @z [ Displacement~P!.

The values for the parameters in this formula depend on the calendar
used to express the constraints, and on the definition of the calendars
appearing in P. For example, if we express the constraints in terms of
Hours, then the expression Weeks 1 {3}. Days, denoting Tuesdays, is
translated into t [168 ( y 1 73 2 2) @y 5 1, . . . , 24, where 168 is the
number of hours in a week (the periodicity of Tuesdays), {73} is the only
hour corresponding to the beginning of a Tuesday in each period,5 and 24 is
the number of hours within each Tuesday (the granularity of Tuesdays).

In general, given a symbolic expression P and the basic calendar, the
values for Periodicity(P), Displacement(P), and Granularity(P) can be de-
rived as follows.

—Periodicity(P) is the number n of units of the basic calendar that
identifies the periodicity with which the time intervals in P(P) repeat
themselves. For example, with reference to Table I and assuming Hours
as the basic calendar, the periodicity of the first, fourth, and fifth

4It can be shown that any periodic expression ( i51
n Oi.Ci � r.Cd can be reduced to the form

all.C � r.Cd where C is a calendar. Then, if C is defined by generate(sp; Cd; (l1, . . . , ls)),
the corresponding disjunction of linear repeating intervals is given by the formula: øi51

s period
p n 1 (sp 1 ( j51

i21 lj, sp 1 ( j51
i21 lj 1 r 2 1), where period is the periodicity of C in terms of

Cd.
5Note that, since we fixed hour 1 as the first hour of 1/1/1994, the period always starts on a
Saturday.
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expressions is 168 (a week expressed in hours), whereas the periodicity of
the second is 3,506,328 (400 years in terms of hours) that is the period
considering leap years.

—Displacement(P) is a set of numbers, each one representing the position
within a period where a segment of the span of time defined by P begins.
We assume that the first period always starts from tick 1 of the basic
calendar. For example, in Table I, the displacement of the first expres-
sion is {2 p 24 1 1, 6 p 24 1 1}, and the displacement of the second is {19
p 24 1 1, 50 p 24 1 1, 78 p 24 1 1, . . .} (each position of the beginning of
the 20th day of each month within the period must be specified).

—Granularity(P) is the length of each segment of time within the period
defined by P. The granularity is expressed using the basic calendar, and
it can be easily derived from the part of P following the � symbol (note
that this part can be implicit). For example, in Table I, the granularity of
the first, second, and fourth expression is 24 (1 day in hours), and the
granularity of the fifth is 4 (4 hours).

When the intervals in P(P) have different length, there is no unique
value for Granularity(P). In this case a simple solution is to partition P(P)
in sets of equal-length intervals, and representing each of them as shown
previously.

3. THE AUTHORIZATION MODEL

In this section we illustrate the basic components of our authorization
model. We do not make any assumption on the underlying data model and
on the access modes users can exercise on the data objects. This generality
makes our authorization model applicable to the protection of information
represented with different data models. In the following U denotes the set
of users, O the set of objects, and M the set of access modes. We consider as
users the identifiers with which users can connect to the system. We
suppose identifiers can refer to single users (e.g., Ann or Bob) or to user
roles (e.g., staff or manager ).

3.1 Periodic Authorizations and Rules

Our model supports the specification of periodic authorizations, that is,
authorizations that hold in specific periodic intervals specified by a periodic
expression. A time interval is also associated with each authorization,
imposing lower and upper bounds on the potentially infinite set of instants
denoted by the periodic expression. Periodic authorizations can be positive
(representing permissions) or negative (representing explicit denials to
exercise privileges on objects).

We start by introducing the definition of authorization.

Definition 8. An authorization is a 5-tuple (s, o, m, pn, g) , with s,
g [ U, o [ O, m[ M, pn [ {1, 2}.
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For instance, by authorization (Ann, o 1, read, 1, Tom) Tom grants
Ann the read access mode on object o1. By contrast, by authorization
(John, o 1, write, 2, Tom) Tom prevents John from writing object o1.

Periodic authorizations are formally defined as follows.

Definition 9. A periodic authorization is a triple ([begin, end], P,
auth) , where begin is a date expression, end is either the constant `, or a
date expression denoting an instant greater than or equal to the one
denoted by begin, P is a periodic expression, and auth is an authoriza-
tion.

The periodic authorization ([begin, end], P, (s, o, m, pn, g)) ,
states that authorization (s, o, m, pn, g) is granted for each instant in
P(P) that is greater than or equal to the instant t b denoted by begin and
smaller than or equal to the instant t e denoted by end (if end Þ `).

For example, periodic authorization A1 5 ([1/1/94, `], Mondays ,6

(Matt, o 1, read, 1, Bob)) , specified by Bob, states that Matt has the
authorization to read o1 each Monday starting from 1/1/94 .

A nonperiodic temporal authorization, that is, an authorization that
holds continuously for a specific set of time instants, is expressed by a
periodic authorization using the basic calendar as the period component.
In general, the symbol ' is used to denote this calendar. Note that the
corresponding periodicity constraint is t [1 0, that is equivalent to true,
since it is always satisfied.

In what follows, given a periodic authorization A 5 ([begin, end], P,
(s, o, m, pn, g)) , we use s(A), o(A), m(A), pn(A), g(A) to denote,
respectively, the subject, the object, the privilege, the sign of the authoriza-
tion (positive or negative), and the grantor in A.

Note that the possibility of expressing negative authorizations introduces
potential conflicts. Suppose that authorization A2 5 ([1/1/95, `],
Working-days, (Matt, o 1, read, 2, Tom)) is specified in addition to
authorization A1. We then have for each Monday in the interval [1/1/95,
`] both a positive and a negative authorization with the same subject,
object, and access mode. We solve this conflict according to the denials-
take-precedence principle [Jajodia et al. 1997]. As a consequence, Matt will
be allowed to read o1 only for the Mondays in [1/1/94, 12/31/94] . We
say that a positive authorization A is valid at a given instant t, if (1) a
temporal authorization ([begin, end], P, A) , with t [ P(P) ù {[t b,
t e]},

7 is specified or it can be derived through the derivation rules, and (2)
a negative authorization ([begin 9, end 9], P 9, A 9) , with the same
subject, object, and access mode as A such that t [ P(P9) ù {[t 9b, t 9e]} is
neither specified nor can be derived through the derivation rules, where
begin 9 and end 9 denote, respectively, instants t 9b and t 9e. We say that a

6Here and in the following we use intuitive names for periodic expressions, assuming that they
are defined with the syntax shown in Section 2.
7We use a set of disjoint intervals T 5 {[t i, t j], . . . , [t r, t s]} as a compact notation for the set
of natural numbers included in these intervals. Hence, the operation of intersection (T1 ù T2)
has the usual semantics of set intersection.
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negative authorization A is valid at time t if a temporal authorization
([begin, end], P, A)) , with t [ P(P) ù {[t b, t e]} is specified or can be
derived through the derivation rules. The notion of validity is formalized in
Section 3.3.

The second basic component of our model is an inference mechanism
based on derivation rules, which express temporal dependencies among
authorizations. Derivation rules allow the derivation of new periodic autho-
rizations on the basis of the validity or nonvalidity of other periodic
authorizations. Like authorizations, each derivation rule has a bounding
time interval and a periodicity, representing the instants at which it can be
applied.

Definition 10. A derivation rule is a triple ([begin, end], P, A ^OP&
!) , where begin is a date expression, end is either the constant ` or a
date expression denoting an instant greater than or equal to the one
denoted by begin , P is a periodic expression, A is an authorization, ! is a
Boolean expression of authorizations, and ^OP& is one of the operators:
WHENEVER, ASLONGAS, UPON.

The notion of validity, previously introduced for authorizations, naturally
extends to a Boolean expression of authorizations. Given a Boolean expres-
sion of authorizations ! and an instant t, we say that ! is valid at time t if
! evaluates “true” when each authorization in ! is substituted by the
Boolean value “true” in case the authorization is valid at time t, and by
“false” otherwise.

Authorizations derived from derivation rules have as grantor the user
who specified the rule.

We now give the intuitive semantics of the different kinds of derivation
rules allowed by our model. The formal semantics are given in Section 3.3.
In the following we assume all authorizations are granted by the same user
and we therefore do not consider the grantor of authorizations in the
discussion. Clarifying examples refer to the authorizations and derivation
rules illustrated in Figure 1.

—([begin, end] , P, A WHENEVER !) .

We can derive A for each instant in P(P) ù {[t b, t e]} for which ! is
valid. For instance, rule R4 states that summer-staff can read document
for every instant in Summer-time , from 1/1/1995 , in which both staff
and technical-staff can read document .

—([begin, end], P, A ASLONGAS !) .

Authorization A can be derived for each instant t in P(P) ù {[t b, t e]}
such that ! is valid for each time instant in P(P) that is greater than or
equal to t b and smaller than or equal to t. This implies that the ASLON-
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GAS rule can no longer be used to derive authorization A, starting from the
first instant t [ P(P) ù {[t b, t e]} in which ! is not valid.

For instance, rule R1 states that temporary-staff can read document
each working day in [1/1/96, 12/31/98] until the first working day in
which summer-staff will be allowed for that.
—([begin, end], P, A UPON !) .

We can derive A for each instant t in P(P) ù {[t b, t e]} if there exists an
instant t9 [ P(P) that is greater than or equal to t b or smaller than or
equal to t such that ! is valid at time t9. For instance, rule R5 states that
Ann can read pay-checks each working day starting from the first in
[1/1/95, 12/31/96] in which Tom can write pay-checks .

A graphical representation of the semantics of the different temporal
operators that can appear in a derivation rule is given in Figure 2. Note
that, according to the semantics of our temporal operators, the only times
of interest in evaluating R are those in P(P) ù {[t b, t e]} .

Example 5. From the authorizations and rules in Figure 1 we can derive
the following authorizations.

—(summer-staff, document, read, 1, Sam) for each working day of
the summers 1996 and 1997, from rule R4 and authorizations A3 and A5.

—(temporary-staff, document, read, 1, Sam) for each working day
in [1/1/96, 6/30/96] , from rule R1 using rule R4 and authorizations A3
and A5. The ending time of the derived authorization is determined by
the starting time of the authorization derived for summer-staff , from
rule R4.

—(technical-staff, report, write, 1, Sam) for each Monday and
Friday from 5/22/95 to `, from rule R2, using authorization A1. 5/22/95

Fig. 1. An example of authorizations and derivation rules.
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is the first Monday in [1/1/95, `] in which neither manager nor staff
can write guidelines .

—(technical-staff, report, write, 2, Sam) for each day in
[1/1/95, 9/30/95] and for each Saturday and Sunday from 10/1/95
to `, from rule R3 using authorization A2.

—(Ann, pay-checks, read, 1, Sam) for each working day from
1/20/95 to 12/31/96 from rule R5 and authorization A4. 1/20/95 is the
first payday in [1/1/95, 12/31/95] .

A simple extension to the syntax of derivation rules allows the use of the
special symbol “p” instead of a user, object, or access mode in the authori-
zations appearing in rules, with the meaning that any value in the
corresponding domain can be used. We refer to rules containing the symbol
“p” as parametric derivation rules. The wild card character can be used in
the authorization on the left of the operator, that is, in the authorization to
be derived, as well as in the authorizations appearing in the formula on the
right-hand side of the operator. Each parametric rule is exploded by the
system into different rules, one for each value (or combination of values) to
which the wild card character can be instantiated. The value substituted
for an authorization element (i.e., user, object, or access mode) to the wild
card character must be the same for all the authorizations within a rule.
Note that the instantiation of occurrences of “p” in the authorization on the
left-hand side of the temporal operator is constrained by the authorizations
that the grantor of the rule can specify. In particular, since we assume a
user can specify only authorizations on the objects he owns, occurrences of
the “p” symbol for the object in the authorization A on the left-hand side of
the operator will be instantiated to any object owned by g(A) .

Fig. 2. Semantics of the different temporal operators.
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Example 6. Rule

(R) ([96, 98], Working-days, (part-time-staff, p, read,
1, Sam) WHENEVER (staff, p, p, 1, Sam) ~ (temporary-
staff, p, read, 1, Sam))

states that part-time-staff can read, in an instant of a working day in
the period 96–98, any object on which either temporary-staff has read
privilege or staff has any privilege, for that instant.

Suppose there are three objects on which Sam can grant authorizations:
document , guidelines , and report ; and two access modes: read and
write . Rule (R) is expanded into the following rules.

(R1) ([96, 98], Working-days, (part-time-staff, document,
read, 1, Sam)

WHENEVER (staff, document, read, 1, Sam) ~ (tempo-
rary-staff, document, read, 1, Sam))

(R2) ([96, 98], Working-days, (part-time-staff, document,
read, 1, Sam)

WHENEVER (staff, document, write, 1, Sam) ~ (tempo-
rary-staff, document, read, 1, Sam))

(R3) ([96, 98], Working-days, (part-time-staff, guide-
lines, read, 1, Sam)

WHENEVER (staff, guidelines, read, 1, Sam) ~ (tempo-
rary-staff, guidelines, read, 1, Sam))

(R4) ([96, 98], Working-days, (part-time-staff, guide-
lines, read, 1, Sam)

WHENEVER (staff, guidelines, write, 1, Sam) ~ (tem-
porary-staff, guidelines, read, 1, Sam))

(R5) ([96, 98], Working-days, (part-time-staff, report,
read, 1, Sam)

WHENEVER (staff, report, read, 1, Sam) ~ (temporary-
staff, report, read, 1, Sam))

(R6) ([96, 98], Working-days, (part-time-staff, report,
read, 1, Sam)

WHENEVER (staff, report, write, 1, Sam) ~ (tempo-
rary-staff, report, read, 1, Sam))

3.2 Expressiveness and Minimality of the Temporal Operators

Temporal operators that can appear in our derivation rules have been
chosen to express three intuitive temporal relations among authorizations.
The derivation of new authorizations is obtained with WHENEVER by
considering authorizations valid in the same time instants, and with
ASLONGAS by considering the validity of authorizations in a whole span of
time, whereas UPON allows the expression of triggering conditions. The
relevance of these relations with respect to others that could be identified

246 • E. Bertino et al.

ACM Transactions on Database Systems, Vol. 23, No. 3, September 1998.



in a general temporal context, is motivated by the particular domain of
access control.

Consider, for example, the derivation rules reported in Figure 1. In Rule
R4 the WHENEVER operator is used to give summer-staff the authoriza-
tion to read a certain document at a certain time if, at the same time, both
staff and technical-staff have the authorization to read that docu-
ment . The set of instants at which this rule can be applied is restricted, by
the constraints associated with the rule, to those included in each summer
since the one in 1995. The same operator can be used to derive authoriza-
tions based on the absence of other authorizations at the same instants.
This form of derivation can be useful in practice when two subjects must be
authorized for an access over complementary intervals. Another example of
the use of WHENEVER is given by rule R3: technical-staff is given a
negative authorization to write a report for the instants at which it is not
authorized to read the guidelines . The WHENEVER operator is sufficient
to model many practical rules of an access control system.

Other protection requirements need the ability of the system to derive an
authorization only if a certain combination of authorizations has been
continuously valid through a whole span of time. The existence of one
instant in this span in which the combination of authorizations is not valid
must prevent the derivation of the new authorization. The ASLONGAS
operator has been introduced for this purpose. In Figure 1, rule R1 derives
an authorization for temporary-staff to read a document at a certain
time t only if in each working day from 1996 up to t there was no
authorization for summer-staff to read the document .

Finally, there are protection requirements that are based on some
triggering conditions (expressed again as a combination of authorizations)
to derive authorizations for future instants. In this case, it is sufficient that
the condition is verified in a single instant to derive the authorization for
all future instants according to the rule’s constraints. The UPON operator,
used by rules R2 and R5 in Figure 1, has been introduced to meet these
requirements. By rule R5 an authorization to user Tom for writing pay-
checks in a working day within 1995 or 1996 is used as a triggering
condition to issue an authorization to user Ann for reading pay-checks in
any subsequent working day up to the last one in 1996 .

Although the relations expressed by the temporal operators are intu-
itively very different from each other, a question can arise about the
minimality of the set of operators that we have chosen to express these
relations. Technically, when the interval associated with each rule is finite,
any ASLONGAS or WHENEVER rule can be simulated by a set of UPON
rules. For example, the same derivations obtained by R 5 ([begin,
end], P, A WHENEVER !) can be obtained by the set:

([t b, t b], P, A UPON !)

([t b 1 1, t b 1 1], P, A UPON !)

. . .
([t e, t e], P, A UPON !)
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where t b and t e are the instants corresponding to begin and end , respec-
tively. The simulation is much more complex for ASLONGAS rules. Techni-
cal details are not appropriate for this discussion, but it suffices to note
that this simulation requires the introduction of twice the number of
“auxiliary” authorizations as there are instants satisfying the constraints
associated with the rule. It is easily seen that these simulations are highly
impractical from a representational point of view, and that the access
control algorithm would be extremely inefficient if operating on such a
representation. Moreover, the simulation is not possible for rules with
unbound intervals. We conclude that there are both expressiveness and
efficiency arguments supporting the choice of the three temporal operators.

3.3 Formal Semantics

In this section we give the formal semantics of periodic authorizations and
derivation rules. We start by introducing the concept of a TAB.

Definition 11. A temporal authorization base (TAB) is a set of periodic
authorizations and derivation rules.

In the following, we use symbol Ai as a shorthand for the 5-tuple (s i, oi,
mi, pn i, gi) , whereas Ai

2 forces pn i 5 ‘29, and Ai
1 forces pn i 5 ‘19.

The semantics of a TAB is given as a set of Datalognot,[Z,,Z clauses.
Datalognot,[Z,,Z is the extension of Datalog with nonmonotonic negation,
periodicity, and gap-order constraints on the integers (see Appendix A).
Programs corresponding to TABs are a very restricted class of
Datalognot,[Z,,Z programs: the only predicate symbols are valid¼,
validf¼, once_validf¼, once_not_validf¼, denied¼, and CNSTR¼. A set of
nontemporal constants (A1

1, A1
2, A1, !1, . . . , s1, o1, m1, . . . , 1, 2, P1, . . .) is

provided to denote positive and negative authorizations, authorizations
regardless of their sign, Boolean expressions of authorizations, users,
objects, access modes, sign of authorizations, and periodic expressions.8

Periodicity and order constraints only involve temporal variables and do
not use the function 1.

Like Falaschi et al. [1988] and Gottlob et al. [1996], we consider non-
ground interpretations of our programs, defined as sets of constrained
atoms of the form (B, J), where B is a predicate and J is a temporal
constraint. Each constrained interpretation has an equivalent, possibly
infinite, Herbrand interpretation containing only ground atoms.

Table II reports the clause/set of clauses in Datalognot,[Z,,Z correspond-
ing to each type of authorization and rule allowed by our model. For
brevity, we use the form t0 # t9 , t as a shortcut for the disjunction (using
two clauses) of t9 5 t0 and t0 , t9 , t. In defining the semantics we
assume that the Boolean formula ! appearing on the right-hand side of the
temporal operator in a derivation rule is in disjunctive normal form.

8Note that when ! appears as a predicate argument it denotes a constant that we associate
with a Boolean expression of authorizations. Similarly, P denotes a nontemporal constant that
we associate with a periodic expression.
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Moreover, we assume that, in each conjunct, authorizations preceded by ¬
appear before authorizations not preceded by ¬. More precisely, we assume
! 5 C1 ~ . . . ~ Cn, where Ci 5 ` j51

k ¬Aji ` `l5k11
m Ali, where Aji, j 5

1, . . . , m, i 5 1, . . . , n, are authorizations, k [ [0, m], m [ Z1.
Intuitively, predicate valid¼ represents the validity of authorizations at

specific instants. The fact that (valid(t, A), J) belongs to an interpretation
means that A is valid according to that interpretation at all instants t
satisfying J. Predicate validf is analogous for Boolean expressions of
authorizations. The auxiliary predicates denied¼, once_not_validf¼, and
once_validf¼ are introduced to avoid quantification. denied(t, s, o, m ) is

Table II. Semantics of Periodic Authorizations and Rules

Access Control Model • 249

ACM Transactions on Database Systems, Vol. 23, No. 3, September 1998.



true in an interpretation if there is at least one negative authorization A
such that s(A) 5 s, o(A) 5 o, m(A) 5 m, valid at instant t according
to that interpretation. once_not_validf(t0, t, P, !) (once_validf(t0, t, P, !),
resp.) is true in an interpretation if there is at least one instant t9, with
t0 # t9 , t and t and t9 [ P(P), at which ! is not valid (valid, resp.)
according to that interpretation.

We denote with PTAB the Datalognot,[Z,,Z program corresponding to a
TAB. We consider stable model semantics of logic programs with negation
[Gelfond and Lifschitz 1988] to identify the models9 of PTAB. The notion of
constrained interpretation previously presented naturally extends to con-
strained (nonground) stable models.

We are now ready to formally introduce the notion of valid authorization.

Definition 12. Let M be a model of PTAB. An authorization A is valid at
time t# with respect to M if there exists (valid(t, A), J) in M with t# satisfying
J. If PTAB has a unique ground model and M is one of its nonground
representations, then we simply say that A is valid at time t# .

4. A UNIQUE SET OF VALID AUTHORIZATIONS

The presence of negation in our derivation rules introduces the problem of
generating a unique set of valid authorizations from a given set of periodic
authorizations and rules. There are situations in which different sets of
authorizations are generated, depending on the rule evaluation order.

Example 7. Consider a TAB consisting of the following rules.

(R1) ([97, 98], Working-days, (manager, report, read, 1, Sam)
WHENEVER ¬(technical-staff, report, write, 1, Sam))

(R2) ([97, 98], Working-days, (technical-staff, report,
write, 1, Sam)

WHENEVER ¬(manager, report, read, 1, Sam))

If we evaluate R1 first, we derive authorization (manager, report,
read, 1, Sam) for each working day of 1997 and 1998, and we cannot
derive any authorization from R2. If we evaluate R2 first, we derive
(technical-staff, report, write, 1, Sam) for each working day of
1997 and 1998, and we cannot derive any authorization from R1.

From the point of view of the semantics, the property of always having a
unique set of valid authorizations is guaranteed only if all the models of the
program corresponding to a TAB identify the same set of valid authoriza-
tions at any instant (or equivalently, there exists a unique ground stable
model of PTAB).

In the remainder of this section we formally define restrictions on sets of
rules that guarantee a unique ground model for PTAB, and present an
algorithm for checking the satisfaction of these restrictions. Intuitively, the

9Due to the properties of the resulting program, in this case stable models are identical to
well-founded models [Gelder et al. 1991].
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restrictions require the existence of a unique evaluation order reflecting
the intuitive semantics of derivation rules.

4.1 Restrictions on Rules

We use the term past operator (PASTOP) to refer to ASLONGAS and UPON.
Dependencies among authorizations in TAB are identified by the binary

relationships affects ((3) and strictly affects ((31 ) defined as follows.

—If there is a rule ([begin, end], P, A m ^OP& !) in TAB, where OP is an
arbitrary operator, then for each t [ {[t b, t e]} ù P(P) and for each Ak
appearing in !, we say that Ak at time t affects Am at time t (written
Ak[t] (3Am[t]). If authorization Ak is preceded by ¬ in !, we say that Ak
at time t strictly affects Am at time t (written Ak[t] (31 Am[t]).

—If there is a rule ([begin, end], P, A m ^PASTOP& !) in TAB, then for
each t, t9 [ {[t b, t e]} ù P(P), with t , t9, and for each authorization Ak
appearing in !, we say that Ak at time t affects Am at time t9 (written
Ak[t] (3Am[t9]). If authorization Ak is preceded by ¬ in ! or PASTOP 5
ASLONGAS, we say that Ak at time t strictly affects Am at time t9 (written
Ak[t] (31 Am[t9]).

Note that Ak[t] (31 Am[t9] implies Ak[t] (3Am[t9], for any t, t9. Based on
these relationships, we can define the more complex notion of priority
among periodic authorizations. Intuitively, an authorization An at time t
has higher priority than authorization Am at time t9, if the validity of Am at
time t9 can be evaluated only after evaluating the validity of An at time t.

Definition 13. Authorization An at time t has higher priority than
authorization Am at time t9 (written An[t] . Am[t9]) if one of the following
conditions holds.

—A sequence An[t] 5 A1[t1], . . . , Ak21[tk21], Ak[tk] 5 Am[t9] exists such
that each element in the sequence affects the successor and there exists
one that strictly affects it.

—Two sequences An[t] 5 A1[t], . . . , Al
2[t0] and Al11

1 [t0], . . . , Ak[t9] 5
Am[t9] exist such that each element affects the successor in the sequence,
and s(A l

2) 5 s(A l11
1 ) , o(A l

2) 5 o(A l11
1 ) , and m(Al

2) 5 m(Al11
1 ) ;

—An authorization Al and an instant t0 exist such that An[t] . Al[t0] and
Al[t0] . Am[t9].

The second condition in the preceding definition implies that negative
authorizations have higher priority than their positive counterparts at the
same instant.

We are now ready to formally characterize critical sets of derivation
rules, that is, sets of rules that could lead to the derivation of different sets
of authorizations depending on the evaluation order.

Definition 14. A TAB contains a critical set of rules if and only if there
exist an authorization Am in TAB and an instant t such that Am has priority
over itself at time t (i.e., Am[t] . Am[t]).
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Example 8. It is easy to verify that the rules of Example 7 form a
critical set. Take t as an arbitrary instant within a working day of 1997. By
the first condition in Definition 13 and rule R1 we have (technical-
staff, report, write, 1, Sam) [t] . (manager, report, read, 1,
Sam)[t]. Similarly, by rule R2 we have (manager, report, read, 1,
Sam)[t] . (technical-staff, report, write, 1, Sam) [t]. Applying
the third condition in Definition 13 (transitivity) we have (technical-
staff, report, write, 1, Sam) [t] . (technical-staff, report,
write, 1, Sam) [t].

The CSD (critical set detection) algorithm, described in the next section,
recognizes and rejects a TAB containing a critical set.

4.2 The CSD Algorithm

Before illustrating the CSD algorithm we need to introduce some notions.
Given a TAB, we introduce its constraint version, denoted as TABCNS, as

the set of pairs of the form ^x, J&, where x is either an authorization or
rule in TAB and J is the temporal constraint, corresponding to the values
of [begin, end] and P associated with x in TAB. If Am is specified more
than once in TAB with different temporal constraints, the constraint J
associated with Am in TABCNS will be the disjunction of these constraints.
Derivation rules are transformed in an analogous way. In the following,
given an authorization Am in TAB, Jm denotes the temporal constraint
associated with Am in TABCNS. Analogously, JR denotes the temporal
constraint associated with rule R in TABCNS.

The algorithm for detecting critical sets is illustrated in Figure 3. It
receives as input TABCNS, that is, the constraint version of TAB. It returns
FALSE if a critical set exists. Otherwise, it returns a sequence of levels
^L1, . . . , Lk& representing a partition of the set of pairs ^A, t& for each
authorization A appearing, either explicitly or in a derivation rule, in
TABCNS and t min # t # max-time , where t min is the minimum constant
appearing in a gap-order constraint in TABCNS, and max-time is an upper
bound for the instant after which the validity of any authorization becomes
periodic. max-time is determined as t# max 1 k# z Pmax, where t# max is the
maximum finite constant appearing in a gap-order constraint in TABCNS,
Pmax is the least common multiple (lcm) of all the periodicities appearing in
TABCNS, and k# is the maximum number of ASLONGAS and UPON rules in
TAB plus one (see Lemma 3 in Appendix B). The reason for introducing
max-time is to ensure the finiteness of the instants to be considered in the
partition, and hence, the termination of the CSD algorithm. The motivation
behind how max-time is determined is that the levels produced by the CSD
algorithm are used to determine the set of authorizations valid according to
the TAB. Intuitively, for each instant greater than max-time the validity of
each authorization can be evaluated considering the corresponding instant
in the time period before max-time . Hence, derivation of authorizations
can be limited to instants smaller than or equal to max-time , and then
extended to `.
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Fig. 3. The CSD algorithm.
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Each level Li is a set of pairs ^Aj, J j,i&, where J j,i denotes the constraint
associated with Aj at level Li. In the following, we say that authorization Aj
appears at level i for instant t if t satisfies J j,i. The intuitive semantics of
the levels is that authorizations appearing at lower levels for a certain set
of instants have higher priority for evaluation than authorizations appear-
ing at higher levels (for the same or for a different set of instants). In other
words, let Ai and Aj be two authorizations and ti and tj be two time
instants. If the level of Ai at instant ti is lower than the level of Aj at instant
tj, then the validity of Ai at time ti must be evaluated before the validity of
Aj at time tj. Note that since levels represent a partition of the pairs ^A, t&,
each authorization belongs to exactly one level for each time instant
considered. Levels therefore define an order, from the lowest to the highest
level, that must be followed when determining the set of temporal authori-
zations valid according to the given TAB.

The CSD algorithm works as follows. In Step 1, max-time is substituted
to all occurrences of ` in the gap-order constraints of authorizations and
rules appearing in TABCNS. In Step 2, the maximum number of levels
max-levels to be generated is determined as the number of authorizations
in TABCNS multiplied by max-time . Intuitively, max-level is the number
of different pairs ^A, t& to be partitioned. In Step 3, variable top-level ,
representing the number of levels actually generated, is initialized to 1.
Then, in Step 4, all the authorizations appearing in TABCNS are put at
level 1 for all time instants between t min and max-time . In Step 5, the
algorithm considers the dependencies caused by negative authorizations
(Step 5.1) and by derivation rules (Steps 5.2 and 5.3), and possibly moves
authorizations to higher levels. Two operations allow changes to levels: add
and delete. They insert in (delete from) levels, pairs of the form ^Am, J&.
Deleting pair ^Am, J& from level h means updating Jm,h to be Jm,h `*
¬*J. Similarly, adding pair ^Am, J& to level k means updating Jm,k to
include all the pairs (PC, GC) present in J. If Am does not appear in Lk
before the execution of the add operation, the result of the operation is the
insertion of pair ^Am, J& in Lk. The algorithm uses procedure “move¼” to
move authorizations to higher levels. move(Ah, J, lev) checks all levels i
below lev for which J9 5 Jh,i `* J Þ À. Hence, it deletes ^Ah, J9& from Li
and adds it to Llev. Intuitively, move (Ah, J, lev) moves authorization Ah to
level lev for each instant satisfying J for which AH appears in levels lower
than lev. Step 5 is repeated until no changes to the levels are necessary
(i.e., all the priorities are satisfied), or the number of levels becomes
greater than max-level . In the first case, the levels generated are re-

Fig. 3. Continued
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turned. In the latter case, a FALSE is returned indicating the presence of a
critical set.

Example 9. Consider a TAB containing authorizations A1, A2, A3 and
rules R1, R2, and R3 appearing in Figure 1. For brevity, here and in the
following examples we assume Days as our basic calendar and Sunday
1/1/95 as our tick 1. Moreover, we do not use the normal form to represent
the constraint J, but the more compact form: ({t [k ( y 1 c)@y 5 l1 . . .
lp}, c1 # t # c2). TABCNS is as follows.

{ ^(manager, guidelines, write, 1, Sam) , {({true}, {1/1/95 #
t # 5/20/95} )}&, ^(technical-staff, guidelines, read, 1,
Sam) {({t [7 ( y 1 1)@y 5 0, . . . , 4}, {10/1/95 # t})}&, ^(staff,
document, read, 1, Sam) {({t [7 ( y 1 1)@y 5 0, . . . , 4},
{1/1/95 # t # 12/31/97 })}&, ^(temporary-staff, document,
read, 1, Sam) ASLONGAS ¬(summer-staff, document, read,
1, Sam) , {({t [7 ( y 1 1) @y 5 0, . . . , 4}, {1/1/96 # t #
12/31/98 })}&, ^(technical-staff, report, write, 1, Sam)
UPON ¬(manager, guidelines, write, 1, Sam) ` ¬(staff,
guidelines, write, 1, Sam) {({t [7 ( y 1 1) y 5 0, 4}, {1/1/95
# t} )}&, ^(technical-staff, report, write, 2, Sam) WHEN-
EVER ¬(technical-staff, guidelines, read, 1, Sam) {({true},
{1/1/95 # t} )}&.}.

We then have: t# max 5 12/31/98, t min 5 1/1/95 , k# 5 3, Pmax 5 7 (i.e., the
periodicity of Weeks), and max-time 5 1/21/99 . TABCNS is modified by
substituting 1/21/99 to all occurrences of `. All the authorizations appear-
ing in TABCNS are initially inserted at level 1 with constraints {({true},
{1/1/95 # t # 1/21/99} )}.

The algorithm then cycles moving authorizations to higher levels as
follows.

1st Iteration.
Since (technical-staff, report, write, 2, Sam) is at level 1:
move ^(technical-staff, report, write, 1, Sam) , {({true},
{1/1/95 # t # # 1/21/99} )}& to level 2.
Considering rule R1: move ^(temporary-staff, document, read,
1, Sam) , {({t [7 ( y 1 1)@y 5 0, . . . , 4}, {1/1/96 # t #
12/31/98} )}& to level 2.
Considering rule R3: move ^(technical-staff, report, write, 2,
Sam), {({true}, {1/1/95 # t # 1/21/99} )}& to level 2.
2nd Iteration.
Since (technical-staff, report, write, 2, Sam) is at level 2:
move ^(technical-staff, report, write, 1, Sam) , {({true},
{1/1/95 # t # # 1/21/99} )}& to level 3.
3rd Iteration.
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All dependencies are satisfied. No further changes to the levels are neces-
sary and the algorithm terminates returning the levels illustrated in
Figure 4.

Note that several optimizations are possible on the algorithm in Figure 3,
which are not reported here for the sake of simplicity. For instance, the
“move¼” procedure could keep track of the instants moved and stop if Am

has been moved, for all instants satisfying J, without the need to check all
levels down to the first one.

The number of levels produced by the CSD algorithm is potentially very
high. However, the maximum number of levels can be reached only if either
(1) the TAB contains a critical set, or (2) the TAB does not contain any
critical set but the priorities are such that the maximum number of levels
needs to be produced. Case (1), representing an anomaly in the authoriza-
tion specifications, should be very unlikely to occur. As for Case (2), if the
maximum number of levels is reached, each level must contain exactly one
authorization with an associated constraint identifying a single instant. In
terms of the authorization specifications this can happen only if there
exists a cycle involving ASLONGAS rules. More precisely, two ASLONGAS
rules spanning to ` must exist such that each of them contains, in the
formula on the right of the operator, the authorization that appears on the
left of the operator in the other rule. For instance, it is easy to see that the
pair of rules: R1 5 ([1, `] , ', A1 ASLONGAS A2) and R2 5 ([1, `] , ', A2

ASLONGAS A1) would require the computation of all levels up to max-
level . A possible solution to this problem is to reject the insertion of any
rule causing a cycle in the TAB, regardless of the operators involved in the
rules and authorizations causing the cycle. This can be easily accomplished
by changing the definition of critical set considering all the affects relation-
ships as strict affects relationships. In this way the worst case performance
of the CSD algorithm would be greatly enhanced since the maximum
number of levels that can be produced becomes dependent only on the

Fig. 4. An example of levels returned by the CSD algorithm.

256 • E. Bertino et al.

ACM Transactions on Database Systems, Vol. 23, No. 3, September 1998.



number of authorizations and rules in TAB. However, we prefer to adopt a
less restrictive approach, and refuse the insertion of a derivation rule only
if its insertion into the existing TAB leads to a corresponding logic program
that is neither locally stratified [Gelder et al. 1991], nor equivalent to a
locally stratified logic program, and, hence, with a nonclear choice for the
rules evaluation order. We accept the insertion of all other rules, even those
that could cause the generation of a high number of levels. We believe that
real-world specifications will generally require the computation of a very
small number of levels.

4.3 Formal Properties

The following theorems state that the partition produced by the CSD
algorithm obeys the priority relationships existing in TAB. These theorems
extend the results reported in Bertino et al. [1996a] to the consideration of
periodic authorizations and derivation rules. Proofs are reported in Appen-
dix B.

THEOREM 1. Let An and Am be two authorizations appearing in TAB and
t, t9 be two time instants between t min and max-time . If An[t] (3Am[t9],
then either the CSD algorithm returns FALSE or, at the end of the
execution, authorization Am for instant t9 appears at a level higher than or
equal to that of authorization An for instant t. If An[t] (31 Am[t9], then the
level is necessarily higher.

THEOREM 2. Let An and Am be two authorizations appearing in TAB with
the same subject, object, and access mode but with different signs. Then,
either the CSD algorithm returns FALSE or, at the end of the execution, the
positive authorization appears at a level higher than that of the negative
authorization for each time instant between t min and max-time .

The correctness of the CSD algorithm is stated by the following theorem.

THEOREM 3. Given a TAB, (1) the CSD algorithm terminates and (2) it
returns FALSE iff the TAB contains a critical set.

The authorization state of the system is unique if and only if PTAB has a
unique ground model. The uniqueness of the model in absence of critical
sets is guaranteed by the following theorem.

THEOREM 4. Given a TAB with no critical sets, the corresponding logic
program PTAB has a unique ground model.

Note that more than one finite constrained nonground model of PTAB
equivalent to the unique ground model can exist, since the same set of
instants can be represented by different constraints.

5. ACCESS CONTROL

Determining whether an access request from user s to exercise access mode
m on object o at time t can be authorized requires the system to verify
whether an authorization (s, o, m, 1, g) valid at time t exists. Two
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different strategies can be used to enforce access control: run-time deriva-
tion and materialization. Under the first approach, the system verifies
whether the access request can be authorized by evaluating the derivation
rules in TAB according to a top-down strategy. This approach has the
advantage that limited actions are required upon modification of the TAB.
In particular, addition and removal of authorizations as well as removal of
rules can be executed without further actions. Insertion of new rules
requires the verification that no critical sets are introduced. However,
access control may require the evaluation of several rules, to determine the
validity of authorizations and to compute the derived authorizations.

Under the materialization approach, the system permanently maintains
all the valid authorizations derivable from a TAB. Access control therefore
becomes very efficient: there is no difference in costs between explicit and
derived authorizations. As a drawback, the materialization has to be
properly updated every time the TAB is modified or whenever an object is
created or deleted by a user who specifies rules parametric with respect to
the object.10 In the implementation of the proposed model we have adopted
the materialization approach. The main reason behind this choice is that in
real systems access requests are generally considerably more frequent than
requests modifying authorizations and/or rules. As for creation/deletion of
objects subject to parametric rules, we believe that those rules, though
possible, will seldom be used in practice. As a matter of fact, although rules
parametric with respect to the access mode (allowing the owner to grant
any access on an object) or to the subject (allowing the owner to grant an
access to everybody or to grant an access if somebody can exercise it) can be
imagined to be common in reflecting real-world situations, rules parametric
with respect to the object, by which a user can grant access to all objects he
owns (or will own) certainly have a much stricter applicability.

In the remainder of this section we illustrate how to compute, given a
TAB, the corresponding set of valid authorizations. We start with the
following definition originally from Bertino et al. [1996a].

Definition 15. The temporal authorization base extent (TABEXT) of TAB
is the set of valid authorizations derived from TAB.

Authorizations are maintained in TABEXT using a compact representa-
tion similar to that of TABCNS. Each Ak is associated with a temporal
constraint Vk. ^Ak, Vk& is in TABEXT if authorization Ak is valid at each
instant t satisfying Vk.

Given two temporal constraints J and J9, we say that J is shift-
equivalent to J9 (written J

3
5* J9), if the instants satisfying J are a

transposition of the instants satisfying J9 on the time axis. Formally, J
3
5*

J9 if ?t# [ N such that t 1 t# satisfies J9 whenever t satisfies J. For
instance, J 5 {({1/1/97 # t # 1/31/97} , {true})} 35 {({1/1/98 # t #

10Note that the creation/deletion of an object subject to a parametric rule can be seen as the
insertion/removal of the rule instantiations corresponding to the object.
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1/31/98} , {true})} 5 J9, since for each instant t, t 1 365 satisfies J9
whenever t satisfies J.

Figure 5 presents an algorithm for computing TABEXT. The algorithm is
based on the model computation for (locally) stratified Datalognot,[Z,,Z

programs given in Appendix A. This computation is represented in the
algorithm by an iteration of the inner repeat-until cycle. The termination
of each iteration is guaranteed by using a finite constant as an upper bound
in constraints and computing TABEXT only up to that value. The periodicity
of our rules and their semantics guarantees that the derivation of authori-
zations can be performed only for instants smaller than or equal to the

Fig. 5. An algorithm for TABEXT generation.
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finite constant max-time and then extended to ` (Step 3), where max-
time 5 t# max 1 k# z Pmax is the constant introduced in the presentation of the
CSD Algorithm. However, there are many cases in which it is not necessary
to compute the TABEXT up to max-time . This is the reason for the outer
repeat-until cycle. In particular, the algorithm considers two contiguous
time intervals after t# max of length equal to the common periodicity in TAB
(Pmax) and checks whether the constraints associated with the derived
authorizations and restricted to these intervals are shift-equivalent (Step
2.3). If not, and if the considered intervals do not exceed max-time , it
proceeds with another iteration of Step 2, generating a larger TABEXT
using the constant of the previous iteration incremented by Pmax (Step 2.1).
Otherwise, the repeat-until cycle terminates.

The following theorem states the termination and the correctness of the
algorithm.

THEOREM 5. (1) Algorithm 2 terminates and (2) an authorization A is
valid at time t# if and only if there exists ^A, V& in TABEXT such that t#
satisfies V.

In practice, we expect the algorithm to terminate at the first iteration in
most cases.

Example 10. Consider the TAB of Example 9. The levels computed by
the CSD algorithm are illustrated in Figure 4. We now apply the algorithm
for TABEXT generation. At the first iteration of the repeat-until cycle, k 5
2 and current_max 5 1/14/99 (12/31/98 1 2 z 7), where 7 is the
periodicity of Weeks. Let TABEXT

(i) be the TABEXT resulting from the evalu-
ation of level Li. We have:

X1 5 {^(manager, guidelines, write, 1, Sam) , {({true}, {1/1/95
# t # 5/20/95} )}&, ^(technical-staff, guidelines, read,
1, Sam) {({t [7 ( y 1 1)@y 5 0, . . . , 4}, {10/1/95 # t} )}&,
^(staff, document, read, 1, Sam) {({t [7 ( y 1 1)@y 5 0,
. . . , 4}, {1/1/95 # t # 12/31/97} )}&}.

TABEXT
(1) 5 {^(manager, guidelines, write, 1, Sam) , {({true},

{1/1/95 # t # #5/20/95} )}&, ^(technical-staff,
guidelines, read, 1, Sam) , {({t [7 ( y 1 1) @y 5 0,
. . . , 4}, {10/1/95 # t # 1/14/99} )}&, ^(staff, docu-
ment, read, 1, Sam) , {({t [7 ( y 1 1)@y 5 0, . . . , 4},
{1/1/95 # t # 12/31/97} )}&}.

X2 5 {^(temporary-staff, document, read, 1, Sam) ASLONGAS
¬(summer-staff , document, read, 1, Sam) , {({t [7 ( y 1
1)@y 5 0, . . . , 4}, {1/1/96 # t # # 12/31/98} )}&, ^(techni-
cal-staff, report, write, 2, Sam) WHENEVER ¬(techni-
cal-staff, guidelines, read, 1, Sam) {({true}, {1/1/95 #
t} )}&}.

From ^(temporary-staff, document, read, 1, Sam) ASLONGAS
¬(summer-staff, document, read, 1, Sam) , {({t [7 ( y 1 1)@y 5
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0, . . . , 4}, {1/1/96 # t # 12/31/98} )}& and the authorizations in TABEXT
(1)

we derive: ^(temporary-staff, document, read, 1, Sam) , {({t [7
( y 1 1) @y 5 0, . . . , 4}, {1/1/96 # t # 12/31/98} )}&. From ^(techni-
cal-staff, report, write, 2, Sam) WHENEVER ¬(technical-
staff, guidelines, read, 1, Sam) , {({true}, {1/1/95 # t} )}&} we
derive: ^(technical-staff, report, write, 2, Sam) , {({true}, {1/
1/95 # t # 9/30/95} ), ({t [7 y y 5 0, 6}, {10/1/95 # t # 1/14/99} )}&.
Thus,

TABEXT
(2) 5 TABEXT

(1) ø {^(temporary-staff, document, read, 1,
Sam), {({t [7 ( y 1 1) @y 5 0, . . . , 4}, {1/1/96 # t #
12/31/98} )}&, ^(technical-staff, report, write, 2,
Sam), {({true}, {1/1/95 # t # 9/30/95} ), ({t [7 y y 5 0,
6}, {10/1/95 # t # # 1/14/99} )}&}.

X3 5 {^(technical-staff, report, write, 1, Sam) UPON
¬(manager, guidelines, write, 1, Sam) ` ¬(staff,
guidelines, write, 1, Sam) , {({t [7 ( y 1 1) y 5 0,
4}, {1/1/95 # t} )}&}

From ^(technical-staff, report, write, 1, Sam) UPON ¬(manag-
er, guidelines, write, 1, Sam) ` ¬(staff, guidelines, write,
1, Sam) , {({t [7 ( y 1 1) y 5 0, 4}, {1/1/95 # t} )}&} and the
authorizations in TABEXT

(2) we derive: ^(technical-staff, report,
write, 1, Sam) , {({t [7 ( y 1 1) y 5 0, 4}, {10/1/95 # t # 1/14/99} )}&.
Hence,

TABEXT
(3) 5 TABEXT

(2) ø {^(technical-staff, report, write, 1,
Sam), {({t [7 ( y 1 1) y 5 0, 4}, {10/1/95 # t #
1/14/99} )}&}.

success is set to true and the repeat-until cycle terminates.
The last step of the algorithm substitutes ` to each value t# such that
1/7/99 , t# # 1/14/99 . Hence, TABEXT is equal to:

{^(manager, guidelines, write, 1, Sam) , {({true}, {1/1/95 #
t # 5/20/95} )}&, ^(technical-staff, guidelines, read, 1,
Sam), {({t [7 ( y 1 1) @y 5 0, . . . , 4}, {10/1/95 # t} )}&, ^(staff,
document, read, 1, Sam) , {({t [7 ( y 1 1) @y 5 0, . . . , 4},
{1/1/95 # t # 12/31/97} )}&, ^(temporary-staff, document,
read, 1, Sam) , {({t [7 ( y 1 1) @y 5 0, . . . , 4}, {1/1/96 # t #
12/31/98} )&, ^(technical-staff, report, write, 2, Sam) ,
{({true}, {1/1/95 # t # 9/30/95} ), ({t [7 y y 5 0, 6}, {10/1/95 #
t} )}&, ^(technical-staff, report, write, 1, Sam) , {({t [7 ( y 1
1) y 5 0, 4}, {10/1/95 # # t} )}&}.

Once we have generated TABEXT, an access request from user s1 to exercise
access mode m1 on object o1 at time t will be allowed only if ^A, V& exists in
TABEXT such that s(A) 5 s1, o(A) 5 o1, m(A) 5 m1, pn(A) 5 “1,” and
t satisfies V.
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6. AUTHORIZATION UPDATES

Valid authorizations can change due to modifications of the TAB. In this
section we discuss administrative operations for changing the TAB and
illustrate a strategy to incrementally maintain TABEXT upon the execution
of administrative operations.

6.1 Administrative Operations

Administrative operations allow users to specify, delete, or modify authori-
zations and derivation rules. In our model we assume ownership: the user
who creates an object is considered its owner and can, as such, regulate
access by others to the object. By regulating access we mean that the user
can specify authorizations on the object, either directly or through deriva-
tion rules. In other words, the user can specify any authorization on the
object and any rule where the object appears on the left-hand side of the
operator. Authorizations and derivation rules can then be removed or
changed only by the user who specified them.

Administrative operations can be carried out directly on the TAB, that is,
allowing users direct access and modification to authorizations/rules, or
through specifications in a language for administrative operations. This
language would act as an interface between the user and the TAB by
interpreting users’ requests to add, remove, or modify authorizations and
rules and translating them appropriately on the TAB. For instance, a
language such as the one presented in Bertino et al. [1996a] can be used.

The development of an administrative policy for the specification of
temporal authorizations and rules is beyond the scope of this article. This
is the reason behind the choice of the ownership policy, which provides
decentralized administration (each user administers her own objects) with-
out the complications that can be introduced by the delegation of adminis-
trative privileges. We note, however, that the administrative policy is
orthogonal to the authorization model and, therefore, any administrative
policy can be applied to our model. For instance, delegation of administra-
tion through either administrative privileges (as in Bertino et al. [1996a])
or through grant option (as in Bertino et al. [1997]) can be considered. A
user would then be allowed only to specify authorizations/rules if he is so
authorized by the administrative policy.

We note that the administrative policy has some effects on how paramet-
ric rules are expanded by the system. Remember that parametric rules can
contain the wild card character, meaning any value, in place of the subject,
object, or access mode in the authorizations. Parametric rules specified by a
user can produce only authorizations that the user can specify. In our case,
they produce only authorizations on objects owned by the user who speci-
fied the rules. To clarify, consider Example 6 and suppose there were two
additional objects in the system owned by another user, Jim . The resulting
rules would be exactly the same. Note, however, that ownership limits only
the value that the object element in the authorization on the left of the
operator (the authorization to be derived) can assume. It does not limit the
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value of the object elements in the authorizations on the right of the
operator. Rules specified by a user can refer to objects that the user does
not own.11 In the case of parametric rules, if the wild card character
appears for the object in the authorization on the left of the operator, it will
be instantiated only to objects owned by the user who specified the rules.
By contrast, if the wild card character appears only in authorizations on
the right of the operator, it can be instantiated to any value.

6.2 Implementation Issues

Administrative operations, by changing the TAB, may change the validity
of authorizations and, consequently, require changes to the corresponding
TABEXT. For instance, consider the deletion of a derivation rule. The first
effect of this operation is the deletion from TABEXT of the authorizations, if
any, derivable from it. However, the rule deletion may have several other
effects on the TABEXT, such as the deletion of other authorizations in
addition to the one directly derivable from the rule. This happens if the
authorization on the left-hand side of the deleted rule appears on the
right-hand side of other derivation rules, not preceded by the ¬ operator.
By contrast, if the authorization on the left-hand side of the deleted rule
appears on the right side of other derivation rules preceded by the ¬
operator, then the deletion of the rule may cause the insertion of other
authorizations in TABEXT. The rule deletion may also require updating the
TAB stratification. Further effects are possible if the deleted rule allows
the derivation of a negative authorization. In this case the deletion of the
rule may also cause the insertion in TABEXT of the positive authorizations,
if any, that were invalidated by the presence of the negative authorization
derivable from the rule. The following example clarifies these concepts.

Example 11. Consider the TAB of Example 9 and the corresponding
TABEXT computed in Example 10. Suppose that rule R3 is removed. Autho-
rization (technical-staff, report, write, 2, Sam) , {({true}, {1/
1/95 # t # 9/30/95 }), ({t [7 y y 5 0, 6}, {10/1/95 # t} )}, derived from
R3, must be removed from TABEXT. Due to this deletion, now rule R2 allows
the derivation of authorization (technical-staff, report, write, 1,
Sam) for each Monday and Friday after 5/20/95 , since in the interval
[5/21/95, 9/30/95] authorization (technical-staff, report,
write, 1, Sam) is no longer invalidated by the removed negative
authorization. Therefore, authorization (technical-staff, report,
write, 1, Sam) , ({t [7 ( y 1 1) y 5 0, 4}, {5/21/95 # t # 9/30/95} )}
must be added to TABEXT. Moreover, the TAB stratification, illustrated in
Figure 4, must be modified. ^(technical-staff, report, write, 2,
Sam), {({true}, {1/1/95 # t # 1/21/99} )}& must be removed from the
stratification since R3 was the only element in TAB in which (technical-
staff, report, write, 2, Sam) appeared. Consequently, ^(techni-

11Administrative privileges can be considered that restrict the objects to which users can refer
in rules [Bertino et al. 1996a].
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cal-staff, report, write, 1, Sam) , {({true}, {1/1/95 # t #
1/21/99} )}& must be moved from level 3 to level 2.

Note that updates similar to those illustrated in Example 11 are required
for all the other operations that enforce changes to the TAB. We have
devised a set of algorithms for incrementally maintaining the TABEXT and
the TAB stratification without the need for recomputing them upon the
execution of administrative operations. The algorithms are based on tech-
niques similar to those used for the maintenance of materialized views in
constraint and deductive databases [Gupta et al. 1993; Lu et al. 1996,
1995]. These techniques can be successfully employed in our context due to
the correspondence between a TAB and a constraint logic program, shown
in Section 3.3. All our algorithms (see Ferrari [1998] for a detailed
description) are based on both the Dred [Gupta et al. 1993] and the Stdel
algorithm [Lu et al. 1995] for view maintenance, and extend them to the
consideration of negative authorizations. The maintenance algorithms we
have developed for the periodic model are optimizations of the ones
developed for the nonperiodic model [Bertino et al. 1996a], which were
based on the Dred algorithm only.

Note that in the worst case the maintenance algorithms must recompute
the whole TABEXT and the TAB stratification. It should be noted, however,
that an analysis of the worst-case complexity of the maintenance algo-
rithms is not very significant, since this case is very unlikely to be reached
in practice. The worst case arises only if all of these conditions are
satisfied:

(1) all the derivation rules in TAB form a unique chain; that is, the set R 5
{R1, . . . , Rn} of derivation rules in TAB is such that @i [ {1, . . . , n 2
1}: Ri 5 Ai ^OP& ! i, Ri11 5 Ai11 ^OP& ! i11 with Ai11 appearing in ! i;

(2) no pairs of temporal constraints in the derivation rules in TAB are
disjoint; and

(3) the administrative operation affects the last rule in the chain.

This is a very unlikely situation. We expect that the size of the chains of
derivation rules will be very small in real cases. This expectation is also
supported by the experiments we have carried out for the nonperiodic
model [Bertino et al. 1996a], which have shown that the materialization
strategy can be successfully adopted in practice [Bertino et al. 1996c]. The
experiments have been carried out on a HP9000/720 with 64Mb of RAM
under the HP-UX 10.01 operating system. The prototype system used to
perform the experiments has been implemented on top of the INFORMIX
DBMS [Informix Software 1995], using the INFORMIX-ESQL/C language.
In particular, the data structures used to implement the authorization
model are based on the INFORMIX system catalogues. The graphical
interface has been implemented using the OSF/Motif toolkit [Foundation
1993]. In order to test the feasibility of the materialization strategy, the
prototype system implements an algorithm enforcing the run-time deriva-
tion strategy and all the algorithms to incrementally maintain TABEXT and

264 • E. Bertino et al.

ACM Transactions on Database Systems, Vol. 23, No. 3, September 1998.



the TAB stratification upon the execution of administrative operations.
Experiment tests, with TABs of different sizes and characteristics, have
shown that the materialization strategy is always preferable to a run-time
derivation approach when administrative operations are less than 15–20%
of the number of access requests submitted to the system. This is a
reasonable assumption in real situations, since, generally, access requests
are considerably more frequent than administrative requests.

Based on the prototype system developed for the nonperiodic model, we
are currently implementing a prototype system for the model presented in
this article. This has required modifying the nonperiodic prototype along
two main directions: the implementation of the maintenance algorithms we
have developed for the periodic model, and an extension related to the
management of periodic time. As we have seen in Section 2, we provide
both a symbolic and a constraint formalism to represent periodic time. We
are currently implementing a procedure to convert any symbolic expression
into an equivalent set of simple periodicity constraints, along the lines
sketched in Section 2.3.

Moreover, we are currently investigating efficient algorithms to perform
the operations (i.e., union, complement, and intersection) on temporal
constraints associated with authorizations and rules, using a preprocessing
technique at the symbolic level. Performing the operations at the symbolic
level has several advantages, in terms of user friendliness, saving of
storage space, and computational cost. However, it seems that, in certain
“critical cases,” executing the operations necessarily requires a translation
into the constraint formalism. The idea is therefore to operate as much as
possible at the symbolic level and shift to periodicity and gap-order con-
straints only when required.

7. CONCLUSIONS AND FUTURE WORK

Existing authorization models are based on the use of authorizations
stating permissions of subjects (users, groups, or roles) to access objects. An
authorization is considered continuously valid from the time it is granted to
the time it is revoked. Mapping real-life protection requirements onto this
paradigm often becomes very cumbersome. As a matter of fact, many
practical requirements call for more expressiveness and flexibility in spec-
ifying authorizations. In this article we have presented an authorization
model where authorizations can be periodic and have a limited time of
validity. The model also allows users to specify rules for the automatic
derivation of new (periodic) authorizations. The resulting model is there-
fore very flexible and powerful in terms of the kinds of protection require-
ments that it can represent. Obviously, the flexibility provided to the users
requires a nontrivial underlying formal model where temporal constraints,
periodicity constraints, and derivation rules can be represented.

We are currently extending our work in several directions. A first
direction concerns the investigation of security requirements for new
applications, such as workflow systems and computer-supported coopera-
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tive work, to assess whether our model is adequate to express those
requirements. A second direction concerns the investigation and use of
different resolution policies to solve conflicts between positive and negative
authorizations. In the article we have assumed the use of the denials-take-
precedence policy. This policy has the advantage of always taking the
safest solution (i.e., denying the access) in case of conflicts. However, it
does not support all forms of exceptions; for instance, it is not possible to
specify positive exceptions to negative authorizations. A third direction
concerns the enrichment of the authorization specification language. For
instance, in the article we have assumed that parametric authorizations
can be specified by using a special symbol (the wild card character) that
varies across all the values of a domain. Rules can be extended to the
consideration of multiple variables, varying over the same domain, in the
authorizations within a rule. A fourth direction concerns the development
of tools supporting authorization administration. A final direction concerns
the investigation of alternative implementation techniques for our model,
such as the use of database triggers.

APPENDIX A. DATALOGNOT,[Z,,Z

In this article we used Datalognot,[Z,,Z to specify the semantics of a set
of periodic authorizations and rules, and the algorithm to generate
implicit authorizations mimics a fixpoint computation of the model of a
Datalognot,[Z,,Z program. Datalognot,[Z,,Z is a simple extension of
Datalog[Z,,Z [Toman et al. 1994] with nonmonotonic negation [Gelder et al.
1991]; however, to our knowledge, it was never considered in the literature.
Datalognot,[Z,,Z programs are defined as follows.

Definition A.1. A Datalognot,[Z,,Z program P is a finite set of (function-
free) clauses of the form

B 4 D1 , . . . , Dm , notDm11 , . . . , notDm1n , PC, GC,

where B, D1, . . . , Dm1n are atoms, PC is a satisfiable conjunction of
simple periodicity constraints, GC is a satisfiable conjunction of gap-order
constraints, and not represents nonmonotonic negation.

Bottom-up evaluation of Datalognot,[Z,,Z programs requires the execu-
tion of operations on temporal constraints, that we have defined as sets of
pairs (PC, GC). In addition to the operations of conjunction (`*) and
complement (¬*), defined in Section 2.2, we need the operations of sub-
sumption and projection (p) defined in Toman et al. [1994]. Intuitively, if x,
y, and z are the variables in both PC and GC, then pxy (PC, GC) returns
a set of pairs (PCi, GCi) obtained from (PC, GC) by dropping all the
constraints involving variable z, after computing and adding all the con-
straints on the remaining variables implied by the dropped ones. The p
operation also discards any resulting pair that is inconsistent. The sub-
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sumption operation has its intuitive semantics: a pair (PC1, GC1) is
subsumed by (PC2, GC2) (having the same set of variables) if any assign-
ment satisfying (PC1, GC1) also satisfies (PC2, GC2). Subsumption and
projection operations can be easily extended to operate on temporal con-
straints, similarly to `* and ¬*.

Temporal constraints serve as a basis to define a nonground interpreta-
tion for Datalognot,[Z,,Z programs. A ([, ,) interpretation is any set of
pairs of the form (B, J), where B is a predicate symbol, and J is a
temporal constraint.

Given a Datalognot,[Z,,Z program P we can define an operator
TPnot,[Z,,Z that maps ([, ,) interpretations to ([, ,) interpretations. In
the following we denote with p* the projection operation on sets J.

Definition A.2. Let P be a Datalognot,[Z,,Z program and I a ([, ,)
interpretation.

TPnot,[Z,,Z (I) 5 I ø

{(B, J): B 4 D1, . . . , Dm, notDm11, . . . , notDm1n, PC, GC [ P
(Dr, Jr) [ I, @r 5 1, . . . , m,
Q 5 J1 `* . . . `* Jm `* ¬* (Jm11) `* . . . `* ¬* (Jm1n) `*
{(PC, GC)},
J 5 p*Var(B) (Q), (B, J) is not subsumed by I}

where Var(B) denotes the set of free variables in atom B. The variables of
the periodicity and gap-order constraints are renamed using the variable
names in the associated atoms of the clauses.

We know from the literature that the model of a positive logic program
can be computed by the so-called fixpoint iteration method; starting from
the empty interpretation all the possible inferences from rules in the
program are drawn until a fixpoint is reached.

If we restrict our attention to stratified (or locally stratified) [Gelder et
al. 1991] Datalognot,[Z,,Z programs, the following procedure, based on the
fixpoint iteration method, can be used to evaluate programs.

Algorithm A.1. (Naive Bottom-up evaluation of stratified Data-
lognot,[Z,,Z programs). Let P be a Datalognot,[Z,,Z program; let P1, . . . , Pn be
a stratification of P.12

I :5 À
For i :5 1 to n do

repeat
I :5 TPi

not,[Z,,Z (I)
until I does not change

endfor
return I

12Pi contains rules of stratum i, i 5 1, . . . , n.
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Termination of Algorithm A.1 is not guaranteed for any stratified
Datalognot,[Z,,Z program, as Datalognot,[Z,,Z programs can express any
Turing computable function [Revesz 1993]. There is then the necessity to
devise syntactic restrictions of stratified Datalognot,[Z,,Z to guarantee
termination. One of these restrictions is Datalognot,[Z,,$, where $ is a
finite subset of Z; that is, the gap-order constraints are on a finite subset of
the integers. We prove that for any stratified Datalognot,[Z,,$ program,
Algorithm A.1 terminates returning a nonground representation of the
unique (ground) model of the program. The ground model can be obtained
with the standard bottom-up evaluation, that is, by replacing in Algorithm
A.1 TPnot,[Z,,$ with the standard TP operator. Finally note that Algo-
rithm A.1 may return different nonground models for the same input
program. This simply means that there may be several finite representa-
tions for the same ground model. The following theorem formalizes these
concepts.

THEOREM A.1. Algorithm A.1 terminates for any stratified Data-
lognot,[Z,,$ program P. Let MP be any output of Algorithm 3 on P. Let GP
be the output of the standard bottom-up evaluation of P, then for any
predicate symbol B in P:

B~c1 , . . . , ck! [ GP N ~B, J! [ MP ` @c1/x1 , . . . , ck/xk# ?5 ^~J!,

where x1, . . . , xk are the free variables in atom B, [c1/x1, . . . , ck/xk]
denotes the substitution of those variables with constants c1, . . . , ck, and
^(J) is the Boolean formula associated with J (cfr. Section 2.2).

PROOF (TERMINATION). The algorithm consists of a finite iteration, bound
by the number of strata in the input program, containing an inner repeat-
until cycle. The repeat-until cycle always terminates except in the case
where at each iteration either a new element (B, J) is added to I or a new
constraint is generated for a predicate B appearing in I. We show that this
is not possible. First of all, the number of predicates in P is finite.
Moreover, only a finite number of gap-order constraints can be generated,
since we assume that gap-order constraints are on a finite domain. Let us
consider periodicity constraints. Let pc1, . . . , pcm be the set of all the
simple periodicity constraints appearing in P. Let ki be the modulo factor
in pci, i 5 1, . . . , m. It is easy to show that the operations performed on
simple periodicity constraints by the TP operator ensure that the modulo
factor of each simple periodicity constraint appearing in I must be less than
or equal to lcm{k1, . . . , km}. Hence, only a finite number of simple
periodicity constraints can be generated. Therefore, we can conclude that
the algorithm terminates.

We prove the second part of the theorem by induction on the number of
strata in P. Let GP

i be the output of the ith iteration of the standard
bottom-up evaluation, and let MP

i be the output of the ith iteration of
Algorithm A.1. We prove, by induction on i that, for any predicate symbol B
in P, B(c1, . . . , ck) [ GP

i iff there exist (B, J) [ MP
i and c1, . . . , ck such
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that [c1/x1, . . . , ck/xk] ?5 ^(J), where { x1, . . . , xk} are the free variables
in atom B. In what follows we denote with GP

i, j the output of the jth rule
application in the ith iteration of the standard bottom-up evaluation.
Similarly, MP

i, j denotes the output of the jth rule application in the ith
iteration of Algorithm A.1.

(Basis: i 5 1). Proving the thesis is equivalent to proving, by induction
on j, that: (a) if B(c1, . . . , ck) [ GP

1, j, then ?(B, J) [ MP
1 such that

[c1/x1, . . . , ck/xk] ?5 ^(J), and (b) if there exist (B, J) [ MP
1, j and c1, . . . ,

ck such that [c1/x1, . . . , ck/xk] ?5 ^(J), then B(c1, . . . , ck) [ GP
1 .

(Basis: j 5 1). Let us first consider (a). Let P1, . . . , Pn be the
stratification of P. By the definition of a stratified program [Gelder et al.
1991], clauses in stratum P1 do not contain negative literals. Therefore, if
B(c1, . . . , ck) [ GP

1,1, then the first rule applied is a rule B 4 PC, GC.
Let Var 5 { x1, . . . , xk, y1, . . . , yl} be the variables in the rule. If B(c1,
. . . , ck) [ GP

1,1, then there exists a substitution ! 5 [c1/x1, . . . , ck/xk,
d1/y1, . . . , dl/yl] such that ! satisfies PC and GC. Consider the evalua-
tion of B 4 PC, GC by Algorithm A.1. (B, J) is added to MP

1 if it is not
subsumed by MP

1 , where J 5 p*Var(B) (Q), Q 5 {(PC, GC)}. By hypothesis
! ?5 ^(Q) and, by Lemma 4.7 in Toman et al. [1994], [c1/x1, . . . , ck/xk] ?5
^(J). Thus, if (B, J) is not subsumed by MP

1 , the thesis holds. If (B, J) is
subsumed by MP

1 , it means that ?(B, J9) [ MP
1 such that J9 subsumes J.

Therefore [c1/x1, . . . , ck/xk] ?5 ^(J9). Thus, the claim holds. Let us now
prove point (b). If (B, J) [ MP

1,1, then the first rule application in the first
iteration of Algorithm A.1 uses a rule B 4 PC, GC of P1, such that J 5
p*Var(B) (Q), where Q 5 {(PC, GC}. Let Var 5 { x1, . . . , xk, y1, . . . , yl} be
the variables in the rule. By Lemma 4.7 in Toman et al. [1994], [c1/x1, . . . ,
ck/xk] ?5 ^(J) implies that there exists ! 5 [c1/x1, . . . , ck/xk, d1/y1, . . . ,
dl/yl], such that ! ?5 ^(Q). Thus, when the rule B 4 PC, GC is considered
by the standard bottom-up evaluation, B(c1, . . . , ck) is added to GP

1 .

(Induction). Suppose we have proved the thesis for j; we prove it for j 1
1. Consider point (a) first. Suppose that the ( j 1 1)th rule application of
the first iteration of the standard bottom-up evaluation uses rule B 4
D1, . . . , Dm, notDm11, . . . , notDm1n, PC, GC of P1. Let Var 5 { x1,
. . . , xk, y1, . . . , yl} be the variables in the rule. If B(c1, . . . , ck) is added
to GP

1,( j11), then there exists ! 5 [c1/x1, . . . , ck/xk, d1/y1, . . . , dl/yl]
such that D1(t1), . . . , Dm(tm) [ GP

1, j, Dm11(tm11), . . . , Dm1n(tm1n) [y
GP

1, j, ! satisfies PC and GC, where tr is the tuple obtained by applying !
to Dr, r 5 1, . . . , m 1 n. By inductive hypothesis D1(t1), . . . , Dm(tm) [
GP

1, j implies that there exist J1, . . . , Jm, such that tr satisfies Jr and (Dr,
Jr) [ MP

1 , r 5 1, . . . , m. Hence, ! ?5 ^(Jr), r 5 1, . . . , m. By contrast,
the inductive hypothesis implies that since Dr(tr) [y GP

1, j, then there is no
(Dr, Jr) in MP

1 such that tr satisfies Jr, r 5 m 1 1, . . . , m 1 n. Thus,
! ?5 ^(¬*Jr), r 5 m 1 1, . . . , m 1 n. Therefore, consider the evaluation
of B 4 D1, . . . , Dm, notDm11, . . . , notDm1n, PC, GC by Algorithm A.1.
(B, J) is added to MP

1 , if it is not subsumed by MP
1 , where J 5 p*Var(B) (Q)
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and Q 5 J1 `* . . . `* Jm `* ¬* Jm11 `* . . . `* ¬* Jm1n `* {(PC,
GC)}. By hypothesis ! ?5 ^(Jr), r 5 1, . . . , m and ! ?5 ^(¬pJr), r 5
m 1 1, . . . , m 1 n. Moreover, ! satisfies PC and GC. Thus, ! ?5 ^(Q),
and, by Lemma 4.7 in Toman et al. [1994], [c1/x1, . . . , ck/xk] ?5 ^(J).
Therefore, if (B, J) is not subsumed by MP

1 , ?(B, J) [ MP
1 such that

[c1/x1, . . . , ck/xk] ?5 ^(J), which proves the thesis. Suppose that (B, J) is
subsumed by MP

1 . Then, ?(B, J9) [ MP
1 such that J9 subsumes J. This

implies that [c1/x1, . . . , ck/xk] ?5 ^(J9), and therefore we can conclude the
thesis.

Let us now prove point (b). Suppose that the ( j 1 1)th rule application of
the first iteration of Algorithm A.1 uses rule B 4 D1, . . . , Dm, notDm11,
. . . , notDm1n, PC, GC of P1, and let Var 5 { x1, . . . , xk, y1, . . . , yl} be
the variables in the rule. If (B, J) is added to MP

1, j11, it means that ?(Dr,
Jr) [ MP

1, j, r 5 1, . . . , m such that J 5 p*Var(B) (Q), where Q 5 J1 `*
. . . `* Jm `* . . . `* ¬*Jm11 `* . . . `* ¬*Jm1n `* {(PC, GC)} and
Jr is the constraint associated with Dr in MP

1, j r 5 1, . . . , m 1 n. By
hypothesis, there exist c1, . . . , ck such that [c1/x1, . . . , ck/xk] ?5 ^(J).
This implies, by Lemma 4.7 in Toman et al. [1994], that there exists ! 5
[c1/x1, . . . , ck/xk, d1/y1, . . . , dl/yl] such that ! ?5 ^(Q). Then, ! ?5
^(J1), . . . , ! ?5 ^(Jm), ! ?5 ^(¬*Jm11), . . . , ! ?5 ^(¬*Jm1n), and !
satisfies PC and GC. Let tr be the projection of ! onto the variables in Jr,
r 5 1, . . . , m 1 n. Thus, t1 satisfies J1, . . . , tm satisfies Jm, tm11
satisfies ¬*Jm11, . . . , tm1n satisfies ¬*Jm1n. By inductive hypothesis,
(Dr, Jr) [ MP

1, j and tr satisfies Jr, imply Dr(tr) [ GP
1 , r 5 1, . . . , m.

Similarly, tr satisfies ¬*Jr, implies Dr(tr) [y GP
1 , r 5 m 1 1, . . . , m 1 n.

Therefore, when the rule B 4 D1, . . . , Dm, notDm11, . . . , notDm1n,
PC, GC is considered by the standard bottom-up evaluation, B(c1, . . . , ck)
is added to GP

1 .

(Induction). Suppose we have proved the thesis for i; we prove it for i 1
1; that is, we prove that B(c1, . . . , ck) [ GP

i11 iff there exist (B, J) [
MP

i11 and c1, . . . , ck such that [c1/x1, . . . , ck/xk] ?5 ^(J). Analogously to
the basis case, proving the thesis is equivalent to proving, by induction on
j, that: (a) if B(c1, . . . , ck) [ GP

i11, j, then ?(B, J) [ MP
i11 such that

[c1/x1, . . . , ck/xk] ?5 ^(J), and (b) if there exist (B, J) [ MP
i11, j and

c1, . . . , ck such that [c1/x1, . . . , ck/xk] ?5 ^(J), then B(c1, . . . , ck) [ GP
i11.

(Basis: j 5 1). We start by proving point (a). Suppose that the first rule
application of the (i 1 1)th iteration of the standard bottom-up evaluation
uses rule B 4 D1, . . . , Dm, notDm11, . . . , notDm1n, PC, GC of Pi11.
Let Var 5 { x1, . . . , xk, y1, . . . , yl} be the variables in the rule. If B(c1,
. . . , ck) is added to GP

i11,1, then there exists ! [c1/x1, . . . , ck/xk, d1/y1,
. . . , dl/yl] such that D1(t1), . . . , Dm(tm) [ GP

i , Dm11(tm11), . . . ,
Dm1n(tm1n) [y GP

i , and ! satisfies PC and GC, where tr is the tuple
obtained by substituting ! into Dr, r 5 1, . . . , m 1 n. By inductive
hypothesis, D1(t1), . . . , Dm(tm) [ GP

i implies ?(Dr, Jr) [ Mp
i , such that

tr satisfies Jr, r 5 1, . . . , m. Hence, ! ?5 ^(Jr), r 5 1, . . . , m. By
contrast, the inductive hypothesis implies that since Dr(tr) [y GP

i , then
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there is no (Dr, Jr) in MP
i such that tr satisfies Jr, r 5 m 1 1, . . . , m 1

n. Hence, ! ?5 ^(¬*Jr), r 5 m 1 1, . . . , m 1 n. Therefore, consider the
evaluation of B 4 D1, . . . , Dm, notDm11, . . . , notDm1n, PC, GC by
Algorithm A.1. (B, J) is added to MP

i11, if it is not subsumed by MP
i11,

where J 5 p*Var(B) (Q) and Q 5 J1 `* . . . `* Jm `* ¬*Jm11 `* . . . `*
¬*Jm1n `* {(PC, GC)}. Using the same reasoning we used to prove the
corresponding case in the inductive step when i 5 1, we can conclude that
this implies ?(B, J9) [ MP

i11 such that [c1/x1, . . . , ck/xk] ?5 ^(J9), which
proves the thesis.

We omit the proof of point (b) since it is analogous to the proof of the
corresponding case in the inductive step when i 5 1

(Induction). We omit the proof of the inductive step as it is analogous to
the corresponding case for i 5 1. e

APPENDIX B. PROOFS

In the following we use P instead of PTAB to denote the logic program
associated with a TAB. We start by introducing some definitions and
lemmas that are used in the proofs. Let P (t#t#) be the program P where for
each temporal variable t appearing in a rule, we add the gap-order
constraint t # t# to the body of the rule, where t# is a temporal constant.
GP (t#t#)

is its ground stable model, whereas MP (t#t#)
denotes any nonground

representation of GP (t#t#)
. The following lemma says that if we are interested

in the validity of authorizations at a given instant, we can ignore any
ground rule involving instants greater than the given one.

LEMMA B.1. For any instant t# , valid(t# , A) [ GP iff valid(t# , A) [ GP (t#t#)
.

PROOF (SKETCH). For each type of rule with valid(t# , A) in the head, no
literal in the body contains a temporal variable that can take values
greater than t# for the same rule instance. e

Let P9 be the subset of all instantiated (ground) rules in P obtained
dropping any rule with a trivially false atom in the body (e.g., 2 # 1 # 3 or
3 [2 4). Similarly to P (t#t#), we can define P9(t#t#), obtaining a finite set of
rules where each temporal variable has been substituted by a constant less
than or equal to t# . Consider now the program P 0(t#t#) obtained from P9(t#t#) by
the following substitutions:

(a). each literal not(once_not_validf(t b, t k, P, !)) appearing in the body of
a rule is replaced by the set of literals {validf(t9, !) ut b # t9 , t k `
t9 [ P(P)};

(b). each literal not(denied(t k, s, o, m )) appearing in the body of a rule is
replaced by the set of literals {not(valid(t k, A))uA 5 (s, o, m, 2, g)
appears in TAB};

(c). each rule r containing the literal once_validf(t b, t k, P, !) in its body is
replaced by the set of rules obtained by substituting once_validf(t b, t k,
P, !) in r with the elements in the set {validf(t9, !) ut b # t9 # t k `
t9 [ P(P)};
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(d). each rule r containing the literal validf(t k, !), with ! 5 C1 ~ . . . ~Cn,
and Ci 5 ` j51

k ¬Aji ` ` l5k11
m Ali, for k [ [0, m], m, n [ Z1, and i 5

1, . . . , n, in its body is replaced by n rules obtained by substituting
validf(t k, !) in r with the conjunction of literals obtained by replacing
each ¬Aji [ Ci with not(valid(t k, Aji)) and each Ali [ Ci with valid(t k,
Ali), for each i 5 1, . . . , n.

(e). each rule r containing the literal CNSTR(P, t k) in its body is replaced
by the set of rules obtained by substituting CNSTR(P, t k) in r with the
elements in the set {t k [periodicity(P) y u(CNSTR(P, t k) 4 t k [periodicity(P)
y, t # t#) [ P9(t#t#)}.

(f). any rule having validf¼, once_validf¼, once_not_validf¼, denied¼, and
CNSTR¼ as head is deleted.

Since we have shown that any symbolic periodic expression can be trans-
lated into an equivalent finite set of simple periodicity constraints, and we
are considering rule instances where t is bound, the resulting set of rules in
P 0(t#t#) is finite. Note that all the rules in P 0(t#t#) have predicate valid¼ as
head. The following lemma formally states the equivalence between P 0(t#t#)
and P(t#t#).

LEMMA B.2. For any instant t# , valid(t# , A) [ GP (t#t#)
iff valid(t# , A) [

GP 0(t#t#)
.

PROOF (SKETCH). Considering the preceding transformation it is easy to
verify that each atom valid¼ can be derived using a rule in P9 iff it can be
derived using the corresponding rule in P0. Then, it is sufficient to
remember that GP9(t#t#)

is equal to GP (t#t#)
. e

In the following, we denote with Ci (Configuration i) the valid authoriza-
tions at instants contained in the ith maximum period after t# max, where
t# max is the maximum finite constant in TAB. Formally, Ci 5 {valid(t, A) u
valid(t, A) [ GP 0 (t # t# max1i zPmax) and t# max 1 (i 2 1) z Pmax , t # t# max 1
i z Pmax}. It is easy to verify that Ci is a subset of GP 0 (t#t# max1j zPmax), for
each j $ i. We define Ci

3
5 Cj as true if for each atom in Ci a corresponding

one (with the same authorization) can be found in Cj by “shifting” the
temporal instant by the value ( j 2 i) z Pmax, and vice versa.

LEMMA B.3. There exists an integer k# such that Ck
3
5 Ck# for each k . k# .

The integer k# is limited by one plus the number of ASLONGAS and UPON
rules in TAB having an unbound associated interval.

PROOF. To prove the thesis it is sufficient to consider the derivation of
atoms valid¼ at instants greater than t# max. Since any derivation of atoms
valid¼ with a constant greater than t# max is possible only through a rule
with an unbound associated interval (a constraint t b # t with no upper
bound), we only consider authorizations and rules in TAB with an unbound
associated interval. The proof is articulated in the following main steps.

(1) Ci
3
Þ Ci11 implies that there exists a pair of rules in P 0(t#t# max1(i11) zPmax)

instantiating the same rule in TAB for two instants t and t9 in the ith
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period with t , t9, such that (1) either the rule operator is ASLONGAS
and the rule with t fires and the one with t9 does not, or (2) the operator
is UPON and the rule with t does not fire and the one with t9 does.
Intuitively, this statement says that, in the ith period, either an
ASLONGAS rule “expires” or an UPON rule “triggers.” To prove this
statement we first note that if only explicit authorizations and WHEN-
EVER rules are present in TAB, then Ci

3
5 Ci11.

Hence, Ci
3
Þ Ci11 implies the existence of a pair of rules in

P 0(t#t# max1(i11) zPmax), corresponding to the same ASLONGAS rule Ra or to
the same UPON rule Ru, and of an authorization A such that the rules
derive valid(t, A) and not valid(t 1Pmax, A), or vice versa. Consider first
the ASLONGAS case with Ra 5 [begin , `], P, A ASLONGAS !, and
let t9 with t , t9 # t 1 Pmax be the first instant, satisfying the
periodicity constraint, for which a rule in P 0(t#t# max1(i11) zPmax) correspond-
ing to Ra cannot derive valid(t9, A). Thus, a literal L (corresponding to
an element of the ! expression) in the body of the rule is false for time
t9. t9 could be in the ith period in which case the preceding statement
would be proved, or in the (i 1 1)th period. In this last case, since it is
the first instant, we have that literal L is true for t9 2 Pmax and false
for t9. Then, we can recursively apply the same reasoning for L as for
valid(t, A). It is easily seen that, eventually, either we find an ASLON-
GAS rule that “expires” in the ith period, or we find a literal derived by
an UPON rule.
Similar reasoning can be done for the UPON rule case; that is, we
consider the first instant t9 for which the rules in P 0(t#t# max1(i11) zPmax)

corresponding to Ru can derive valid(t9, A). Eventually, either we find
an UPON rule that “triggers” in the ith period, or we find a literal
derived by an ASLONGAS rule. Hence, the statement in item (1) holds.

(2) Given two pairs (Ci, Ci11) and (Ck, Ck11) such that Ci
3
Þ Ci11 and

Ck
3
Þ Ck11, the rules expiring (triggering, resp.) in the ith period and in

the kth period, as stated previously, correspond to different ASLONGAS
(UPON, resp.) derivation rules in TAB. Indeed, consider the case of
ASLONGAS. We assume, without loss of generality, that i , k. Let Ra

be one of the ASLONGAS derivation rules expiring in the ith period,
and let Rt9 be the rule in P 0(t#t# max1(k11) zPmax) corresponding to Ra for the
first instant t9 in the ith period (as chosen previously), such that Rt9

cannot be fired to derive valid(t9, A). Hence, at least one of the literals
in Rt9 is false. We know that the literals corresponding to temporal
constraints in Rt9 evaluate to true. It is easily seen from the semantics
of ASLONGAS that all the other literals will be present in all Rt0 with
t0 $ t9 and t0 satisfying the periodicity constraint of Ra. Suppose, by
contradiction, that a rule Rt# expires in the (k 1 1)th period, that is, a
rule in P 0(t#t# max1(k11) zPmax) corresponding to the same Ra in TAB with t#
an instant in the kth period. Then, all literals in Rt# would have to
evaluate to true, including those that evaluated to false in Rt9. This is
clearly a contradiction. The arguments for UPON are similar and we
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omit them. This proof immediately leads to the result that the maxi-
mum number of “different” Cis is limited by one plus the maximum
number of ASLONGAS and UPON rules in TAB. Indeed, each rule can
be responsible for (at most) one relation Ci

3
Þ Ci11.

(3) Ci
3
5 Ci11 implies Ci

3
5 Cj for each j . i. To prove this statement it is

sufficient to show that Ci
3
5 Ci11 implies Ci11

3
5 Ci12. Suppose by

contradiction that Ci
3
5 Ci11 but Ci11

3
Þ Ci12. By the preceding item

(1), this means that there exists a pair of rules in P 0(t#t# max1(i12) zPmax)
instantiating the same rule in TAB for two instants t and t9 in the (i 1
1)th period with t , t9, such that (1) either the rule operator is
ASLONGAS and the rule with t fires while the one with t9 does not, or
(2) the operator is UPON and the rule with t does not fire while the one
with t9 does. Consider Case (1), and let valid(t, A) be the atom derived
by the rule. Hence, valid(t, A) [ Ci11 and valid(t9, A) [y Ci11. However,
since Ci

3
5 Ci11, then valid(t9 2 Pmax, A) [y Ci. This means that rule Ra

expired in the ith period and this contradicts the fact that the same
rule can derive valid(t, A) in the (i 1 1)th period. Consider Case (2),
and let valid(t9, A) be the atom derived by the rule. Hence, valid(t9, A)
[ Ci11 and valid(t, A) [y Ci11. However, since Ci

3
5 Ci11, then valid(t9

2 Pmax, A) [ Ci. This means that rule Ru triggered in the ith period
and this contradicts the fact that the same rule cannot derive valid(t,
A) in the (i 1 1)th period.

From items 2 and 3, we can easily conclude the thesis. e

In the following, we denote with max-time the constant t#max 1 k# z Pmax,
where k# is the finite constant defined in Lemma B.3. This constant is used
in many of the following proofs.

The next two lemmas are essential steps toward the proofs of Theorems
1, 2, and 3.

LEMMA B.4. Let Am be an authorization appearing in TABCNS. Then,
either the CSD algorithm returns FALSE or authorization Am is in one and
only one level for each time instant between t min and max-time . Formally,
@Am, t (Am appears in TABCNS and t min # t # max-time ) f ?! Li such
that ^Am, Jm,i& [ Li and t satisfies Jm,i.

PROOF. Suppose that the algorithm does not return FALSE. After exe-
cution of Step 4, each authorization Am in TABCNS appears in level L1 for
each t such that t min # t # max-time . Any change in levels, made either
directly in Step 5.1 or through a call of procedure move in Steps 5.2 or 5.3,
can be always reduced to a pair of delete-add operations: the first deletes
^Am, J& from some level l, the second adds ^Am, J& at some level k.
Deleting ^Am, J& from level l means updating Jm,l to be Jm,l `* ¬*J.
Adding ^Am, J& to level Lk means updating Jm,k to be Jm,k ø J. Consider
a t such that t satisfies Jm,l before the execution of such a pair of
delete-add operations. Suppose t satisfies J. Then, after execution of these
operations, t does not satisfy Jm,l and t satisfies Jm,k. Suppose t does not
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satisfy J. Then, after execution of these operations, t satisfies Jm,l and t
does not satisfy Jm,k. Hence, after these operations ^Am, t& still appears in
exactly one level. e

Given Lemma B.4, in the following, we refer to the level i such that t
satisfies Jm,i as L(Am[t]).

LEMMA B.5. Let ^x, JR& be an element in TABCNS such that x 5 Am
^OP&!, and let An be an authorization appearing in !. Then either the CSD
algorithm returns FALSE or the following implications hold.

—@t satisfying JR: L(Am[t]) $ L(An[t]). The disequality is strong (.) if An
appears preceded by ¬ in !;

—if OP 5 PASTOP, then: @t, t9 satisfying JR, t , t9: L(Am[t9]) $ L(An[t]).
The disequality is strong (.) if either An appears preceded by ¬ in ! or
OP 5 ASLONGAS.

PROOF. Suppose the algorithm does not return FALSE. Then top-
level # max-level and the algorithm has terminated because there were
no changes in the last cycle of the repeat-until statement in Step 5. Since
all the elements in TABCNS are evaluated in each repeat-until cycle,
element ^x, JR& has also been evaluated. We prove the lemma by proving
that: (1) after each evaluation of ^x, JR& by the algorithm, the implications
held and (2) no evaluations of the other elements in TABCNS during the
last iteration of the algorithm can have changed the property in (1). The
proof is based on the fact, which can be trivially proven, that after the
execution of move (Ah, J, lev), L(Ah[t]) $ lev for all t satisfying J.

(1) Suppose OP 5 WHENEVER. Consider an instant t satisfying JR and let
l be the level such that l 5 L(An[t]). Then t satisfies J 5 JR `* Jn,l.
Hence, according to the call made to procedure move¼, after execution
of Step 5.2, L(Am[t]) 5 l 1 1 . l 5 L(An[t]) if An appears in !
preceded by ¬, and L(Am[t]) 5 l 5 L(An[t]) otherwise. Hence the
preceding implications are satisfied. Suppose OP 5 ^PASTOP&. Let
PC1, . . . , PCk be the periodicity constraints in JR. Consider t, t9
satisfying JR such that t , t9 and let l be the level such that l 5
L(An[t]). Then there exists a t l # t such that t l satisfies JR `* Jn,l.
Hence, according to the call made to procedure move¼, after execution
of Step 5.3, L(Am[t]) 5 L(Am[t9]) 5 l 1 1 . l 5 L(An[t]) if An appears
in ! preceded by ¬. Otherwise, L(Am[t]) 5 L(Am[t9]) 5 l 5 L(An[t]) if
OP 5 UPON, whereas L(Am[t]) 5 L(Am[t9]) 5 l 1 1 . l 5 L(An[t]) for
t l , t and L(Am[tl]) 5 l 5 L(An[t l]) if OP 5 ASLONGAS. Hence the
preceding implications are satisfied.

(2) Levels are changed either directly in Step 5.1 or, through procedure
move¼, in Steps 5.2 and 5.3. In Step 5.1, pairs ^Am, J& are possibly
deleted from a given level h and added to level l 1 1, with h , l 1 1.
Procedure move¼ deletes a pair ^Am, J& from a level i and adds it to
level lev, with i # lev. Then, pairs ^Am, J& can be moved only to higher
levels; that is, the level of an authorization for an instant is never
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lowered. Then, the property in (1) can be changed, in the last iteration
of the algorithm, only by raising the level of An[t] after the evaluation
of ^x, JR&. But this cannot be since it would contradict the assumption
that no changes have been made in the last cycle of the repeat-until
statement in Step 5. e

Before proving Theorem 1 it is important to note that TABCNS is only a
compact representation of the authorizations and rules in TAB. Then, the
levels in which the authorizations appearing in TABCNS are partitioned by
the CSD algorithm apply also to the authorizations appearing in TAB.
Given this, in the following, we consider TAB and TABCNS as equivalent.

PROOF (THEOREM 1). Theorem 1 descends directly from Lemma B.5 and
from the fact that, according to the definition of (3 and (31 : t # t9 and

—if t 5 t9, then there exists a rule R 5 ([begin, end], P, A m ^OP&!) in
TAB with t [ {[t b, t e]} ù P(P) and An appears in !. Moreover, An

appears preceded by ¬ in ! if An strictly affects Am;
—if t , t9, then there exists a rule R 5 ([begin, end], P, A m

^PASTOP&!) in TAB with t [ {[t b, t e] } ù P(P), and An appears in !.
Moreover, if An strictly affects Am, then either OP 5 ASLONGAS or An

appears preceded by ¬ in !. e

PROOF (THEOREM 2). We need to prove that either the algorithm returns
FALSE or for each pair of authorizations Am and An appearing in TAB such
that s(A m) 5 s(A n), o(A m) 5 o(A n), m(Am) 5 m(An), pn(A m) 5 “1,” pn(A n)
5 “2,” at the end of the execution L(Am[t]) . L(An[t]) for each instant t
such that t min # t # max-time . Suppose that the algorithm does not return
FALSE. Then, top-level # max-level and the algorithm has terminated
because there was no change in the last cycle of the repeat-until
statement of Step 5. Since all negative authorizations are considered at
each iteration of Step 5 (Step 5.1), An has also been considered. We prove
the theorem by proving that: (1) after the evaluation of An by the algorithm,
L(Am[t]) . L(An[t]) for any t such that t min # t # max-time , and (2)
nothing in the execution of the last iteration of the algorithm can have
changed the property in step (1).

(1) Consider a t such that t min # t # max-time and let l be the level such
that l 5 L(An[t]). Then t satisfies J i for some set Si at level l. Since
each authorization appears at some level for every instant between t min

and max-time , t satisfies Jm,h, for some level h. If h . l the
implication is trivially satisfied, since levels above l are not changed by
Step 5.1. Suppose h # l. Then, t satisfies J 5 Jm,h `* J i. Hence,
after the execution of the delete-add operations, L(Am[t]) 5 l 1 1 .
l 5 L (An[t]).

(2) The proof is the same as that of point (2) in Lemma B.5. e
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PROOF (THEOREM 3).

(1) The only step that may introduce a loop in the algorithm is Step 5. Step
5 is a repeat-until cycle composed of three substeps. These substeps
iterate either considering all the levels down to level 1 or considering
all the elements in a finite set. Hence, they necessarily terminate.
Consider the outer repeat-until cycle. Suppose that it never stops.
Then, at each iteration, the statement in the repeat-until evaluates to
true; that is, changes have occurred in some level and top-level #
max-level . Changes can only move authorizations to higher levels and
every time a new level is created top-level is increased by 1. If
changes keep occurring at every iteration, eventually top-level will
reach max-level , and the repeat-until cycle terminates, which con-
tradicts the assumption. Hence, the algorithm terminates.

(2) We first prove that if the TAB contains a critical set then the algorithm
returns FALSE. Suppose that a critical set exists in the TAB; that is,
an authorization Am and an instant t exists such that Am[t] . Am[t].
Then, at least one of the conditions in Definition 13 is satisfied. (Note
that the algorithm considers only the time instants up to max-time .
However, there is no need to consider all time instants up to `. If a
dependency between two authorizations exists for a time instant after
max-time it also exists for a time instant lower than or equal to
max-time .)
Suppose that the first condition is satisfied. A sequence Am[t] 5 A1[t],
. . . , Ak21[t], Ak[t] 5 Am[t] exists such that each element in the
sequence affects the successor and there exists one that strictly affects
it. By Theorem 1, each (3 relation implies a # relationship on the
resulting levels and each (31 relation implies a , relationship among
levels. Then, we should have L(Am[t]) , L(Am[t]), which cannot be
since, according to Lemma B.4, L(Am[t]) is unique.
Suppose that the second condition is satisfied. Two sequences Am[t] 5
A1[t], . . . , Al

2[t] and Al11
1 [t], . . . Ak[t] 5 Am[t] exist such that s(A l

2) 5
s(A l11

1 ), o(A l
2) 5 o(A l11

1 ), and m(Al
2) 5 m(Al11

1 ) and each element in
each sequence affects the successor and there exists one that strictly
affects it. Note that the time instant must be the same along the two
sequences since, by definition of (3, and (31 , the time instant on the
right-hand side of the relationships is always either greater than or
equal to the time instant on the left-hand side and by assumption Am[t]
initiates the first sequence and terminates the second. Then, from
Theorem 1, L(Am[t]) , L(Al[t]) and L(Al11[t]) , L(Am[t]). Moreover,
from Theorem 2 L(Al[t]) , L(Al11[t]). Hence, again we should obtain
L(Am[t]) , L(Am[t]), which cannot be because of the uniqueness of
L(Am[t]) (Lemma B.4).

The proof for the last case of Definition 13 descends directly from the
previous ones.
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We now prove that if the algorithm returns FALSE, then a critical set
exists in TAB. Suppose the algorithm returns FALSE. Then, top-level .
max-level . top-level is increased by 1 by the algorithm whenever a pair
^Am, J& needs to be put at a level l 1 1 . top-level (Step 5.1 of the
algorithm or procedure move¼ called in Steps 5.2 and 5.3). We first show
that the request to delete ^Am, J& from a given level and put it to level l 1
1 implies that, for each instant t9 satisfying J either:

(1) pair ^An, Jn,l& [ Ll exists such that s(A m) 5 s(A n), o(A m) 5 o(A n),
m(Am) 5 m(An), pn(A n) 5 “2,” pn(A m) 5 “1,” and t9 satisfies Jn,l, or

(2) pair ^An, Jn,l& [ Ll exists such that An[t] (31 Am[t9] for some t
satisfying Jn,l.

Suppose that the level is changed in Step 5.1. Then, t9 satisfies Jm,h `*
Ji. According to the definition of J i, there exists Jn,l such that t9 satisfies
Jn,l, ^An, Jn,l& [ Si, and pn(A n) 5 “2.” Moreover, since Am satisfies the
condition in the for cycle, s(A m) 5 s(A n), o(A m) 5 o(A n) , and m(Am) 5
m(An). Then, condition 1 is verified.

Suppose that the level is changed by a call of procedure move¼ made in
Step 5.2. Then, t9 satisfies JR `* Jn,l and JR and n are such that an
element ^Am WHENEVER !, JR& was evaluated and An appeared in !
preceded by ¬. Then, condition 2 is satisfied with t 5 t9.

Suppose that the level is changed in Step 5.3 by the evaluation of an
element ^Am^PASTOP&!, JR&. Let PC1, . . . , PCk be the periodicity con-
straints in JR. Procedure move¼ is called to move Am to level l 1 1 if there
exists an authorization An such that ^An, Jn,l& [ Ll, JR `* Jn,l Þ f and t9
satisfies JR `* Jn,l, and either An appears in ! preceded by ¬, or OP 5
ASLONGAS. In both cases, condition 2 is satisfied with t 5 t l, where t l is
the first instant satisfying JR `* Jn,l.

Since top-level . max-level , top-level has been increased by 1 at
least max-level times. This means that max-level times a relationship of
type 1 or 2, above, which required the creation of a new level, has been
found by the algorithm. Suppose all relationships were of type 2. Then, a
chain of max-level

(31 relations Au[t] (31 . . . (31 Av[t0] exists. Since the
total number of different elements Ax[ty] is max-level , an authorization
Am and an instant t exists such that Am[t] appears twice in the chain. Then,
according to Definition 14, a critical set exists, represented by the subchain
starting from Am[t] and ending at the other Am[t].

Suppose that k relationships, among the max-level found which caused
the creation of a new level, were of type 1. Then, k chains of (31 relation-
ships exist where the last element Av[t0] in chain h and the first element
Au[t0] in chain h 1 1 are such that s(A v) 5 s(A u), o(A v) 5 o(A u),
m(Av) 5 m(Au), pn(A v) 5 ‘2’, and pn(A u) 5 ‘1’. Then, again, since the
number of different elements Ax[ty] is max-level , an authorization Am and
an instant t exists such that Am[t] appears twice either in the same chain,
or in two different chains. In the first case, again a critical set exists
because of the subchain of (31 relationships going from Am[t] to the other
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Am[t]. In the second case a critical set exists represented by the subse-
quence of chains going from the first Am[t] that appears to the other
instance of Am[t], according to Definition 14. e

PROOF (THEOREM 4). We first show that the absence of critical sets
implies the local stratification of P9TAB (as defined just after Lemma B.1).

LEMMA B.6. Given a TAB with no critical sets, the logic program P9TAB is
locally stratified.

PROOF. Since TAB has no critical set, the CSD algorithm gives a
partition in a finite number of levels of the pairs ^A, t& where A is an
authorization in TAB and t an instant in {tmin, . . . , max-time }. Using this
partition, we define a partition H1, . . . , Ha of the (ground) Herbrand base
of P9TAB, where a is a countable ordinal. It is obtained applying the
following steps in the given order.

(1) Each atom of the form t # t9 # t0, t # t9 , t0, t [k c, and CNSTR(P,
t) is in H1;

(2) if valid(t, A) is in the Herbrand Base, but A does not appear in TAB,
then valid(t, A) is in H1;

(3) each atom once_validf(t, t, !) and once_not_validf(t, t, !) is in H1;
(4) each atom valid(t, A) with t # max-time is in Hk if ^A, J& with t

satisfying J is assigned to level k/3 by the CSD algorithm;
(5) each atom valid(t, A) with t .max-time is in Hk if valid(r, A) is in Hs,

where r 5 ((t 2 t# max) MOD Pmax) 1 (max-time 2 Pmax), and k 5 s 1
n-auth z Pmax z ((t 2 t# max) DIV Pmax); if s # 3 then valid(t, A) is in Hs;

(6) each atom validf(t, !) is in Hk where k 5 max{ j u (valid(t, Ai) [ Hj
and Ai [ !) or (valid(t, Ai) [ Hj21 and ¬Ai [ !)};

(7) each atom once_validf(t0, t, !) with t0 , t is in Hk with k 5 max{ j u
validf(t9, !) [ Hj and t0 # t9 # t};

(8) each atom once_not_validf(t0, t, !) with t0 , t is in Hk where k 5 1 1
max{ j u validf(t9, !) [ Hj and t0 # t9 , t};

(9) each atom denied(t, s, o, m ) is in Hk where k 5 max{ j u valid(t, s,
o, m, 2, g) [ Hj for any grantor g};

(10) any other atom is in H1.

By definition, P9TAB is locally stratified if, for each of its rules C 4 L1, . . . ,
Ln, notB1, . . . , not Bm, with C [ Hk, we have Li [ ø j#k Hj for i 5
1, . . . , n and Bl [ ø j,k Hj for l 5 1, . . . , m. This condition is satisfied
considering the partition shown previously. For brevity, here we report the
proof for only two types of rules in P9TAB.

(a) Consider a rule corresponding to a single positive authorization in TAB.
We have C 5 valid(t, s1, o1, m1, 1, g1), L1 5 t b # t # t e, and L2 5
CNSTR(P, t). By Step 1, L1, L2 [ H1 and k $ 1. B1 5 denied(t, s1, o1,
m1) and, by Step 9, B1 [ Hw with w 5 max{ j u valid(t, s1, o1, m1, 2, g)
[ Hj}. If w Þ 1 and t # max-time , then, by Step 4, valid(t, s1, o1,
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m1, 2, g) [ Hj if the pair ^(s1, o1, m1, 2 g), J& with t satisfying J was
assigned to level j/3 by the CSD algorithm. Similarly, C [ Hk because
of Step 4, and because the pair ^(s1, o1, m1, 1, g1), J9& with t satisfying
J9 was assigned to level k/3 by the CSD algorithm. Theorem 2 ensures
that the level of a positive authorization is always greater than that of
the corresponding negative authorization for the same instant (if that
negative authorization is not in TAB, by Step 2, its corresponding
valid¼ is in H1). Hence, k/3 . j/3 and we can easily conclude that k .
w. If t .max-time (this implies that t e 5 `), by Step 5, if C [ Hk it
means that valid(r , s1, o1, m1, 1, g1) [ Hs with r 5 ((t 2 t# max) MOD
Pmax) 1 (max-time 2 Pmax), and k 5 s 1 n-auth z Pmax z ((t2t# max) DIV
Pmax) if k . 3, and k 5 s otherwise. Considering B1, the index w of its
stratum is given, as shown previously, by Step 9. In this case (t
.max-time ), for any grantor g such that valid(t, s1, o1, m1, 2, g) [ Hj,
by Step 5, valid(r , s1, o1, m1, 2, g) [ Hs9 with j 5 s9 1 n-auth z Pmax z

((t 2 t# max) DIV Pmax) if j . 3 and Hj 5 Hs9 if j # 3. Since r #

max-time , Theorem 2 can be applied, ensuring that (s/3) . (s9/3), and,
hence, we have k . j. Since, by Step 9 w is the maximum among these
js, we conclude k . w.

(b) Consider now a rule corresponding to an ASLONGAS rule in TAB. If the
head of the rule A1 is a positive authorization, the corresponding clause
has a negative literal denied¼. The proof that its stratum is less than k
is identical to that shown for Case (a). If A1 is negative, C 5 valid(t,
A1), L1 5 t b # t # t e, L2 5 CNSTR(P, t), L3 5 validf(t, !), and B1 5
once_not_validf(t b, t, !). C, by the stratification given by the CSD
algorithm, and by Steps (4) and (5), belongs to Hk with k $ 3. By Step
1, L1, L2 [ H1. It is also easy to show that L3 is assigned to a stratum
equal or below that of C. Let us consider the more critical case of B1. If
t b 5 t then B1 [ H1 by Step 3, and k $ 3. Otherwise (t . t b), by Step
8, B1 [ Hs where s 5 1 1 max{m u validf(t9, !) [ Hm and t b # t9 ,
t}. For each t b # t9 , t, validf(t9, !) [ Hm implies, by Step 6,
valid(t9, Ai) [ Hj with j # m for each Ai [ ! and valid(t9, Al) [ Hr

with r , m for each ¬Al [ !. We now distinguish two cases: (a) t #

max-time , and (b) t . max-time . Considering (a), we also have t9 ,
max-time and, by Step 4, ^Ai, J i& with t9 satisfying Ji is assigned to
level j/3 by the CSD algorithm, and each ^Al, J l& with t9 satisfying J l is
assigned to level r/3. Lemma B.5 states that in this case, the level
assigned by the CSD algorithm to ^A1, J1& with t satisfying J1 is strictly
greater than the level of any ^Ai, Ji& with Ai [ ! or ¬Ai [ ! and t9
satisfying Ji for each t b # t9 , t # max-time . By Step 4, ^A1, J1& with
t satisfying J1 is assigned to level k/3. Hence, by Lemma B.5, k/3 . j/3
and k/3 . r/3 for each j and r considered previously. Since k/3 and j/3
must be natural numbers greater than 1, k . j 1 2 and k . r 1 2.
Since m can be at most equal to j or to r 1 1 and s 5 1 1 max{m u
validf(t9, !) [ Hm and t b # t9 , t} we can conclude that k . s.
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We are left with case (b); that is, t . max-time . In this case we should
consider Step 5 instead of Step 4 used previously. Thus, if C [ Hk, then
valid( z, A1) is in Hw, where z 5 ((t 2 t max) MOD Pmax) 1 (max-time 2
Pmax), and k 5 w 1 n-auth z Pmax z ((t 2 t# max) DIV Pmax). Similarly, the
valid¼ atoms corresponding to literals in ! are assigned to strata
based on the strata assigned to corresponding atoms for instants in the
last maximum period. It is easily seen that Lemma B.5 can still be
applied, since these values are (like z) smaller than max-time . Then,
the relation on the CSD levels imposed by the lemma can be raised to
values greater than max-time considering how strata for atoms with
these values are assigned in Step 5.
The proof for the other types of rules is analogous. e

To conclude the proof of Theorem 4, note that if a program is locally
stratified, then it has a well-founded model, and that model is the unique
stable model [Gelder et al. 1991]. Since Lemma B.6 states that P9TAB is
locally stratified, and PTAB has the same stable models as P9TAB, we can
conclude that PTAB has a unique ground stable model. e

PROOF (THEOREM 5). By Definition 12, proving point (2) of the thesis is
equivalent to proving: given t# [ Z1, for all authorization A, and sets of
constraints J, V, (valid(t, A), J) [ MP, with t# satisfying J, iff ?^A, V& in
the TABEXT computed by the algorithm, such that t# satisfies V.

We prove point (2) by showing that the algorithm computes a finite
representation of GP0. Note that the second step of Algorithm 2 considers
only instants less than a finite constant. This finite constant represents the
maximum value that variable current_max can assume during the execu-
tion of Step 2. current_max is initially set equal to t# max 1 2 z Pmax and
incremented by Pmax at each iteration until either it reaches the value
t# max 1 k̂ z Pmax, where k̂ is the first positive integer such that @^A, V& in
TABEXT: V `* {({true}, {t# max 1 (k̂ 2 2) z Pmax , t # t# max 1 (k̂ 2 1) z Pmax})}3
5* V`* {({true}, {t# max 1 (k̂ 2 1) z Pmax , t # t# max 1 k̂ z Pmax})}, or it
reaches the value max-time 5 t# max 1 k# z Pmax. In the following, we denote
with max the finite constant t# max 1 k* z Pmax, where k* is the minimum
between k# and k̂. Then, the third step of the algorithm extends the result of
the second step to infinity. Therefore the thesis can be proved by these
steps: we first prove that the second step of the algorithm computes a finite
representation of GP 0(t#max)

(Lemma B.7) and thus of GP (t#max)
. Then, we show

that the extension performed by the third step of the algorithm computes
MP.

LEMMA B.7. The second step of Algorithm 2 computes MP 0(t#max)
.

PROOF (SKETCH). In the following we use P0 for P 0(t#max). It is easy to
show that P0 is locally stratified. In the proof of Theorem 4 we have given
the local stratification of P9. The stratification of P0 can be simply obtained
assigning stratum k to a rule, if its head atom is in stratum k as
constructed in the stratification of P9. Empty strata can then be collapsed.
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In Appendix A we have defined an algorithm, based on a fixpoint iteration
method, to compute the model of a stratified Datalognot,[Z,,Z program.
Moreover, Theorem A.1 guarantees that for Datalognot,[Z,,Z programs in
which gap-order constraints are on a finite subset of the integer the
algorithm always terminates returning a nonground representation of the
unique ground model of the program. The method used in Algorithm A.1
and the result of Theorem A.1 naturally extend to locally stratified
Datalognot,[Z,,Z programs, and therefore to program P0, whose gap-order
constraints are defined on the finite set {0, . . . , max}. Algorithm 2 performs
exactly the procedure defined by Algorithm A.1 trying to consider multiple
rules in a single step using operations on constraints. Each iteration of
Step 2.2 computes MP 0(t#current_max)

. Each iteration of the repeat-until cycle in
Step 2.2 computes the fixed point of derivations for a certain stratum i.
Step 2.2.a computes the set of rules applicable at a certain stratum. Note
that elements in Xi, where i is the stratum, denote the authorizations/rules
in TAB that correspond to clauses of P 0(t#current_max) of level i. More
precisely, if ^x, J& [ Xi, where x 5 Am or x 5 ^Am^OP&!&, then the set of
clauses corresponding to ^x, J& in P 0(t#current_max) contains at least a clause
of level i. This is easily proved since the stratification of P0 is done
according to the output of the CSD algorithm, and Xi is computed using the
same output. After the execution of Step 2.2.a the constraint Q denotes the
set of rules of P 0(t#current_max) corresponding to ^x, J&, which are applicable
at stratum i: one for each t satisfying Q.

It is easy to show that for each element in Xi the application of Steps
2.2.b and 2.2.c is equivalent to trying to fire the equivalent rules in
P 0(t#current_max) using the same procedure as Algorithm A.1. The cases for
explicit authorizations and WHENEVER rules are straightforward. Consider
an UPON rule; that is, suppose that ^x, J& 5 ^Am UPON !, J&. For the sake
of simplicity, we suppose that Am is a negative authorization. The proof for
positive authorizations is analogous. Let J 5 {(PC1, GC), . . . , (PCk,
GC)} and let ! 5 C1 ~ . . . ~Cn, n [ Z1 and Ci 5 ` j51

k ¬Aji ` ` l5k11
m Ali,

k [ [0, m], m [ Z1, i, . . . , n. For each conjunct Ci the set of rules of
level i of P 0(t#current_max) corresponding to ^Am UPON !, J& is: {valid(t# ,
Am) 4 PCi/t# , GC/t# , not(valid( t̂, Aji)), . . . , not(valid( t̂, Aki)), valid( t̂, Ali),
. . . , valid( t̂, Ami) u t# satisfies Q, (PCi, GC) [ J, PCi/t# and GC/t# do not
contain any trivially false constraints, t̂ # t# and t̂ satisfies J}, where PCi/t#
(resp., GC/t#) denotes the conjunction of simple periodicity constraints
(resp., gap-order constraints) obtained by replacing the unique temporal
variable appearing in PCi (resp., GC) with constant t# . The preceding set is
equivalent to the rule: valid(t, Am) 4 J `* Q, J/t9 ` {(true, t9 # t)},
not(valid(t9, Aji)), . . . , not(valid(t9, Aki)), valid(t9, Ali), . . . , valid(t9,
Ami), where J/t9 is obtained by replacing the unique temporal variable in J
with t9. By construction of Q, the preceding rule is equivalent to: valid(t,
Am) 4 Q, J/t9 ` {(true, t9 # t)}, not(valid(t9, Aji)), . . . , not(valid(t9,
Aki)), valid(t9, Ali), . . . , valid(t9, Ami). Thus the set of rules of level i of
P 0(t#current_max) corresponding to ^Am UPON !, J& is: {valid(t, Am) 4 Q, J/t9
` {(true, t9 # t)}, not(valid(t9, Aji)), . . . , not(valid(t9, Aki)), valid(t9, Ali),
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. . . , valid(t9, Ami) u i 5 1, . . . , n}. Step 2.2.b computes the first instant t#
such that (1) t# satisfies J and (2) ! is valid in TABEXT at time t# . Then it
takes the intersection of Q with {(true, t $ t#)}. Verification is immediate
that this is equivalent to evaluating the previous set of rules using
Algorithm A.1. A similar proof can be obtained for ASLONGAS rules. The
repeat-until cycle in Step 2.2 ends when the fixed point for the current
stratum is reached. Step 2.2 ends when the fixed point for the upper
stratum is reached, that is, when the model of MP 0(t#current_max)

has been
computed. Then, Step 2 is iteratively executed till current-max reaches
either the value max-time or the value t# max 1 k̂ z Pmax, that is, till
current_max reaches the value max. Hence, we can conclude the thesis. e

We are now ready to prove the theorem.

(1) (Termination). The only step that may introduce an infinite loop is
Step 2. Step 2 consists of an outer repeat-until cycle that is iterated
until either variable success evaluates to true or current_max reaches
the value max-time , and an inner repeat-until cycle which is executed
until TABEXT does not change. Termination of the inner repeat-until
cycle is guaranteed by using a finite constant as an upper bound in the
gap-order constraints and computing TABEXT only up to that value.
Termination of the outer repeat-until is ensured by Lemma B.3.
Hence, the algorithm terminates.

(2) We first prove that if ?(valid(t, A), J) [ MP such that t# satisfies J,
then ?^A, V& [ TABEXT with t# satisfying V. By definition of ground
model, (valid(t, A), J) [ MP and t# satisfies J imply valid(t# , A) [ GP. By
Lemma B.1, valid(t# , A) [ GP (t#t#)

and by Lemma B.2, valid(t# , A) [ GP 0(t#t#)
.

By Lemma B.7, the second step of the algorithm computes MP 0(t#max)
.

Hence, if t# # max, the TABEXT computed by the algorithm includes an
element ^A, V&, such that t# satisfies V. Let us suppose t# . max. By
definition, max 5 t# max 1 k* z Pmax, where k* is the minimum between k#
(i.e., the finite constant defined in Lemma B.3) and k̂. By Lemma B.7
and by the definition of k̂, this implies that k* is equal to the minimum
between k# and the first positive integer k̂ greater than two such that
Ck̂21

3
5 Ck̂. Let us first suppose max 5 t# max 1 k# z Pmax. Let n [ Z1 be

the first positive integer such that t# , t# max 1 n z Pmax. valid(t# , A) [
GP 0(t#t# )

implies valid(t# , A) [ GP 0(t#t#max1n z Pmax). Thus, valid(t# , A) [ Cn.
By Lemma B.3, Cn

3
5 Ck# . This implies valid(t# 2 (n 2 k# ) z Pmax, A) [

Ck# . Lemma B.7 ensures that the TABEXT computed by the second step
of the algorithm includes ^A, V9&, with t̂ satisfying V9, where t̂ is the
instant in [t# max 1 (k# 2 1) z Pmax 1 1, t# max 1 k# z Pmax], such that t̂ 5 t# 2
(n 2 k# ) z Pmax. If t̂ satisfies V9, then ?(PC, GC) [ V9 such that t̂
satisfies both PC and GC. Since t̂ . t# max 1 (k# 2 1) z Pmax, and t̂
satisfies GC, then GC is of the form: t9 # t # t0, where t# max 1 (k# 2
1) z Pmax , t̂ # t0 # t# max 1 k# z Pmax and t9 # t# max. Thus Step 3 of the
algorithm replaces GC with GC9 5 t9 # t. Thus, t# 5 t̂ 1 (n 2 k# ) z Pmax
satisfies GC9. Moreover, t̂ satisfies PC implies that t# satisfies PC.
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Hence, ?^A, V& [ TABEXT such that t# satisfies V. Let us now suppose
max 5 t# max 1 k̂ z pmax. In Lemma B.3, we have shown that Ci

3
5 Ci11

implies Ci
3
5 Cj, for each j . i. Thus, valid(t# , A) [ Cn implies valid(t# 2

(n 2 k̂) z Pmax, A) [ Ck̂. Hence, by the same reasoning we used for
max 5 t# max 1 k# z Pmax we can conclude the thesis.

We are left to prove that if ?^A, V& [ TABEXT such that t# satisfies V, then
?(valid(t, A), J)) [ MP with t# satisfying J. Let us first suppose t# # max. By
Lemma B.7, ?(valid(t, A), J9) [ MP 0(t#max)

such that t# satisfies J9. Thus,
valid(t# , A) [ GP 0(t#max)

. By Lemma B.2, valid(t# , A) [ GP (t#max)
, and by Lemma

B.1, valid(t# , A) [ GP. Therefore, ?(valid(t, A), J) [ MP such that t# satisfies
J.

Let us now suppose t# . max. It is easy to show that t# satisfies V implies
that there exists an instant t̂ 5 t# 2 n z Pmax, n [ Z1, max 2 Pmax , t̂ # max,
such that t̂ satisfies V. By Lemma B.7, the second step of the algorithm
computes MP 0(t#max)

. Hence, ?(valid(t, A), J9) [ MP 0(t#max)
such that t̂ satisfies J9.

Thus, valid(t̂, A) [ GP 0(t#max)
. Let us first suppose that max 5 t#max 1 k# z Pmax.

Hence, valid(t̂, A) [ Ck# . Thus, by Lemma B.3, valid(t#, A) [ Ck#1n, and thus
valid(t#, A) [ GP(t # t#max 1 (k# 1 n)zPmax). Then, by Lemma B.2 valid(t#, A) [
GP(t#t#max1(k#1n)zPmax). It is sufficient to apply Lemma B.1 to conclude the
thesis. Suppose now that max 5 t#max 1 k̂ z Pmax. In Lemma B.3, we have
shown that Ci

3
5 Ci11 implies Ci

3
5 Cj, for each j . i. Thus, valid(t̂, A) [ Ck̂

implies valid(t#, A) [ Ck̂1n, since t# 5 t̂ 1 n z Pmax. Hence, by the same reasoning
that we used for max 5 t#max 1 k# z Pmax, we can conclude the thesis. e
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