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ABSTRACT
Network proximity is at the heart of a large class of net-
work analytics and information retrieval techniques, includ-
ing node/ edge rankings, network alignment, and random-
walk based proximity queries, among many others. Owing
to its importance, significant effort has been devoted to ac-
celerating iterative processes underlying network proximity
computations. These techniques rely on numerical proper-
ties of power iterations, as well as structural properties of
the networks to reduce the runtime of iterative algorithms.

In this paper, we present an alternate approach to ac-
celeration of network proximity queries using Chebyshev
polynomials. We show that our approach, called Chopper,
yields asymptotically faster convergence in theory, and sig-
nificantly reduced convergence times in practice. We also
show that other existing acceleration techniques can be used
in conjunction withChopper to further reduce runtime. Us-
ing a number of large real-world networks, and top-k proxim-
ity queries as the benchmark problem, we show that Chop-
per outperforms existing methods for wide ranges of pa-
rameter values. Chopper is implemented in Matlab and is
freely available at http://compbio.case.edu/chopper/.

Keywords
Network proximity, Random walk with restarts, Chebyshev
polynomials

1. INTRODUCTION
Proximity measures on networks are at the core of a large

number of analytics and information retrieval techniques.
In information retrieval, nodes/ edges are ranked based on
their random walk distance from other nodes [18,25]. In net-
work alignment, high scoring node alignments (node pairs –
one drawn from each network) can be identified by their ran-
dom walk distance from other high scoring alignments in the
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product graph of the two input networks [10]. In disease-
gene prioritization, genes are ranked according to their net-
work proximity to genes that are previously identified as
associated with clinically similar diseases [13].

The general setting for network proximity queries is as
follows: For a given query node, we are interested in com-
puting a score for each node that indicates the proximity of
that node to the query node. For example, shortest path
queries ask for the minimum number of hops (or minimum
total weight of edges) connecting two nodes. Random walk
based proximity measures, on the other hand, simulate ran-
dom walks that make frequent restarts on the query node,
and estimate proximity to the query node in terms of the
probability of being at each node at steady state. In top-k
proximity queries, the k closest nodes to a specified source
node are returned.

In many applications, random walk based proximity is
preferred over shortest path distance because of its robust-
ness to the inherent noise in the network. This noise may
be due to inaccuracies in modeling (not all interactions in
the underlying system are modeled in the graph) or noise
in data (missing or spurious edges). In such cases, random
walk based proximity measures provide a more robust esti-
mate of network proximity.

Random walk based proximity measures have been used
in a wide variety of applications, including web search [14],
link prediction [6, 11], clustering [2], disease-gene prioritiza-
tion [7, 13], and integration of disparate “omic” data in sys-
tems biology [9]. Some of the well known random walk based
proximity measures include discounted hitting time [17], per-
sonalized hitting probability [24], network propagation [20],
diffusion state distance [5], and random walk with restarts
(RWR) [1,19].

Motivated by widespread use of random-walk proximity,
significant effort has been devoted to reducing operation
counts associated with computation of proximity. These ef-
forts exploit numerical and structural characteristics of the
problem to reduce operation counts. For instance, in the
context of the top-k proximity queries, during the iterative
procedure, if it can be guaranteed that some nodes cannot
enter into the top-k set any further, the associated compu-
tations can be eliminated [23]. Likewise, owing to the struc-
ture of the network, the proximity of each node to the query
node can be bounded systematically by considering nodes in
a breadth-first-like order [21]. These techniques have been
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Table 1: Notation used in the description of methods.

Symbols Meaning

G = (V,E,w) Undirected weighted graph G with node set V, edge set E, and weight function w
P Stochastic matrix derived from the adjacency matrix of G
α Restart probability (damping factor)
W Transpose of Stochastic matrix adjusted by the damping factor as W = (1− α)P
q The query node
x∗
q Vector of proximities to q computed by random walk with restarts

rq Restart vector used to compute proximity to q

y(t)
q Linear combination of xq

(t) used for Chebyshev iterations

e(t) Residual between y(t)
q and x∗

q

πt Polynomial of order t
Pt Family of polynomials of order t
Tt Chebyshev polynomial of first kind
pt Polynomial that minimizes the norm of residual for iterative computation of random walk with restart
μ Variable that characterizes the convergence rate of Chebyshev acceleration
ρ(W) Largest eigenvalue of matrix W
σ(W) All eigenvalues of matrix W

demonstrated to yield significant improvement in runtime in
the context of diverse applications.

In this paper, we take an alternate approach, based on
accelerating the convergence of the underlying iterative pro-
cess. To achieve this, we adapt a result from classical linear
algebra, based on Chebyshev polynomials. Traditional itera-
tive procedures use the result from one iteration to compute
the next iterate. The iterations are terminated when con-
vergence is detected, i.e., when the proximity vector does
not change significantly between two iterations. We can,
however, define the next iterate as a linear combination of
a predefined set of previous iterates. The coefficients of this
linear combination can be optimally computed using Cheby-
shev polynomials. We demonstrate this process and show
that the resulting the iterate converges much faster than
the iterate in the original formulation. This results in sig-
nificant speed-up in the computation of random walk based
proximity scores. Furthermore, we show that our method
can be combined with existing methods to further improve
the processing of top-k proximity queries.

We provide detailed theoretical justification for our re-
sults, and experimentally demonstrate the superior perfor-
mance of our method on a number of real-world benchmark
problems. Specifically, we show that (i) our method yields
significant performance improvements over state of the art
methods (reducing the number of iterations required to com-
pute network proximity to all nodes many-fold on networks
with hundreds of thousands of edges); and (ii) for top-K
proximity queries, our method yields two-fold improvement
in runtime on graphs with millions of nodes and edges. The
asymptotic acceleration of our scheme implies that this per-
formance improvement increases as problem sizes are scaled
up.

The rest of the paper is organized as follows: in the next
section, we provide an overview of the literature on efficient
computation of network proximity. In Section 3, we describe
the terminology, establish background on random walk prox-
imity and top-k proximity queries, and describe our method.
In Section 4, we provide detailed experimental evaluation of
our method. We draw conclusions and summarize avenues
for further research in Section 5.

2. RELATED WORK
Network proximity querying has received significant at-

tention over the past years. In particular, top-k proximity
queries in networks involve identifying the k nodes that are
in close (random walk) proximity to a query node (or a set
of query nodes). One of the basic approaches to computing
random walk based proximity is the power iteration [16]. An
alternate approach to power iterations is offline computation
through LU decomposition and storing the factors for prox-
imity estimation during online query processng [8, 19, 22].
However, LU decomposition is expensive and usually not
feasible for very large networks. Furthermore, since the un-
derlying networks are often dynamic, even small perturba-
tions to the network require repetition of this costly proce-
dure.

Recently, a number of approaches have been proposed
to scale top-k proximity queries to very large and sparse
networks. These methods take advantage of the numerical
properties of the iterative methods to bound the proximity
of nodes in the network in early iterations, thereby stopping
the computation early when only k contenders are left [23].
Other methods utilize the structure of the network to per-
form a local search around the query node(s), based on the
notion that nodes with high random-walk based proximity
to the query node are also in close neighborhood of the query
node in terms of the number of hops [3,4,12,24]. However,
most of these local search based methods are approximate,
in the sense that they do not provide guarantees for identi-
fying the exact set of of k nodes that are most proximate to
the query node. Recently, two local search based methods,
FLoS [21] and Ripple [23] have been shown to enable exact
computation of top-k proximity queries without compromis-
ing efficiency.

In this paper, we also focus on exact computation of net-
work proximity. Our method is fundamentally different from
existing approaches in that it exploits the numerical proper-
ties of the iterative procedure to speed-up its computation.
This method can be used to efficiently compute the random
walk with restarts based proximity of all nodes in the net-
work to a given node, or to speed up the processing of top-k
proximity queries.
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3. METHODS
In this section, we first define random walk with restarts

(RWR) and and top-K network proximity queries based on
RWR. We then present insights from numerical linear al-
gebra to motivate the use of polynomials for accelerating
convergence of iterative procedures used to compute RWR
based proximity. Subsequently, we show that Chebyshev
polynomials can be used to optimize the convergence of it-
erative computation of RWR, and bound the relative error in
each iteration. Finally, we discuss how these bounds can be
used to efficiently process top-K network proximity queries.
We conclude this section by showing that our method gen-
eralizes to any proximity measure that can be iteratively
computed, for which error in each iteration is bounded.

3.1 RWR-Based Proximity
Let G = (V,E,w) represent a given network, directed

or undirected, where V denotes the set of nodes, E denotes
the set of edges, and w : E → R denotes the weight function
assigned to the edges. Given a node q ∈ V, the random
walk with restart based proximity to q is defined as follows:

x∗
q = (1− α)Px∗

q + αrq. (1)

Here, P denotes the column-normalized stochastic matrix
derived from the adjacency matrix of G by dividing each en-
try by the corresponding column sum, rq denotes the restart
vector that contains a 1 at its qth entry and a 0 in all other
entries, and 0 < α < 1 denotes the damping factor. This
parameter determines the probability of restarting at q in a
random walk of the network. Defined this way, xq(u) rep-
resents the probability of being at node u at a random step
of a sufficiently long random walk that starts at q and ei-
ther moves to an adjacent node (with probability 1− α) or
restarts at node q (with probability α) at each step.

While we focus on random walk with restarts here for clar-
ity of discussion, the method described in this paper directly
applies to any proximity measure that can be written in the
form x = Ax + c, where A is a matrix with largest eigen-
value ρ(A) < 1 and c is constant vector. Such proximity
measures include penalized hitting probability [24], effective
importance [4], and discounted hitting time [17].

In practice, xq is computed iteratively, by setting xq
(0) =

0 and performing the following computation:

xq
(t+1) = (1− α)Pxq

(t) + αrq (2)

in the tth iteration. This iterative procedure terminates
when ||xq

(t+1)−xq
(t)||2 is below a prescribed threshold, im-

plying convergence. As we discuss below, the residual in this
iterative procedure is proportional to the tth power of the
largest eigenvalue of the matrix (1− α)P. Therefore the it-
erative procedure is guaranteed to converge since the largest
eigenvalue of P is equal to 1 and (1 − α) < 1. Throughout
this paper, we refer to this procedure as the standard power
iteration.

3.2 Top-k Proximity Queries
Given undirected network G = (V, E, w), a query node

q ∈ V, and a positive number k, the top-k proximity query
for RWR proximity returns the k nodes in V correspond-
ing to the largest values in x∗

q [23]. Note that the largest
values correspond to the highest proximity (smallest RWR
distance). The current state of the art in efficiently pro-
cessing top-k proximity queries is based on two approaches.

The first approach uses the bound on the residual in the
iterative computation of x∗

q to eliminate nodes whose prox-
imity values cannot exceed that of the notes that are already
among the k. This process terminates when all but the top
k nodes are eliminated. This approach improves efficiency
by reducing the number of iterations, and is implemented
by the Squeeze algorithm developed by Zhang et al. [23].
The second approach uses network structure, in combination
with the residual, to bound the proximity of each node to
the query node and avoids computing proximity scores for
nodes that are sufficiently distant from the query node in
terms of the number of hops. This approach improves effi-
ciency by further reducing the number iterations, as well as
the number of operations in each iteration. It was proposed
by Wu et al. [21] and is also implemented in the Ripple
algorithm developed by Zhang et al. [23].

All of these methods are based on the standard power it-
erations, i.e., the computation of the current vector iterate
only uses its value from the previous iteration. Here, we
show that the convergence rate of the iterative procedure
can be significantly improved by utilizing the information
gathered from all previous iterations. Specifically, we use
Chebyshev polynomials to aggregate the values of xq across
iterations, obtaining a better approximation to the steady
state vector in each iteration. This results in faster conver-
gence, which in turn also yields more effective pruning of
nodes. The number of iterations required for such a pro-
cedure to process top-k proximity queries is consequently
much lower.

3.3 The Chopper Algorithm
The core idea behind the proposedChebyshevPolynomial

Based Efficient Proximity Retrieval (Chopper) algorithm

is to utilize the previously computed xq
(t) vectors in Equa-

tion (2) to obtain a better approximation to x∗
q in the next

iteration. To describe this idea, for a given query node q,
we first define W = (1−α)P and rewrite the (2) as follows:

xq
(t+1) = Wxq

(t) + αrq. (3)

Observe that, sinceP is a stochastic matrix, we have |ρ(W)| ≤
(1 − α) < 1, hence the iterative procedure described by (3)
converges to the solution of (1), x∗

q .
The idea behind Chebyshev acceleration is as follows: For

the tth iteration of the iterative procedure, and a given series
γt(m) for 0 ≤ m ≤ t, we define vector y(t)

q :

y(t)
q =

t∑
m=0

γt(m)xq
(m) (4)

Our objective is to choose a sequence γt such that the se-
quence y(t)

q converges to x∗
q faster than xq

(t), and as rapidly

as possible. Observe that, if we use y(t)
q to approximate x∗

q ,
the residual in the tth iteration is given by:

e(t) = y(t)
q − x∗

q . (5)

Thus, for each t, the chosen γt should minimize ||e(t)||2,
subject to the constraint:

∑t
m=0 γt(m) = 1. This constraint

ensures that the linear combination also converges to x∗
q .

We can reformulate the residual at the tth iteration as a
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Algorithm 1: The Chopper Algorithm

Input : G = (V,E), q, k, α, and rq
Output: a set R ⊆ V that contains the top-K most

proximate nodes to q

1 Construct matrix W

2 R ← V, t ← 1,y(0)
q ← 0

3 y(1)
q ← Axq

(0) + αrq

4 κ ← 2− α

α
, μ ←

√
κ− 1√
κ+ 1

5 ζ0 ← 1, ζ1 ← 1

1− α
6 while |R| > k do

7 ζt+1 ← 2

1− α
ζt − ζt−1

8 y(t+1)
q ← 2ζt

(1− α)ζt+1

(
Wy(t)

q + αrq
)
− ζt−1

ζt+1
y(t−1)
q

9 τ ←k−th largest score in y(t+1)
q (u);

10 foreach u ∈ R do

11 if (y(t+1)
q (u) + 4μt) < τ then

12 Remove u from R;
13 end

14 end

15 end

polynomial as follows:

e(t) = y(t)
q − x∗

q

=

t∑
m=0

γt(m)(xq
(m) − x∗

q)

=

t∑
m=0

γt(m)Wm(xq
(0) − x∗

q)

= pt(W)e(0).

(6)

This observation suggests that, if we can find a sequence
of polynomials pt such that ‖pt(W)‖ 	 ‖Wt‖, the error
in each iteration is much smaller than that in the standard
power iteration.

3.3.1 Chebyshev Polynomials
It is an established result in linear algebra that for any

matrix W and polynomial pt, we can write σ(pt(W)) =
pt(σ(W)), where σ(.) denotes the set of eigenvalues of the

matrix [15]. Therefore, as described by Saad [15], ||e(t)|| can
be minimized by solving the following minimization prob-
lem:

min
pt∈Pt,pt(1)=1

max
λ∈σ(W)

|pt(λ)| (7)

Here, Pt denotes the family of all polynomials of order t.
Clearly, computing the eigenvalues of W would defeat our

purpose, since this computation is at least as expensive as
solving (1). However, since P is column normalized, we
know that ‖W‖ ≤ ρ(W) ≤ (1 − α) [23]. Hence, we can
relax (7), and rewrite it as:

min
pt∈Pt,pt(λ)=1

F (pt) (8)

where

F (pt) = max
λ∈[−1+α,1−α]

|pt(λ)|. (9)

As stated in the following theorem, the solution to min-
imax optimization problems of the form of (9) is provided
by the well known Chebyshev polynomial of first kind, given
by the following recurrence: T0(z) = 1, T1(z) = z, Tt+1(z) =
2zTt(z)− Tt−1(z).

Theorem 1. Let [a, b] ⊆ R be non-empty interval and ξ
be a real number such that a < b < ξ. Then,

argmin
pt∈Pt,pt(ξ)=1

F (pt) =
Tt(1 + 2

λ− b

b− a
)

Tt(1 + 2
ξ − b

b− a
)

= πt(λ)

and

F (πt) =
1

Tt(1 + 2
ξ − a

b− a
)
= 2

μt

1 + μ2t

where κ =
ξ − a

ξ − b
and μ =

√
κ− 1√
κ+ 1

.

Detailed proof of this theorem can be found in [16].
We can immediately apply this result to our problem.

From the construction of W, we know that ρ(W) = 1 − α,
where ρ(.) denotes the largest eigenvalue of a matrix. Then,
letting a = α− 1, b = 1− α, and ξ = 1, we have

pt(λ) =
Tt(

λ

1− α
)

Tt(
1

1− α
)

(10)

Therefore, using Theorem 1 and (6), we obtain

||e(t)||
||e(0)|| ≤ ||pt(W)|| ≤ ρ(pt(W)) = max

λ∈σ(W)
|pt(λ)|

≤ max
λ∈[a,b]

|pt(λ)| = 2
μt

1 + μ2t
≤ 2μt

(11)

where κ =
2− α

α
and

μ =

√
κ− 1√
κ+ 1

=
2(1− α)

2 +
√
2α− α2

< (1− α). (12)

This result demonstrates the power of Chebyshev polyno-
mials in accelerating the computation of random walk with
restart based proximity scores. Specifically, for standard
power iteration, we have

‖x(t)
q − x∗

q‖
‖x(0)

q − x∗
q‖

≤ ‖Wt‖ ≤ ρt = (1− α)t. (13)

In contrast, if we use Chebyshev acceleration, we have

‖y(t)
q − x∗

q‖
‖y(0)

q − x∗
q‖

≤ ‖pt(W)‖ = ρ(pt(W)) ≤ 2μt. (14)

Since μ < 1 − α, the sequence y
(t)
q converges much faster

than x
(t)
q to x∗

q .

3.3.2 Implementation of Chebyshev Acceleration
We now describe an efficient technique for computing y(t)

q =∑t
m=0 γmxq

(m). The definition of y(t)
q suggests that its com-

putation requires the addition of t vectors in the tth itera-
tion, and that we need to store all xq

(t) vectors computed
throughout the power iteration. However, exploiting the
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Table 2: Network data sets used in the experiments

Network Enron E-mail Brightkite Gowalla Skitter

Number of Nodes 36,692 58,228 196,591 1,696,415
Number of Edges 183,831 214,078 950,327 11,095,298

Average Node Degree 10.02 7.35 9.67 13.08

observation that Chebyshev polynomials are defined as a re-
currence, we can show that y(t+1)

q can be computed from

y(t−1)
q and y(t)

q .

For this purpose, let ζt = Tt(
1

1− α
). Observing that

ζt+1 =
2

1− α
ζt − ζt−1 and by the definition of pt, it sat-

isfies three-term recurrence. Therefore, we can write

ζt+1pt+1(W) =
2

(1− α)
ζtWpt(W)− ζt−1pt−1(W). (15)

Finally, we can use above last equation and basic algebraic
manipulations to obtain [16]:

y(t+1)
q = x∗

q + e(t+1)

= x∗
q + pt+1(W)e(0)

= x∗
q +

2ζt
(1− α)ζt+1

Wpt(W)e(0)

− ζt−1

ζt+1
pt−1(W)e(0)

=
2ζt

(1− α)ζt+1

(
Wy(t)

q + αrq
)
− ζt−1

ζt+1
y(t−1)
q .

(16)

In other words, we can compute y(t+1)
q from y(t)

q and y(t−1)
q ,

without requiring storage of the previous iterates.

3.3.3 Processing Top-k Proximity Queries
While Chebyshev acceleration can be used to efficiently

compute the proximity of all nodes in V to a query node q,
it often suffices to identify the k nodes that are most prox-
imate to q, where k 	 |V|. As discussed above, existing
algorithms for efficiently processing top-k proximity queries
use the convergence properties of power iteration and the
topology of the network to quickly identify nodes that are
not sufficiently proximate to k, so that such nodes can be
pruned out [21, 23]. In Squeeze, Zhang et al. [23] use the
bound on the norm of the residual for standard power iter-
ation ((1 − α)t) to obtain a bound on the proximity score
of a node. Subsequently, for “in-bound proximity queries”
(i.e., the proximity is quantified in terms of the probability
of being at the query node for a random walk that makes
frequent restarts at each other node), they show that the
proximity score of each node forms a monotonically non-
decreasing sequence throughout the power iterations. They
utilize this monotonicity, along with the bound on the norm
of the residual, to identify the nodes that can be pruned.

When Chebyshev acceleration is used to compute prox-
imity scores, y(t)

q (u) does not produce a monotonically non-
decreasing sequence for all nodes u ∈ V. However, as we
show by the following theorem, this is not required, and
that the error bound provided by Chebyshev acceleration
can indeed be used to quickly identify nodes that are not
sufficiently proximate to q. More importantly, this theorem
shows that the idea is not limited to “in-bound proximity
queries”; rather, it can be applied to any proximity measure

that can be computed via power iterations, for which the
error in each iteration can be bounded.

Theorem 2. Let Sq denote the set of the k nodes in V
that are most proximate to q. Let ut be the node such that
y(t)
q (ut) is the kth largest value in y(t)

q . Then, for every node

u in y(t)
q (u), we must have y(t)

q (u) ≥ y(t)
q (ut)− 4μt.

Proof. There are two possible cases to consider. In the
first case, y(t)

q (u) is among the top k values in y(t)
q . In this

case, it is clear that y(t)
q (u) ≥ y(t)

q (ut)− 4μt, since y(t)
q (u) ≥

y(t)
q (ut) by definition of ut.

In the second case, y(t)
q (u) is not among the top k values in

y(t)
q . In this case, there must be at least one node v ∈ V such

that y(t)
q (v) is among the top k values in y(t)

q , but v /∈ Sq

(at least one node must drop out of the top-k list to make

space for u in the top-k list). Now, using ‖y(t)
q −x∗

q‖ ≤ 2μt,
we obtain the following inequalities:

y(t)
q (v) ≤ x∗

q(v) + 2μt ⇒ x∗
q(v) ≥ y(t)

q (v)− 2μt

and

y(t)
q (u) ≥ x∗

q(u)− 2μt ⇒ x∗
q(u) ≤ y(t)

q (u) + 2μt

Since u ∈ Sk but v /∈ Sk, we have x∗
q(u) ≥ x∗

q(v), so it
follows that

y(t)
q (u) + 2μt ≥ x∗

q(u) ≥ x∗
q(v) ≥ y(t)

q (v)− 2μt.

Since v is in the top-k at the tth iteration, we have y(t)
q (v) ≥

y(t)
q (ut), so we obtain

y(t)
q (u) + 2μt ≥ y(t)

q (ut)− 2μt ⇒ y(t)
q (u) ≥ y(t)

q (ut)− 4μt.

Using this result, at any step of the Chebyshev iteration,
we can identify nodes that are not sufficiently proximate to
q to make it to the top-k list. Specifically, at iteration t, if
y(t)
q (u) < y(t)

q (ut)−4μt for a node u, then u can san safely be
pruned out from the list of candidates for the top-k list. The
resulting algorithm for computing the top-k most proximate
nodes to q is given in Algorithm 1.

Since μ < (1 − α), we have 4μt 	 (1 − α)t for the val-
ues of t that are of interest (i.e., the number of iterations
is large enough for very large networks). Therefore, Cheby-
shev acceleration provides a more efficient method for pro-
cessing top-K queries than algorithms that utilize the con-
vergence characteristics of standard power iteration, e.g.,
Squeeze [23]. Furthermore, as we demonstrate in the next
section via comprehensive experimental results, although
Chopper does not directly utilize information on network
structures to speed up computation, it also outperforms al-
gorithms that utilize the network structure.
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Figure 1: Comparison of the convergence rates of standard power iteration (RWR) and Chebyshev acceleration
on the Enron Email dataset. The plots show the norm of the difference between successive values of the proximity vector
as function of the number of iterations, for damping factor α = 0.01, 0.05, 0.1, 0.9.

4. EXPERIMENTAL RESULTS
In this section, we systematically evaluate the performance

of the proposed algorithm, Chopper, in accelerating the
computation of network proximity scores and processing of
top-k proximity queries. As shown in the previous section,
the proposed algorithm is“exact” in the sense that it is guar-
anteed to correctly identify the set K nodes that are most
proximate to the query node. For this reason, we here focus
on computational cost (measured in terms of number of it-
erations and runtime) here, and compare Chopper against
other exact algorithms.

We start our discussion by describing the datasets and
the experimental setup. We then assess the performance of
Chebyshev acceleration in the computation of random walk
based proximity globally, i.e., for all nodes in the network.
Subsequently, we compare the performance of Chopper in
processing top-k proximity queries with two state-of-the-art
algorithms, Squeeze and Ripple [23], using both number
of iterations and runtime as performance criteria.

4.1 Datasets and Experimental Setup
We use four real-world network datasets from the Stan-

ford Network Analysis Project1 for our experiments. Details
of these four networks are given on Table 2. The Enron E-

mail dataset represents the undirected e-mail communica-
tion network at Enron. Brightkite and Gowalla datasets
represent the Brightkite and Gowalla location based online
social networks. The Skitter dataset represents the undi-
rected internet topology graph, constructed from traceroutes
run daily in 2005. These datasets are selected as represen-
tative samples for network sizes in terms of the number of
nodes and of edges. Furthermore, network proximity queries
are meaningful on all of these networks.

For Squeeze and Ripple algorithms, we use the Java im-
plementation provided by Zhang et al [23]. We implement
Chopper in both Matlab and Java, and the results reported
for runtime reflect that of the implementation in Java. We
assess the performance of the algorithms for different values

1https://snap.stanford.edu/data/
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Figure 2: The number of iterations required for Chopper, Squeeze, and Ripple in computing the top-k nodes
that are most proximate to a query node, as a function of k ranging from 4 to 4096. In these experiments,
damping factor α = 0.2 and the reported numbers are the averages across 1000 randomly chosen query nodes.

of damping factor (restart probability), as well as the pa-
rameter k for top-k proximity queries. For all experiments
involving top-k proximity queries, we randomly select 1000
query nodes and report the average of the performance fig-
ures for these 1000 queries. In all experiments, rq is set to
the identity vector for node q. All of the experiments are
performed on a Dell PowerEdge T5100 server with two 2.4
GHz Intel Xeon E5530 processors and 32 GB of memory.

4.2 Global Network Proximity Computation
We assess the performance of Chebyshev polynomials in

accelerating the computation of network proximity scores
for all nodes in the network. The purpose of this analysis
is to quantify the improvement using Chebyshev accelera-
tion beyond specific applications such as top-k proximity
queries, and to demonstrate its applicability to a broader
range of problems that involve iterative computation of net-
work proximity scores.

Figure 1 shows the convergence rate for Chebyshev accel-
eration in comparison to the standard power iteration for
computing random walk based restart based proximity. We

limit this analysis to the Enron Email dataset, since global
proximity computation is expensive (and often unnecessary)
for larger networks. In the figure, for the restart probability
α ranging from 0.01 to 0.9, we report the norm of the differ-
ence between two successive values of the proximity vector
at each iteration. In all cases, the threshold for convergence
is set to 10−10. As seen in the figure, Chebyshev accelera-
tion significantly reduces the number of iterations required
to compute RWR based proximity.

It is important to note that Chebyshev acceleration pro-
vides larger performance gains for smaller values of α. This
observation is consistent with the theoretical analysis of the
convergence of Chebyshev acceleration, reflected in the re-
lationship between the variable μ, which characterizes the
convergence of Chebyshev acceleration and the parameter
α. Intuitively, for large values of α, the random walk is
largely localized – thus acceleration of convergence is of lim-
ited benefit. However, queries that involve large α are of
limited practical interest, since they do not fully utilize the
information provided by the network (e.g., for α > 0.5 the
random walk is expected to move away from the query node
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Figure 3: The number of iterations required for Chopper, Squeeze, and Ripple in computing the top-k = 20
nodes as a function of α ranging from 0.05 to 0.9. In these experiments, top-k = 20 and the reported numbers are the
averages across 1000 randomly chosen query nodes for each α .

by two hops on the average). For this reason, larger perfor-
mance gains for smaller values of α are valuable for practical
applications.

4.3 Top-k Proximity Queries
In top-k proximity queries, the two major parameters are

the damping factor, α, and the number of nodes to be iden-
tified as most proximate to the query node, k. We evaluate
the performance of Chopper as a function of both parame-
ters, using four large real-world networks.

The performance of Chopper in comparison to two algo-
rithms, Squeeze and Ripple as a function of k is shown
in Figure 2. For this analysis, we fix the damping factor
α to 0.2. Recall that Squeeze uses the convergence char-
acteristics of the standard power iteration to terminate the
power iterations early. Ripple, on the other hand, also uses
network structure to bound the proximity of the nodes in
the network to the query node, thereby reducing the num-
ber of iterations further. As seen in the figure, Chopper
consistently outperforms both algorithms for all four net-
works. The favorable performance of Chopper as compared
to Ripple, is particularly notable, since Ripple also uses

information on network structure to speed up computation,
whereas Chopper only utilizes the convergence properties
of the numerical scheme.

The only case in which Ripple requires fewer iterations
than Chopper is for k = 4 on the Skitter data set. When
the network diameter is large and the query results are local-
ized around the seed node, utilization of network structure
is particularly beneficial. However, even for such networks,
if the query seeks a larger number of proximate nodes (≥ 8),
leveraging network structure does not reduce the number of
iterations for standard power iterations as much as Cheby-
shev acceleration does.

We also compare the performance ofChopper with Squeeze
and Ripple as a function of the damping factor α. For this
purpose, we fix k = 20 and process top-k proximity queries
for 1000 randomly chosen queries for α ranging from 0.01 to
0.9. The results of this analysis for all four data sets is shown
in the Figure 3. In each panel, close-ups of the curves for
Chopper and Ripple are also shown for smaller values of
α to facilitate better comparison. As seen in the figure, the
number of iterations required for processing top-k queries is
similar for all algorithms on all datasets for α ≥ 0.5. This
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Figure 4: The runtime in seconds required by Chopper, Squeeze, and Ripple to process queries for top k nodes
that are most proximate to a query node, as a function of k ranging from 4 to 4096. In these experiments, the
damping factor α is set to 0.2 and the reported numbers are the averages across 1000 randomly chosen query nodes.

is expected since the search is “easier”, i.e., it is limited to
nodes that are very close to the query node in this case.
However, for smaller (and more relevant) values of α, Chop-
per consistently achieves best performance.

4.4 Runtime Performance
Finally, we compare the performance of Chopper with

Squeeze and Ripple in terms of running time as a function
of k. For this purpose, we fix α = 0.2 and process top-k
proximity queries for 1000 randomly chosen queries for k
ranging from 4 to 4096. The results of this analysis for all
four data sets is shown in the Figure 4. As expected, the
time required to process top-k queries increases with k for
all methods. However, across all datasets and for all values
of α, Chopper consistently delivers best performance, with
two-fold improvement over the runtime of Ripple for the
largest dataset Skitter.

5. CONCLUSION
In this paper, we propose an alternate approach to accel-

erating network proximity queries. The proposed approach

is based on Chebyshev polynomials, an established accel-
eration technique for iterative methods in numerical lin-
ear algebra. We show that our approach, Chopper, pro-
duces asymptotically faster convergence in theory, and sig-
nificantly decreased convergence times in practice on real-
world problems. Using a number of large real-world net-
works, and top-k proximity queries as the benchmark prob-
lem, we show that Chopper outperforms existing methods
significantly for wide ranges of parameter values. When in-
tegrated with existing methods, Chopper yields further im-
provement in performance over state of the art techniques.

Future efforts in this direction would include incorpora-
tion of other acceleration techniques into our framework,
extensions to other iterative proximity measures, and their
applications. Furthermore, while Chopper is an “exact” al-
gorithm and our experiments focus on runtime performance
for this reason, there also exist approximate methods that
compromise accuracy for improved runtime. Comparison of
Chopper against such approximate algorithms can provide
further insights into the trade-off between runtime and ac-
curacy in the context of network proximity problems.

1523



Acknowledgements
We would like to thank Xiang Zhang, Yubao Wu, and Sean
Maxwell for many useful discussions, and anonymous re-
viewers for their valuable comments. This work was sup-
ported in part by US National Science Foundation (NSF)
grants CCF-1533795, CCF-0953195, and CNS 1422338, and
US National Institutes of Health (NIH) grant U01-CA198941.

6. REFERENCES
[1] D. Aldous and J. A. Fill. Reversible markov chains

and random walks on graphs, 2002. Unfinished
monograph, recompiled 2014, available at http:
//www.stat.berkeley.edu/˜aldous/RWG/book.html.

[2] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In Foundations of
Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 475–486. IEEE, 2006.

[3] R. Andersen, F. Chung, and K. Lang. Using pagerank
to locally partition a graph. Internet Math.,
4(1):35–64, 2007.

[4] P. Bogdanov and A. Singh. Accurate and scalable
nearest neighbors in large networks based on effective
importance. In Proceedings of the 22nd ACM
international conference on Conference on information
& knowledge management, pages 1009–1018. ACM,
2013.

[5] M. Cao, H. Zhang, J. Park, N. M. Daniels, M. E.
Crovella, L. J. Cowen, and B. Hescott. Going the
distance for protein function prediction: a new
distance metric for protein interaction networks. P loS
one, 8(10):e76339, 2013.
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