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Abstract

Graph reordering is a powerful technique to increase the locality of the representations of
graphs, which can be helpful in several applications. We study how the technique can be used
to improve compression of graphs and inverted indexes.

We extend the recent theoretical model of Chierichetti et al. (KDD 2009) for graph compres-
sion, and show how it can be employed for compression-friendly reordering of social networks and
web graphs and for assigning document identifiers in inverted indexes. We design and implement
a novel theoretically sound reordering algorithm that is based on recursive graph bisection.

Our experiments show a significant improvement of the compression rate of graph and indexes
over existing heuristics. The new method is relatively simple and allows efficient parallel and
distributed implementations, which is demonstrated on graphs with billions of vertices and
hundreds of billions of edges.

1 Introduction

Many real-world systems and applications use in-memory representation of indexes for serving ad-
jacency information in a graph. A popular example is social networks in which the list of friends is
stored for every user. Another example is an inverted index for a collection of documents that stores,
for every term, the list of documents where the term occurs. Maintaining these indexes requires a
compact, yet efficient, representation of graphs.

How to represent and compress such information? Many techniques for graph and index com-
pression have been studied in the literature |24}37]. Most techniques first sort vertex identifiers in
an adjacency list, and then replace the identifiers (except the first) with differences between con-
secutive ones. The resulting gaps are encoded using some integer compression algorithm. Note that
using gaps instead of original identifiers decreases the values needed to be compressed and results in
a higher compression ratio. We stress that the success of applying a particular encoding algorithm
strongly depends on the distribution of gaps in an adjacency list: a sequence of small and regular
gaps is more compressible than a sequence of large and random ones.

This observation has motivated the approach of assigning identifiers in a way that optimizes
compression. Graph reordering has been successfully applied for social networks [8|13]. In that
scenario, placing similar social actors nearby in the resulting order yields a significant compression
improvement. Similarly, lexicographic locality is utilized for compressing the Web graph: when pages
are ordered by URL, proximal pages have similar sets of neighbors, which results in an increased



compression ratio of the graph, when compared with the compression obtained using the original
graph [9,29]. In the context of index compression, the corresponding approach is called the document
identifier assignment problem. Prior work shows that for many collections, index compression can
be significantly improved by assigning close identifiers to similar documents [64(7},15,132}34].

In this paper, we study the problem of finding the best “compression-friendly” order for a graph
or an inverted index. While graph reordering and document identifier assignment are often studied
independently, we propose a unified model that generalizes both of the problems. Although a number
of heuristics for the problems exists, none of them provides any guarantees on the resulting quality.
In contrast, our algorithm is inspired by a theoretical approach with provable guarantees on the
final quality, and it is designed to directly optimize the resulting compression ratio. Our main
contributions are the following.

e We analyze and extend the formal model of graph compression suggested in [13]; the new
model is suitable for both graph reordering and document identifier assignment problems. We
show that the underlying optimization problem is NP-hard (thus, resolving an open question
stated in |13]), and suggest an efficient approach for solving the problem, which is based on
approximation algorithms for graph reordering.

e Based on the theoretical result, we develop a practical algorithm for constructing compression-
friendly vertex orders. The algorithm uses recursive graph bisection as a subroutine and tries
to optimize a desired objective at every recursion step. Our objective corresponds to the size
of the graph compressed using delta-encoding. The algorithm is surprisingly simple, which
allows for efficient parallel and distributed implementations.

e Finally, we perform an extensive set of experiments on a collection of large real-world graphs,
including social networks, web graphs, and search indexes. The experiments indicate that
our new method outperforms the state-of-the-art graph reordering techniques, improving the
resulting compression ratio. Our implementation is highly scalable and is able to process a
billion-vertex graph in a few hours.

The paper is organized as follows. We first discuss existing approaches for graph reordering,
assigning document identifiers, and the most popular encoding schemes for graph and index repre-
sentation (Section. Then we consider algorithmic aspects of the underlying optimization problem.
We analyze the models for graph compression suggested by Chierichetti et al. |13] and suggest our
generalization in Section 3.1} Next, in Section [3.2] we examine existing theoretical techniques for the
graph reordering problem and use the ideas to design a practical algorithm. A detailed description
of the algorithm along with the implementation details is presented in Section [4], which is followed
by experimental Section f] We conclude the paper with the most promising future directions in
Section [6l

2 Related Work

There exists a rich literature on graph and index compression, that can be roughly divided into three
categories: (1) structural approaches that find and merge repeating graph patterns (e.g., cliques),
(2) encoding adjacency data represented by a list of integers given some vertex/document order, and
(3) finding a suitable order of graph vertices. Our focus is on the ordering techniques. We discuss
the existing approaches for graph reordering, followed by an overview of techniques for document
identifier assignment. Since many integer encoding algorithms can benefit from such a reordering,
we also outline the most popular encoding schemes.



Graph Reordering Among the first approaches for compressing large-scale graphs is a work by
Boldi and Vigna [9], who compress web graphs using a lexicographical order of the URLs. Their
compression method relies on two properties: locality (most links lead to pages within the same
host) and similarity (pages on the same host often share the same links). Later Apostolico and
Drovandi |2| suggest one of the first ways to compress a graph assuming no a priori knowledge of
the graph. The technique is based on a breadth-first traversal of the graph vertices and achieves a
better compression rate using an entropy-based encoding.

Chierichetti et al. |13] consider the theoretical aspect of the reordering problem motivated by
compressing social networks. They develop a simple but practical heuristic for the problem, called
shingle ordering. The heuristic is based on obtaining a fingerprint of the neighbors of a vertex and
positioning vertices with identical fingerprints close to each other. If the fingerprint can capture
locality and similarity of the vertices, then it can be effective for compression. This approach is also
called minwise hashing and was originally applied by Broder [10] for finding duplicate web pages.

Boldi et al. [8] suggest a reordering algorithm, called Layered Label Propagation, to compress
social networks. The algorithm is built on a scalable graph clustering technique by label propa-
gation [28]. The idea is to assign a label for every vertex of a graph based on the labels of its
neighbors. The process is executed in rounds until no more updates take place. Since the standard
label propagation described in [28] tends to produce a giant cluster, the authors of [8] construct a
hierarchy of clusters. The vertices of the same cluster are then placed together in the final order.

The three-step multiscale paradigm is often employed for the graph ordering problems. First,
a sequence of coarsened graphs, each approximating the original graph but having a smaller size,
is created. Then the problem is solved on the coarsest level by an exhaustive search. Finally, the
process is reverted by an uncoarsening procedure so that a solution for every graph in the sequence
is based on the solution for a previous smaller graph. Safro and Temkin [31] employ the algebraic
multigrid methodology in which the sequence of coarsened graphs is constructed using a projection
of graph Laplacians into a lower-dimensional space.

Spectral methods have also been successfully applied to graph ordering problems |20]. Sequencing
the vertices is done by sorting them according to corresponding elements of the second smallest
eigenvector of graph Laplacian (also called the Fiedler vector). It is known that the order yields the
best non-trivial solution to a relaxation of the quadratic graph ordering problem, and hence, it is a
good heuristic for computing linear arrangements.

Recently Kang and Faloutsos [23| present another technique, called SlashBurn. Their method
constructs a permutation of graph vertices so that its adjacency matrix is comprised of a few nonzero
blocks. Such dense blocks are easier to encode, which is beneficial for compression.

In our experiments, we compare our new algorithm with all of the methods, which are either
easy to implement, or come with the source code provided by the authors.

Document Identifier Assignment Several papers study how to assign document identifiers in
a document collection for better compression of an inverted index. A popular idea is to perform
a clustering on the collection and assign close identifiers to similar documents. Shieh et al. [32]
propose a reassignment heuristic motivated by the maximum travelling salesman problem (TSP).
The heuristic computes a pairwise similarity between every pairs of documents (proportional to
the number of shared terms), and then finds the longest path traversing the documents in the
graph. An alternative algorithm calculating cosine similarities between documents is suggested by
Blandford and Blelloch |7]. Both methods are computationally expensive and are limited to fairly



small datasets. The similarity-based approach is later improved by Blanco and Barreiro [6] and
by Ding et al. |15], who make it scalable by reducing the size of the similarity graph, respectively
through dimensionality reduction and locality sensitive hashing.

The approach by Silvestri [34] simply sorts the collection of web pages by their URLs and then
assigns document identifiers according to the order. The method performs very well in practice and
is highly scalable. This technique however does not generalize to document collections that do not
have URL-like identifiers.

Encoding Schemes Our algorithm is not tailored specifically for an encoding scheme; any method
that can take advantage of lists with higher local density (clustering) should benefit from the
reordering. For our experiment we choose a few encoding schemes that should be representative
of the state-of-the-art.

Most graph compression schemes build on delta-encoding, that is, sorting the adjacency lists
(posting lists in the inverted indexes case) so that the gaps between consecutive elements are positive,
and then encoding these gaps using a variable-length integer code. The WebGraph framework adds
the ability to copy portions of the adjacency lists from other vertices, and has special cases for runs
of consecutive integers. Introduced in 2004 by Boldi and Vigna [9], it is still widely used to compress
web graphs and social networks.

Inverted indexes are usually compressed with more specialized techniques in order to enable
fast skipping, which enables efficient list intersection. We perform our experiments with Parti-
tioned Elias-Fano and Binary Interpolative Coding. The former, introduced by Ottaviano and Ven-
turini [26], provides one of the best compromise between decoding speed and compression ratio. The
latter, introduced by Moffat and Stuiver 25|, has the highest compression ratio in the literature,
with the trade-off of slower decoding by several times. Both techniques directly encode monotone
lists, without going through delta-encoding.

3 Algorithmic Aspects

Graph reordering is a combinatorial optimization problem with a goal to find a linear layout of
an input graph so that a certain objective function (referred to as a cost function or just cost) is
optimized. A linear layout of a graph G = (V, E) with n = |V vertices is a bijection 7 : V' —
{1,...,n}. A layout is also called an order, an arrangement, or a numbering of the vertices. In
practice it is desirable that “similar” vertices of the graph are “close” in 7. This leads to a number
of problems that we define next.

The minimum linear arrangement (MLA) problem is to find a layout 7 so that

Y Im(w) = w(v)l

(u,v)EE

is minimized. This is a classical NP-hard problem [18|, even when restricted to certain graph classes.
The problem is APX-hard under Unique Games Conjecture [14], that is, it is unlikely that an efficient
approximation algorithm exists. Charikar et al. |11] suggested the best currently known algorithm
with approximation factor O(y/lognloglogn); see |27] for a survey of results on MLA.

A closely related problem is minimum logarithmic arrangement (MLOGA) in which the goal is



to minimize

> loglm(u) = m(v)].

(u,v)EE

Here and in the following we denote log(xz) = 1 + |logy(x) |, that is, the number of bits needed to
represent an integer x. The problem is also NP-hard, and one can show that the optimal solutions
of MLA and MLOGA are quite different on some graphs [13|. In practice a graph is represented
in memory as an adjacency list using an encoding scheme; hence, the gaps induced by consecutive
neighbors of a vertex are important for compression. For this reason, the minimum logarithmic
gap arrangement (MLOGGAPA) problem is introduced. For a vertex v € V of degree k and an
order m, consider the neighbors out(v) = (v1,...,v;) of v such that m(v;) < --- < m(vg). Then the
cost compressing the list out(v) under 7 is related to fr(v,out(v)) = Zfz_ll log |7 (viy1) — m(vg)].
MLOGGAPA consists in finding an order 7, which minimizes

Z fr (v, out(v)).

veV

To the best of our knowledge, MLOGA and MLOGGAPA are introduced quite recently by Chierichetti
et al. [13]. They show that MLOGA is NP-hard but left the computational complexity of MLOGGAPA

open. Since the latter problem is arguably more important for applications, we address the open

question of complexity of the problem.

Theorem 1. MLOGGAPA is NVP-hard.

Proof. We prove the theorem by using the hardness of MLOGA, which is known to be NP-hard |13].
Let G = (V, E) be an instance of MLOGA. We build a bipartite graph G’ = (V', E’) by splitting
every edge of E by a degree-2 vertex. Formally, we add |E| new vertices so that V' =V UU, where
V =A{vy,...,v,} and U = {uq,...,up}. For every edge (a,b) € E, we have two edges in E’, that
is, (a,u;) and (b, u;) for some 1 < i < m. Next we show that an optimal solution for MLOGGAPA
on G yields an optimal solution for MLOGA on G, which proves the claim of the theorem.

Let R be an optimal order of V/ for MLOGGAPA. Observe that without loss of generality, the
vertices of V' and U are separated in R, that is, R = (v;,...,vi,, %), ..,u;, ). Otherwise, the
vertices can be reordered so that the total objective is not increased. To this end, we “move” all
the vertices of V' to the left of R by preserving their relative order. It is easy to see that the gaps
between vertices of V' and the gaps between vertices of U can only decrease.

Now the cost of MLOGGAPA is

S Frw,0ut@)) + 3 fi (u,0ut(u)),
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where 7, = (uj,,...,u;,) and 7, = (v, ...,v;,). Notice that the second term of the sum depends
only on the order 7, of the vertices in V', and it equals to the cost of MLOGA for graph G. Since
R is optimal for MLOGGAPA, the order m, = (vjy,...,v;,) is also optimal for MLOGA. O

Most of the previous works consider the MLOGA problem for graph compression, and the
algorithms are not directly suitable for index compression. Contrarily, an inverted index is generally
represented by a directed graph (with edges from terms to documents), which is not captured by
the MLOGGAPA problem. In the following, we suggest a model, which generalizes both MLOGA
and MLOGGAPA and better expresses graph and index compression.



3.1 Model for Graph and Index Compression

Intuitively, our new model is a bipartite graph comprising of query and data vertices. A query vertex
might correspond to an actor in a social network or to a term in an inverted index. Data vertices
are an actor’s friends or documents containing the term, respectively. The goal is to find a layout
of data vertices.

Formally, let G = (Q U D, E) be an undirected unweighted bipartite graph with disjoint sets of
vertices @ and D. We denote |D| = n and |E| = m. The goal is to find a permutation, 7, of data
vertices, D, so that the following objective is minimized:

deg, —1
>3 log(m(uigr) — m(us)),
qeQ =1
where deg, is the degree of query vertex g € Q, and ¢’s neighbors are {u1, ..., Udeg, } With 7(u1) <

-+ < T(Udeg,). Note that the objective is closely related to minimizing the number of bits needed
to store a graph or an index represented using the delta-encoding scheme. We call the optimiza-
tion problem bipartite minimum logarithmic arrangement (BIMLOGA), and the corresponding cost
averaged over the number of gaps LogGap.

Note that BIMLOGA is different from MLOGGAPA in that the latter does not differentiate
between data and query vertices (that is, every vertex is query and data in MLOGGAPA), which is
unrealistic in some applications. It is easy to see that the new problem generalizes both MLOGA
and MLOGGAPA: to model MLOGA, we add a query vertex for every edge of the input graph, as
in the proof of Theorem [} to model MLOGGAPA, we add a query for every vertex of the input
graph; see Figure[I] Moreover, the new approach can be naturally applied for compressing directed
graphs; to this end, we only consider gaps induced by outgoing edges of a vertex. Clearly, given an
algorithm for BIMLOGA, we can easily solve both MLOCGA and MLOGGAPA. Therefore, we focus
on this new problem in the next sections.
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Figure 1: Modeling of MLOGA and MLOGGAPA with a bipartite graph with query (red) and
data (blue) vertices.

How can one solve the above ordering problems? Next we discuss the existing theoretical ap-
proaches for solving graph ordering problems. We focus on approximation algorithms, that is, effi-
cient algorithms for NP-hard problems that produce sub-optimal solutions with provable quality.

3.2 Approximation Algorithms

To the best of our knowledge, no approximation algorithms exist for the new variants of the graph
ordering problem. However, a simple observation shows that every algorithm has approximation
factor O(logn). Note that the cost of a gap between u € D and v € D in BIMLOGA cannot exceed



logn, as |m(v) — m(u)| < n for every permutation m. On the other hand, the cost of a gap is at least
1. Therefore, an arbitrary order of vertices yields a solution with the cost, which is at most logn
times greater than the optimum.

In contrast, the well-studied ML A does not admit such a simple approximation and requires more
involved algorithms. We observe that most of the existing algorithms for ML A and related ordering
problems employ the divide-and-conquer approach; see Algorithm [} Such algorithms partition the
vertex set into two sets of roughly equal size, compute recursively an order of each part, and “glue”
the orderings of the parts together. The crucial part is graph bisection or more generally balanced
graph partitioning, if the graph is split into more than two parts.

Input: graph G

1. Find a bisection (G1,G2) of G;
2. Recursively find linear arrangements for G; and Go;
3. Concatenate the resulting orderings;

Algorithm 1: Graph Reordering using Graph Bisection

The first non-trivial approximation algorithm for MLA follows the above approach. Hancen [19]
proves that Algorithm |1] yields an O(alogn)-approximation for ML A, where « indicates how close
is the solution of the first step (bisection of G) to the optimum. Later, Charikar et al. |[12| shows that
a tighter analysis is possible, and the algorithm is in fact O(«)-approximation for d-dimensional
MLA. Currently, a = O(y/logn) is the best known bound |3]. Subsequently, the idea of Algorithm
was employed by Even et al. |[16], Rao and Richa [30], and Charikar et al. [11] for composing
approximation algorithms for MLA. The techniques use the recursive divide-and-conquer approach
and utilize a spreading metric by solving a linear program with an exponential number of constraints.

Inspired by the algorithms, we design a practical approach for the BIMLOGA problem. While
solving a linear program is not feasible for large graphs, we utilize recursive graph partitioning in
designing the algorithm. Next we describe all the steps and provide implementation-specific details.

4 Compression-Friendly Graph Reordering

Assume that the input is an undirected bipartite graph G = (QUD, E), and the goal is to compute
an order of D. On a high level, our algorithm is quite simple; see Algorithm [I}

The reordering method is based on the graph bisection problem, which asks for a partition of
graph vertices into two sets of equal cardinality so as to minimize an objective function. Given an
input graph G with |D| = n, we apply the bisection algorithm to obtain two disjoint sets Vi, Vo C D
with [V1| = [n/2] and |Va| = [n/2]. We shall lay out V; on the set {1,...,|n/2]} and lay out V3
on the set {[n/2],...,n}. Thus, we have divided the problem into two problems of half the size,
and we recursively compute good layouts for the graphs induced by Vi and Vs, which we call Gy
and G, respectively. Of course, when there is only one vertex in GG, the order is trivial.

How to bisect the vertices of the graph? We use a graph bisection method, similar to the popular
Kernighan-Lin heuristic [21]; see Algorithm[2] Initially we split D into two sets, Vi and Vs, and define
a computational cost of the partition, which indicates how “compression-friendly” the partition is.
Next we exchange pairs of vertices in V7 and V5 trying to improve the cost. To this end we compute,
for every vertex v € D, the move gain, that is, the difference of the cost after moving v from its



current set to another one. Then the vertices of V; (V2) are sorted in the decreasing order of the
gains to produce list Sy (S2). Finally, we traverse the lists S; and S5 in the order and exchange the
pairs of vertices, if the sum of their move gains is positive. Note that unlike classical graph bisection
heuristics [17,21], we do not update move gains after every swap. The process is repeated until the
convergence criterion is met (no swapped vertices) or the maximum number of iterations is reached.

Input : graph G = (QUD,E)
Output: graphs G; = (QU Vi, Ey),Ga = (Q U Vs, E»)

determine an initial partition of D into V; and V5;
repeat
for v € D do
| gains[v] <= ComputeMoveGain(v)

S1 < sorted Vj in descending order of gains;
S9 + sorted V5 in descending order of gains;
for v € 51, u € Sy do

if gains[v] + gains[u] > 0 then

exchange v and u in the sets;

else break
until converged or iteration limit exceeded;
return graphs induced by QU Vi and QU Vs

Algorithm 2: Graph Bisection

To initialize the bisection, we consider the following two alternatives. A simpler one is to arbi-
trarily split D into two equal-sized sets. Another approach is based on shingle ordering (minwise
hashing) suggested in [13|. To this end, we order the vertices as described in 13| and assign the first
|n/2] vertices to Vi and the last [n/2] to Va.

Algorithm [2 tries to minimize the following objective function of the sets V; and Vs, which is
motivated by BIMLOGA. For every vertex ¢ € Q, let deg,(q) = [{(¢,v) : v € Vi}|, that is, the
number of adjacent vertices in set Vj; define degy(q) similarly. Then the cost of the partition is

ni ng
q%é <deg1(q) 10g(m) + degy(q) IOg(degQ(q)H)) :

where ny = |Vi| and na = |Va|. The cost estimates the required number of bits needed to represent
G using delta~encoding. If the neighbors of ¢ € Q are uniformly distributed in the final arrangement
of V1 and V5, then the the average gap between consecutive numbers in the ¢’s adjacency list is
gap; = n1/(deg;(¢)+1) and gap, = ny/(degy(q)+1) for Vi and V5, respectively; see Figure 2] There
are (deg;(q) — 1) gaps between vertices in V; and (deg,(q) — 1) gaps between vertices in V5. Hence,
we need approximately (deg;(q) —1)log(gap;) + (degy(¢) — 1) log(gaps) bits to compress the within-
group gaps. In addition, we have to account for the average gap between the last vertex of V7 and
the first vertex of Vo, which is (gap; + gap,). Assuming that n; = ng, we have log(gap; + gap,) =
log(gap,) + log(gaps) + C, where C' is a constant with respect to the data vertex assignment,
and hence, it can be ignored in the optimization. Adding this between-group contribution to the
within-group contributions gives the above expression.



gap; (q) gap,(q)

Figure 2: Partitioning D into V; and V3 for a query ¢ € Q with deg;(¢) = 3 and degy(q) = 2.

Note that using the cost function, it is straightforward to implement Compute MoveGain(v)
function from Algorithm [2| by traversing all the edges (¢,v) € E for v € D and summing up the
cost differences of moving v to another set.

Combining all the steps of Algorithm [T and Algorithm [2| we have the following claim.

Theorem 2. The algorithm produces a vertex order in O(mlogn + nlog? n) time.

Proof. There are [logn] levels of recursion. Each call of graph bisection requires computing move
gains and sorting of n elements. The former can be done in O(m) steps, while the latter requires
O(nlogn) steps. Summing over all subproblems, we get the claim of the theorem. O

4.1 Implementation

Due to the simplicity of the algorithm, it can be efficiently implemented in parallel or distributed
manner. For the former, we notice that two different recursive calls of Algorithm [1| are indepen-
dent, and thus, can be executed in parallel. Analogously, a single bisection procedure can easily
be parallelized, as each of its steps computes independent values for every vertex, and a parallel
implementation of sorting can be used. In our implementation, we employ the fork-join computation
model in which small enough graphs are processed sequentially, while larger graphs which occur on
the first few levels of recursion are solved in parallel manner.

Our distributed implementation relies on the vertex-centric programming model and runs in the
Giraph frameworkﬂ. In Giraph, a computation is split into supersteps that consists of processing
steps: (i) a vertex executes a user-defined function based on local vertex data and on data from
adjacent vertices, (ii) the resulting output is sent along outgoing edges. Supersteps end with a
synchronization barrier, which guarantees that messages sent in a given superstep are received at
the beginning of the next superstep. The whole computation is executed iteratively for a certain
number of rounds, or until a convergence property is met.

Algorithm [2] is implemented in the vertex-centric model with a simple modification. The first
two supersteps compute move gains for all data vertices. To this end, every query vertex calculates
the differences of the cost function when its neighbor moves from a set to another one. Then, every
data vertex sums up the differences over its query neighbors. Given the move gains, we exchange the
vertices as follows. Instead of sorting the move gains, we construct, for both sets, an approximate
histogram (e.g., as described in [5]) of the gain values. Since the size of the histograms is small
enough, we collect the data on a dedicated host, and decide how many vertices from each bin should
exchange its set. On the last superstep, this information is propagated over all data vertices and
the corresponding swaps take effect.

"http://giraph.apache.org



5 Experiments

We design our experiments to answer two primary questions: (i) How well does our algorithm
compress graphs and indexes in comparison with existing techniques? (ii) How do various parameters
of the algorithm contribute to the solution, and what are the best parameters?

5.1 Dataset

For our experiments, we use several publicly available web graphs, social networks, and inverted
document indexes; see Table [1} In addition, we run evaluation on two large subgraphs of the Face-
book friendship graph and a sample of the Facebook search index. These private datasets serve to
demonstrate scalability of our approach. We do not release the datasets and our source code due to
corporate restrictions. Before running the tests, all the graphs are made unweighted and converted
to bipartite graphs as described in Section Our dataset is as follows.

e Enron represents an email communication network; data is available at https://snap.stanford.
edu/data.

e AS-Oregon is an Autonomous Systems peering information inferred from Oregon route-views
in 2001; data is available at https://snap.stanford.edu/data.

e FB-NewOrlean contains a list of all of the user-to-user links from the Facebook New Orleans
network; the data was crawled and anonymized in 2009 [36].

e web-Google represents web pages with hyperlinks between them. The data was released in
2002 by Google; data is available at https://snap.stanford.edu/datal

e LiveJournal is an undirected version of the public social graph (snapshot from 2006) con-
taining 4.8 million vertices and 42.9 million edges [35].

e Twitter is a public graph of tweets, with about 41 million vertices (twitter accounts) and 2.4
billion edges (denoting followership) [22].

e Gov2 is an inverted index built on the TREC 2004 Terabyte Track test collection, consisting
of 25 million .gov sites crawled in early 2004.

e ClueWeb09 is an inverted index built on the ClueWeb 2009 TREC Category B test collection,
consisting of 50 million English web pages crawled in 2009.

e FB-Posts-1B is an inverted index built on a sample of one billion Facebook posts, containing
the longest posting lists. Since the posts have no hierarchical URLs, the Natural order for
this index is random.

e FB-300M and FB-1B are two subgraphs of the Facebook friendship graph; the data was anonymized
before processing.

To build the inverted indexes for Gov2 and ClueWeb09 the body text was extracted using Apache

TikaE] and the words were lowercased and stemmed using the Porter2 stemmer; no stopwords were
removed. We consider only long posting lists containing more than 4096 elements.

5.2 Techniques

We compare our new algorithm (referred to as BP) with the following competitors.
e Natural is the most basic order defined for a graph. For web graphs and document indexes,
the order is the URL lexicographic ordering used in [9,229]. For social networks, the order is
induced by the original adjacency matrix.

http://tika.apache.org
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Graph 9| |D| |E|

Enron 9,660 9,660 224,896
AS-Oregon 13,579 13,579 74,896
FB-NewOrlean 63,392 63,392 1,633,662
web-Google 356,648 356,648 5,186,648
LiveJournal 4,847,571 4,847,571 85,702,474
Twitter 41,652,230 41,652,230  2,405,026,092
Gov2 39,187 24,618,755  5,322,924,226
ClueWeb09 96,741 50,130,884 14,858,911,083
FB-Posts-1B 60 x 103 1 x 107 20 x 10°
FB-300M 300 x 106 300 x 108 90 x 10°
FB-1B 1 % 10° 1 x 10° 300 x 10°

Table 1: Basic properties of our dataset.

e BFS is given by the bread-first search graph traversal algorithm as utilized in [2].

e Minhash is the lexicographic order of 10 minwise hashes of the adjacency sets. The same
approach with only 2 hashes is called double shingle in [13].

e TSP is a heuristic for document reordering suggested by Shieh et al. [32], which is based on solv-
ing the maximum travelling salesman problem. We implemented the variant of the algorithm
that performs best in the authors’ experiments. Since the algorithm is computationally expen-
sive, we run it on small instances only. The sparsification techniques presented in |6}15] would
allow us to scale to the larger graphs, but they are too complex to re-implement faithfully.

e LLP represents an order computed by the Layered Label Propagation algorithm [8].

e Spectral order is given by the second smallest eigenvector of the Laplacian matrix of the
graph [20].

e Multiscale is an algorithm based on the multi-level algebraic methodology suggested for
solving MLOGA [31].

e SlashBurn is a method for matrix reordering [23].

5.3 Effect of BP parameters

BP has a number of parameters that can affect its quality and performance. In the following we
discuss some of the parameters and explain our choice of their default values.

An important aspect of BP is how two sets, V; and V5, are initialized in Algorithm[2] Arguably the
initialization procedure might affect the quality of the final vertex order. To verify the hypothesis,
we implemented four initialization techniques that bisect a given graph: Random, Natural, BFS,
and Minhash. The techniques order the data vertices, D, using the corresponding algorithm, and
then split the order into two sets of equal size. In the experiment, we intentionally consider only the
simplest and most efficient bisection techniques so as to keep the complexity of the BP algorithm low.
Figure[3]illustrates the effect of the initialization methods for graph bisection. Note that initialization
plays a role to some extent, and there is no consistent winner. BFS is the best initialization for three
of the graphs but does not produce an improvement on the indexes. One explanation is that the
indexes contain high-degree query vertices, that make the BFS order essentially random. Overall, the
difference between the final results is not substantial, and even the worst initialization yields better
orders than the alternative algorithms do. Therefore, we utilize the simplest approach, Random, for
graphs and Minhash for indexes as the default technique for bisection initialization.
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Figure 5: The average percentage of moved vertices on an iteration of Algorithm for various levels
of recursion. The data is computed for LiveJournal.

Is it always necessary to perform logn levels of recursion to get a reasonable solution? Figure [4]
shows the quality of the resulting vertex order after a fixed number, ¢, of recursion splits. For every
i (that is, when there are 2¢ disjoint sets), we stop the algorithm and measure the quality of the
order induced by the random assignment of vertices respecting the partition. It turns out that graph
bisection is beneficial only when D contains more than a few tens of vertices. In our implementation,
we set (logn—5) for the depth of recursion, which slightly reduces the overall running time. It might
be possible to improve the final quality by finding an optimal solution (e.g., using an exhaustive
search or a linear program) for small subgraphs on the lowest levels of the recursion. We leave the
investigation for future research.

Figure [5| illustrates the speed of convergence of our optimization procedure utilized for improv-
ing graph partitioning in Algorithm [2] The two sets approach a locally optimal state within a few
iterations. The number of required iterations increases, as the depth of recursion gets larger. Gen-
erally, the number of moved vertices per iteration does not exceed 1% after 20 iterations, even for
the deepest recursion levels. Therefore, we use 20 as the default number of iterations in all our
experiments.



(a) Natural
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Figure 6: Adjacency matrices of FB-NewOrlean after applying various reordering algorithms;
nonzero elements are blue.

5.4 Compression ratio

Table [2] presents a comparison of various reordering methods on social networks and web graphs.
We evaluate the following measures: (i) the cost of the BIMLOGA problem (LogGap), (ii) the
cost of the MLOGA problem (the logarithmic difference averaged over the edges, Log), (iii) the
average number of bits per edge needed to encode the graph with WebGraph [9] (referred to as
BV). The results suggest that BP yields the best compression on all but one instance, providing an
5—20% improvement over the best alternative. An average gain over a non-reordered solution reaches
impressive 50%. The runner-up approaches, TSP, LLP, and Multiscale, also significantly outperform
the natural order. However, their straightforward implementations are not scalable for large graphs
(none of them is able to process Twitter within a few hours), while efficient implementations are
arguably more complicated than BP.

The computed results for FB-300M and FB-1B demonstrate that the new reordering technique is
beneficial for very large graphs, too. Unfortunately, we were not able to calculate the compression
rate for the graphs, as WebGraph [9] does not provide distributed implementation. However, the
experiment indicates that BP outperforms Natural by around 50% and outperforms Minhash by
around 30%.

The compression ratio of inverted indexes is illustrated in Table [3] where we evaluate the Parti-
tioned Elias-Fano [26] encoding and Binary Interpolative Coding 25| (respectively PEF and BIC).
Here the results are reported in average bits per edge. Again, our new algorithm largely outperforms
existing approaches in terms of both LogGap cost and compression rate. BP has a large impact on
the indexes, achieving a 22% and a 15% compression improvement over alternatives; these gains are
almost identical for PEF and BIC.

An interesting question is why does the new algorithm perform best on most of the tested graphs.
In Figure [7] we analyze the number of gaps between consecutive numbers of graph adjacency lists.
It turns out that BP and LLP have quite similar gap distributions, having notably more shorter gaps
than the alternative methods. Note that the number of edges that the BV encoding is able to copy
is related to the number of consecutive integers in the adjacency lists; hence short gaps strongly
influences its performance. At the same time, BP is slightly better at longer gaps, which is a reason
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Graph Algorithm  LogGap  Log BV

Enron Natural 5.01 9.82 7.80
BFS 4.86 9.97 7.70
Minhash 491 10.12 7.68
TSP 3.95 9.46 6.58
LLP 3.96 8.55 6.51
Spectral 5.43 9.41 8.60
Multiscale 4.23 8.00 6.90
SlashBurn 5.11 10.18 8.05
BP 3.69 8.26 6.24
AS-Oregon Natural 7.88 12.06 13.34
BFS 4.71 11.06 7.97
Minhash 4.47  11.17 7.56
TSP 3.59  10.39 6.66
LLP 4.42 8.32 7.47
Spectral 5.64 9.53 8.76
Multiscale 4.53 7.23 7.31
SlashBurn 4.50 10.66 8.74
BP 3.15 9.21 6.25
FB-NewOrlean Natural 9.74 14.29 14.64
BFS 7.16 12.63 10.79
Minhash 7.06 12.57 10.62
TSP 5.62 11.61 8.96
LLP 5.37 9.41 8.54
Spectral 7.64 1149 11.79
Multiscale 5.90 9.58 9.25
SlashBurn 8.37 13.06 12.65
BP 4.99 9.45 8.16
web-Google Natural 13.39 16.74  20.08
BFS 5.57 11.21 7.69
Minhash 5.6 13.14 6.87
TSP 3.28 7.99 4.77
LLP 3.75 6.70 5.13
Spectral 6.68  10.25 9.16
Multiscale 2.72 4.82 4.10
SlashBurn 8.02 14.46 10.29
BP 3.17 7.74 4.68
LiveJournal Natural 10.43 17.44 14.61
BFS 10.52 17.59  14.69
Minhash 10.79 17.76  15.07
LLP 746 12.25 11.12
BP 7.03 12.79 10.73
Twitter Natural 15.23  23.65  21.56
BFS 12.87  22.69 17.99
Minhash 10.43 21.98 14.76
BP 7.91 20.50 11.62
FB-300M Natural 17.65  25.34
Minhash 13.06 24.9
BP 8.39 18.13
FB-1B Natural 19.63  27.22
Minhash 14.60  26.89
BP 14 8.66 18.36

Table 2: Reordering results of various algorithms on graphs: the costs of MLOGA, BIMLOGA, and
the number of bits per edge required by BV. The best results in every column are highlighted. We
present the results that completed the computation within a few hours.



Index Algorithm LogGap PEF BIC

Gov2 Natural 2.12 3.12 2.52
BFS 2.07 3.00 2.44
Minhash 2.12 3.12 2.52
BP 1.81 2.44 1.95
ClueWeb09 Natural 2.91 4.99 4.05
BFS 291 4.99 4.06
Minhash 2.91 4.99 4.05
BP 2.55 4.34 3.50
FB-Posts-1B Natural 8.03 10.19 9.95
Minhash 3.41 496 4.24
BP 2.95 4.18 3.61

Table 3: Reordering results of various algorithms on inverted indexes with highlighted best results.
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Figure 7: Distribution of gaps between consecutive elements of graph adjacency lists induced by
various algorithms.

why the new algorithm yields a higher compression ratio.

We point out that the cost of BIMLOGA, LogGap, is more relevant for the compression rate
than the cost of MLOGA; see Figure[§l The observation agrees with the previous evaluation of Boldi
et al. [8] and motivates our research on the former problem. The Pearson correlation coefficients
between the LogGap cost and the average number of bit per edge using BV, PEF, and BIC
encoding schemes are 0.9853, 0.8487, and 0.8436, respectively. While the high correlation between
LogGap and BV is observed earlier [9,13], the relation between LogGap and PEF or BIC is a new
phenomenon. A possible explanation is that the schemes encode a sequence of k integers in the
range [1..n] using close to the information-theoretic minimum of k(1 + [logs(n/k)]) bits |26], which
is equivalent to our optimization function utilized in Algorithm [2| It might be possible to construct
a better model for the two encoding schemes, where the cost of the optimization problem has a
higher correlation with the final compression ratio. For example, this can be achieved by increasing
the weights of “short” gaps that are generally require more than log(gap) bits. We leave the question
for future investigation.

Figure [0] presents an alternative comparison of the impact of the reordering algorithms on the
FB-NewOrlean graph. Note that only BP and LLP are able to find communities in the graph (dense
subgraphs), that can be compressed efficiently. The recursive nature of BP is also clearly visible.
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Figure 8: LogGap cost against the average number of bits per edge using various encoding schemes.

5.5 Running time

We created and tested two implementations of our algorithm, parallel and distributed. The parallel
version is implemented in C++11 and compiled with the highest optimization settings. The tests
are performed on a machine with Intel(R) Xeon(R) CPU E5-2660 @ 2.20GHz (32 cores) with 128GB
RAM. Our algorithm is highly scalable; the largest instances of our dataset, Gov2, ClueWeb09 and
FB-Posts-1B, are processed with BP within 29, 129, and 163 minutes, respectively. In contrast, even
the simplest Minhash takes 14, 42, and 70 minutes for the indexes. Natural and BFS also have
comparable running times on the graphs. Our largest graphs, Twitter and LiveJournal, require
149 and 3 minutes; all the smaller graphs are processed within a few seconds. In comparison, the
author’s implementation of LLP with the default settings takes 23 minutes on LiveJournal and
is not able to process Twitter within a reasonable time. The other alternative methods are less
efficient; for instance, Multiscale runs 12 minutes and TSP runs 3 minutes on web-Google. The
single-machine implementation of BP is also memory-efficient, utilizing less than twice the space
required to store the graph edges.

The distributed version of BP is implemented in Java. We run experiments using the distributed
implementation only on FB-300M and FB-1B graphs, using a cluster of a few tens of machines.
FB-300M is processed within 350 machine-hours, while the computation on FB-1B takes around 2800
machine-hours. In comparison, the running time of the Minhash algorithm is 20 and 60 machine-
hours on the same cluster configuration, respectively. Despite the fact that our implementation is
a part of a general graph partitioning framework [1]|, which is not specifically optimized for the
problem, BP scales almost linearly with the size of the utilized cluster and processes huge graphs
within a few hours.

6 Conclusions and Future Work

We presented a new theoretically sound algorithm for graph reordering problem and experimentally
proved that the resulting vertex orders allow to compress graphs and indexes more efficiently than
the existing approaches. The method is highly scalable, which is demonstrated via evaluation on
several graphs with billions of vertices and edges. While we see impressive gains in the compression
ratio, we believe there is still much room for further improvement. In particular, our graph bisection
technique ignore the freedom of orienting the decomposition tree. An interesting question is whether
a postprocessing step that “flips” left and right children of tree nodes can be helpful. It is shown
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in [4] that there is an O(n??)-time algorithm that computes an optimal tree orientation for the
MLA problem. Whether there exists a similar algorithm for MLOGA or BIMLOGA, is open.

While our primary motivation is compression, graph reordering plays an important role in a
number of applications. In particular, various graph traversal algorithms can be accelerated if the in-
memory graph layout takes advantage of the cache architecture. Improving vertex and edge locality
is important for fast node/link access operations, and thus can be beneficial for generic graph
algorithms and applications [33|. We are currently working on exploring this area and investigating
how reordering of graph vertices can improve cache and memory utilization.

From the theoretical point of view, it is interesting to devise better approximation algorithms
for the MLOGA and BIMLOGA problems.
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