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Abstract

When an item goes out of stock, sales transaction data no longer reflect the original cus-
tomer demand, since some customers leave with no purchase while others substitute alternative
products for the one that was out of stock. Here we develop a Bayesian hierarchical model for
inferring the underlying customer arrival rate and choice model from sales transaction data and
the corresponding stock levels. The model uses a nonhomogeneous Poisson process to allow
the arrival rate to vary throughout the day, and allows for a variety of choice models. Model
parameters are inferred using a stochastic gradient MCMC algorithm that can scale to large
transaction databases. We fit the model to data from a local bakery and show that it is able
to make accurate out-of-sample predictions, and to provide actionable insight into lost cookie
sales.

1 Introduction

An important common challenge facing retailers is to understand customer preferences in the pres-
ence of stockouts. When an item is out of stock, some customers will leave, while others will
substitute a different product. From the transaction data collected by retailers, it is challenging
to determine exactly what the customer’s original intent was, or, because of customers that leave
without making a purchase, even how many customers there actually were.

The task that we consider here is to infer both the customer arrival rate, including the unobserved
customers that left without a purchase, and the substitution model, which describes how customers
substitute when their preferred item is out of stock. Furthermore, we wish to infer these from sales
transaction and stock level data, which data are readily available for many retailers. These quantities
are a necessary input for inventory management and assortment planning problems.

Stockouts are a common occurrence in some retail settings, such as bakeries and flash-sale retailers
[5]. Not properly accounting for the data truncation caused by stockouts can lead to poor stocking
decisions. Näıvely estimating demand as the number of items sold underestimates the demand of
items that stock out, while overestimating the demand of their substitutes. This could lead the
retailer to set the stock for the substitute items too high, while leaving the stock of the stocked-out
item too low, potentially losing customers and revenue.

There are several key features of our model and inference that make it successful in problem
settings where prior work in the area has not been. First, prior work has assumed the arrival
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rate to be constant within each time period [24]. Our model allows for arbitrary nonhomogeneous
arrival rate functions, which is important for our bakery case study where sales have strong peaks
at lunch time and between classes. Second, prior work has required a particular choice model
[1, 24, 22], whereas our model can incorporate whichever choice model is most appropriate. There
are a wide variety of choice models, econometric models describing how a customer chooses one of
several alternatives, with different properties and which are applicable in different settings. Third,
we model multiple customer segments, each with their own substitution models which can be used
to borrow strength across data from multiple stores. Fourth, unlike prior work which has used point
estimates, our inference is fully Bayesian. Because we do full posterior inference, we are able to
compute the posterior predictive distributions for decision quantities of interest, such as lost sales
due to stock unavailability. This allows us to incorporate the uncertainty in estimation directly into
uncertainty in our decision quantities, thus leading to more robust decisions.

Our contributions are four-fold. First, we develop a Bayesian hierarchical model that uses the
censoring caused by stockouts and their induced substitutions to gain useful insight from transaction
data. Our model is flexible and powerful enough to be useful in a wide range of retail settings.
Second, we show how recent advances in MCMC for topic models can be adapted to our model
to provide a sampling procedure that scales to large transaction databases. Third, we provide a
simulation study which shows that we can recover the true generating values and which demonstrates
the scalability of the inference procedure. Finally, we make available actual retail transaction data
from a bakery1 and use these data for a case study showing how the model and sampling work in
a real setting. In the case study we evaluate the predictive power of the model, and show that our
model can make accurate out-of-sample predictions whereas the baseline method cannot. We finally
show how the methods developed here can be useful for decision making by producing a posterior
predictive distribution of the bakery’s lost sales due to stock unavailability.

2 The Generative Model

We begin by introducing the notation that we use to describe the observed data. We then introduce
the nonhomogeneous model for customer arrivals, followed by a discussion of various possible choice
models. Section 2.4 discusses how multiple customer segments are modeled. Finally, Section 2.5
introduces the likelihood model and Section 2.6 discusses the prior distributions.

2.1 The Data

We suppose that we have data from a collection of stores σ = 1, . . . , S. For each store, data come
from a number of time periods l = 1, . . . , Lσ, throughout each of which time varies from 0 to T . For
example, in our experiments a time period was one day. We consider a collection of items i = 1, . . . , n.
We suppose that we have two types of data: purchase times and stock levels. We denote the number

of purchases of item i in time period l at store σ as mσ,l
i . Then, we let tσ,li =

{
tσ,li,1, . . . , t

σ,l

i,mσ,li

}
be

the observed purchase times of item i in time period l at store σ. For notational convenience, we

let tσ,l =
{
tσ,li

}n
i=1

be the collection of all purchase times for that store and time period, and let

t =
{
tσ,l
}
l=1,...,Lσ

σ=1,...,S
be the complete set of arrival time data.

We denote the known initial stock level as Nσ,l
i and assume that stocks are not replenished

throughout the time period. That is, mσ,l
i ≤ N

σ,l
i and equality implies a stockout. As before, we let

Nσ,l and N represent respectively the collection of initial stock data for store σ and time period l,
and for all stores and all time periods.

1Data are available at http://github.com/bletham/bakery
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Given tσ,li and Nσ,l
i , we can compute a stock indicator as a function of time. We define this

indicator function as

si(t | tσ,l,Nσ,l) =

{
0 if item i is out of stock at time t

1 if item i is in stock at time t.

The generative model for these data will be that customers arrive at the store according to some
arrival process. Each customer belongs to a particular segment, and chooses an item to purchase
(or no-purchase) based on the preferences of his or her segment and the available stock. When the

customer purchases item i, the arrival time is recorded in tσ,li . When a customer leaves without
making a purchase, for instance because his or her preferred item is out of stock, the arrival time is
not recorded. We now present the two main components of this model: the customer arrival process
and the choice model.

2.2 Modeling Customer Arrivals

We model the times of customer arrivals using a nonhomogeneous Poisson process (NHPP). An
NHPP is a generalization of the Poisson process that allows for the intensity to be described by
a function λ(t) ≥ 0 as opposed to being constant. We assume that the intensity function has
been parameterized, with parameters ησ potentially different for each store σ. The most basic
parameterization is λ(t | ησ) = ησ1 , producing a homogeneous Poisson process of rate ησ1 . As
another example, we can produce an intensity function that rises to a peak and then decays by
letting

λ(t | ησ) = ησ1

(
ησ2
ησ3

)(
t

ησ3

)ησ2−1(
1 +

(
t

ησ3

)ησ2)−2
, (1)

which is the derivative of the Hill equation [9].
The posterior of ησ will be inferred. To do this we use the log-likelihood function for NHPP

arrivals, which for arrival times t1, . . . , tm over interval [0, T ] is:

log p(t1, . . . , tm) =

m∑
j=1

log (λ(tj))− Λ(0, T ),

where Λ(0, T ) =
∫ T
0
λ(t)dt. Our model can incorporate any integrable rate function. We let η =

{ησ}Sσ=1 represent the complete collection of rate function parameters to be inferred.

2.3 Models for Substitution Behavior

Whether or not a customer purchases an item and which item they purchase depends on the
stock availability as well as some choice model parameters which we describe below. We define
fi(s(t),φ

k, τk) to be the probability that a customer purchases product i given the current stock
s(t) and choice model parameters φk and τk. Then, we denote the no-purchase probability as

f0(s(t),φk, τk) = 1−
n∑
i=1

fi(s(t),φ
k, τk).

The index k indicates the parameters for a particular customer segment, which we will discuss in
Section 2.4. Posterior distributions for the parameters φk and τk are inferred.

Choice models are econometric models describing a customer’s choice between several alterna-
tives, often derived from a utility maximization problem. Different assumptions and utility models
lead to different choice models, which ultimately lead to a different form of the purchase probability
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fi(s(t),φ
k, τk). Our model accommodates any choice model for which the purchase probabilities can

be expressed as a function of the current stock. We now discuss how several common choice models
fit into this framework, and we use these choice models in our simulation and data experiments.

2.3.1 Multinomial Logit Choice

The multinomial logit (MNL) is a popular choice model with parameters φk1 , . . . , φ
k
n specifying a

preference distribution over products, that is, φki ≥ 0 and
∑n
i=1 φ

k
i = 1. Each customer selects a

product according to that distribution. When an item goes out of stock, substitution takes place
by transferring purchase probability to the other items proportionally to their original probability,
including to the no-purchase option. This model requires a proportion τk/(1 + τk) of arrivals be
no-purchases when all items are in stock. The MNL choice probabilities are:

fmnl
i (s(t),φk) =

si(t)φ
k
i

τk +
∑n
v=1 sv(t)φ

k
v

. (2)

The MNL model parameter τk is not identifiable when the arrival function is also unknown, a serious
disadvantage of this model [24].

2.3.2 Single-Substitution Exogenous Model

The exogenous choice model overcomes many of the shortcomings of the MNL model, including the
issue of parameter identifiability. According to the exogenous proportional substitution model [13],
a customer samples a first choice from the preference distribution φk. If that item is available, he or
she purchases the item. If the first choice is not available, with probability 1−τk the customer leaves
as no-purchase. With the remaining τk probability, the customer picks a second choice according to a
preference vector that has been re-weighted to exclude the first choice. Specifically, if the first choice
was j then the probability of choosing i as the second choice is φki /

∑
v 6=j φ

k
v . If the second choice is

in stock it is purchased, otherwise the customer leaves as no-purchase. The purchase probability is

f exi (s(t),φk, τk) = si(t)φ
k
i + si(t)τ

k
n∑
j=1

(1− sj(t))φkj
φki∑
v 6=j φ

k
v

. (3)

Posterior distributions for both φk and τk are inferred.
Allowing for the no-purchase option only in the event of stockouts means that the inferred arrival

rate will be that of customers who actually would have purchased an item had all items been in
stock. It would be possible for the exogenous model to include a proportion of customers that make
no purchase even with full stock, as is required by the MNL model. However, inasmuch as these
customers make no contribution to sales regardless of stock, it serves no purpose in the ultimate
goal of understanding the effect of stock on sales.

2.3.3 Nonparametric Choice Model

Nonparametric models describe preferences as an ordered set of items. Let φk be an ordered subset
of the items {1, . . . , n}. Customers purchase φk1 if it is in stock. If not, they purchase φk2 if it is in
stock. If not, they continue substituting down φk until they reach the first item that is available.
If none of the items in φk are available, they leave as a no-purchase. The purchase probability for
this model is then 1 for the first in-stock item in φk, and 0 otherwise.

Because this model requires all customers to behave exactly the same, it is most useful when
customers are modeled as coming from a number of different segments k, each with its own preference
ranking φk. This is precisely what we do in our model, as we describe in the next section. For the
nonparametric model the rank orders for each segment φk are fixed and it is the distribution of
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customers across segments that is inferred. We do not generally need to consider all possible rank
orders, as we discuss in the next section.

2.4 Segments and Mixtures of Choice Models

We model customers as each coming from one of K segments k = 1, . . . ,K, each with its own choice
model parameters φk and τk. Let θσ be the customer segment distribution for store σ, with θσk the

probability that an arrival at store σ belongs to segment k, θσk ≥ 0, and
∑K
k=1 θ

σ
k = 1. As with

other variables, we denote the collection of segment distributions across all stores as θ. Similarly,
we denote the collections of choice model parameters across all segments as φ and τ .

For the nonparametric choice model, each of these segments would have a different rank ordering
of items and multiple segments are required in order to have a diverse set of preferences. For the MNL
and exogenous choice models, customer segments can be used to borrow strength across multiple
stores. All stores share the same underlying segment parameters φ and τ , but each store’s arrivals
are represented by a different mixing of these segments, θσ. This model allows us to use data from
all of the stores for inferring the choice model parameters, while still allowing stores to differ from
each other by having a different mixture of segments.

With the nonparametric choice model, using a segment for each ordered subset of {1, . . . , n}
would likely result in more parameters than could be reasonably inferred for n even moderately
large. Our inference procedure would be most appropriate for nonparametric models with one or
two substitutions (that is, ordered subsets of size 2 or 3), which could still capture a wide range of
behaviors.

2.5 The Likelihood Model

We now describe in detail the generative model for how customer segments, choice models, stock
levels, and the arrival function all interact to create transaction data. Consider store σ and time
period l. Customers arrive according to the NHPP for this store. Let t̃σ,l1 , . . . , t̃σ,l

m̃σ,l
represent all of the

arrival times; these are unobserved, as they may include no-purchases. Each arrival has probability
θσk of belonging to segment k. They then purchase an item or leave as no-purchase according to
the choice model fi. If the j’th arrival purchases an item then we observe that purchase at time
t̃σ,lj ; if they leave as no-purchase we do not observe that arrival at all. The generative model for the
observed data t is thus:

For store σ = 1, . . . , S and time period l = 1, . . . , Lσ :

• Sample arrivals t̃σ,l1 , . . . , t̃σ,l
m̃σ,l
∼ NHPP(λ(t | ησ), T ).

• For arrival j = 1, . . . , m̃σ,l:

– Sample segment as k ∼ Multinomial(θσ).

– With probability fi(s(t̃
σ,l
j | tσ,l,N

σ,l),φk, τk) purchase item i, or no purchase with i = 0.

– If item i > 0 purchased, add the time to tσ,li .

We denote the probability that an arrival at time t purchases item i as πi(t) =
∑K
k=1 θ

σ
kfi(s(t |

tσ,l,Nσ,l),φk, τk). An important quantity for the likelihood is the observed purchase rate, which is
the arrival rate times the purchase probability:

λ̃σ,li (t) = λ(t | ησ)πi(s(t | tσ,l,Nσ,l),φ, τ ,θσ). (4)

This is the rate at which customers purchase item i, incorporating stock availability and customer

choice. The corresponding mean function is Λ̃σ,li (0, T ) =
∫ T
0
λ̃σ,li (t)dt.

The following theorem gives the likelihood function corresponding to this generative model.
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Theorem 1. The log-likelihood function of t is

log p(t |η,θ,φ, τ ,N , T )

=

S∑
σ=1

Lσ∑
l=1

n∑
i=1

mσ,li∑
j=1

log
(
λ̃σ,li (tσ,li,j )

)
− Λ̃σ,li (0, T )

 .

Remarkably, the result is that which would be obtained if we treated the purchases for each item
as independent NHPPs with rate λ̃σ,li (t), the observed purchase rate from (4). In reality, they are not

independent NHPPs inasmuch as they depend on each other via the stock function s(t | tσ,l,Nσ,l).
The key element of the proof is that while the purchase processes depend on each other, they do not
depend on the no-purchase arrivals. The proof is given in the Appendix. Also in the Appendix we
show how the mean function Λ̃σ,li (0, T ) can be expressed in terms of Λ(0, T | ησ) and thus computed
efficiently, provided the rate function is integrable.

2.6 Prior Distributions

Finally, we specify a prior distribution for each of the latent variables: η, θ, and φ and τ as required
by the choice model. The variables θ, φ, and τ are all probability vectors, so the natural choice is
to assign them a Dirichlet or Beta prior:

θ ∼ Dirichlet(α)

φk ∼ Dirichlet(β), k = 1, . . . ,K

τk ∼ Beta(γ), k = 1, . . . ,K.

In our experiments, we used uniform priors by setting the hyperparameters to vectors of 1. Similarly,
a natural choice for the prior distribution of η is a uniform distribution for each element:

ησv ∼ Uniform(δv), v = 1, . . . , |ησ|, σ = 1, . . . , S.

In our experiments we chose the interval δv large enough to not be restrictive.

3 MCMC Sampling

We use MCMC techniques to simulate posterior samples, specifically the stochastic gradient Rieman-
nian Langevin dynamics (SGRLD) algorithm of [17]. SGRLD was developed for posterior inference
in topic models, to which our model is conceptually similar. It uses a stochastic gradient that does
not require the full likelihood function to be evaluated in every MCMC iteration, which is critical
for doing posterior inference on a potentially very large transaction database.

We first transform each of the probability variables using the expanded-mean parameterization
[17]. Consider the latent variable θ, which has as constraints θk ≥ 0 and

∑K
k=1 θk = 1. Take θ̃

a random variable with support on RK+ , and give θ̃ a prior distribution consisting of a product of
Gamma(αk, 1) distributions:

p(θ̃ | α) ∝
K∏
k=1

θ̃αk−1k exp(−θ̃k).

The posterior sampling is done over variables θ̃ by mirroring any negative proposal values about
0. We then set θk = θ̃k/

∑K
r=1 θ̃r. This parameterization is equivalent to sampling on θ with a

Dirichlet(α) prior, but does not require the probability simplex constraint. The same transformation
is done to φk and τk.
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Let z = {η, θ̃, φ̃, τ̃} represent the complete collection of transformed latent variables whose
posterior distribution we are inferring. From state zw on MCMC iteration w, the next iteration
moves to the state zw+1 according to

zw+1 = zw

+
εw
2

(diag(zw)∇ log p(zw | t,α,β,γ, δ,N , T ) + 1)

+ diag(zw)
1
2ψ,

ψ ∼ N (0, εwI).

The iteration performs a gradient step plus normally distributed noise, using the natural gradient
of the log posterior, which is the manifold direction of steepest descent using the metric G(z) =
diag(z)−1. Using Bayes’ theorem, the posterior gradient can be decomposed into the likelihood
gradient and the prior gradient, and we use a stochastic gradient approximation for the likelihood
gradient. On MCMC iteration w, rather than use all Lσ time periods to compute the gradient we
use a uniformly sampled collection of time periods Lσw. The gradient approximation is then

∇ log p(t | zw,N , T )

≈
S∑
σ=1

Lσ

|Lσw|
∑
l∈Lσw

n∑
i=1

∇

mσ,li∑
j=1

log
(
λ̃σ,li (tσ,li,j )

)
− Λ̃σ,li (0, T )

 .

The iterations will converge to the posterior samples if the step size schedule is chosen such that∑∞
w=1 εw = ∞ and

∑∞
w=1 ε

2
w < ∞ [25]. In our simulations and experiments we used three time

periods for the stochastic gradient approximations. We followed [17] and took εw = a((1 + q/b)−c),
with parameters a, b, and c chosen using cross-validation over a grid to minimize out-of-sample
perplexity. We drew 10,000 samples from each of three chains initialized at a local maximum a
posteriori solution found from a random sample from the prior. We verified convergence using
the Gelman-Rubin diagnostic after discarding the first half of the samples as burn-in [7], and then
merged samples from all three chains to estimate the posterior.

4 Simulation Study

We use a collection of simulations to illustrate and analyze the model and the inference procedure.
We use a variety of rate functions and choice models throughout the simulations to demonstrate
this flexibility of the model. First we use the simulations to verify that the posterior concentrates
around the true generating values for a wide selection of arrival rate functions, choice models, and
model parameters. Then we use simulations to investigate the dependence on the amount of data
used in the inference. The simulations show that the posterior variance decreases as the size of the
training data set increases, which is remarkable inasmuch as the reduction of uncertainty came with
no additional computational cost because of the stochastic gradient approximation for the likelihood.

The first set of simulations used the homogeneous rate function λ(t | ησ) = ησ1 and the exogenous
choice model given in (3), with S = 3 stores, K = 2 segments, and n = 3 items. The choice model
parameters were fixed at τ1 = τ2 = 0.75, φ1 = [0.75, 0.2, 0.05], and φ2 = [0.33, 0.33, 0.34]. For
each of 10 simulated data sets, the segment distributions θσ were chosen independently at random
from a uniform Dirichlet distribution and the arrival rates ησ1 were chosen independently at random
from a uniform distribution on [2, 4]. For each store, we simulated 25 time periods, each of length
T = 1000 and with the initial stock for each item chosen uniformly between 0 and 500, independently
at random for each item, time period, and store. Purchase data were then generated according to
the generative model in Section 2.5. Figure 1 shows the posterior means estimated from the MCMC
samples across the 10 repeats of the simulation, each with different segment distributions and rate
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Figure 1: Markers in the top panel show, for each randomly chosen value of ησ1 used in the set of
simulations (3 stores × 10 simulations), the corresponding estimate of the posterior mean. The bot-
tom panel shows the same result for each value of θσk used (3 stores × 2 segments × 10 simulations).
For a range of generating parameter values, the posterior distributions were centered on the true
values.

parameters. This figure shows that across the full range of parameter values used in these simulations
the posterior mean was close to the true, generating value.

In the second set of simulations we used the Hill rate function with the nonparametric choice
model, with 3 items. We used all sets of preference rankings of size 1 and 2, which for 3 items
requires a total of 9 segments. We simulated data for a single store, with the segment proportion θ1k
set to 0.33 for preference rankings {1}, {1, 2}, and {3, 2}: The first segment prefers item 1 and will
leave with no purchase if item 1 is not available, the second segment prefers item 1 but is willing to
substitute to item 2, and the third segment prefers item 3 but is willing to substitute to item 2. The
segment proportions for the remaining 6 preference rankings were set to zero. With this simulation
we study the effect of the number of time periods used in the inference, L1. L1 was taken from
{5, 10, 25, 50, 100}, and for each of these values 10 simulations were done.

As in Figure 1, the posterior densities for the segment proportions were concentrated near their
true values. Figure 2 shows how the posteriors depended on the number of time periods of available
data. The top panel shows that the posterior means for the non-zero segment proportions tended
closer to the true value as more data were made available. The bottom panel shows the actual con-
centration of the posterior, where the interquartile range of the posterior decreased with the number
of time periods. Because we use a stochastic gradient approximation, using more time periods
came at no additional computational cost: We used 3 time periods for each gradient approximation
regardless of the available number.
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Figure 2: Each marker corresponds to the posterior distribution for θ1k from a simulation with the
corresponding number of time periods, across the 3 values of k where the true value equaled 0.33.
The top panel shows the posterior mean for each of the simulations across the different number
of time periods. The bottom panel shows the interquartile range (IQR) of the posterior. As the
amount of available data increased, the posterior distributions became increasingly concentrated on
the true values.

5 Case Study: Bakery Sales

We now provide the results of the model applied to real transaction data. As part of our case study,
we evaluate the predictive power of the model and sample the posterior distribution of lost sales due
to stockouts.

We obtained one semester of sales data from the bakery at 100 Main Marketplace, a cafe located
at MIT, for a collection of cookies: oatmeal, double chocolate, and chocolate chip. The data set
included all purchase times for 151 days; we treated each day as a time period (11:00 a.m. to 7:00
p.m.), and there were a total of 4084 purchases. Stock data were not available, only purchase times,
so for the purpose of these experiments we set the initial stock for each time period equal to the
number of purchases for the time period - thus every item was treated as stocked out after its last
recorded purchase. This may be a reasonable assumption for these cookies given that they are
perishable baked goods which are meant to stock out by the end of the day, but in any case the
experiments still provide a useful illustration of the method.

The empirical purchase rate for the cookies, shown in Figure 3, was markedly nonhomogeneous:
there is a broad peak at lunch time and two sharp peaks at common class ending times. We modeled
the rate function with a combination of the Hill function λH(t) (1) and a fixed function consisting
of only two peaks at the two afternoon peak times, λp(t), obtained via a spline. The Hill function
has three parameters, and then a fourth parameter provided the weight of the fixed peaks that were
added in: λ(t | η) = λH(t | η1, η2, η3) +η4λ

p(t). We fit the model separately with the exogenous and
nonparametric choice models.
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Figure 3: A normalized histogram of purchase times for the cookies, across time periods, along with
posterior samples for the model’s corresponding predicted purchase rate.
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Figure 4: Normalized histogram of posterior samples of the exogenous choice model substitution rate,
for the cookie data. This is the probability that a customer will substitute if his or her preferred
item is out of stock.

Figure 3 shows 20 posterior samples for the model’s predicted average purchase rate over all time
periods, which equals 1

151

∑151
l=1

∑3
i=1 λ̃

1,l
i , from the fit with the nonparametric choice model. These

samples show that the model provides an accurate description of the arrival rate. The variance in
the samples provides an indication of the uncertainty in the model, which further motivates the use
of the posterior predictive distribution over a point estimate for making predictions.

Figure 4 shows the posterior density for the substitution rate τ , obtained by fitting the model
with the exogenous choice model. The substitution rate is very low, indicating that most customers
left without a purchase if their preferred cookie was not in stock. The posterior distribution of the
item preference vector is given in 5. Chocolate chip cookies were the strong favorite, followed by
double chocolate and lastly oatmeal.

5.1 Predictive Performance

The next set of experiments establish that the model has predictive power on real data. We evaluated
the predictive power of the model by predicting out-of-sample purchase counts during periods of
varying stock availability. We took the first 80% of time periods (120 time periods) as training data
and did posterior inference. The latter 31 time periods were held out as test data, the goal being to
use data from the first part of the semester to make predictions about the latter part. We considered
each possible level of stock unavailability, i.e., s = [1, 0, 0], s = [0, 1, 0], etc. For each stock level, we
found all of the time intervals in the test periods with that stock. The prediction task was, given only
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Figure 5: Normalized histograms of posterior samples of the exogenous choice model preference
vector, for the cookie data. This vector provides the probability that each item is a customer’s
primary choice.

the time intervals and the corresponding stock level, to predict the total number of purchases that
took place during those time intervals in the test periods. The actual number of purchases is known
and thus predictive performance can be evaluated. There were no intervals where only chocolate
chip cookies were out of stock, but predictions were made for every other stock combination.

This is a meaningful prediction task because good performance requires being able to accurately
model both the arrival rate as a function of time and how the actual purchases then depend on the
stock. We compare predictive performance to a baseline model that has previously been proposed
for this problem by [24], which is the maximum likelihood model with a homogeneous arrival rate
and the MNL choice model. We discuss this and other related works in more detail in Section 6.

For the MNL baseline, the parameter τ1 is unidentifiable and cannot be estimated. We fit the
model for each fixed τ1 ∈ {0.1, 0.2, . . . , 0.9}, and show here the results with the value of τ1 that
minimized the out-of-sample absolute deviation between the model expected number of purchases
and the true number of purchases, which was 0.4. That is, we show here the results that would
have been obtained if we had known a priori the best value of τ1, and thus show the best possible
performance of the baseline.

For our model, for each choice model (nonparametric and exogenous) posterior samples obtained
from the MCMC procedure were used to estimate the posterior predictive distribution for the number
of purchases under each stock level. For the maximum likelihood baseline, we used simulation
to estimate the distribution of purchase counts conditioned on the point estimate model. These
posterior densities, smoothed with a kernel density estimate, are given in Figure 6. Despite their
very different natures, the predictions made by the exogenous and nonparametric models are quite
similar, and both have posterior means close to the true values for all stock levels. The baseline
maximum likelihood model with a homogeneous arrival rate and MNL choice performs very poorly.

5.2 Lost Sales Due to Stockouts

Our purpose in inferring the model is to use it to make better stocking decisions. An important
starting point is to use the inferred parameters to estimate what the sales would have been had there
not been any stockouts. This allows us to know how much revenue is being lost with our current
stocking strategy. We estimated posterior densities for the number of purchases of each item across
151 time periods, with full stock. Figure 7 compares those densities to the actual number of cookie
purchases in the data.

For each of the cookies, the actual number of purchases was significantly less than the posterior
density for purchases with full stock, indicating that there were substantial lost sales due to stockouts.
With the nonparametric model, the difference between the full-stock posterior mean and the actual
number of purchases was 791 oatmeal cookies, 707 double chocolate cookies, and 1535 chocolate chip

11
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Figure 6: Smoothed posterior densities for the number of purchases during test set intervals with
the indicated stock availability for cookies [oatmeal, double chocolate, chocolate chip]. The density
in blue is for the nonparametric choice, red is for the exogenous choice, and gray is for the baseline
homogeneous arrival rate with MNL choice. The vertical line indicates the true value.

cookies. Figure 4 shows that customers were generally unwilling to substitute, which would have
contributed to the lost sales.

6 Related Work

The primary work on this problem, estimating demand and substitution from sales transaction data
with stockouts and unobserved no-purchases, was done by [24]. They model customer arrivals using a
homogeneous Poisson process within each time period, meaning the arrival rate is constant through-
out each time period. Customers then choose an item, or an unobserved no-purchase, according to
the MNL choice model. They derive an EM algorithm to solve the corresponding maximum likeli-
hood problem. In the prediction task of Section 5.1 we compared our results with this model as the
baseline and found that it was unable to make accurate predictions with our case study data. Our
model overcomes several limitations of this model, thereby substantially advancing the power of the
inference and the settings in which the model can be used. First, Figure 3 shows that the arrivals
are significantly nonhomogeneous throughout the day, and modeling the arrival rate as constant
throughout the day is likely the reason the baseline model failed the prediction task. The work in
[24] proposes extending their model to a nonhomogeneous setting by choosing sufficiently small time
periods that the arrival rate can be approximated as piecewise constant. However, with the level of
nonhomogeneity seen in Figure 3 it is implausible that accurate estimation could be done for the
number of segments (and thus separate rate parameters) required to model the arrival rate with
a piecewise-constant function. Second, our model does not require using the MNL choice model,
which avoids the issue with the parameter τ being unidentifiable. This parameter represents the
proportion of arrivals that do not purchase anything even when all items are in stock, and is not
something that a retailer would necessarily know. Finally, we take a Bayesian approach to inference
and produce posterior predictive distributions. This becomes especially important in this setting
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Figure 7: Smoothed posterior densities for the number of purchases during all periods, had there
had been no stockouts. The blue density is the result with the nonparametric choice model, and the
red with the exogenous. The vertical line indicates the number of purchases in the data.

where the parameters themselves are of secondary interest to using the model to make predictions
about lost revenue and to make decisions about stocking strategies.

Other work in this area includes [1], where customer arrivals are modeled with a homogeneous
Poisson process and purchase probabilities are modeled explicitly for each stock combination, as
opposed to using a choice model. Their model does not scale well to a large number of items
as the likelihood expression includes all stock combinations found in the data. The work of [24]
is extended in [22] to incorporate nonparametric choice models, for which maximum likelihood
estimation becomes a large-scale concave program that must be solved via a mixed integer program
subproblem. There is a large body of work on estimating demand and choice in settings different
than that which we consider here, such as discrete time [21, 23], panel or aggregate sales data
[4, 12, 16], negligible no purchases [13], and online learning with simultaneous ordering decisions
[11]. These models and estimation procedures do not apply to the setting that we consider here,
which is retail transaction data with stockouts and unobserved no-purchases; [11] provide a review
of the various threads of research in the larger field of demand and choice estimation.

Our work fits into a growing body of work in advancing the use of statistics in areas of business.
These areas include marketing [10, 20, 2], market analysis [6, 18], demand forecasting [15, 19], and
pricing [8, 14]. These works, and ours, address a real need for rigorous statistical methodologies in
business, as well as a substantial opportunity for impact.

7 Discussion

We have developed a Bayesian model for inferring primary demand and consumer choice in the
presence of stockouts. The model can incorporate a realistic model of the customer arrival rate, and
is flexible enough to handle a variety of different choice models. Our model is conceptually related
to topic models like latent Dirichlet allocation [3]. Variants of topic models are regularly applied
to very large text corpora, with a large body of research on how to effectively infer these models.
That research was the source of the stochastic gradient MCMC algorithm that we used, which allows
inference from even very large transaction databases.

The simulation study showed that when data were actually generated from the model, we were
able to recover the true generating values. It further showed that the posterior bias and variance
decreased as more data were made available, an improvement that came without any additional
computational cost due to the stochastic gradient.

In the case study we applied the model and inference to real sales transaction data from a local
bakery. The daily purchase rate in the data was clearly nonhomogeneous, with several peak periods.
These data clearly demonstrated the importance of modeling nonhomogeneous arrival rates in retail
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settings. In a prediction task that required accurate modeling of both the arrival rate and the choice
model, we showed that the model was able to make accurate predictions and significantly outperform
the baseline approach.

Finally, we showed how the model can be used to estimate lost sales due to stockouts. The
posterior provided evidence of substantial lost cookie sales. The model and inference procedure we
have developed provide a new level of power and flexibility that will aid decision makers in using
transaction data to make smarter decisions.
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Here we provide the derivation of the log-likelihood function. The proof will use two results
which themselves are straightforward to show.

Proposition 1.
p(tj | tj−1,ησ) = exp(−Λ(tj−1, tj | ησ))λ(tj | ησ).

Proposition 2.

Λ(0, T | ησ) =

n∑
i=0

Λ̃σ,li (0, T ).
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of Theorem 1. We consider the complete arrivals t̃
σ,l

, which include both the observed arrivals tσ,l

as well as the unobserved arrivals that left as no-purchase, which we here denote tσ,l0 =
{
tσ,l0,j

}mσ,l0

j=1
.

We define an indicator Ĩσ,lj equal to i if the customer at time t̃σ,lj purchased item i, or 0 if this
customer left as no-purchase. For store σ and time period l,

p(tσ,l0 ,tσ,l | ησ,θσ,φ, τ ,N , T )

= P
(

no arrivals in
(
t̃σ,l
m̃σ,l

, T
]
| t̃σ,l,ησ

)
×
m̃σ,l∏
j=1

p(t̃σ,lj | t̃
σ,l
<j ,η

σ)p(Ĩσ,lj | t̃
σ,l
<j ,θ

σ,φ, τ ,N)

= exp(−Λ(t̃m̃σ,l , T | ησ))

× λ(t̃σ,l1 | ησ) exp(−Λ(0, t̃σ,l1 | ησ))πĨσ,l1
(t̃σ,l1 )

×
m̃σ,l∏
j=2

λ(t̃σ,lj | η
σ) exp(−Λ(t̃σ,lj−1, t̃

σ,l
j | η

σ))πĨσ,lj
(t̃σ,lj )

= exp(−Λ(0, T | ησ))

n∏
i=0

∏
j:Ĩσ,lj =i

λ(t̃σ,lj | η
σ)πi(t̃

σ,l
j )

= exp(−Λ(0, T | ησ))

n∏
i=0

mσ,li∏
j=1

λ(tσ,li,j | η
σ)πi(t

σ,l
i,j )

=

exp(−Λ̃σ,l0 (0, T ))

mσ,l0∏
j=1

λ̃σ,l0 (tσ,l0,j)


×

 n∏
i=1

exp(−Λ̃σ,li (0, T ))

mσ,li∏
j=1

λ̃σ,li (tσ,li,j )

 .

We have then that

p(tσ,l | ησ,θσ,φ, τ ,N , T )

=

∫
p(tσ,l0 , tσ,l | ησ,θσ,φ, τ ,N , T )dtσ,l0

=

∫ exp(−Λ̃σ,l0 (0, T ))

mσ,l0∏
j=1

λ̃σ,l0 (tσ,l0,j)dt
σ,l
0


×

 n∏
i=1

exp(−Λ̃σ,li (0, T ))

mσ,li∏
j=1

λ̃σ,li (tσ,li,j )


=

n∏
i=1

exp(−Λ̃σ,li (0, T ))

mσ,li∏
j=1

λ̃σ,li (tσ,li,j ),

since the last integrand is exactly the joint density for the arrivals from an NHPP with rate λ̃σ,l0 (t),
and so integrates to 1.
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Given the model parameters, data are generated independently for each σ and l, thus

log p(t |η,θ,φ, τ ,N , T )

=

S∑
σ=1

Lσ∑
l=1

log p(tσ,l | ησ,θσ,φ, τ ,N , T )

=

S∑
σ=1

Lσ∑
l=1

n∑
i=1

mσ,li∑
j=1

log
(
λ̃σ,li (tσ,li,j )

)
− Λ̃σ,li (0, T )

 .

We now show how Λ̃σ,li (0, T ) can be expressed analytically in terms of Λ(0, T | ησ). For con-
venience, in this section we suppress in the notation the dependence of the stock on past arrivals
and initial stock levels and will write s(t | tσ,l,Nσ,l) as simply s(t). We consider each of the time

intervals where the stock s(t) is constant. Let the sequence of times qσ,l1 , . . . , qσ,l
Qσ,l

demarcate the

intervals of constant stock. That is, [0, T ] =
⋃Qσ,l−1
r=1 [qσ,lr , qσ,lr+1] and s(t) is constant for t ∈ [qσ,lr , qσ,lr+1)

for r = 1, . . . , Qσ,l − 1. Then,

Λ̃σ,li (0, T )

=

∫ T

0

λ̃σ,li (t)dt

=

∫ T

0

λ(t | ησ)

K∑
k=1

θσkfi(s(t),φ
k, τk)dt

=

Qσ,l−1∑
r=1

(∫ qσ,lr+1

qσ,lr

λ(t | ησ)

K∑
k=1

θσkfi(s(q
σ,l
r ),φk, τk)dt

)

=

Qσ,l−1∑
r=1

(
K∑
k=1

θσkfi(s(q
σ,l
r ),φk, τk)

)
Λ(qσ,lr , qσ,lr+1 | ησ).

With this formula, the likelihood function can be computed for any parameterization λ(t | ησ)
desired so long as it is integrable.
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