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Abstract

Most social networking services support multiple types of relationships between users, such as 

getting connected, sending messages, and consuming feed updates. These users and relationships 

can be naturally represented as a dynamic multi-view network, which is a set of weighted graphs 

with shared common nodes but having their own respective edges. Different network views, 

representing structural relationship and interaction types, could have very distinctive properties 

individually and these properties may change due to interplay across views. Therefore, it is of 

interest to study how multiple views interact and affect network dynamics and, in addition, explore 

possible applications to social networking.

In this paper, we propose approaches to capture and analyze multi-view network dynamics from 

various aspects. Through our proposed descriptors, we observe the synergy and cannibalization 

between different user groups and network views from LinkedIn dataset. We then develop models 

that consider the synergy and cannibalization per new relationship, and show the outperforming 

predictive capability of our models compared to baseline models. Finally, the proposed models 

allow us to understand the interplay among different views where they dynamically change over 

time.
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1. INTRODUCTION

One of the most important challenges in large social networks is to help users create and 

curate vibrant and healthy networks of their own [31, 32]. Such vibrancy entails much more 

than mere structural relationships – interactions along the relationships are critical, as are the 

distribution of the interactions over time and relationships [5, 16]. In order to build such 

vibrant networks, which can be expressed in terms of interactions, relationships and their 

dynamics, we not only need to understand how networks evolve structurally, but also how 

interactions on such networks evolve with those structural changes.
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In this paper, we focus our attention on studying this dynamic evolution of a multi-view 

network [2, 12, 13, 30]. The nodes represent users, while the multiple views fall into two 

categories: structural association among users such as connection and follow relation – the 

relationship views – as well as various interaction types along the relationships including 

message exchange, content broadcast and consumption – the interaction views. In particular, 

we believe that the values among linked users are primarily achieved by the interactions 

along the relationships, not just by the formation of the relationships. Given this hypothesis, 

by paying more attention to the study of interaction views, we aspire to help users obtain the 

value from their relationships.

To address the objective of building a good social network for a user, we identify a few key 

building blocks, which are expressive and flexible enough to (i) describe the current state 

and the dynamics of the user’s ego network, and (ii) define what a good network is for the 

user. The first block represents the ties between two groups of users – the ability to specify 

or shape the dynamics of relationships and interactions between the two groups. The second 

block indicates the association between different views – how the multiple views interplay 

with one another. While these two blocks can be used to express both the current state and 

dynamics of a network, they can also be used to define instances of a “good” network. An 

instance of such a “good” network can be one where interactions grow monotonically with 

relationships.

For each of these two types of blocks, we study two primary evolution effects in more detail 

– synergy and cannibalization [7, 17, 23] – among users within a certain view as well as 

across network views. We focus on synergy and cannibalization specifically since these are 

the two ends of the spectrum defining the pairwise relationships for each of the two building 

blocks.

Synergy is defined as the mutually enhancing effect that two entities have on each other. For 

example, consider a user x who is currently connected to y1 and y2, and exchanges messages 

with them 10 times a week. By adding a new connection z, x now exchanges messages 15 

times a week with y1 and y2 (her old connections) and 5 times a week with z (her new 

connection). In this case, x’s old connections and new connection are said to have synergy in 

the message exchange view. Similarly, synergy across views is defined to be the positive 

influence that two views have on one another – i.e., the presence of either is likely to 

enhance the value of the other.

Cannibalization is the very antithesis to synergy – when two entities negatively impact one 

another. For instance, in the previous example, if by connecting to z, x’s messaging rate fell 

to 5 times a week with y1 and y2, then the connection z would have cannibalized the 

messaging view between x and her old connections. Cannibalization across views refers to 

the situation where the presence of either is likely to decrease the value of the other.

In addition to the pairwise relationships of synergy and cannibalization, we also study how a 

view evolves given available observations in other views. We call this cross-view interplay.

When describing a current network state, or reasoning about potential network evolution and 

try to drive it in a certain direction, understanding the two blocks – user groups and views – 
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are very important. For instance, in the context of network growth, a user’s existing 

connections and a group of potential new connections may be of the most interest. A good 

network might involve balancing the interactions in these two groups, i.e., aiming to 

minimize cannibalization among them, or better still create synergy.

Similarly, a good network might concern not only the number of connections (a relationship 

view) but also the number of messages being exchanged (an interaction view). The different 

interaction views are important pillars of a user’s overall experience with the network, and 

the ability to shape the composition among views is critical to our objective to create the 

aforementioned “vibrancy”.

In addition to identifying these building blocks to express network state and dynamics with 

the purpose of building a good network, we also propose a unified formulation to model 

synergy, cannibalization and cross-view dynamics.

Through detailed data analysis on a large professional network, we demonstrate that synergy 

and cannibalization exist among user groups as well as among views. We also show that our 

unified model can be used to predict user activity level and achieve large performance gain 

compared to baseline methods.

The rest of the paper is structured as follows. We cover some related work in Section 2, 

before introducing some notation and definitions in Section 3. In the next section, we 

propose techniques for make observation on multi-view dynamic networks and describe a 

unified model for network dynamics. Section 5 discusses how to use the formulation to 

recommend connections to a user, to help him build a good network. Detailed experiments 

and analysis results are presented in Section 6, before we summarize our contribution and 

identify future directions.

2. RELATEDWORK

Multi-view networks have been extensively studied in recent years. This is greatly motivated 

by the fact that many real-world networks are naturally comprised of different types of 

relations or views. However, most of the existing study on multi-view networks aim at 

exploiting the multiplicity of views to boost performance in traditional tasks, such as 

clustering [19, 20, 24, 36], classification [33, 35], and dense subgraph mining [15, 28, 34]. 

The above methods leverage the redundancy offered by multiple views, but do not directly 

discuss the influence that views can exert onto each other.

Another line of research on multi-view networks involves modeling cross-view 

interrelations. In this area, [11, 27] proposed to discover such interrelations by analyzing 

correlation between link existence and network statistics. Other related work focuses on 

jointly modeling multiple network views using latent space models [12, 13, 30]. By 

projecting all network views onto a low-dimensional latent space, this approach is able to 

capture associations across different views. However, so far such associations ignore 

network dynamics, an important aspect of our work. The study in [2] introduces a problem 

setting related to our work, where the correlation in a multi-view network is modeled at 

different time-stamps and relationships (multiple views). In that study, the network at 
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different time-stamps is treated just as a network with different additional views. As a result, 

network view’s contribution to network dynamics is not directly analyzed.

On the other hand, the social network evolution has been studied mostly in the single-view 

setting. In accordance with the principle of homophile [26] from psychology, which 

postulates that people tend to interact if they have similar characteristics, [22] suggests the 

topology of a single-view network is correlated to the dynamics of the network. In this study, 

the use of pairwise topological measures alone is shown to outperform more direct measures 

in predicting future network interactions. In addition, [18] further shows that topological 

information such as triadic and focal closure correlates with the change of network strength. 

The relationship between network dynamics and more involved structures in a single-view 

dynamic network has also been studied in a real world social dataset [29]. The evolution of 

single-view social networks with consideration of their structural balance has also been 

discussed [9, 25]. A large amount of research has been conducted for decades on modeling 

the generation of single-view network [1, 3, 4, 8]. The work presented in this paper goes 

beyond these through the incorporation of multi-views.

3. MULTI-VIEW NETWORK

To better understand the state of one’s social network, we need to holistically view one’s 

relationships in the network as well as the interactions he or she has over such relationships. 

For this holistic study, here we represent all of these relationships and interactions by the 

form of Multi-view Network where each view indicates one kind of relationship network or 

interaction network.

3.1 Definition

First, we formally define the multi-view network as follows. For a given set U of nodes, a 

multi-view network with a set  of views is defined as a set of weighted graphs on the 

shared node set U. Each view υ ∈  corresponds to a weighted graph (U, E(υ)), where E(υ) 

consists of edge (x, y) and the corresponding strength λ(υ) (x, y) for x, y ∈ U.

While both relationships and interactions can be represented by weighted graphs, these two 

kinds have different characteristics in practice. While relationship networks grow as people 

come to know other people, interaction networks can change more dynamically. For 

example, in the online social network site like LinkedIn or Facebook, connection or friend 

network keeps growing as you know more people, but the frequency of message exchanges 

may vary a lot over time. Furthermore, interactions typically happen around certain 

relationships – news articles and photos are usually shared and consumed between 

connected users.

Given these characteristics, for practical purposes we classify network views into 

relationship views and interaction views. We denote the set of relationship views by ℛ and 

denote the set of interaction views by ℐ. By definition, ℛ ∩ ℐ = ∅ and ℛ ∪ ℐ = . For 

simplicity, we limit our focus to |ℛ| = 1 throughout the paper. That is, we consider the case 

that there exists only one view of the relationship networks, which represents some 

systemically defined relationships such as LinkedIn connection network or Twitter follow 

Shi et al. Page 4

KDD. Author manuscript; available in PMC 2017 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



network. In the rest of the paper, we refer two users linked in this unique relationship view 

by related users.

3.2 Dynamics of Network View

In general, for a given pair of users x and y, an edge strength λ(υ) (x, y) in each view υ can 

change. Such change can be induced by dynamism over time such as special events and 

seasonal effects. Besides, the edge strength λ(υ) (x, y) can also change along with the growth 

of x’s relationship network. For example, if a user forms a connection with the other users 

who frequently post great articles, this user may spend less time reading the articles posted 

by users who were connected before. Hence, the change in the relationship view potentially 

affects all the interaction views. To set the notation, let  be the edge strength 
between x and y1 in network view υ, at the time Nx are all users related to x. We further 

define

as the aggregated edge strength between user x and a set S of users in network view υ.

In general, we address that  for S ⊂ Nx and M ⊄ Nx. Therefore, 

the study of the synergy and cannibalization between new (M) and existing related users (S) 

in each interaction view is crucial for understanding the multi-vi ew network holistically. 

Once we have insights on this phenomenon, such insights can be used for recommending 

appropriate users with consideration of potential influence on each interaction view.

3.3 Cross-View Interplay

In addition to synergy and cannibalization, the edge strength in each view of network may 

change over time, affecting and being affected by the other views. For example, connecting 

to someone who posts a lot of good articles on the site can lead to more connections because 

of increased engagement. On the other hand, posting a lot of articles may limit the time to 

spend on reading the other people’s articles. Understanding this cross-view interplay will 

also provide values similarly to the cross-user interrelation. Hence, in the following section 

we will not only introduce descriptors enabling observation on synergy and cannibalization, 

but will also model these descriptors in the dynamic networks to obtain the insights about 

the cross-view interplay.

4. MODELING MULTI-VIEW NETWORK DYNAMICS

We aim to study the dynamics of each network view and the interplay between different 

views, along with the growth of relationship network in the multi-view scenario. We develop 

a simple but effective model to fulfill these objectives that allows a scalable inference 

algorithm.

1For notational convenience, we describe only the symmetric case.
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4.1 Descriptors

First, we introduce two descriptors to track the dynamics of a network view when a new 

relationship is established. In our model, we consider the time granularity of the epochs 

when individual relationships are formed. As notations in discussing dynamics of one 

particular user, we always refer this user as the source user. When this particular source user 
forms a new relationship, we refer the user on the other end of the relationship as a 

destination user.

The first descriptor is total evolutionary rate

which is the ratio of the total strength of source user x, in network view υ, before and after 

forming the new relationship with z. For example, x exchanges 14 messages a week with 

existing connections. After getting connected to z, x now exchanges 17 messages a week 

with z and existing connections altogether. Then .

The second descriptor is restricted evolutionary rate

which is the ratio of the aggregated edge strength of x restricted on its existing neighbors, in 

network view υ, before and after new relationship establishment. For example, x exchanges 

14 messages a week with existing connections. After getting connected to z, x now 

exchanges only 12 messages a week with existing connections. Then .

Table 1 provides an illustrative example for these two descriptors. The leftmost figure 

represents the state of edge strength on this view. In the middle figure, user x forms 

relationship with a new user z, and the edge strength changes as well. These two figures 

display that , and . Therefore, 

we can compute  and .

4.2 Observation on Strength

As represented in both total evolutionary rate (r) and restricted evolutionary rate (w), the key 

measurement to compute the descriptors is the aggregated edge strength (Λ). In practice, a 

typical method of measuring the edge strength (λ) is to track the events related to a certain 

network view and measure its frequency. For instance, a network view representing message 

communication between a pair of users defines its edge strength λ(msg) based on the number 

of messages sent in a period of time. To obtain more robust measurements, aggregation on a 
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long period of time such as a month is preferred as opposed to short granularity such as one 

hour.

However, as depicted in Figure 1, new relationships are formed with multiple users, , 

over the aggregation period T. As a result, we cannot always directly measure aggregated 

edge strength (Λ) every time a new relationship forms. That is, it is not trivial to extract 

descriptors, r and w. As its alternative, we measure the ratio of the aggregated edge strength 

of x restricted on the existing relationships before and after a period of time, called 

accumulated restricted evolutionary rate over time period T

(1)

Similarly, we define accumulated total evolutionary rate over time period T as

4.3 Discovering Synergy and Cannibalization

Once we have these two accumulated descriptors for each network view, we can obtain 

insight about synergy and cannibalization among user groups and across network views. For 

instance, we are able to quantify the interrelation between two user groups – existing related 

users and new related users – on that network view. If , then cannibalization 
happens, i.e., the new relationship establishment draws the reduction of the aggregated edge 

strength restricted on existing related users (Λ(υ)(x, Nx)). If , then synergy is 

introduced by the new relationships, i.e., Λ(υ)(x, Nx) is boosted by the new relationships. 

Furthermore, by studying the correlation of the descriptors in different network views we 

can represent and observe the cross-view interrelation. We present detailed approaches to 

identifying synergy and cannibalization within real-world cases in Section 6.2.

4.4 Model for Evolutionary Rate

With aforementioned typical situation on the aggregated edge strength (Λ), we develop the 

models on the restricted evolutionary rate (w) and total evolutionary rate (r), with the 

following objectives. First, we aim to infer the evolutionary rates through learning the 

models. Second, the models should be able to capture the cross-view interplay. Third, the 

models must be scalable so as to be applied to large multi-view social networks. In this 

section, we present the detailed model for w.

Considering the three objectives, we assume the log-normality in the generative process of 

w. We will validate this assumption later in Section 6.3. Furthermore, we decompose each w 
into two parts: the systemic part determined by certain covariates from each network view 
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and the stochastic part represented by the log-normal randomness. Hence, we formulate the 

restricted evolutionary rate as follows:

(2)

where g is a function of network view υ, source user x and destination user z, which takes 

information from the ego networks of x and of z in multi-view . For simplicity, we assume 

a constant variance  for given view υ. In this formulation, the cross-view interplay along 

with each new relationship can be represented by parameters in the multi-view function g. 

We can then obtain insights about the cross-view interplay via learning the parameters of the 

function g.

However, the scalable inference algorithm highly depends on the form of the multi-view 

function g. To tackle this, we further simplify the model by making it additive with respect 

to each view υ̃ ∈  as well as each covariate  on each view υ̃:

(3)

where each covariate  in network view υ̃ depends on x and z. This additive formulation 

permits a scalable model inference, as described in the next section.

4.5 Inference on Evolutionary Rate

As previously mentioned, in many practical situations, our observations are limited to 

accumulated evolutionary rate, such as . Thus, we need to build the bridge from 

accumulated evolutionary rate to the more fine-grained evolutionary rate.

To decompose  into finer granularity, we denote  where zk 

is the k-th new related user, and denote Mk ≔ {z1, z2, …, zk}, . While 

aggregated edge strength itself changes as new relationship forms, for any short time period, 

we assume  and subsequently |Mk| ≪ |Nx|, and we do not distinguish the 

difference in the evolution of edge strength introduced by one relationship among similar 

conditions

from which we derive, given T is short compared to user lifetime,
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(4)

Assuming  are independent, we substitute Formula (2) into (4) as follows:

(5)

As each  is observed, the likelihood is derived after applying (3) as

To infer function  determined by certain covariates, we adopt maximum likelihood 

estimation (MLE) [14], which is equivalent to minimizing the weighted sum of squared 

residuals in our case

(6)

4.6 Functions of Covariates

For the form of each covariate function , we use the piecewise linear function on each 

covariate ϕ(υ̃). This formulation maintains the scalability of the inference algorithm, while 

supporting flexibility in the covariate function beyond monotonic relationship.

We partition the range of each covariate ϕ(υ̃) into multiple segments, denote  the lower 

boundary of the i-th segment, and let the i-th feature be

(7)

where 𝟙[·] is the indicator function. For each covariate ϕ(υ̃), combining features derived from 

all segments yields a feature mapping ϕ(υ̃) ↦ f(υ̃, ϕ) (ϕ(υ̃)). Further concatenate these 

mappings for all covariates in all network views, we get a feature function (x, z) ↦ f (x, z). 

With this feature function on covariates derived across all network views, gυ(x, z) can be 
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expressed by cυ · f (x, z), where cυ is the coefficient vector to learn. By substituting this 

representation of g into the Optimization Problem (6), we have

(8)

which turns out to be a linear least squares problem and has closed-form solution [6], and we 

call this Restricted Evolutionary Model (REM). Similarly for , we derive the Total 

Evolutionary Model (TEM)

(9)

Lastly, note that the inference algorithm is scalable due to the aforementioned existence of 

closed-form solutions.

5. APPLICATION IN RELATIONSHIP RECOMMENDATION

Social networking services help users to expand their networks by recommending potential 

relationships. One way of making such recommendations is to recommend relationships that 

are likely to eventually be established (henceforth referred as Strategy I). For example, 

LinkedIn may recommend a professional the user might wish to reach out to, while Twitter 

may recommend an account the user would want to follow.

However, the establishment of relationships may not necessarily be the end goal of the 

recommendation. For example, a desirable outcome from forming a new relationship can be 

that this relationship leads to more interactions and engagement. Should this be the case, the 

users may benefit more from their relationships and the service providers may receive more 

commercial value by having higher user activity level. Hence, another way of relationship 

recommendation is to recommend relationships that are likely to result in most interaction 

(henceforth referred as Strategy II).

Note that any type of interaction can be a network view over all users. We can therefore 

model the dynamics of edge strength for concerned types with our proposed multi-view 

network framework.

Formally, for given concerned interaction type υ and user x, we need to predict 

, the aggregated edge strength after x forms a new relationship with the 

user z. With the Restricted Evolutionary Model, the prediction can be realized by
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(10)

where  is derived from the log-normal model in Formula (2), and  is 

the predicted edge strength between x and z, which can be obtained by regressing on 

features of user pair (x, z). Besides, with the Total Evolutionary Model, the prediction would 

become

(11)

If pxz stands for the probability a user x establishes the relationship with a user z given z is 

recommended to x, then according to Strategy I the user recommended foremost to x would 

be the z that maximizes pxz. However, in case of Strategy II, where interaction is further 

considered, the unconnected user recommended foremost to x would be the z that 

maximizes the predicted aggregated edge strength given z is recommended to x, i.e.,

where  is computed by Equation (10) or Equation (11).

Note that in Equation (10), we choose not to directly approximate  with the 

observed , and instead calibrate the latter with , because aggregated 

edge strength restricted on the existing relationships Nx change as new relationships form, 

which is confirmed by experiment results reported in section 6.2.

6. EXPERIMENTS

In this section, we analyze the LinkedIn multi-view network using the proposed methods 

and validate the methods through prediction tasks. This section mainly consists of three 

parts. First, using the two accumulated descriptors, R andW, we observe some cases of 

synergy and cannibalization between existing and new related users as well as among 

network views. Second, we quantitatively verify our proposed models through prediction 

tasks, which also serve as the most important piece of brick in the application discussed in 

Section 5. Last, given the verified model, we provide more case study on the cross-view 

interplay at the temporal granularity that each individual relationship is created.
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6.1 Data Description and Data Processing

LinkedIn, the largest professional online social network site, has over 430 million users and 

provides lots of interactions among users. Here we use the LinkedIn data by focusing on 

three phases (T = 28 days) of observations: Phase 0 (Aug. 4–31), Phase 1 (Sep. 1–28), and 

Phase 2 (Sep. 29–Oct. 26) in 2014. Phase 1 and 2 are used for most analysis on the dynamics 

of multi-view network, while Phase 0 data is mainly used to compute some covariates (e.g., 
number of new connections formed between Phase 0 and 1) for the proposed model. We 

then sample over 1 million users who had at least one interaction in either Phase 1 or 2 and 

made at least one connection in Phase 2.

Network views—Multiple types of interactions exist among users in LinkedIn network, 

which compose a multi-view network. In particular, connections in LinkedIn are naturally 

regarded as its relationship view. We mainly consider the following network views, which 

include one relationship view and three interaction views:

• connection (conn): binary representation of undirected relationships.

• profile_view (p_v): the action of viewing the profile of another user.

• feed (feed): the action of consuming posts or updates from another user via the 

newsfeed.

• active_connection (act_conn): connection along which transient interactions have 

occurred in a given time period, where transient interactions (trans_interactions) 

include message exchange, profile view, feed consumption, endorsement, etc.

Note that connection and active_connection are binary whereas profile_view and feed are 

weighted interactions. The edge strength-between a pair of users is defined over the number 

of the corresponding interaction events in each Phase (i.e., for 28 days). For given user x, 

any user connected to x is also referred as a connection of x when context is clear. Since the 

problem is modeled assuming symmetry in edge strength for now, we do not distinguish 

between viewing others and being viewed by others. The same treatment is also applied to 

other interaction types if applicable.

Covariates and logarithmic transformation—In Section 4.4~4.6, we introduced the 

way of modeling descriptors with covariates (λ(υ̃)) and of making piece-wise linear 

functions on each covariate. Here we show the covariates we use for our analysis and 

experiments.

• Node strength (Συ): the sum of edge strength associated with a certain user in 

each network view υ.

• Incremental node strength (Δυ): the change of node strength between Phase 0 

and 1 per network view υ.

Also, as these covariates are used to model the evolutionary rate,  and , 

when each new connection z is made for a given user x, we use both source user x’s 

covariates and destination user z’s covariates. Therefore, the total number of covariates is 4 

per view.
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To embed these covariates as features in the proposed model as described in Equation (7), 

we use 5 segments per covariate based on quantile values. However, as degree distributions 

in relationships and interactions are typically heavy-tailed [10, 21], we use the transformed 

values of covariates based on the following transformation function:

Overall, we have 4 network views, 4 covariates per network view, and 5 segments per 

covariate, that is, we use 80 features for the proposed model.

6.2 Synergy and Cannibalization

In this section, we first study the synergy and cannibalization between two user groups – 

one’s existing connections and her new connections – before analyzing such relationship 

across the network views. Such analyses are made possible by the proposed accumulated 

descriptors, total evolutionary rate (R) and restricted evolutionary rate (W).

Geometric mean reveals interrelation across user groups—In each of the 

aforementioned network views, we report the geometric mean (GM[·]) of  and of 

, over the time period between Phase 1 and 2 in Table 2, which can be directly 

computed from aggregated edge strength (Λ) specified in Section 6.1. The reported 

quantities are all significantly different from 1 (with p < 0.0001). Note that 

. Therefore, we do not discuss the view of connection here. 

Geometric mean is a natural choice as each descriptor indicates the ratio metric.

For the purpose of comparison, we also study users, denoted by x0, who were active in Phase 

1 but did not form any new connection during Phase 2. In this case, 

 due to the invariance in the connections. Thus, we only show 

 in the rightmost column of Table 2.

Each network view grows—For all network views, geometric mean of the accumulated 

total evolutionary rate, , is greater than 1. This implies that the sampled users 

generally become more active after 28 days in the sense that they are involved in more 

interactions. In contrast, from the rightmost column, the user who did not establish new 

connections actually shrank their interactions. This agrees with our intuition that when users 

expand their connection network, they are more engaged in the social networking site, i.e., 
having more interactions. In order to engage users in more interactions, we should 

encourage them to expanse their connection network.

Cannibalization in profile_view—The accumulated restricted evolutionary rate (W) in 

profile_view tends to be smaller than 1, as shown in Table 2, . 

In other words, while a user tends to have more overall profile views, those happening with 
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existing connections actually drop as time elapses. One can think that the shrinkage might 

have happened spontaneously. However, spontaneous shrinkage alone can not fully explain 

such shrinkage. In fact, compared with the rightmost column, this shrinkage (GM[W] = 

0.626) is lower than 0.830 – the case when there is no interference by new connections. The 

lower GM[W] for users who added new connections indeed demonstrates cannibalization 

exists between existing connections and new connections with respect to profile_view. We 

understand this phenomenon in the way that users spend more time exploring the profiles of 

the newly connected users by sacrificing time spent on the existing connections.

Synergy in feed—Unlike profile_view, the accumulated restricted evolutionary rate (W) 

in feed tends to be greater than 1, as in Table 2, . That is, not 

only overall feed interaction has increased, feed interaction with existing connections has 

grown as well. Note that while W for feed tends to be greater than 1, it is still not as great as 

accumulated total evolutionary rate (GM[R] = 1.029), which indicates both new and existing 

connections do contribute to aggregated edge strength (Λ). We therefore deduce that the feed 
interaction with existing connections and that with new connections behave synergetically.

This could be explained by the following scenario. If new connections of a user bring in 

interesting articles into the feed, then the given user could gain increased satisfaction at the 

feed experience and become more engaged. As a result, this user might be willing to put 

more time and energy on LinkedIn feed interaction. In this case, existing connections and 

new connections would not fight for the user’s time and energy. Instead, the growth of one 

would boost the growth of the other by making feed interaction a fun thing for this user.

Further evidence from correlation of descriptors—We further consolidate the 

synergy and cannibalization observation over profile_view and feed by studying cross-view 

correlation. Specifically, we compute the Pearson’s correlation coefficients of  and 

 in log scale (abbreviated as log R(υ) and log W(υ)). These Pearson’s correlation 

coefficients can be found in Figure 2a. We can observe that, log R(feed) and log W(feed) are 

highly correlated (0.96). That is, the higher growth a user enjoys in overall feed interaction, 

the more likely this user would also have higher growth in feed interaction restricted over 

existing connections. This high correlation is in line with our previous conclusion that the 

feed interactions grow synergetically for existing connections and new connections.

As for profile_view, the correlation between log R(p_υ) and log W(p_υ) is much less 

significant (0.59). Together with previous observation on , we conclude 

that cannibalization exists between existing connections and new connections in terms of 

profile_view.

Synergy among network views—We thus far study the synergy and cannibalization 

between existing connections and new connections. To examine the synergistic or 

cannibalizing dynamics across the network views, we pose a holistic observation using 

proposed descriptors in different views by calculating their correlation coefficients. In Figure 
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2a, we present Pearson’s correlation coefficients in log scale between each pair of log 

R(conn), log R(p_υ), log R(feed), log R(act_conn), log W(p_υ) and log W(feed).

Synergy exists between connection and profile_view due to their observed positively 

correlated total evolutionary rate (R). In other words, users who are frequently adding new 

connections are also likely to view increasingly more profiles, and vice versa. This can be 

explained by, on the one hand, users who frequently add new connections will have a 

increasingly bigger pool of profiles available to view. On the other hand, by viewing 

profiles, users can explore other professionally relevant users mentioned in these profiles. 

These professionally relevant users can then be potential new connections.

To the contrary, such cross-view synergistic relationships do not exist between connection 
and feed, which corresponds to an insignificant correlation coefficient (0.03). We surmise 

the reason could be, while new connections always have profiles available for viewing, not 

all new connections would generate interesting feeds. As a result, merely adding many new 

connections does not necessarily guarantee further engagement in feed interaction. The other 

way round, unlike profiles, feeds seldom mention users and hence cannot serve as a 

significant source of potential connections. Together with previous observation that cross-

user synergy exists between new connections and existing connections with respect to feed 
interaction, we conclude that just making connections may not necessarily be beneficial for 

feed engagement but getting connected to users who can provide quality feeds would further 

boost the feed engagement.

6.3 Model Validation

In the previous section, we observed the instances of synergy and cannibalization between 

user groups as well as among network views. Toward the fine granularity of cross-view 

interplay in the dynamic setting, we proposed models that allow us to infer such interplay 

incurred by one single new connection. In this section, we verify the fundamental log-

normal assumption and quantitatively validate our models through a prediction task, which 

serve as the ground for the application in Section 5.

Log-normality validation—The log-normality assumption made in Formula (2) plays a 

key role in building the scalable inference algorithm. However, as the performance on the 

model inference is sensitive to how close our assumption is to the real-world data, here we 

validate our log-normality assumption through Q-Q plot.

For empirical distribution of , we sample LinkedIn users who are active in both 

Phase 1 and 2 as well as make exactly 1 new connection during Phase 2. For these users, 

their restricted evolutionary rate,  in the network view profile_view, are derivable 

from data since only one instead of multiple new connections are made during the given 

period. We draw the Q-Q plot of observed  against theoretical log-normal 

distribution in Figure 2b. The linear trend in this plot validates that the stochastic part of our 

model follows log-normal distribution. Therefore, our choice of log-normal model is 

reasonable.
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Predicting aggregated edge strength—Aggregated edge strength (Λ) can practically 

represent the engagement level of a user on the given interaction. Through prediction task on 

Λ, we can achieve two things. First, we envision the predictive capability of the proposed 

model, and thereby validate the foundation of the recommendation product brought up in 

Section 5. Second, by quantitatively validating the proposed models through this prediction 

task, we support the arguments about the qualitative analysis in the following section.

In the prediction task, we aim to predict two quantities for each test user in Phase 2: 

aggregated edge strength over all connections, , and aggregated edge 

strength over existing connections, . These two quantities are both important 

because knowing both metrics will allow us to design the product balancing between 

existing and new connections. All information available for these prediction tasks is from 

Phase 0 and 1. We randomly partition users into two parts, 70% as training set and 30% as 

test set.

Here we present the two strategies: REM and TEM, as introduced in Section 4.6. The REM 

solves the Optimization Problem (8) and learn the coefficients of the features by regressing 

on . On the other hand, the TEM solves the Optimization Problem (9) and learn 

the coefficients of the features by regressing on . Hence, given the state of each 

user x and new connection z’s state on each network view, REM and TEM infer 

and , respectively, both of which depict fine grained dynamics whenever one single 

new connection forms.

Once we obtain the inferred restricted evolutionary rate , REM makes prediction 

through Equation (1) and (4) by

where  is the set of all new connections x made during the observation 

period, and  is the predicted edge strength between x and z, which is obtained 

by regressing on features of user x and user z.

Similarly, TEM makes prediction by
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We compare the prediction results obtained by these two models with the following 

baselines:

• Uniform Strength Model: Assume uniform and stationary edge strength for all 

connections of one user. This case aggregated edge strength is proportional to the 

number of connections:

• Interference-Free Model: Assume no interference between existing connections 

and new connections. The edge strength on existing connections, does not 

change due to the introduction of new connections:

• Constant Evolutionary Model: For each new connection, assume constant 

calibration rate α of aggregated edge strength on existing connections, i.e., 
constant restricted evolutionary rate (w), and constant growth rate β of total 

aggregated edge strength, i.e., constant total evolutionary rate (r):

• Proportional Evolutionary Model: Assume calibration of aggregated edge 

strength over existing connections – i.e., restricted evolutionary rate (w) – to be 

proportional to the rate of change in connections with an exponential of γ 
representing resistance, and growth of aggregated edge strength over total 
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connections – i.e., total evolutionary rate (r) – to be proportional to the rate of 

change in connections with an exponential of δ modeling resistance:

The parameters α, β, γ and δ in the above baselines are inferred by minimizing squared 

residual of log-likelihood. For notational convenience, we henceforth use Λ(Nx) and 

 as shorten forms for  and , respectively.

Root mean square relative error (RMSRE) is used as evaluation metric for the prediction 

task: , where (Ŷ1, Ŷ2, …, Ŷn) represents the vector of n 
predictions, and (Y1, Y2, …, Yn) is the vector of ground truth values.

We believe that the relative error normalized by the existing quantities is more important 

than the absolute error. For instance, suppose that there are two users where one user has 100 

interactions per month while the other has only 2. If we predict the former user’s interaction 

by 95 but the latter user’s interaction by 7, then we may think that the former prediction is 

acceptable while the latter prediction looks like over estimation. Hence, here we measure the 

relative error metric and use it to compare each model’s predictive performance.

We perform the prediction experiments for both profile_view and feed, and report the results 

in Table 3. Overall, both Total Evolutionary Model and Restricted Evolutionary Model 

outperform the baseline models in every network view on each of two aggregated edge 

strength quantities.

Between the baseline Interference-Free Model and the Restricted Evolutionary Model 

(REM), the only difference is whether or not we model the interference between existing 

connections and new connections. Modeling such interference leads to huge improvement in 

the predictive capability for the proposed REM, as seen in Table 3. This results bolster that 

synergy and cannibalization exist between existing connections and new connections, as 

previously observed.

The Constant Evolutionary Model and the Proportional Evolutionary Model consider 

interference between existing connections and new connections by either directly modeling 

calibration on existing connections or controlling overall aggregated edge strength. 

However, proposed models still outperform these baselines by a large margin. This makes 

sense because, as we have observed, the aggregated edge strength (Λ) over a group of users 
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in one view interrelates with other user group as well as other views. The proposed models 

have taken such interrelation into account.

6.4 Cross-View Interplay in Dynamic Networks per New Connection Formation

In this section, we aim at studying how the dynamics of one network view would correlate 

with not only itself but also other network views at earlier timestamps. The proposed model, 

which was verified in the previous prediction task, enables us to study how the dynamics of 

one view is affected by other views whenever a new connection is established.

By solving Optimization Problem (8) and (9), such cross-view interplay can be depicted by 

piece-wise linear functions mapping each covariate to concerned evolutionary descriptor, 

such as r(conn), r(feed), w(p_υ), etc. We use the Restricted Evolutionary Model (8) to examine 

the relationship between each covariate and restricted evolutionary rate (w), while using the 

Total Evolutionary Model (9) to see the correlation between each covariate and total 

evolutionary rate (r).

With definition in Formula (7), the piece-wise linear relationship would be given by 

.

Given a concerned evolutionary descriptor, we would like to know how each covariate is 

correlated to the given descriptor and how crucial the correlation is. For the former problem, 

we plot out the learned piece-wise linear function and observe the trend. For the latter, we 

use total variation of the piece-wise linear function to quantify the significance of the 

covariate to this descriptor, and the total variation of a function h defined on an interval [a, 
b] ⊆ ℝ is the quantity

where P = {ϕ0, …, ϕnP } is any partition of [a, b], and  is the set of all such partitions.

Out of consideration for company confidentiality, we cannot explicitly present the 

relationships with plots and exact values. However, we can alternatively show how each 

covariate is ranked by corresponding total variation in a descending order as well as the 

general trends of these covariates (e.g., ↗: monotonically increasing; ↘: monotonically 

decreasing; ↗↘: first increasing then decreasing, etc.). Additionally, we can also present the 

p-value which reflects the confidence of the inferred piece-wise linear relationship. Besides, 

in order to prevent calculated total variation from affected to much by outliers, we compute 

total variation on the interval where 95% of records are populated. In practice, we exclude 

the upper fifth percentile for covariates with only positive value, and exclude both lower and 

upper 2.5% for other covariates. We report the importance of covariates by the rank 

determined by total variation and the significance derived from p-value as well as their trend 

in Table 4. For each descriptors, we always report covariates ranked top 3 with additional 2 

of interests.
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Based on the trained piece-wise linear functions, we make the following observations.

Non-monotonic relationship exists—Thanks to the flexibility of piece-wise linear 

covariate functions, we can discover non-monotonic relationship between descriptor and 

covariates.

The most prominent non-monotonic relationship is that between total evolutionary rate for 

profile_view (r(p_υ)), and source user’s node strength in connection (x-Σconn) as well as in 

active_connection (x-Σact_conn). This relationship is descending at first when x-Σconn or x-

Σact_conn is small, and then turns upward.

This is actually expected because x-Σconn is just the number of connections the source user 

has, and at the time users just sign up on LinkedIn, they could fervidly view the profiles of 

the newly added connections who are also their friends in life. Note that the more 

connections one has, the bigger pool of profiles one can view. However, after these users 

have got connected with most of their friends in life who use LinkedIn, this new connection 

formation boom will stop. As a result, profile views would no longer be fast growing. 

However, if a user falls into the upper segments in terms of connection numbers, he or she 

might be a recruiter, who would be willing to connect a wide range of people without 

confining to people he or she knows in life. For these users, they may keep actively viewing 

more profiles. The same scenario can also be applied to explaining this non-monotonicity in 

x-Σact_conn.

Different correlation to total evolutionary rate and restricted evolutionary rate
—For the same network view profile_view, two descriptors, total evolutionary rate (r) and 

restricted evolutionary rate (w), can respond differently to one covariate.

The first case is about the covariate on the number of new connections the source user makes 

between Phase 0 and 1 (x-Δconn), which is very critical – monotonically decreasing, and 

ranked 3rd – to restricted evolutionary rate in profile_view (w(p_υ)), but less crucial to total 

evolutionary rate in profile_view (r(p_υ)). As a collateral evidence, for r(p_υ), the total 

variation of x-Σconn (ranked 3rd) is nearly three times as great as that of x-Δconn, while for 

w(p_υ), x-Δconn exceeds x-Σconn and stands among the top 3.

This makes sense because x-Δconn is identical to the number of new connection established 

over the previous observation period. The more connections a user makes, the more energy 

viewing profile might be spared to new connections. According to observation we have 

made about cannibalization in profile_view in section 6.2, this means the time viewing 

profiles of existing connections would be limited. As a result, the higher x-Δconn is, the 

smaller w(p_υ) would likely to be.

The second case is about the covariate on destination user’s profile view frequency (z-

Σp_υ), which is more crucial to r(p_υ) (monotonically increasing) than to w(p_υ). This is 

exactly in line with the definition of restricted evolutionary rate (w). When connecting to 

user with high node strength in profile_view, such as a recruiter, who is like to contribute 

more profile view interactions, the overall profile view interactions would tend to increase, 

leading to a bigger r(p_υ). However, once restricted on existing users, the interaction 
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involving the new connection will no longer contribute to the aggregated edge strength (Λ), 

meaning less significance to w(p_υ).

Expanding your network by connecting to social hubs—The relationship between 

destination user’s node strength in connection (z-Σconn) and total evolutionary rate for 

connection (r(conn)) is monotonically increasing.

Users with high node strength in connection, i.e., number of connections, are essentially 

social hubs. Recall that LinkedIn is a professional networking site. Hence, connecting to 

social hubs could expose users to more professionally relevant potential connections, their 

own connection network may grow as well due to the increasing visibility to more relevant 

yet unconnected users.

The diminishing returns are observed in all views—For all six descriptors, their 

relationship with source user’s node strength from the same view (x-Συ) is always 

monotonically decreasing. This basically implies the more interactions or relationship a user 

has, the harder it is to further increase the same kind of interaction or relationship, i.e., the 

law of diminishing returns holds for all views.

7. CONCLUSION AND FUTURE WORK

In this paper, we proposed to study the dynamics of large multi-view social networks. We 

developed scalable model that can capture synergy, cannibalization and cross-view interplay 

in fine temporal granularity, which, as application, also sets the stage for a new strategy in 

guiding network expansion. On a large social network dataset, the proposed model 

uncovered cannibalization within profile view interactions and synergy within feed update 

interactions. Synergy was also observed across network views, specifically between 

connection and profile views. Aggregated edge strength prediction experiments verified the 

superior performance of the proposed model relative to various baselines. The proposed 

model effectively revealed a wide variety of relationships correlated to network growth at a 

fine temporal scale. Such relationships could potentially be non-monotonic.

Directions for future work include the use of triadic and pairwise covariates to derive 

additional features. It would also be of interest to extend the experiments to other datasets 

and explore other forms of interactions. On the dynamics of multi-view social network, 

another direction could be to model and uncover non-additive joint effects from multiple 

covariates.
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Figure 1. 
For each user x, we use all his related users to indicate corresponding timestamp. We do not 

distinguish timestamps between the instances of two consecutive relationship 

establishments.
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Figure 2. 
(a) Pearson’s correlation coefficients between pairs of accumulated descriptors in log scale. 

(b) Q-Q plot on the logarithmic value of restricted evolutionary rate (w) for profile_view. 

The strong linear trend demonstrates that the logarithmic value of this descriptor is along 

with normal distribution.
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Table 1

A toy example on the change of edge strength being depicted by two descriptors, total evolutionary rate (r) and 

restricted evolutionary rate (w), as new relationship forms.

Before After Descriptors
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Table 2

Geometric means of accumulated descriptors of all users (x) and of users who form no new connections (x0).

Network view (υ)

profile_view 1.028 0.626 0.830

feed 1.029 1.015 0.989

trans_interactions 1.023 0.672 0.818
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Table 3

Root-mean-square relative error (RMSRE) of prediction methods in predicting aggregated edge strength in 

profile_view and feed.

Prediction method

Λ (Nx)

profile_view feed profile_view feed

Uniform Strength 3.38 1.83 1.33 1.25

Interference-Free 3.38 1.83 1.44 1.16

Constant Evolutionary 3.18 1.90 1.28 1.29

Proportional Evolutionary 3.19 1.89 1.39 1.27

Total Evolutionary 2.58 1.37 0.75 0.81

Restricted Evolutionary 1.22 1.26 0.67 0.86
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