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Abstract

This paper describes Sparse Frequent Directions, a variant of Frequent Directions for sketch-
ing sparse matrices. It resembles the original algorithm in many ways: both receive the rows of
an input matrix An×d one by one in the streaming setting and compute a small sketch B ∈ R`×d.
Both share the same strong (provably optimal) asymptotic guarantees with respect to the space-
accuracy tradeoff in the streaming setting. However, unlike Frequent Directions which runs in
O(nd`) time regardless of the sparsity of the input matrix A, Sparse Frequent Directions runs in
Õ
(
nnz(A)`+ n`2

)
time. Our analysis loosens the dependence on computing the Singular Value

Decomposition (SVD) as a black box within the Frequent Directions algorithm. Our bounds
require recent results on the properties of fast approximate SVD computations. Finally, we
empirically demonstrate that these asymptotic improvements are practical and significant on
real and synthetic data.

1 Introduction

It is very common to represent data in the form of a matrix. For example, in text analysis under
the bag-of-words model, a large corpus of documents can be represented as a matrix whose rows
refer to the documents and columns correspond to words. A non-zero in the matrix corresponds
to a word appearing in the a document. Similarly, in recommendation systems [13], preferences of
users are represented as a matrix with rows corresponding to users and columns corresponding to
items. Non-zero entires correspond to user ratings or actions.

A large set of data analytic tasks rely on obtaining a low-rank approximation of the data
matrix. These include clustering, dimension reduction, principal component analysis (PCA), signal
denoising, etc. Such approximations can be computed using the Singular Value Decompositions
(SVD). For an n× d matrix A (d ≤ n) computing the SVD requires O(nd2) time and O(nd) space
in memory on a single machine. In many scenarios, however, data matrices are extremely large
and computing their SVD exactly is infeasible. Efficient approximate solutions exist for distributed
setting or when data access otherwise is limited. In the row streaming model, the matrix rows
are presented to the algorithm one by one in an arbitrary order. The algorithm is tasked with
processing the stream in one pass while being severely restricted in its memory footprint. At the
end of the stream, the algorithm must provide a sketch matrix B which is a good approximation
of A even though it is significantly more compact. This is called matrix sketching.

Matrix sketching methods are designed to be parallelizable, space and time efficient, and easily
updatable. Computing the sketch on each machine and then combining the sketches together should
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be as good as sketching the combined data from all the different machines. The streaming model is
especially attractive since a sketch can be obtained and maintained as the data is being collected.
Therefore, eliminating the need for data storage altogether.

Often matrices, as above, are sparse; most of their entries are zero. The work of [9] argues that
typical term-document matrices are sparse; documents contain no more than 5% of all words. On
wikipedia, most words appear on only a small constant number of pages. Similarly, in recommen-
dation systems, in average a user rates or interacts with a small fraction of the available items: less
than 6% in some user-movies recommendation tasks [1] and much fewer in physical purchases or
online advertising. As such, most of these datasets are stored as sparse matrices.

There exist several techniques for producing low rank approximations of sparse matrices whose
running time is O(nnz(A) poly(k, 1/ε)) for some error parameter ε ∈ (0, 1). Here nnz(A) denotes the
number of non-zeros in the matrix A. Examples include the power method [19], random projection
techniques [35], projection-hashing [6], and instances of column selection techniques [11].

However, for a recent and popular technique FrequentDirections (best paper of KDD
2013 [24]), there is no known way to take advantage of the sparsity of the input matrix. While
it is deterministic and its space-error bounds are known to be optimal for dense matrices in the
row-update model [17], it runs in O(nd`) time to produce a sketch of size ` × d. In particular, it
maintains a sketch with ` rows and updates it iteratively over a stream, periodically invoking a
full SVD which requires O(d`2) time. Reliance on exact SVD computations seems to be the main
hurdle in reducing the runtime to depend on O(nnz(A)). This paper shows a version of Frequent-
Directions whose runtime depends on O(nnz(A)). This requires a new understanding and a more
careful analysis of FrequentDirections. It also takes advantage of block power methods (also
known as Subspace Iteration, Simultaneous Iteration, or Orthogonal Iteration) that run in time
proportional to nnz(A) but incur small approximation error [29].

1.1 Linear Algebra Notations

Throughout the paper we identify an n×dmatrix A with a set of n rows [a1; a2; . . . ; an] where each ai
is a vector in Rd. The notation ai stands for the ith row of the matrix A. By [A; a] we mean the row
vector a appended to the matrix A as its last row. Similarly, [A;B] stands for stacking two matrices
A and B vertically. The matrices In and 0n×d denote the n-dimensional identity matrix and the
full zero matrix of dimension n× d respectively. The notation N (0, 1)d×` denotes the distribution
over d × ` matrices whose entries are drawn independently from the normal distribution N (0, 1).
For a vector x the notation ‖ · ‖ refers to the Euclidian norm ‖x‖ = (

∑
i x

2
i )

1/2. The Frobenius
norm of a matrix A is defined as ‖A‖F =

√∑
i=1 ‖ai‖2, and the operator (or spectral) norm of it

is ‖A‖2 = supx6=0 ‖Ax‖/‖x‖.
The notation nnz(A) refers to the number of non-zeros in A, and ρ = nnz(A)/(nd) denotes

relative density of A. The Singular Value Decomposition of a matrix A ∈ Rm×d for m ≤ d
is denoted by [U,Σ, V ] = SVD(A). It guarantees that A = UΣV T , UTU = Im, V TV = Im,
U ∈ Rm×m, V ∈ Rd×m, and Σ ∈ Rm×m is a non-negative diagonal matrix such that Σi,i = σi and
σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0. It is convenient to denote by Uk, and Vk the matrices containing the first
k columns of U and V and by Σk ∈ Rk×k the top left k× k block of Σ. The matrix Ak = UkΣkV

T
k

is the best rank k approximation of A in the sense that Ak = arg minC:rank(C)≤k‖A − C‖2,F . In
places where we use SVD(A, k), we mean rank k SVD of A.

The notation πB(A) denotes the projection of the rows ofA on the span of the rows ofB. In other
words, πB(A) = AB†B where (·)† indicates taking the Moore-Penrose psuedoinverse. Alternatively,
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setting [U,Σ, V ] = SVD(B), we have πB(A) = AV V T . We also denote πkB(A) = AVkV
T
k , the right

projection of A on the top k right singular vectors of B.

2 Matrix Sketching Prior Art

This section reviews only matrix sketching techniques that run in input sparsity time and whose
output sketch is independent of the number of rows in the matrix. We categorize all known results
into three main approaches (1) column/row subset selection (2) random projection based techniques
and (3) iterative sketching techniques.

Column selection techniques These techniques, which are also studied under the Column Subset
Selection Problem (CSSP) in literature [16, 10, 3, 8, 15, 2], form the sketch B by selecting a subset
of “important” columns of the input matrix A. They maintain the sparsity of A and make the
sketch B to be more interpretable. These methods are not typically streaming, nor running in input
sparsity time. The only method of this group which achieves both is [11] by Drineas et al. that
uses reservoir sampling to become streaming. They select O(k/ε2) columns proportional to their
squared norm and achieve the Frobenius norm error bound ‖A− πBk

(A)‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F
with time complexity of O((k2/ε4)(d + k/ε2) + nnz(A)). In addition, they show that the spectral
norm error bound ‖A − πBk

(A)‖22 ≤ ‖A − Ak‖22 + ε‖A‖2F holds if one selects O(1/ε2) columns.
Rudelson et al. [34] improved the latter error bound to ‖A − πBk

(A)‖22 ≤ ‖A − Ak‖22 + ε‖A‖22 by
selecting O(r/ε4 log (r/ε4)) columns, where r = ‖A‖2F /‖A‖22 is the numeric rank of A. Note that in
the result by [11], one would need O(r2/ε2) columns to obtain the same bound.

Another similar line of work is the CUR factorization [4, 10, 12, 14, 27] where methods select
c columns and r rows of A to form matrices C ∈ Rn×c, R ∈ Rr×d and U ∈ Rc×r, and constructs
the sketch as B = CUR. The only instance of this group that runs in input sparsity time is [4] by
Boutsidis and Woodruff, where they select r = c = O(k/ε) rows and columns of A and construct
matrices C,U and R with rank(U) = k such that with constant probability ‖A − CUR‖2F ≤
(1 + ε)‖A−Ak‖2F . Their algorithm runs in O(nnz(A) log n+ (n+ d) poly(log n, k, 1/ε)) time.

Random projection techniques These techniques [31, 36, 35, 26] operate data-obliviously and
maintain a r×d matrix B = SA using a r×n random matrix S which has the Johnson-Lindenstrauss
Transform (JLT) property [28]. Random projection methods work in the streaming model, are
computationally efficient, and sufficiently accurate in practice [7]. The state-of-the-art method of
this approach is by Clarkson and Woodruff [6] which was later improved slightly in [30]. It uses
a hashing matrix S with only one non-zero entry in each column. Constructing this sketch takes
only O(nnz(A) + n · poly(k/ε) + poly(dk/ε)) time, and guarantees that for any unit vector x that
(1 − ε)‖Ax‖ ≤ ‖Bx‖ ≤ (1 + ε)‖Ax‖. For these sparsity-efficient sketches using r = O(d2/ε2) also
guarantees that ‖A− πB(A)‖F ≤ (1 + ε)‖A−Ak‖F .

Iterative sketching techniques These operate in streaming model, where random access to the
matrix is not available. They maintain the sketch B as a linear combination of rows of A, and
update it as new rows are received in the stream. Examples of these methods include different
version of iterative SVD [19, 21, 23, 5, 33]. These, however, do not have theoretical guarantees [7].
The FrequentDirections algorithm [24] is a unique in this group in that it offers strong error
guarantees. It is a deterministic sketching technique that processes rows of an n× d matrix A in a
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stream and maintains a `×d sketch B (for ` < min(n, d)) such that the following two error bounds
hold for any 0 ≤ k < `

‖ATA−BTB‖2 ≤
1

`− k
‖A−Ak‖2F

and

‖A− πB(A)‖2F ≤
`

`− k
‖A−Ak‖2F .

Setting ` = k + 1/ε and ` = k + k/ε, respectively, achieves bounds ‖ATA−BTB‖2 ≤ ε‖A−Ak‖2F
and ‖A − πB(A)‖2F ≤ (1 + ε)‖A − Ak‖2F . Although FrequentDirections does not run in input
sparsity time, we will explain it in detail in the next section, as it is an important building block
for the algorithm we introduce.

2.1 Main Results

We present a randomized version of FrequentDirections, called as SparseFrequentDirec-
tions that receives an n × d sparse matrix A as a stream of its rows. It computes a ` × d sketch
B in O(d`) space.

It guarantees that with probability at least 1 − δ (for δ ∈ (0, 1) being the failure probability),
for α = 6/41 and any 0 ≤ k < α`,

‖ATA−BTB‖2 ≤
1

α`− k
‖A−Ak‖2F

and

‖A− πBk
(A)‖2F ≤

`

`− k/α
‖A−Ak‖2F .

Note that setting ` = d1/(εα) + k/αe yields

‖ATA−BTB‖2 ≤ ε‖A−Ak‖2F

and setting ` = dk/(εα) + k/αe yields

‖A− πBk
(A)‖2F ≤ (1 + ε)‖A−Ak‖2F .

The expected running time of the algorithm is

O(nnz(A)` log(d) + nnz(A) log(n/δ) + n`2 + n` log(n/δ)).

In the likely case where nnz(A) = Ω(n`) and n/δ < dO(`), the runtime is dominated byO(nnz(A)` log(d)).
We also experimentally validate this theory, demonstrating these runtime improvements on sparse
data without sacrificing accuracy.

3 Preliminaries

In this section we review some important properties about FrequentDirections and Simulta-
neousIteration which will be necessary for understanding and proving bounds on SparseFre-
quentDirections.
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3.1 Frequent Directions

The FrequentDirections algorithm was introduced by Liberty [24] and received an improved
analysis by Ghashami et al.[17]. The algorithm operates by collecting several rows of the input
matrix and letting the sketch grow. Once the sketch doubles in size, a lossy DenseShrink operation
reduces its size by a half. This process repeats throughout the stream. The running time of
FrequentDirections and its error analysis are strongly coupled with the properties of the SVD
used to perform the DenseShrink step.

An analysis of [7] slightly generalized the one in [17]. Let B be the sketch resulting in applying
FrequentDirections with a potentially different shrink operation to A. Then, the Frequent-
Directions asymptotic guarantees hold as long as the shrink operation exhibits three properties,
for any positive ∆ and a constant α ∈ (0, 1).

1. Property 1: For any vector x ∈ Rd, ‖Ax‖2 − ‖Bx‖2 ≥ 0.

2. Property 2: For any unit vector x ∈ Rd, ‖Ax‖2 − ‖Bx‖2 ≤ ∆.

3. Property 3: ‖A‖2F − ‖B‖2F ≥ α∆`.

For completeness, the exact guarantee is stated in Lemma 3.1.

Lemma 3.1 (Lemma 3.1 in [7]). Given an input n× d matrix A and an integer parameter `, any
sketch `×d matrix B which satisfies the three properties above (for some any α ∈ (0, 1] and ∆ > 0),
guarantees the following error bounds

0 ≤ ‖ATA−BTB‖2 ≤
1

α`− k
‖A−Ak‖2F ,

and

‖A− πkB(A)‖2F ≤
`

`− k/α
‖A−Ak‖2F ,

where πkB(·) represents the projection operator onto Bk, the top k singular vectors of B.

Another important property of FrequentDirections is that its sketches are mergeable [17].
To clarify, consider partitioning a matrix A into t blocks A1, A2, · · · , At so that A = [A1;A2; · · · ;At].
Let Bi = FD(Ai, `) denotes the FD sketch of the matrix block Ai, and B′ = FD([B1;B2; · · · ;Bt], `)
denotes the FD sketch of all Bis combined together. It is shown that B′ has at most as much
covariance and projection error as B = FD(A, `), i.e. the sketch of the whole matrix A. It follows
that this divide-sketch-and-merging can also be applied recursively on each matrix block without
increasing the error.

The runtime of FrequentDirections is determined by the number of shrinking steps. Each
of those computes an SVD of B which takes O(d`2) time. Since the SVD is called only every O(`)
rows this yields a total runtime O(d`2 · n/`) = O(nd`). This effectively means that on average we
are spending O(d`) operations per row, even if the row is sparse.

In the present paper, we introduce a new method called as SparseFrequentDirections that
uses randomized SVD methods instead of the exact SVD to approximate the singular vectors and
values of intermediate matrices B. We show how this new method tolerates the extra approximation
error and runs in time proportional to nnz(A). Moreover, since it received sparse matrix rows, it
can observe more the ` rows until the size of the sketch doubles. As a remark, Ghashami and
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Phillips [18] showed that maintaining any rescaled set of ` rows of A over a stream is not a feasible
approach to obtain sparsity in FrequentDirections. It was left as an open problem to produce
some version of FrequentDirections that took advantage of the sparsity of A.

3.2 Simultaneous Iteration

Efficiently computing the singular vectors of matrices is one of the most well studies problems in
scientific computing. Recent results give very strong approximation guarantees for block power
method techniques [32][38][26][20]. Several variants of this algorithm were studied under different
names in the literature e.g. Simultaneous Iteration, Subspace Iteration, or Orthogonal Iteration [19].
In this paper, we refer to this group of algorithms collectively as SimultaneousIteration. A
generic version of SimultaneousIteration for rectangular matrices is described in Algorithm 1.

Algorithm 1 SimultaneousIteration

Input: A ∈ Rn×d, rank k ≤ min(n, d), and error ε ∈ (0, 1)
q = Θ(log(n/ε)/ε)
G ∼ N (0, 1)d×k

Z = GramSchmidt(A(ATA)qG)
return Z # Z ∈ Rn×k

While this algorithm was already analyzed by [19], the proofs of [32, 20, 29, 37] manage to prove
stable results that hold for any matrix independent of spectral gap issues. Unfortunately, an in
depth discussion of these algorithms and their proof techniques is beyond the scope of this paper.

For the proof of correctness of SparseFrequentDirections, the main lemma proven by [29]
suffices. SimultaneousIteration (Algorithm 1) guarantees the three following error bounds with
high probability:

1. Frobenius norm error bound: ‖A− ZZTA‖F ≤ (1 + ε)‖A−Ak‖F

2. Spectral norm error bound: ‖A− ZZTA‖2 ≤ (1 + ε)‖A−Ak‖2

3. Per vector error bound: |uTi AATui − zTi AAT zi| ≤ εσ2k+1

for all i. Here ui denotes the ith left singular vector of A, and σk+1 is the (k + 1)th singular
value of A, and zi is the ith column of the matrix Z returned by SimultaneousIteration.

In addition, for a constant ε, SimultaneousIteration runs in Õ(nnz(A)) time.
In this paper, we show that SparseFrequentDirections can replace the computation of an

exact SVD by using the results of [29] with ε being a constant. This alteration does give up the
optimal asymptotic accuracy (matching that of FrequentDirections).

4 Sparse Frequent Directions

The SparseFrequentDirections (SFD) algorithm is described in Algorithm 2, and is an ex-
tension of FrequentDirections to sparse matrices. It receives the rows of an input matrix A in
a streaming fashion and maintains a sketch B of ` rows. Initially B is empty. On receiving rows
of A, SFD stores non-zeros in a buffer matrix A′. The buffer is deemed full when it contains `d

6



non-zeros or d rows. SFD then calls BoostedSparseShrink to produce its sketch matrix B′ of
size `×d. Then, it updates its ongoing sketch B of the entire stream by merging it with the (dense)
sketch B′ using DenseShrink.

Algorithm 2 SparseFrequentDirections

Input: A ∈ Rn×d, an integer ` ≤ d, failure probability δ
B = 0`×d, A′ = 00×d

for a ∈ A do
A′ = [A′; a]
if nnz(A′) ≥ `d or rows(A′) = d then
B′ = BoostedSparseShrink(A′, `, δ)
B = DenseShrink([B;B′], `)
A′ = 00×d

return B

BoostedSparseShrink amplifies the success probability of another algorithm SparseShrink
in Algorithm 3. SparseShrink runs SimultaneousIteration instead of a full SVD to take
advantage of the sparsity of its input A′. However, as we will discuss, by itself SparseShrink has
too high of a probability of failure. Thus we use BoostedSparseShrink which keeps running
SparseShrink and probabilistically verifying the correctness of its result using VerifySpectral,
until it decides that the result is correct with high enough probability. Each of DenseShrink,
SparseShrink, and BoostedSparseShrink produce sketch matrices of size `× d.

Algorithm 3 SparseShrink

Input: A′ ∈ Rm×d, an integer ` ≤ m
Z = SimultaneousIteration(A′, `, 1/4)
P = ZTA′, [H,Λ, V ] = SVD(P, `)

Λ̃ =
√

Λ2 − λ2`I`
B′ = Λ̃V T

return B′

Algorithm 4 BoostedSparseShrink

Input: A′ ∈ Rm×d, integer ` ≤ m, failure probability δ
while True do
B′ = SparseShrink(A′, `)
∆ = (‖A′‖2F − ‖B′‖2F )/α` for α = 6/41
if VerifySpectral((A′TA′ −B′TB′)/(∆/2), δ) then

return B′
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Algorithm 5 DenseShrink

Input: A ∈ Rm×d, an integer ` ≤ m
[H,Λ, V ] = SVD(A, `)

Λ̃ =
√

Λ2 − λ2`I`
B = Λ̃V T

Return B

Our main result is stated in the next theorem. It follows from combining the proofs contained
in the subsections below.

Theorem 4.1 (main result). Given a sparse matrix A ∈ Rn×d and an integer ` ≤ d, SparseFre-
quentDirections computes a small sketch B ∈ R`×d such that with probability at least 1− δ for
α = 6/41 and any 0 ≤ k < α`,

‖ATA−BTB‖2 ≤
1

α`− k
‖A−Ak‖2F

and

‖A− πBk
(A)‖2F ≤

`

`− k/α
‖A−Ak‖2F .

The total memory footprint of the algorithm is O(d`) and its expected running time is

O
(
nnz(A)` log(d) + nnz(A) log(n/δ) + n`2 + n` log(n/δ)

)
.

4.1 Success Probability

SparseShrink, described in Algorithm 3, calls SimultaneousIteration to approximate the top
rank ` subspace of A′. As SimultaneousIteration is randomized, it fails to converge to a good
subspace when the initial choice of the random matrix G does not sufficiently align with the top `
singular vectors of A′ (see Algorithm 1). This occurs with probability at most ρ` = O(1/

√
`). In

Section 4.3.1, we prove that with probability of at least 1 − ρ` that SparseShrink satisfies the
three properties required for Lemma 3.1 using α = 6/41 and ∆ = 41/8 s2` , but replacing Property
2 with a stronger version

• Property 2 (strengthened): ‖A′TA′ −B′TB′‖2 ≤ (∆/2) = 41/16 s2`

where s` denotes the `th singular value of A′.
However, for the proof of SparseFrequentDirections we require that all SparseShrink

runs to be successful. The failure probability of SparseShrink, which is upper bounded by
O(1/

√
`), is high enough that a simple union bound would not give a meaningful bound on the

failure probability of SparseFrequentDirections. We therefore reduce the failure probability
of each BoostedSparseShrink, by wrapping each call of SparseShrink in the verifier Veri-
fySpectral. If VerifySpectral does not verify the correctness, then it reruns SparseShrink
and tries again until it can verify it. But to perform this verification efficiently, we need to loosen
the definition of correctness. In particular, we say SparseShrink is successful if the sketch B′

computed from its output satisfies ‖A′TA′ − B′TB′‖2 ≤ ∆ (the original Property 2 specification
in Section 3.1), where ∆ = (‖A′‖2F − ‖B′‖2F )/α`. Combining the two inequalities through ∆, a
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successful run implies that ‖A′TA′ − B′TB′‖2 ≤ (‖A′‖2F − ‖B′‖2F )/α`. VerifySpectral verifies
the success of the algorithm by approximating the spectral norm of (A′TA′−B′TB′)/(∆/2); it does
so by running the power method for c · log(d/δi) steps for some constant c.

Algorithm 6 VerifySpectral

Initialization persistent i = 0 (i retains its state between invocations of this method)
Input: Matrix C ∈ Rd×d, failure probability δ
i = i+ 1 and δi = δ/2i2

Pick x uniformly at random from the unit sphere in Rd.
if ‖Cc·log(d/δi)x‖ ≤ 1 return True
else return False

Lemma 4.1. The VerifySpectral algorithm returns True if ‖C‖2 ≤ 1. If ‖C‖2 ≥ 2 it returns
False with probability at least 1− δi.

Proof. If ‖C‖ ≤ 1 than ‖Cc·log(d/δi)x‖ ≤ ‖C‖c·log(d/δi)‖x‖ ≤ 1. If ‖C‖ ≥ 2, consider execution i of
the method. Let v1 denote the top singular vector of C. Then ‖Cc·log(d/δi)x‖ ≥ |〈v1, x〉|2c·log(d/δi) ≥
1, for some constant c as long as |〈v1, x〉| = Ω(poly(δi/d)). Let Φ(t′) denote the density function of
the random variable t′ = 〈v1, x〉. Then Pr[|〈v1, x〉| ≤ t] =

∫ t
−t Φ(t′)dt′ ≤ 2tΦ(0) = O(t

√
d). Setting

the failure probability to be at most δi, we conclude that |〈v1, x〉| = Ω(δi/
√
d) with probability at

least 1− δi.

Therefore, VerifySpectral fails with probability at most δi during execution i. If any of
VerifySpectral runs fail, BoostedSparseShrink and hence SparseFrequentDirections
potentially fail. Taking the union bound over all invocations of VerifySpectral we obtain that
SparseFrequentDirections fails with probability at most

∑
δi ≤

∑∞
i=1 δ/2i

2 ≤ δ, hence it
succeeds with probability at least 1− δ.

4.2 Space Usage and Runtime Analysis

Throughout this manuscript we assume the constant-word-size model. Integers and floating point
numbers are represented by a constant number of bits. Random access into memory is assumed
to require O(1) time. In this model, multiplying a sparse matrix A′ by a dense vector requires
O(nnz(A′)) operations and storing A′ requires O(nnz(A′)) bits of memory.

Fact 4.1. The total memory footprint of SparseFrequentDirections is O(d`).

Proof. It is easy to verify that, except for the buffer matrix A′, the algorithm only manipulates `×d
matrices; in particular, observe that the (rows(A′) = d) condition in SparseFrequentDirections
ensures that m = d in SparseShrink, and in DenseShrink also m = 2`. Each of these ` × d
matrices clearly require at most O(d`) bits of memory. The buffer matrix A′ contains at most O(d`)
non-zeros and therefore does not increase the space complexity of the algorithm.

We turn to bounding the expected runtime of SparseFrequentDirections which is domi-
nated by the cumulative running times of DenseShrink and BoostedSparseShrink. Denote by
T the number of times they are executed. It is easy to verify T ≤ nnz(A)/d`+ n/d. Since Dense-
Shrink runs in O(d`2) time deterministically, the total time spent by DenseShrink through T
iterations is O(Td`2) = O(nnz(A)`+ n`2).
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The running time of BoostedSparseShrink is dominated by those of SparseShrink and
VerifySpectral, and its expected number of iterations. Note that, in expectation, they are each
executed on any buffer matrix A′i a small constant number of times because VerifySpectral
succeeds with probability (much) greater than 1/2. For asymptotic analysis it is identical to
assuming they are each executed once.

Note that the running time of SparseShrink on A′i is O(nnz(A′i)` log(d)). Since
∑

i nnz(A′i) =
nnz(A) we obtain a total running time of O(nnz(A)` log(d)). The ith execution of VerifySpec-
tral requires O(d` log(d/δi)) operations. This, because it multiplies A′TA′ − B′TB′ by a single
vector O(log(d/δi)) times, and both nnz(A′) ≤ O(d`) and nnz(B′) ≤ d`. In expectation Veri-
fySpectral is executed O(T ) times, therefore total running time of it is

O(d`

O(T )∑
i=1

log(d/δi)) = O(d`

O(T )∑
i=1

log(di2/δ)) = O(Td` log(Td/δ)) = O((nnz +n`) log(n/δ)).

Combining the above contributions to the total running time of the algorithm we obtain Fact 4.2.

Fact 4.2. Algorithm SparseFrequentDirections runs in expected time of

O(nnz(A)` log(d) + nnz(A) log(n/δ) + n`2 + n` log(n/δ)).

4.3 Error Analysis

We turn to proving the error bounds of Theorem 4.1. Our proof is divided into three parts. We first
show that SparseShrink obtains the three properties needed for Lemma 3.1 with probability at
least 1− ρ`, and with the constraint on Property 2 strengthed by a factor 1/2. Then we show how
loosening Property 2 back to its original bound enables BoostedSparseShrink to succeed with
probability 1 − δi for some δi � ρ`. Finally we show that due to the mergeability of Frequent-
Directions [25], discussed in Section 3.1, the SparseFrequentDirections algorithm obtains
the same error guarantees as BoostedSparseShrink with probability 1 − δ for a small δ of our
choice.

In what follows, we mainly consider a single run of SparseShrink or BoostedSparseShrink
and let s` and u` denote the `th singular value and `th left singular vector of A′, respectively.

4.3.1 Error Analysis: SparseShrink

Here we show that with probability at least 1 − ρ` that B′ computed from SparseShrink(A′, `)
satisfies the three properties discussed in Section 3.1 required for Lemma 3.1.

• Property 1: For any unit vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≥ 0,

• Property 2 (strengthened): For any unit vector x ∈ Rd, ‖A′x‖2−‖B′x‖2 ≤ ∆/2 = (41/16)s2` ,

• Property 3: ‖A′‖2F − ‖B′‖2F ≥ `α∆ = `(3/4)s2` .

Lemma 4.2. Property 1 holds deterministically for SparseShrink: ‖A′x‖2 − ‖B′x‖2 ≥ 0 for all
vectors x ∈ Rd.
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Proof. Let P = ZTA′ be as defined in SparseShrink. Consider an arbitrary unit vector x ∈ Rd,
and let y = A′x.

‖A′x‖2 − ‖Px‖2 = ‖A′x‖2 − ‖ZTA′x‖2 = ‖y‖2 − ‖ZT y‖2

= ‖(I − ZZT )y‖2 ≥ 0

and

‖Px‖2 − ‖B′x‖2 = λ2`
∑̀
i=1

〈x, vi〉2 ≥ 0,

therefore ‖A′x‖2 − ‖B′x‖2 = (‖A′x‖2 − ‖Px‖2) + (‖Px‖2 − ‖B′x‖2) ≥ 0.

Lemma 4.3. With probability at least 1 − ρ`, Property 2 holds for SparseShrink: for any unit
vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≤ 41/16 s2` .

Proof. Consider an arbitrary unit vector x ∈ Rd, and note that

‖A′x‖2 − ‖B′x‖2 =
(
‖A′x‖2 − ‖Px‖2

)
+
(
‖Px‖2 − ‖B′x‖2

)
.

We bound each term individually. The first term is bounded as

‖A′x‖2 − ‖Px‖2 = xT (A′TA′ − P TP )x (1)

≤ ‖A′TA′ − P TP‖2 (2)

= ‖A′TA′ −A′TZZTA′‖2 (3)

= ‖A′T (I − ZZT )A′‖2 (4)

= ‖A′T (I − ZZT )T (I − ZZT )A′‖2 (5)

= ‖(I − ZZT )A′‖22 (6)

≤ 25/16 s2`+1 ≤ 25/16 s2` . (7)

Where transition 5 is true because (I−ZZT ) is a projection. Transition 7 also holds by the spectral
norm error bound of [29] for ε = 1/4. To bound the second term, note that ‖Px‖ = ‖ZTA′x‖ =
‖ΛV Tx‖, since [H,Λ, V ] = SVD(P, `) as defined in SparseShrink.

‖Px‖2 − ‖B′x‖2 =
∑̀
i=1

λ2i 〈x, vi〉2 −
∑̀
i=1

λ̃2i 〈x, vi〉2 =
∑̀
i=1

(λ2i − λ̃2i )〈x, vi〉2 =
∑̀
i=1

λ2` 〈x, vi〉2 ≤ λ2` ≤ s2` ,

where last inequality follows by the Courant-Fischer min-max principle, i.e. as λ` is the `th singular
value of the projection of A′ onto Z, then λ` ≤ s`. Summing the two terms yields ‖A′x‖2−‖B′x‖2 ≤
41/16 s2` .

The original bound ‖A′TA′−B′TB′‖2 ≤ ∆ = 41/8 s2` discussed in Section 4.1 is also immediately
satisfied.

Lemma 4.4. With probability at least 1−ρ`, Property 3 holds for SparseShrink: ‖A′‖2F−‖B′‖2F ≥
`(3/4)s2` .
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Proof.
‖A′‖2F − ‖P‖2F = ‖A′‖2F − ‖ZTA′‖2F = ‖A′ − ZZTA′‖2F ≥ 0

In addition,
‖P‖2F − ‖B′‖2F = `λ2` ≥ `(3/4)s2` .

The last inequality holds by the per vector error bound of [29] for i = ` and ε = 1/4, i.e.
|uT` A′A′Tu` − zT` A′A′T z`| = |s2` − λ2` | ≤ 1/4s2`+1 ≤ 1/4s2` , which means λ2` ≥ 3/4 s2` . Therefore

‖A′‖2F − ‖B′‖2F = (‖A′‖2F − ‖P‖2F ) + (‖P‖2F − ‖B′‖2F ) ≥ `(3/4)s2` .

4.3.2 Error Analysis: BoostedSparseShrink and SparseFrequentDirections

We now consider the BoostedSparseShrink algorithm, and the looser version of Property 2 (the
original version) as

• Property 2: For any unit vector x ∈ Rd, ‖A′x‖2 − ‖B′x‖2 ≤ ∆ = (41/8)s2` .

By invoking VerifySpectral((A′TA′−B′TB′)/(∆/2), δ), then VerifySpectral always returns
True if ‖A′TA′−B′TB′‖2 ≤ ∆/2 (as is true of the input with probability at least 1−ρ` by Lemma
4.3), and VerifySpectral catches a failure event where ‖A′TA′−B′TB′‖2 ≥ ∆ with probability at
least 1−δi by Lemma 4.1. As discussed in Section 4.1 all invocations of VerifySpectral succeed
with probability at most 1 − δ, hence all runs of BoostedSparseShrink succeed and satisfy
Property 2 (as well as Properties 1 and 3) with α = 6/41 and ∆ = 41/8 s2` , and with probability
at least 1− δ. Finally, we can invoke the mergeability property of FrequentDirections [25] and
Lemma 3.1 to obtain the error bounds in our main result, Theorem 4.1.

5 Experiments

In this section we empirically validate that SparseFrequentDirections matches (and often
improves upon) the accuracy of FrequentDirections, while running significantly faster on sparse
real and synthetic datasets.

We do not implement SparseFrequentDirections exactly as described above. Instead we
directly call SparseShrink in Algorithm 2 in place of BoostedSparseShrink. The randomized
error analysis of SimultaneousIteration indicates that we may occasionally miss a subspace
within a call of SimultaneousIteration and hence SparseShrink; but in practice this is not a
catastrophic event, and as we will observe, does not prevent SparseFrequentDirections from
obtaining small empirical error.

The empirical comparison of FrequentDirections to other matrix sketching techniques is
now well-trodden [17, 7]. FrequentDirections (and, as we observe, by association SparseFre-
quentDirections) has much smaller error than other sketching techniques which operate in a
stream. However, FrequentDirections is somewhat slower by a factor of the sketch size ` up to
some leading coefficients. We do not repeat these comparison experiments here.
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Table 1: Parameter values

default range
datapoints (n) 10000 [104 − 6× 104]
dimension (d) 1000 [103 − 6× 103]
sketch size (`) 50 [5− 100]
nnz per row 100 [5− 500]

Setup We ran all the algorithms under a common implementation framework to test their relative
performance as accurately as possible. We ran the experiments on an Intel(R) Core(TM) 2.60
GHz CPU with 64GB of RAM running Ubuntu 14.04.3. All algorithms were coded in C, and
compiled using gcc 4.8.4. All linear algebra operation on dense matrices (such as SVD) invoked
those implemented in LAPACK.

Datasets We compare the performance of the two algorithms on both synthetic and real datasets.
Each dataset is an n× d matrix A containing n datapoints in d dimensions.

The real dataset is part of the 20 Newsgroups dataset [22], that is a collection of approximately
20,000 documents, partitioned across 20 different newsgroups. However we use the ‘by date’ version
of the data, where features (columns) are tokens and rows correspond to documents. This data
matrix is a zero-one matrix with 11,314 rows and 117,759 columns. In our experiment, we use
the transpose of the data and picked the first d = 3000 columns, hence the subset matrix has
n = 117,759 rows and d = 3000 columns; roughly 0.15% of the subset matrix is non-zeros.

The synthetic data generates n rows i.i.d. Each row receives exactly z � d non-zeros (with
default z = 100 and d = 1000), with the remaining entries as 0. The non-zeros are chosen as either
1 or −1 at random. Each non-zero location is chosen without duplicates among the columns. The
first 1.5z columns (e.g., 150), the “head”, have a higher probability of receiving a non-zero than
the last d − 1.5z columns, the “tail”. The process to place a non-zero first chooses the head with
probability 0.9 or the tail with probability 0.1. For whichever set of columns it chooses (head or
tail), it places the non-zero uniformly at random among those columns.

Measurements Each algorithm outputs a sketch matrix B of ` rows. For each of our experiments,
we measure the efficiency of algorithms against one parameter and keep others fixed at a default
value. Table 1 lists all parameters along with their default value and the range they vary in for
synthetic dataset. We measure the accuracy of the algorithms with respect to:

• Projection Error: proj-err = ‖A− πBk
(A)‖2F /‖A−Ak‖2F ,

• Covariance Error: cov-err = ‖ATA−BTB‖2/‖A‖2F ,

• Runtime in seconds.

In all experiments, we have set k = 10. Note that proj-err is always larger than 1, and for Frequent-
Directions and SparseFrequentDirections the cov-err is always smaller than 1/( 6

41`−k) due
to our error guarantees.
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Table 2: Comparing performance of FrequentDirections and SparseFrequentDirections
on synthetic data. Each column reports the measurement against one parameter; ordered from left
to right it is number of datapoints (n), dimension (d), sketch size (`), and number of non-zeros
(nnz) per row. Table 1 lists default value of all parameters.
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Figure 1: Comparing performance of FrequentDirections and SparseFrequentDirections
on 20 Newsgroups dataset. We plot Projection Error, Covariance Error, and Run Time as a function
of sketch size (`).

5.1 Observations

By considering Table 2 on synthetic data and Figure 1 on the real data, we can vary and learn
many aspects of the runtime and accuracy of SparseFrequentDirections and FrequentDi-
rections.

Runtime Consider the last row of Table 2, the “Run Time” row, and the last column of Figure
1. SparseFrequentDirections is clearly faster than FrequentDirections for all datasets,
except when the synthetic data becomes dense in the last column of the “Run Time” row, where d =
1000 and nnz per row = 500 in the right-most data point. For the default values the improvement
is between about a factor of 1.5x and 2x, but when the matrix is very sparse the improvement is
10x or more. Very sparse synthetic examples are seen in the left data points of the last column,
and in the right data points of the second column, of the “Run Time” row.

In particular, these two plots (the second and fourth columns of the “Run Time” row) really
demonstrate the dependence of SparseFrequentDirections on nnz(A) and of FrequentDi-
rections on n · d. In the last column, we fix the matrix size n and d, but increase the number of
non-zeros nnz(A); the runtime of FrequentDirections is basically constant, while for Sparse-
FrequentDirections it grows linearly. In the second column, we fix n and nnz(A), but increase
the number of columns d; the runtime of FrequentDirections grows linearly while the runtime
for SparseFrequentDirections is basically constant.

These algorithms are designed for datasets with extremely large values of n; yet we only run on
datasets with n up to 60,000 in Table 2, and 117,759 in Figure 1. However, both FrequentDi-
rections and SparseFrequentDirections have runtime that grows linearly with respect to the
number of rows (assuming the sparsity is at an expected fixed rate per row for SparseFrequent-
Directions). This can also be seen empirically in the first column of the “Run Time” row where,
after a small start-up cost, both FrequentDirections and SparseFrequentDirections grow
linearly as a function of the number of data points n. Hence, it is valid to directly extrapolate
these results for datasets of increased n.

Accuracy We will next discuss the accuracy, as measured in Projection Error in the top row of
Table 2 and left plot of Figure 1, and in Covariance Error in the middle row of Table 2 and middle
plot of Figure 1. We observe that both FrequentDirections and SparseFrequentDirections
obtain very small error (much smaller than upper bounded by the theory), as has been observed

15



elsewhere [17, 7]. Moreover, the error for SparseFrequentDirections always nearly matches,
or improves over FrequentDirections. We can likely attribute this improvement to being able
to process more rows in each batch, and hence needing to perform the shrinking operation fewer
overall times. The one small exception to SparseFrequentDirections having less Covariance
Error than FrequentDirections is for extreme sparse datasets in the leftmost data points of
Table 2, last column – we attribute this to some peculiar orthogonality of columns with near equal
norms due to extreme sparsity.
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