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Abstract

Recent statistical evidence has shown that a regression model by incorporating the interactions 

among the original covariates/features can significantly improve the interpretability for biological 

data. One major challenge is the exponentially expanded feature space when adding high-order 

feature interactions to the model. To tackle the huge dimensionality, hierarchical sparse models 

(HSM) are developed by enforcing sparsity under heredity structures in the interactions among the 

covariates. However, existing methods only consider pairwise interactions, making the discovery 

of important high-order interactions a non-trivial open problem. In this paper, we propose a 

generalized hierarchical sparse model (GHSM) as a generalization of the HSM models to tackle 

arbitrary-order interactions. The GHSM applies the ℓ1 penalty to all the model coefficients under a 

constraint that given any covariate, if none of its associated kth-order interactions contribute to the 

regression model, then neither do its associated higher-order interactions. The resulting objective 

function is non-convex with a challenge lying in the coupled variables appearing in the arbitrary-

order hierarchical constraints and we devise an efficient optimization algorithm to directly solve it. 

Specifically, we decouple the variables in the constraints via both the general iterative shrinkage 

and thresholding (GIST) and the alternating direction method of multipliers (ADMM) methods 

into three subproblems, each of which is proved to admit an efficiently analytical solution. We 

evaluate the GHSM method in both synthetic problem and the antigenic sites identification 

problem for the influenza virus data, where we expand the feature space up to the 5th-order 

interactions. Empirical results demonstrate the effectiveness and efficiency of the proposed 

methods and the learned high-order interactions have meaningful synergistic covariate patterns in 

the influenza virus antigenicity.
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1. INTRODUCTION

Fitting a linear regression model to the response based on a number of covariates/features is 

commonly used tool in statistical analysis. However, in numerous situations, a linear model 

on the covariates may not be sufficiently enough to provide comprehensive explanations to 

the data and to make accurate predictions. For example, in the influenza antigenic sites 

identification problem, a mutation at an individual antigenic site (covariate) is less 

deterministic to change the phenotypic behavior (antigenic change) of the influenza virus. 

Instead, multiple simultaneous mutations at different antigenic sites will significantly 

enhance the antigenic drift, and strong interactions among the antigenic sites are observed 

during the virus evolution.

Actually, recent statistical results have shown that studying the feature interactions in a 

learning model can significantly enhance its interpretability for data and improve the 

prediction accuracy [6, 15, 13]. Generally, the interaction effects are represented by the 

elementwise product among the covariates and for example, the second-order interaction 

between two covariates xi and xj is represented by their elementwise product xi ⊙ xj. Hence, 

the interactions can encourage capturing the nonlinearity in the data in addition to the 

covariates. Various applications have devised learning models by investigating the 

interactions among covariates. For example, strong evidences have been found in [2] that the 

geneticenvironmental interactions have significant effects on conduct disorders, and similar 

results are reported in [5] that the genetic environmental interactions in serotonin system are 

highly correlated with the adolescent depression. Moreover, in [19], considering the 

interaction between the continuance commitment and affective commitment is shown to be 

effective in predicting the absenteeism. Recently, in the antigenic sites identification 

problem [23], interactions among co-evolved antigenic sites are proved to be critical to 

quantify the impact of multiple simultaneous mutations.

As the study of the interactions among covariates gains increasing attention, a major 

challenge is the exponentially expanded feature space. That is, when we consider the kth-

order interactions among covariates, the number of interactions increases exponentially as 

O(dk) with respect to the d covariates. Such a large number of interactions make the learning 

model computationally demanding even when d and k are very small. One promising 

strategy is to exploit sparse structure under this scenario, since only a subset of the 

covariates and the interactions could be of interest. A simple way is to directly apply the 

Lasso [21] method by treating all the covariates and the interactions equally, which is 

referred to the allpairs Lasso [1, 23]. Furthermore, since the interaction effects are generated 

from the covariates and the higher-order interaction effects originate from lower-order ones, 

logical heredity relationship among those effects could be taken into account instead of 

treating them equally.

Han et al. Page 2

KDD. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to make use of the heredity structure, statisticians favor the sparsity which obeys 

certain logical heredity constraints, referring to the situation that if one set of parameters are 

estimated as zeros then the set of its dependent parameters based on some certain heredity 

relationship should also be set to zeros. Accordingly, a number of hierarchical sparse 

modeling (HSM) methods have been developed. For example, in [15], a convex Lasso-style 

method, named VANISH, is proposed by enforcing the strong heredity constraint for the 

second-order interactions that if a second-order interaction is added to the model, then both 

the corresponding covariates must be included as well. Consequently, many convex 

formulations, including the glinternet [11], GRESH [16], FAMILY [9], and the hierarchical 

sparse model [22], incorporate the strong heredity into the second-order interactions with the 

heredity structure achieved via the group sparsity [25], where the covariate and interactions 

restricted by a heredity constraint form a group. Similar considerations are discussed by [26, 

24]. On the other hand, in contrast to those convex models, the SHIM method [3] adopts a 

non-convex formulation to achieve the strong heredity by decomposing the coefficient of 

each interaction into a product of the coefficients for the covariates. In addition to the strong 

heredity, there is another type of hierarchical relation, the weak heredity, which introduces a 

constraint that a pairwise interaction is considered if either of its corresponding covariates 

was included. Both the strong and weak heredity are investigated in [1] and an efficient 

algorithm for dealing with the weak heredity is introduced in [12].

So far, many interests have been focused on exploring the sparse heredity in the interaction 

model but none of them can deal with general hierarchies, since all of them study only the 

second-order interactions and their algorithms are particularly designed for the second-order 

interactions. On the other hand, there have been sufficient evidences to indicate that higher-

order interactions are more important in many applications. For example, in psychological 

analysis, the third-order interactions among covariates have been shown to be important [4]. 

Specifically, in antigenicity analysis of influenza virus, a recent study on proteins of the 

H3N2 influenza virus shows that more than two of the amino acid positions could mutate 

simultaneously [17] and biological evidences in [14] also demonstrate that the co-evolved 

antigenic sites are more likely to be physically close in the 3D structure of the protein.

Unfortunately, due to the difficulty in defining and learning with the high-order heredity, we 

are unaware of any existing work that can deal with general hierarchies with the order of 

feature interactions larger than two and there is even no formal definition for the arbitrary-

order heredity. In this paper, we propose a generalized hierarchical sparse model (GHSM) to 

tackle arbitrary-order interactions among features. We first introduce the definition of the 

arbitrary-order heredity, which makes an assumption that given any covariate, if none of its 

associated kth-order interaction effects contribute to a learning model, then neither do its 

associated higherorder interaction effects. Based on this definition, we formulate the GHSM 

model by applying the ℓ1 penalty to all the coefficients under certain hierarchical chain 

constraints, which guarantee the arbitrary-order heredity. The resulting problem is non-

convex and not easy to be optimized since the number of variables in the optimization 

problem increases dramatically when the order of interactions becomes bigger, which poses 

a computational challenge. To solve the objective function, we use the general iterative 

shrinkage and thresholding (GIST) method [7] where the proximal operator is solved by the 

ADMM method. In three subproblems of the ADMM method, the first two need to solve 
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quadratic programming problems and the last one is a least square problem with a 

hierarchical chain constraint. After analysis, we show that all the three subproblems admit 

efficiently analytical solutions. In the experiments, we evaluate the GHSM method in both 

synthetic problem and the antigenic sites identification problem in influenza virus data, and 

empirical results show that the GHSM method can capture meaningful synergistic covariate 

patterns, which can be well explained by biological knowledge, in the antigenic sites.

2. PRELIMINARIES

Throughout this paper, we use regular letters to denote scalars, bold-face and lowercase 

letters for vectors, and bold-face and uppercase letters for matrices or tensors. Suppose the 

data matrix for training is denoted by X = (x1,⋯, xd) ∈ ℝn×d, where n is the number of 

samples, d is the feature dimensionality, and xi records the values for the ith covariate in the 

n data samples. The response vector is y ∈ ℝn. The second-order interaction models [15, 3, 

1, 11, 12, 16, 9, 22] commonly consider the following regression model:

(1)

where ⊙ denotes the element-wise product between vectors, β ∈ ℝd with βi as its ith 

element is the coefficient vector for the original covariates, Φ ∈ ℝd×d with ϕi,j as its (i, j)th 

element is the coefficient matrix for the pairwise interaction effects, and  is a 

Gaussian noise vector. In the existing works, two types of heredity structure are considered 

for the second-order interactions, i.e. the strong heredity and the weak heredity, whose 

definitions are as follow:

(2)

(3)

Based on Eqs. (2) and (3), the HSM methods introduced in [1, 12], named as the strong and 

weak hierNet, explicitly enforce the heredity structure by adding inequality or symmetry 

constraints to the Lasso method as

(4)
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(5)

where l(·) is a loss function based on Eq. (1), λ is a regularization parameter that controls 

the sparsity, ℕd denotes the set of integers {1,⋯, d}, and ‖·‖1 denotes the ℓ1 norm of a vector 

or matrix. The only difference between problems (4) and (5) is the existence of the 

symmetry constraint on Φ. It is not hard to see that the constraints in problems (4) and (5) 

can guarantee the strong and weak heredity defined in Eqs. (2) and (3). Here we focus on the 

strong and weak hierNet methods, since they are representatives of the second-order HSM 

methods which explicitly enforce the model to obey the heredity structure.

In the hierNet models, only the second-order interaction is considered. As discussed in the 

previous section, higher-order interactions are important to model the biological data. To the 

best of our knowledge, there is no work to even define the high-order interactions. In the 

next section, we will introduce our method to model the arbitrary-order interactions.

3. THE GHSM

Here we consider up to the Kth-order interactions among the original covariates (K ≪ d), 

and the regression model is formulated as

(6)

where  is the copy of the data matrix,  denotes the 

kth-order interaction data matrix, an interaction index 〈i1,⋯,ik〉, where i1 <⋯<ik, is an index 

to uniquely indicate the interaction among the covariates i1,⋯, ik, θ(k) ∈  for k = 1,⋯, K 

is a vector of length  with  as its element corresponding to the index 

〈i1,⋯,ik〉 In Eq. (6), each interaction term only corresponds to one model coefficient and 

hence the number of model parameters is reduced from  to .

3.1 Arbitrary-Order Heredity

Based on the regression model in Eq. (6), we will define the arbitrary-order heredity in this 

section. We first introduce some notations. For i1 <⋯< ik and j ∉ {i1,⋯,ik}, 〈i1,⋯,ik〉 ∪j and j 
∪ 〈i1,⋯,ik〉 are the indices for the interaction effect among covariates i1,⋯,ik and j, which 

adds j into 〈i1,⋯,ik〉 by preserving the ascending order. Similarly, 〈i1,⋯,ik〉\j defines the 

index by removing the element j from 〈i1,⋯,ik〉 where j ∈ {i1,⋯,ik}
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If we follow the concept of the strong and weak heredity for the second-order case in Eqs. 

(2) and (3), a straightforward definition for the strong arbitrary-order heredity can be 

formulated as

or equivalently,

Similar extension can be made for the weak heredity for arbitrary-order case as well. 

Unfortunately, the above definition will lead to  constraints if the interactions up to 

the Kth-order are considered, which makes the problem intractable to be solved.

So, in order to represent the heredity structure in arbitrary-order case, we propose a more 

concise and intuitive definition as follows. First we define an ordering of the elements in θ(k) 

in a way following the index principle in Table 1. That is, the 1st element in θ(k) indicates 

the element with the interaction index 〈1,⋯, k−1, k〉, the 2nd element in θ(k) indicates the 

one with the interaction index 〈1,⋯, k−1, k+1〉 and so on. Based on this ordering, we define 

 ∈  as a 0/1 binary vector for the ith covariate where if i appears in an interaction 

index in θ(k), then the corresponding element in  is set to 1 while the rest entries in 

are 0.

Then we introduce the definition for the arbitrary-order heredity.

Definition 1 (Arbitrary-Order Heredity)—Given the regression model in Eq. (6), when 

up to the Kth-order interactions among the covariates (K ≥ 2) are considered, the heredity 

among the K orders is defined as

In Definition 1, for any covariate i, if none of its associated kth order (k < K) interaction 

terms contribute to the regression model, then neither do its associated higher-order 

interaction terms. The arbitrary-order heredity poses constraints on sets of variables 

associated with each covariate i instead of each individual interaction coefficient and hence 

it only leads to (K − 1)d constraints, whose size is much smaller than , i.e., the size 

of constraints induced by the straightforward strong arbitrary-order heredity discussed 

before, making the learning model have much lower complexity as we will see later.

When K is set to 2, it is easy to see that the arbitrary-order heredity in Definition 1 

degenerates to the strong heredity in Eq. (2) and hence the arbitrary-order heredity is a 

generalization of the strong second-order heredity. Fig. 1 gives an example to explain the 
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relationship among the strong, weak and arbitrary-order heredity where the circle denotes 

the coefficient of a covariate ‘1’, ovals denote the coefficients of the interactions involving 

the covariates ‘1’, and the red arrows indicate the heredity. From the figure, we see that 

when K = 2, the top 2 layers in the arbitrary-order heredity degenerates to the strong 

heredity structure by eliminating the redundancy among the model coefficients.

3.2 The Model

Based on Eq. (6) and Definition 1, we formulate the GHSM model for up to the Kth-order 

interactions as

(7)

where λ and α are two regularization parameters controlling the sparsity and the decay in 

the coefficients for interactions of different orders, Θ denotes the set of parameters 

, and L(·) is a loss function for regression such as the square loss defined as 

 where ‖·‖2 denotes the ℓ2 norm of a 

vector. In problem (7), the constraints associated with each covariate i have a chain of 

inequality constraints, which contains (K − 1) inequality constraints and there are a total of d 
chains. It is easy to see that these constraints achieve the arbitrary-order hierarchy in 

Definition 1.

Problem (7) is non-convex due to the chains of inequality constraints. Moreover, the 

variables are coupled in different chains of constraints, e.g., the variable  appears in 

three chains associated with the covariates 1; 2; 3 respectively, which makes the problem 

more complex. In the next section, we propose an efficient algorithm to solve problem (7).

4. OPTIMIZATION ALGORITHM

In this section, we introduce the optimization algorithm to solve problem (7). The main idea 

is to combine proximal gradient methods and the ADMM. Since problem (7) is non-convex, 

we adopt the GIST method [7] whose entire algorithm is shown in Algorithm 1. We define r 
(Θ) as

Then, the proximal operator at the (t + 1)th iteration in the GIST method solves the 

following problem:
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(8)

where [θ(k)](t) denotes the estimation of θ(k) in the tth iteration, 

 denotes the gradient of L (Θ(t)) with respect 

to θ(k) at Θ(t) and it can be easily computed as  for k ∈ ℕK, 

 is the matrix containing all the kth-order interaction effects, and τt is a step 

size determined via a line search method [7] by satisifying the following condition:

(9)

where F(Θ) = L(Θ) + r(Θ) and φ is a constant in (0; 1). Then, the GIST algorithm iteratively 

solves the proximal problem (8) until convergence.

Algorithm 1 The GIST algorithm for solving problem (7).

Input: X, y, K, ɛ = 10−4;

Output: ;

1: Initialize Θ(0), η > 1, 0 < τmin < τmax, φ ∈ (0, 1), t = 0;

2: repeat

3:  τt ∈ [τmin, τmax];

4:  repeat

5:   Solve the proximal problem (8) with Θ(t) and τt;

6:   τt = ητt;

7:  until condition (9) is satisifed;

8:  t = t + 1;

9: until F (Θ(t)) − F (Θ(t + 1)) < ɛ;

10:
;

4.1 Solving The Proximal Problem

The key problem in Algorithm 1 is to solve the proximal problem (8). Since r(·) is an 

extended real-value function, problem (8) can be reformulated as

(10)
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where we omit the iterative index t for notational simplicity. Problem (10) is still non-convex 

due to the chains of inequality constraints. However, the following theorem shows that 

problem (10) admits an equivalently convex formulation.1

Theorem 1

Let , where the operator |·| denotes the element-wise absolute operator on a vector. 

Then problem (10) is equivalent with the following convex optimization problem:

(11)

where 1 denotes a column vector of all ones with appropriate size, , and 

⪰ denotes the element-wise ‘no smaller than’ operator. The solution of problem (10) can be 

obtained as  for , where sign(·) is the elementwise sign 

operator.

It is easy to find that problem (11) is a quadratic programming problem, hence many off-the-

shelf solvers for convex programming can be used directly to obtain the optimal solution. 

Nevertheless, instead of using these tools, we propose an efficient algorithm to solve 

problem (11) by taking advantage of the chain structure in the constraints. In problem (11), 

the variables are coupled together in the chains of inequality constraints. In order to 

decouple these parameters, we use the ADMM method to solve problem (11) by introducing 

new variables.

We define  for k ∈ ℕK, 

for i ∈ ℕd, and qi = δi ∈ ℝK−1. Then, problem (11) can be reformulated as

(12)

where  is the ith element in p(1) and qj,i is the jth element in qi. Now, based on (12), we 

define the augmented Lagrangian function as

1We put all the proofs in the supplementary material at http://www.stat.rutgers.edu/home/lhan.
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where  denotes the set of parameters , P and Q denote the sets of variables 

 and  respectively,  and  are the Lagrangian 

multipliers, and ρ1 and ρ2 are two penalty parameters. Then we need to solve the following 

problem:

The above problem can be solved via the ADMM algorithm presented in algorithm 2, in 

which three subproblems in steps 4, 5 and 6 need to be solved. In the next two sections, we 

will show how to solve those subproblems efficiently.

Algorithm 2 The ADMM algorithm for solving problem (12).

Input: X, y, K;

Output: ;

1:

Initialize , Q(0) and A(0);

2: Set ρ = 0.1 and t = 0;

3: repeat

4:

 Solve  with fixed P(t) and Q(t);

5:

 Solve  with fixed , Q(t) and [p(1)](t);

6:

 Solve Q(t+1) and [p(1)](t+1) with fixed , {P(t)\[p(1)](t)};

7:

   for k ∈ ℕK;

8:

   for i ∈ ℕd;

9:  t = t + 1;

10: until Some convergence criterion is satisfied;
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4.2 The Analytical Solutions of Steps 4 and 5

In step 4 of Algorithm 2, with fixed P and Q, the problem with respect to  can be rewritten 

as

(13)

which can be easily solved via the following analytical solution:

(14)

Given fixed , Q and p(1), the problem with respect to p(2), ⋯, p(K) corresponding to step 5 

of Algorithm 2 can be decomposed into K − 1 separable problems with the problem for p(k) 

formulated as

(15)

where I is an identity matrix with appropriate size, the matrix 

, and H(k), c(k) are defined as

Note that H(k) is positive definite (PD). Hence, H(k) is invertible and its inverse can be 

computed efficiently as [H(k)]−1 = I − E(k)(I + [E(k)]T E(k))−1[E(k)]T, where the matrix 

inverse is actually taken on a d × d matrix I + [E(k)]TE(k) instead of the original 

matrix H(k). Then, the optimal solution of problem (15) can be computed as

(16)

Moreover, given the data,  is a constant matrix and so it can 

be computed only once and stored prior to the model learning. As a consequence, the 

analytical solution in Eq. (16) only takes  time complexity for each , which is 

almost linear with respect to the number of the kth-order interactions.
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4.3 The Analytical Solution of Step 6

With fixed  and p(2), ⋯, p(K), the problem w.r.t. Q and p(1) can be formulated as

(17)

Problem (17) can be decomposed into d independent problems with the ith one formulated 

as

(18)

where ,  are the ith elements in  and a(1) respectively, and δk,i, bk,i are the kth 

elements in δi and bi respectively.

In problem (18), the chain of inequality constraints still exists. We first rewrite this problem 

into a more general formulation as

(19)

where problem (18) is a special case of problem (19) by setting 

, 

and .

In the following, we generalize our previous results in [8] to show that an efficient solution 

exists for problem (19). We first introduce two useful lemmas to reveal some interesting 

properties of problem (19).

Lemma 1—In problem (19), the following properties hold: (1) if u1 ≥ u2 ≥ ⋯ ≥ uK, then the 

optimal solution  is (u1, u2, ⋯, uK); (2) if u1 ≤ u2 ≤ ⋯ ≤ uK, then the optimal 

solution  is (u∗, ⋯, u∗)|K, where  and (u∗, ⋯, u∗)|K denotes a 

sequence with K identical elements u∗.

Lemma 2—For any two sets of inputs {(u1, ⋯, ul), (ω1, ⋯, ωl)} and {(ul+1, ⋯, un), (ωl+1, 

⋯, ωn)}, which define two instances of problem (19), if the optimal solutions for them are 
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 and (ü*, ⋯, ü*)|n−l respectively, then we have: (1) if , the optimal 

solution for the problem defined by the concatenated sequence (u1, ⋯, ul) ⋈ (ul+1, ⋯, un) 

and concatenated weights (ω1, ⋯, ωl) ⋈ (ωl+1, ⋯, ωn), i.e. (ū1, ⋯, ūl, ūl+1, ⋯, ūn) with the 

weights (ω1, ⋯, ωl, ωl+1, ⋯, ωn), is ;(2) otherwise, 

, optimal solution for the problem defined by the concatenated sequence is (u∗, ⋯, 

u∗)|n, where .

Lemma 2 implies that we can immediately obtain the solution of problem (19) defined by 

the input (u1, ⋯, un) and (ω1, ⋯, ωn), if (u1, ⋯, un) is a concatenation from two sub-

sequences,·where the optimal solutions corresponding to the problems defined by the two 

sub-sequences have solutions with identical values. Therefore, based on Lemma 2, we 

devise Algorithm 3 to solve problem (19) with its optimality guaranteed by the following 

theorem.

Theorem 2—For problem (19) defined by (u1, ⋯, uK) and (ω1, ⋯, ωK), Algorithm 3 finds 

its optimal solution.

4.4 Time Complexity

We analyze the time complexity of the whole optimization procedure for solving the GHSM 

model. We first discuss the time complexity of the inner most Algorithm 3. In Algorithm 3, 

step 1 only needs to scan the input sequence (u1, ⋯, uK) once and thus it needs O(K) time. 

Although there exist two loops from step 3 to step 14, the maximum number of the 

concatenation operations in step 8 is M − 1. For the concatenation operation, according to 

Lemma 2, it only needs to compute the weighted average of the entries in two sequences and 

we just need to record the weighted average and the sum of the weights in each sequence, 

making each concatenation operation cost O(1). Since M ≤ K, the complexity of Algorithm 

3 is O(K).

Algorithm 3 The algorithm for solving problem (19).

Input: (u1, ⋯, uK) and (ω1, ⋯, ωK);

Output: ;

1: Scan (u1, ⋯, uK) once to split it into M non-decreasing sub-sequences (t1, ⋯, tM) and meanwhile split (ω1, ⋯, ωK) 
accordingly. Then calculate the solutions for the problems defined by those sub-sequences and sub-weights based 
on Lemma 1;

2: Push t1 into a stack;

3: for m = 2 : M do

4:  Push tm into the stack;

5:  while there are at least two sequences in the stack do

6:
  Pop the first and second sequences from the stack and denote the solutions for their associated problems by 

 and  separately;

7:
  if  then

8:    Concatenate the two sequences under the second condition in Lemma 2 and then push the concatenated 
sequence into the stack;
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9:   else

10:    Push the two sequences back into the stack without any operation;

11:    Break;

12:   end if

13:  end while

14: end for

15: Concatenate the solutions of the sequences in the stack from bottom to top and output the concatenated solution;

In Algorithm 2, solving the subproblem in step 4 by using Eq. (14) requires 

time. The computation of step 5 by using the closed-form solution in Eq. (16) takes 

 time. The computation in step 6 needs to execute Algorithm 3 for d times, 

and hence the time cost is O(dK). Usually, we have K ⪡ d and hence . So 

the total time complexity of each iteration in Algorithm 2 is .

By assuming that Algorithms 1 and 2 need N1 and N2 iterations to converge respectively, the 

total time complexity for solving the GHSM model is , which is 

almost linear with respect to the total number of interaction effects . In our 

experiments, we empirically find that both N1 and N2 are small to enable the overall 

convergence. Hence, the overall algorithm for solving the GHSM model is fast. Moreover, 

according to sections 4.2 and 4.3, the problems in steps 4, 5 and 6 of the ADMM algorithm 

can be decomposed into a number of independent problems, which can be parallelized to 

further improve the efficiency.

5. EXPERIMENTS

In this section, we empirically evaluate the proposed GHSM methods and compare with a 

large number of the state-of-the-art methods in the literature of hierarchical sparse modeling 

for interactions. Specifically, the competitors include (1) Lasso [21], which is the sparse 

model using covariates only by applying the ℓ1 penalty on the model coefficients; (2) All-

Interactions Lasso (AIL-k), which is the sparse interaction model using up to the kth-order 

interactions by using the ℓ1 penalty to the model coefficients. We concatenate all the effects 

together to form a new data matrix and treat it as a Lasso problem; (3) weak hierNet (w-

hierNet) [1], which is the HSM method using up to the 2nd-order interaction effects with 

weak heredity, i.e. solving the problem in Eq. (5). Its R package ‘hierNet’ is available in 

‘CRAN’; (4) eWHL [12], which is an efficient implementation for the w-hierNet method 

proposed in [1]; (5) strong hierNet (s-hierNet) [1], which is the HSM method using up to the 

2nd-order interaction effects with strong heredity, i.e. solving the problem in Eq. (4). Its R 

package ‘hierNet’ is available in ‘CRAN’; (6) FAMILY [9], which is a convex HSM model 

using up to the 2nd-order interaction effects with strong heredity, where the sparsity is 

achieved by using the group lasso. Many methods [11, 16, 9, 22] have similar ideas and we 
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select FAMILY as a representative. Its R package ‘FAMILY’ is available in ‘CRAN’; (7) 

GHSM-k, which is the proposed GHSM models that can deal with up to the arbitrary kth-

order interaction effects.

All algorithms are executed on a 64-bit machine with 2.2 GHz Intel Core i7 CPU and 16 GB 

memory.

5.1 Synthetic Study

In this section, we conduct experiments on synthetic datasets.

5.1.1 Setting—To study different orders of interactions, we generate 3 synthetic datasets 

with the highest order being K = 3, 4, 5 respectively. In all the datasets, the number of 

training samples n is set to 200 and the number of covariates d is 20. Each entry in the data 

matrix for training, X ∈ ℝn×d, is sampled from the standard normal distribution. The kth-

order interaction matrix  is then generated with its column indexes following 

Table 1. The columns of X and Z(k)’s are normalized with zero mean and unit variance.

In all the 3 datasets, we set the first half of the coefficients with respect to θ(1) to be 1 and 

the rest to be 0. For the first dataset with K = 3, the indices of the non-zero coefficients in the 

second-order interactions are set to be 〈1, 2〉, 〈3, 4〉, 〈5, 6〉, 〈7, 8〉 and 〈9, 10〉, i.e. there are 5 

non-zero coefficients in θ(2). Similarly, we set the indices of the non-zero coefficients in the 

third-order interactions as 〈1, 2, 3〉, 〈2, 3, 4〉, 〈4, 5, 6〉, 〈5, 6, 7〉, 〈7, 8, 9〉, and 〈8, 9, 10〉, i.e. 

6 entries θ(3) are non-zero. All the non-zero entries in θ(2) and θ(3) are set to 0.5. For the 

second dataset with K = 4, we keep the settings for the orders up to the third order as in the 

case K = 3 and set the indexes of the non-zero coefficients in the 4th-order interactions as 〈1, 

2, 3, 4〉, 〈2, 3, 4, 5〉, 〈5, 6, 7, 8〉 and 〈6, 7, 8, 9〉, leading to 4 non-zero coefficients in θ(4). 

All the non-zero entries in θ(4) are also set to 0.5. For the third dataset with K = 5, we adopt 

the same settings for up to the fourth orders as in the case K = 4 and set the indices of the 

non-zero coefficients in the 5th-order interactions as 〈1, 2, 3, 4, 5〉 and 〈2, 3, 4, 5, 6〉 with 

the corresponding entries having values of 0.5. It is easy to check that the above settings of 

the model coefficients satisfy the arbitrary-order heredity. Finally, the response vector y is 

constructed as  where Z(1) = X and . The statistic of the 

interaction effects used in the synthetic data is given in Table 3.

For all the methods in comparison, we choose their regularization parameters from a set 

{0.1, 0.3, 0.5, 1, 3, 5, 10, 30, 50} by using additional 200 data samples for each setting. For 

the GHSM method, there is another regularization parameter α, which is selected from a set 

{1, 2, 10}. To measure the performance of different methods, we use the sensitivity (Sen.) 

and the specificity (Spe.) [12], where non-zero entries in the corresponding coefficient 

vector are treated as positive and zero entries are negative, for each order of interactions to 

test the recovery performance on the model coefficients and use the root mean square error 

(RMSE) on a test set having 200 samples for each setting. For each setting, we repeat each 

configuration for 10 times to report the average results.
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5.1.2 Results and Analysis—The detailed results are shown in Table 2. The compared 

methods can be divided into 5 groups, i.e. {Lasso}, {AIL-2, w-hierNet, eWHL, s-hierNet, 

FAMILY, GHSM-2}, {AIL-3, GHSM-3}, {AIL-4, GHSM-4} and {AIL-5 GHSM-5}, 

according to the highest order of interactions that they can handle. From the results, we have 

some observations: (1) All the methods in comparison can correctly detect the useful 

covariates, since all the Sen. values in the column for the 1st-order interactions are 1’s. 

Similar results are also observed for the 2nd-order interaction models; (2) In each synthetic 

dataset, the GHSM method has better recovery performance on both non-zero and zero 

values for different orders of interactions compared with other methods; (3) The prediction 

performance of each method is usually proportional to its capacity. That is, the methods that 

can learn higher-order interactions will achieve lower RMSE for prediction; (4) In all the 

three datasets, the GHSM method always has the best prediction performance and it 

significantly outperforms the Lasso and the existing second-order interaction models; (5) In 

the third synthetic dataset, the AIL-5 method performs even worse compared with the AIL-4 

method. One possible reason is that the AIL method does not capture the sparse heredity 

structure, making it hardly detect the correct higher-order interactions. One evidence is that 

the AIL-5 method only recover 58% and 25% of the correct 4th and 5th order interactions, 

respectively, while our GHSM-5 method achieves 78% and 80% instead.

The synthetic study demonstrates that as long as significant high-order interaction effects 

exist in the data, the high-order interaction methods will build better learning models 

compared with the conventional second-order interaction methods, and the proposed GHSM 

method with high-order interactions can learn the sparse heredity structure and accurately 

detect those interactions, leading to improved prediction performance.

5.2 H3N2 Influenza A Virus Data

In this section, we study the application of the GHSM method on the interactive antigenic 

sites identification problem.

5.2.1 Description and Setting—Seasonal influenza A viruses pose great threats to 

public health, while the vaccination is the primary way to reduce this risk. An effective 

vaccination program requires an antigenic match between circulating viruses and vaccine 

strains to be used, and hence a timely identification of emerging influenza virus antigenic 

variants is critical to the success of influenza vaccination programs. Recent studies have 

suggested that multiple interactive antigenic sites mutations will significantly enhance the 

antigenic drift of the influenza viruses to new variants [17, 10, 23]. However, discovering the 

important interactive patterns among the antigenic sites is not trivial. In this problem, each 

site is treated as a covariate of the antigenic distances which are the responses, hence 

identifying interactive patterns among multiple antigenic sites can be formulated as an 

interaction model.

Here we apply the proposed GHSM method to identify interactive antigenic sites on an 

influenza H3N2 virus dataset [20, 23].2 This dataset collects the results from the 

2http://sysbio.cvm.msstate.edu/research/resources
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hemagglutination inhibition (HI) assays, which is a matrix recording the reaction values 

between 192 viruses (rows) and a number of test serums (columns). The 192 H3N2 

influenza A viruses are collected during year 2004 to 2007. These reaction values in the HI 

matrix describe the virus antigenicities, and the Euclidian difference between the reaction 

values of two viruses describes the antigenic distance between them. A large antigenic 

distance may induce an antigenic drift and sometimes cause influenza outbreaks due to viral 

escape from existing immunity. Therefore, accurately predicting the antigenic distances 

among viruses is a fundamental task. In this dataset, for each virus, its hemagglutinin (HA) 

protein sequence, i.e., a sequence of amino acid sites (covariates) that are responsible for 

antigenic changes, is also collected. The number of amino acid sites in the HA sequence of 

each virus is d = 329. By comparing the sites in any two HA sequences, we could obtain a 

difference vector, in which the unchanged positions have zero values and the mutated 

positions have integer values between 1 and 5, which is computed via the pattern-induced 

multi-sequence alignment (PIMA) scheme [20, 23]. Then, each pairwise difference vector is 

treated as a data sample in the data matrix X, and each pairwise antigenic distance obtained 

from the HI reaction values is used as a response value in the target y. So there are a total 

number of 

Since there are 329 features, the number of interaction effects increases drastically with 

respect to the order. Table 4 gives a statistic of the effects in this data. When we consider the 

3rd- and 4th-order interactions, the dimension of the entire feature space is around hundreds 

of millions, which leads to heavy computational demand. Fortunately, in each data sample, 

we find that only few mutated positions have non-zero values and hence the data matrix X is 

sparse. As a consequence, a large number of the interaction effects are useless zero vectors 

since they are obtained via the product among sparse inputs and we can eliminate them 

before learning. The number of potentially useful effects for each order is given in Table 4, 

where a large number of interaction effects can be eliminated. Here we focus on up to the 

4th-order interactions since higher-order interactions cannot bring too much performance 

improvement.

The entries in X and Z(k)’s are normalized into [0, 1] and that in y is log-transformed and 

normalized into [0, 1] as well. The regularization parameters for different methods are 

selected from a set {10−5, 10−4, ⋯, 103} via the 5-fold cross validation. The parameter α in 

GHSM methods is chosen in the same way as that in the synthetic data. We randomly split 

the dataset into a training set and a test set by varying the training ratio from 10% to 90%. 

Each setting is repeated for 10 times. We report both the predictive RMSE on the test set and 

the running time for all the methods.

5.2.2 Results and Analysis—The predictive RMSE’s for different methods are 

presented in Table 5. From the results, we observe that all the interaction models remarkably 

outperform the Lasso method, implying that incorporating the feature interactions is 

important in this dataset. Different from the synthetic case, the AIL methods do not show 

much improvement over the Lasso and this is possibly because the AIL methods can not 

make use of the sparse heredity structure and the interactions among the antigenic sites are 

much more complex than the synthetic case. For the second-order interaction models, the 

Han et al. Page 17

KDD. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strong heredity based methods, i.e., the s-hierNet, FAMILY, and GHSM-2, show better 

performance than the weak heredity based methods including the w-hierNet and eWHL 

methods. This could be an evidence that the strong heredity structure is more common 

among the interactive antigenic sites. Similar to the results in the synthetic case, the GHSM 

method with higher-order interactions obtain more accurate prediction results and the 

GHSM-4 method performs the best in all settings.

In addition to the RMSE, we also provide a visual comparison for the prediction results of 

different methods via the antigenic cartography, which is an approach to visualize the virus 

antigenic evolution process on a 2D/3D space by using the antigenic distance among the 

viruses and it has been widely used for virus antigenicity explanation since its first use by 

[18]. The idea is to utilize the multi-dimensional scaling technique to obtain the coordinates 

of each virus on a 2D/3D space given the antigenic distance among them. We plot an 

embedding result in Fig. 2 when the training rate is 10% and use the predicted antigenic 

distance to reconstruct the cartography of all the viruses. In Fig. 2(a), the cartography using 

the ground truth antigenic distance among the viruses is plotted in a 2D space, where each 

circle represents a virus and all the 192 viruses are divided into four different groups 

according to the year of their appearance. Figs. 2(b)–2(h) show the cartographies of different 

methods respectively. Since the cartographies of the AIL methods are similar to that of the 

Lasso and the eWHL and the w-hierNet method are two solutions of the same model, we 

omit their cartographies to save space. By comparing with Fig. 2(a), we observe that the 

Lasso method can hardly reconstruct the antigenic distances among the viruses. The second-

order interaction models including the w-hierNet, s-hierNet, FAMILY, and GHSM-2 show 

clearer reconstruction but the viruses in different years are still hard to be discriminated. The 

group structure in the cartographies of the GHSM-3 and GHSM-4 methods are much clearer 

than others. Actually, the Pearson correlation coefficients reported in Fig. 2 confirm the 

observations.

One advantage of the GHSM method is that we can identify important high-order 

interactions based on the model parameters. Specifically, we take the 4th-order interactions 

learned from the GHSM-4 method for example to see which 4th-order interactions are 

detected by the algorithm. We sort the magnitude of the coefficients for the 4th-order 

interactions with a descending order and then select the top 5 interactions, which are 〈157, 

159, 242, 246〉, 〈186, 193, 242, 246〉, 〈94, 145, 189, 219〉, 〈145, 189, 198, 219〉 and 〈94, 

145, 189, 198〉. It is well-known in the H3N2 virus antigenicity analysis that there are 135 

important antigenic sites out of the total 329 positions identified as the antibody binding 

sites, since these sites locate at the surface of the H3N2 virus protein structure and they are 

more likely to react with the sera. These antibody binding sites are further divided into 5 

binding areas A-E according to their locations. Promisingly, we find that all of these 

detected positions in the 4th-order interactions belong to the binding areas. More 

interestingly, when we tag the binding areas for these sites in the selected interactions, we 

get the following patterns: 〈B, B, D, D〉, 〈B, B, D, D〉, 〈E, A, B, D〉, 〈A, B, B, D〉 and 〈E, A, 

B, B〉, respectively, from which we see that the antigenicity of the H3N2 virus is more likely 

to be controlled by the interactions among the sites in different binding regions 

simultaneously, instead of the sites in the same binding region. This observation is 

reasonable since multiple sites from different binding areas can accurately capture the 3D 
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structure (shape) of the virus. Fig. 3 shows the 3D structure of these binding areas with the 

sites from the selected interactions. So far, all of the above analysis is considerably useful in 

influenza vaccine strain selection, and it can significantly reduce the human labor efforts for 

serological characterization and will increase the probability of correct influenza vaccine 

candidate selection.

Finally, we compare the running time of different HSMs on the entire influenza virus dataset 

where all the data samples are used to train the models. The running time of all the HSM 

methods is reported in Table 6. For the 2nd-order HSM, the strong heredity based methods, 

i.e., the s-hierNet and FAMILY, are computationally much more expensive than the weak 

heredity based methods such as the w-hierNet and eWHL. The FAMILY method fails to give 

the solution in reasonable time. Actually, the FAMILY method is computationally intractable 

even when using only 50% of the samples for training (refer to Table 5). The eWHL is very 

efficient since it is specifically designed for the w-hierNet problem. The proposed GHSM-2 

method, a strong heredity based method, is much more efficient than the s-hierNet and 

FAMILY methods and comparable with the eWHL algorithm. By increasing the order of 

interactions, the GHSM-3 and GHSM-4 methods are still very efficient compared with the 

w-hierNet, s-hierNet, and FAMILY methods, while it has much better performance than 

those methods.

6. CONCLUSION

In this paper, we proposed a generalized hierarchical sparse model (GHSM) to learn 

arbitrary-order interactions contained in the data via the proposed arbitrary-order heredity 

structure. To solve the objective function in the GHSM, an efficient algorithm was developed 

by decoupling the variables in the complex constraint and all the subproblems have efficient 

analytical solutions. Empirical evaluations on both synthetic problems and the interactive 

antigenic sites identification problem in the influenza virus data show impressive 

effectiveness and efficiency of the proposed GHSM. Importantly, the GHSM method can 

reveal interesting interaction patterns in the influenza virus data where the patterns are well 

explained and validated by the biological knowledge.

When considering high-order interactions, if the data matrix are not sparse like the influenza 

virus data, the number of high-order interactions still increases exponentially with respect to 

the order and solving the GHSM will become intractable even for small d and K. One 

possible direction to solve this problem is to conduct dimensionality reduction methods 

before the GHSM model via, for example, the feature screening technique. We are also 

interested in applying the GHSM methods to other biological problems, such as the cancer 

microarray analysis, to detect important interactions.
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Figure 1. 
A pictorial illustration of the relationship among the strong, weak and arbitrary-order 

heredity.
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Figure 2. 
Cartographies of the prediction results of different methods when using 10% samples for 

training. The number in each bracket of figures (b)–(h) denotes the Pearson correlation 

coefficient between the true coordinates and the coordinates obtained from each method.
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Figure 3. 
The 3D structure of the H3N2 virus. The red regions denote the anti-body binding regions 

A–E. The sites from the selected interactions are also labeled.
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Table 1

The ordering of elements in θ(k).

The index in θ(k) The corresponding interaction index

1 〈1, ⋯, k − l, k〉

2 〈1, ⋯, k − 1, k + l〉

⋯ ⋯

d − k + 1 〈1, ⋯, k − 2, k − 1, d〉

d − k + 2 〈1, ⋯, k − 2, k, k + 1〉

〈d − k + 1, ⋯, d − 1, d〉
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Table 4

Statistics of the influenza virus data.

1st 2nd 3rd 4th

# effects 329 53,956 5,881,204 479,318,126

# valid effects 329 4368 37,857 157,462

rate 100% 8.1% 0.64% 0.03%

# samples 18,336
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